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CHAPTER 1
INTRODUCTION TO VHDL

1.1 Introduction

VHDL is an acronym for VHSIC Hardware Description language
(VHSIC stands for Very High Speed Integrated Circuits ). It is a
hardware description language that can be used to model a digital
system at many levels of abstraction ranging from the algorithmic level
to the gate level. The complexity of the digital system being modeled
could vary from that of a simple gate to a complete digital electronic
system, or anything in between.

VHDL can be regarded as an integrated amalgamation of the
following languages : sequential + concurrent + netlist + timing
specification + waveform generation language.

Therefore the language has constructs that enable to express the
concurrent or sequential behavior of a digital system with or without
timing. It also allows modeling the system as an interconnection of
components. Test waveforms can also be generated using the same
constructs. All the above constructs can be combined to provide a
comprehensive description of the system in a single model.

1.2 Advantages of VHDL over other hardware description
languages.

1. The language con be used as a communication medium

between different CAD and CAE tools.

2. The language supports hierarchy; that is, a digital system can

be modeled as a set of interconnected components each
component in turn can be modeled as a set of interconnected

subcomponents.
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3. The language supports flexible design methodologies top-
down, bottom-up or mixed.

4. It supports both synchronous and asynchronous timing models.

5. Various digital modeling techniques such as finite state
machine descriptions, algorithmic descriptions and Boolean
equations can be modeled using this language.

6. The language is publicly available, human readable, machine
readable and not proprietary.

7. The language supports three basic different description styles:
structural, dataflow and behavioral.

8. Arbitrarily large designs can be modeled using the language
and therefore there are no limitations imposed by thgulage
on the size of a design.

9. The model can not only describe the functionality of a design,
but also contain information about the design itself in terms of
user-defined attributes, such as total area and speed.

10.The capability of defining new data types provides the power
to describe and simulate a new design technology at a very
high level of abstraction without any concern about the
implementation detalils.

1.3 VHDL : The language.

VHDL is a hardware description language that can be used to
model a digital system. The digital system con be as simple as a logic
gate or as complex as a complete electronic system. The building blocks
of this language are called as design units. The four main design units

are:

1. Entity declaration.

2. Architecture declaration.
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3. Configuration declaration.
4. Package.

The design units are described below.

1.3.1 Entity declaration.

An entity is modeled using an entity declaration and at least one
architecture body. The entity declaration describes the external view of
an entity. The entity declaration specifies the name of the entity being
modeled and lists the set of interface ports. Ports are signals (wires)
through which the entity communicates with the other models in its
external environment. An example for a half-adder circuit is given

below.

A —x y+— SUM
B fat) CARRY

Figure 1.1 : Half Adder
entity HALF-ADDER is
port (A,B :in BIT; SUM, CARF : out BIT );
end HALF-ADDER;

This entity called HALF-ADDER has two input ports A and B ; and two
output ports SUM and CARRY .Bit is a predefined type of language
construct.

1.3.2 Architecture body.

The second important part of a VHDL source file is the architecture
declaration. Every entity declaration you write must be accompanied by

at least one corresponding architecture. An architecture declaration is a
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statement that describes the underlying function and/or structure of a
circuit. Each architecture in your design must be associated by name
with one entity in the design. The architectlzedy contains the
internal description of the entity. The internal structure can be specified
by any of the following modeling styles.

a) As a set of interconnected components.

b) As a set of concurrent assignment statements.

c) As a set of sequential assignment statements.

d) As a combination of the above three.

The different modeling styles are explained below.

a. Structural style of modeling.
This is modeled as a set of interconnected components. Such a
model for a HALF-ADDER is shown.

architecture HA-STRUCTURE of HALF-ADDER is
component XOR2
port ( X,Y:in BIT ; N: out BIT)
end component;
component AND2
port (L,M :in BIT; N: out BIT);
end component;
begin
X1: XOR2 port map (A,B,SUM);
Al: AND2 port map (A,B, CARRY);
end HA-STRUCTURE;

The name of the architecture body is HA-STRUCTURE. The

architecture body is composed of two parts : the declaradindlefore
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the keyword begin ) and the statement part ( after keyword begin). Two
component declarations are present in the declarative part of the
architecture body.

The declared components are instantiated in the statement part of
the architecture body using component instantiation statements. X1 and
Al are the component labels for these component instantiations. The
first component instantiation statement labeled X1, shoatsstgnas A
and B are connected to output port SUM of the HALF-ADDER entity.
Similarly in the second component instantiation statement, signals A
and B are connected to ports L and M of the AND2 component, while
port N is connected to the CARRY-PORT of the HALF-ADDER.

b. Data flow style of modeling.

In this modeling style, the flow of data through the entity is expressed
primarily using concurrent signal assignment statements. The structure
of the entity is not explicitly specified in this modeling style, but it can
be implicitly deduced. The data flow model of the HALF-ADDER

entity is given below.

architecture DATAFLOW of HALF-ADDER is
begin

SUM <= A xor B after 8ns;

CARRY <= A and B after 4ns;
end DATAFLOW,;

The dataflow is described using two concurrent signal assignment
statements (or sequential signal assignment statements ). In a signal
assignment statement, the symbol <= implies an assignment of a value
to a signal. The value of the expression on the right hand side of the

statement is computed and is gagid to the signain the left-hand side,

FFT Processor 9



M.A. College of Engineering

called the target signal. A concurrent signal assignment statement is
executed only when any signal used in the expression on the right hand
side has an event on it, that is the value for the signal changes. Delay
information is also included in the signal assignment statements using
‘after’ clauses.
c. Behavioral style of modeling

The behavioral style of modeling specifies the behavior of an
entity as a set of statements that are executed sequentially in the
specified process statement. They do not explicitly specify the structure
of the entity but merely its functionality . A process statement is a
concurrent statement that can appear within an architecture body. For
example, consider the following behavioral model for the same HALF-
ADDER.

architecture BEHAVIOR of HALF-ADDER is
begin
process (A,B)
variable X,Y: BIT;
begin
X:=A;
Y:=B :
SUM <= X xor Y;
CARRY<=Xand Y;
end process;
end BEHAVIOR;

A process statement also has a declarative part (before keyword
begin) and a statement part ( between keyword begin and end process ).

The statements appearing within the statement part are executed
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sequentially. The list of signals specified within the parentheses after the

keyword process constitutes a sensitivity list and the process statement
is invoked whenever there is and event on any signal in the list. In the

example when an event occurs on A of B the statements appearing
within the process statement are executed sequentially. However, all the
processes that appear in a design are executed concurrently.

The variable declaration ( starts with the keyword variable )
declares two variables X and Y. A variable is different from a signal in
that it is always assigned a value instantaneously and the assignment
operator used is := compound symbol; contrast this with a signal that is
assigned a value always after a certain delay and the assignment
operator used to assign a value to a signal is the <= compound signal.
Variables declared within a process have their scope limited to that
process. Signal assignment statements appearing within a process are
called sequential signal assignment statements. Sequential signal
assignment statements, including variable assignment statements, are
executed sequentially independent of whether an event occurs on any
signals in its right-hand side expression.

d. Mixed style of modeling

It is possible to mix the three modeling styles which were
described before in a single architecture body. That is, within an
architecture body, we could use component instantiation statements and
concurrent statements, therefore their order of appearance within the
architecture body is not importantoté that a process statement itself is
a concurrent statement; however statements within a process statement
art always executed sequentially.

1.3.3 Configuration declaration
A configuration declaration is used to select one of the possibly

many architecture bodies that antign may have, and to bind
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component instances to entities. For structural models, configurations
can be thought of as the parts list for the model. For component
instances, the configuration specifies from many architectures for an
entity, which architecture to use for a specific instance. When the
configuration for an entity-architecture combination is compiled into the
library, a simulatable object is created. An example of the configuration
declaration for the HALF-ADDER entity is given below.

library CMOS-LIB, MY-LIB;

configuration CONFIG of HALF-ADDER is

for HA-STRUCTURE

for X1: XOR2

use entity CMOS-LIB.XOR-GATE (DATAFLOW);

end for ;

for A1l : AND2

use configuration MY-LIB.AND-CONFIG;

end for;

end for;

end CONFIG;
1.3.4 Package
The primary purpose of a package is to encapsulate elemantaithbe
shared (globally) among two or more design units. A package is a
common storage area used to hold data tdhaeed among a number of
entities. Declaring data inside of a package allows the data to be
referenced by other entiipthus, the data can be shared.
A package consists of two parts: a package declaration section and a
package body. The package declaration defines the interface for the
package, much the same way that the entity defines the interface for a
model. The package body specifies the actual behavior of the package in

the same method that the architecetsgement does for a model.
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1.3.5 Testbench

A testbench is used to verify the functionality of a design. The testbench

allows the designer to verify the functionality of the design at each step

in the HDL synthesis-based methodology. When the designer makes a
small change to fix an error, the change can beddstmake sure that it

did not affect other parts of the design. New versions of the design can
be verified against known good results to verify compatibility.

A testbench is at the highest level in the hierarchy of the design. The
testbench instantiates the design under test (DUT). It provides the
necessary input stimulus to the DUT and examines the output from the
DUT.
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CHAPTER 2
HIGH LEVEL DESIGN FLOW

The high level design flow is illustrated in figure 2.1. Each step is

explained below.

2.1 HDL Capture

After the specification has been completed, the designer can begin the
process of implementation. The designer creates the VHDL description
that describes the clock-by-clock behaviour of the design. The VHDL
code for entities of the design are entered. The designer then checks the
design for any syntax errors. After all syntax errors are removed, the

VHDL code is verified for correctness by simulating it.

2.2 RTL Simulation

In RTL Simulation, the designer uses stimulus that represents the design
environment to drive the design and check to make sure that the results
are correct. A standard VHDL simulator can be used to read the RTL
VHDL description and verify the correctness of the design.

The VHDL simulator reads the VHDL description, compiles it into an
internal format, and then executes the compiled format using test
vectors. The designer can look at the output of the simulation and
determine whether or not the design is working properly. The designer
has a number of ways to analyze the output. The most common are

waveform output and tabular output.
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Design Specification

HDL Capture

RTL Simulation

RTL Synthesis

Functional Gate
Simulation

Place and Route

Post Layout
Timing Simulation

Figure 2.1 High Level Design Flow
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2.3 VHDL Synthesis

The goal of the VHDL Synthesis step is to create a design that
implements the required functionality and matches the designer’s
constraints in speed, area, or power.

The VHDL synthesis tools convert the VHDL description into a netlist

in the target FPGA or ASIC technology. For the VHDL synthesis tool to
perform this step properly, the VHDL code must be written in a
particular style.

The designer reads the VHDL desigto the VHDL synthesis tool. The

tool reports syntax errors and synthesis errors. Synthesis errors usually
result from the designer using constructs that are not synthesisable. In
such cases, the code has to be modified and simulated again.

The synthesiser produces an output netlist in the target technology and a
number of report files. The designer looks at the report files to
determine the quality of the synthesis output. The most common output
files are the timing report and the area report. Most synthesis tools
produce a number of other reports such as hierarchy reports, instance
reports, net reports, power reports, and others. The most useful reports
initially are the timing and area reports, because these are usually the
most critical factors.

The area report shows the designer how much of the resources of the
chip the design has consumed. The designer can tell if the design is too
big for a particular chip and the designer needs to target a larger chip, if
the design should go into a smaller chip, or if the current chip will work
fine. The designer can also get a relative sizéefiesign to use later
stages of the design process.

The timing report shows the timing of critical paths or specified paths of
the design. The designer examines the timing of the critical paths closely

because these paths ultimately determine how fast the design can run. If
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the longest path is a timing critical part of the desigth ia not meeting

the speed requirements of the designer, then the designer may have to
modify the VHDL code or try new timing constraints to make the path
meet timing.

The most important type of outpuata is be retlist forthe design in the
target technology. This output is a gate or macro level output in a format
compatible with the place and route tools that are used to implement the
design in the target chip. For instance, most place and route tools for
FPGA technologies take in an EDIF netlist as an input format. The
primitives used in the netlist are those used in the synthesis library to
describe the technology. The place and route tools understand what to
do with these primitives in terms of how to place a i@ and how to

route wires to them.

2.4 Functional Gate Level Verification

Some designers might want to do a quick check on the output of the
synthesis tool to make sure that the synthesis tool produced a design that
is functionally correct. To do this the designer runs a functional gate

level verification. The designer reads the output VHIRList from the
synthesis tool plus a library of the synthesis primitives into the VHDL
simulator and runs the simulation using thELR/erification vectors. If

the design matches, then the synthesis tool did not produce logic
mismatches; if it does not match, the designer needs to debug the VHDL

RTL description to see what is wrong.

2.5 Place and Route
Place and route tools are used to take the design netlist and implement
the design in the target technology device. The place and route tools

place each primitive from the netlist into an appropriate location on the
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target device and then route signals between the primitives to connect
the devices according to the netlist.

One input to the place and route tools is the netlist in EDIF or another
netlist format. Another input to some place and route tools is the timing
constraints, which give the place and route tools an indication about
which signals have critical timing associated with them and to route
these nets in the most timing efficient manner. These nets are typically
identified during the static timing analysis process during synthesis.
These constraints tell the place and route tool to place the primitives in
close proximity to one another and to use the fastest routing. The closer
the cells are, the shorter the routed signals will be and the shorter the
time delay.

Some place and route tools allow the designer to specify the placement
of large parts of the design. This process is also known as floor
planning. Floor planning allows the user to pick locations on the chip for
large blocks of the design so that routing wires are as short as possible.
The designer lays out blocks on the chip as general areas. The floor
planner feeds this information to the place and route tools so that these
blocks are placed properly. After the cells are placed, the router makes
the appropriate connections.

After all the cells are place and routed, the output of the place and route
tools consists of data files that can be used to implement the chip. In the
case of FPGAs, these files describe all of the connections needed to fuse
FPGAs macrocells to implement the functionality required. Anti-fuse
FPGAa use this information to burn the appropriate fuses while
reprogrammable devices download this information to the device to turn
on the appropriate transistor connections.

The other output from the place and route software is a file used to

generate the timing file. This file describes the actual timing of the
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programmed FPGA device or the final ASIC device. This timing file, as
much as possible, describes the timing extracted from the device when it
is plugged into the system for testing. The most common format of this

file for most simulators is the SDF(Standard Delay Format).

2.6 Post Layout Timing Simulation
After the place and route process has completed, the designer will want

to verify the results of the place and route process. There are a number
of methods to accomplish this task but the most common is to use post
route gate level simulation. This simulation combines the netlist used for
place and route with the timing file from the place and route process into
a simulation that checks both functiditygand timing of the design. The
designer can run the simulation and gereeaaturate output waveforms
that show whether or not the device is operating properly and if the
timing is being met. For VHDL simulations this requires a VITAL-
compliant (standard way of describing designs with designs that allow
SDF timing back annotatigr’/HDL Simulator.
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CHAPTER 3
ILLUSTRATION OF VHDL

VHDL is illustrated below using an example of a floating point adder

unit which forms a part of the processor.

3.1 The IEEE Floating-Point Standard

The IEEE computer society has developed a standard for binary
floating-point arithmetic. The basic format sizes are 32 bits (single

precision) and 64 bits (double precision). The 32 bit format is used in
this project. As shown in figure, the 32 bits used in single precision are
divide into three separate groups : bits 0 through 22 form the mantissa,
bits 23 through 30 form the exponent, a3 is the sign bit.

31| 30 23| 22 0

SigR—— exponent—p < Mantissa >
Figure 3.1 IEEE format of floating point numbers

These bits form the floating point number, V , by the following relation:

S E—127
V= (1)*M* 2

S
The term :(-1) , simply means that the sign bit, S, is O for a positive

number and 1 for a negative number. The variable, E, is the number
between 0 and 255 represented by the eight exponent bits. Subtracting
127 from this number allows the exponent term to run frdfh & 2.

In other words, the exponent is stored in offset binary with an offset of
127.

The mantissa, M, is formed from the 23 bits as a binary fraction. For

example, the binary fraction: 1.0101, means: 1 + 0/2 + ¥4 + 0/8 + 1/16.
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Floating point numbers are normalized in the same way as scientific
notation, that is there is only one nonzero digit left of the decimal point
(called a binary point in base 2). Since the only nonzero number that
exists in base two is 1, the leading digit in the mantissa will always be a
1, and therefore does not need to be stored. The 23 stored bits, referred

to by the notation: g mj;, mp form the mantissa according

to:
M= 1.m2m21m20 .............. M.

In other words, M=1 + @« 21 + mpy« 22+ Mmpo+ 23+ ...
Zero is treated as a special number. For zero, the exponent and mantissa

bits are all zeroes. The sign bit coblel ‘1’ or ‘0’.

3.2 The Addition Process
The steps involved in the addition/subtraction process are the following :

1. Choose the number with the smaller exponent.

2. Concatenate the implied ‘1’ bit with the mantissa of this number
and shift it to the right by a number of steps equal to the
difference in exponents.

3. Set the exponent of the résegual to the larger exponent.

4. Concatenate the implied ‘1’ bit with the mantissa of the larger
number and add/subtract it to the shifted number.

5. Determine the sign of the result (to be explained later).

6. Normalize the result.

It must be noted that, two binary numbers, which are n bits wide, when
added, may give a result (n+1) bits wide. Hence the result of the
summation will be (n+1) bits wide. After addition, if the (n%1pit is

‘1’ then, during normalization, the exponent is incremented by one and
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the bits starting from the"hbit are taken as the mantissa of the result. If
the (n+1¥" bit is ‘0’ after addition, then the bits starting from the (5-1)
bit is taken as the mantissa of the result. This is clear from the
illustration given below.

First consider a situation when the (n*bjt of the result is ‘0’.

let a=105—*> 101*2

and b= 225—  1.0010*2

Note that the mantissa of “a” will storet01” and that of “b” , “0010”,
since the ‘1’ to the left of the binary point is implied.

After performing shifting of the mantissa of “b” and adding it to the
mantissa of “a” we have

1010100 +
0010010

1100110
The number represented by this result is 1.100119, *ich is 12.75

in decimal. Since the ‘1’ to the left of the binary point is implied,
“100110” is stored as the mantissa of the result and (127+3) as the
exponent.

Now, let us consider a situation where the (f+bjt of the result
becomes ‘1'.

Leta=55_  1.011%2

andb=145 1.1101%2

After shifting and adding we have,

11101 +
01011

101000
The number represented by this result is 10.1006, *hich is 20.

However this is not normalized. Normalizing this, we havd 0D * 2
Hence “01000” is stored as mantissa and (127+4) as the exponent of the

result.
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Normalizing the difference of two numbers is pretty straight forward.
Here the mantissa of the result is shifted to the left until fhiitris ‘1.

For each shifting the exponent is to be decremented by 1. Aftef'the n
bit becomes ‘1’, the mantissa of the normalised result is taken from the
(n-1)" bit. This is because the ‘1’ in th& it is implied and does not

need to be stored.

3.3 Hardware Implementation of Floating-Point Adder

The hardware implementation of the floating-point adder unit involves
considerable circuitry. The block diagram of the implementation is
given above. Following is a description of each block of the unit. A
detailed explanation of the VHDL description of the units is also given.
Note that the adder uses two clocks. One is the main clock. Only the
control unit requires this clock. The numbers are inputted during the
positive cycle of this clock. This clock is also the clock synchronising
the various blocks of the FFT processor, which is to be discussed later
on. The other clock, which has a much shorter period, is local to the
adder. All the blockswithin the adder are sghronised using th clock.

3.3.1 Block diagram of the adder

ensub ,enswap, enshift, addpulse, normalise : enables corresponding blocks.
Finsub, finswap, finshift, finish_sum, end_all : signals to indicate that the
corresponding operations in the blocks are over.

A_small : high if “a” is the smaller number.

Numzero : high when one of timembes is zero.

Change : pulse given to control unit whenever there is a change iminpiiers.

Exp : exponent of larger number.

Addsub : high if operation to be performed is addition , else it is low.

Signbit : high if sign of resultis —ve. If result is positive this signal is low.

Reset : Resets the control unit.

Rst : resets all signals of all the units.
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Figure 3.2 Block diagram of floating point adder unit
3.3.2 The Subtractor Unit

The function of the subtractor is to output the difference between the
mantissas of the two numbers. This information is given to the shifter,
which shifts the smaller number by the difference between the
mantissas. Apart from this, the subtractor gives information to the
control unit as to which number is smaller and if any number is zero. Let
us examine the code in detail.

The first process begins with the “if(rst_sub="0")" statement. This
indicates that we need to proceed only if the reséttpohe unit is low.

That is if the reset port to the subtractor is high then we need only to set
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the outputs to zero. Note that the ninth bi&msextra bit. This bit is set

to ‘1’ whenever there is a valid output number.

First the exponent and the mantissa are separated and written into separate
variables. Since the involvement of zero in calculations need to be treated
separately, the presence of zero in any one of the numbers is detected by the
statements “if(c=0)" and “if(d=0)". When one of the numbers is zero, the
num_zero signal is set high. If “a” is zero then the output of “zero_detect” is
“01”. If “b” is zero then this signal is set to “10”.

Several cases arise now .If the exponents of the two numbers are different,
then the smaller one is to be found out and correspgradibtractions made. If

the exponents are same then the smaller of the mantissas is to be found out. In
certain cases the numbers are the same. All these cases need to be treated
separately. The signal “a_smaller” is used to give information to the control
unit as to which number is smaller. When the calculations are finished the
“fin_sub” signal goes high. All #se signal arereset at the start tifie next set

of calculations.

There is a second process , namely “process(a,b)” within the same architecture.
This process is executed whenever there is a change in the input numbers. This
process sends out a pulse called “change” to the control unit indicating that the
input numbers have changed. The control unit then restarts the entire cycle of

operations.

3.3.3 The Swap Unit

The function of the swap unit is to input the mantissa of the smaller number to
the shifter, so that it can shift it by the difference in the exponents of the two
numbers. The implicit ‘1’ in theHEE standard format is concatenated with the
mantissa of the larger number and inputted to the summer. Also the L.S.B (last
8 bits) of the mantissa of this number is set to zero. The mantissa of the

smaller number is given to the shifter. In this case also a ‘1’ is concatenated
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with the mantissa (for checking in the shifter for a valid number) and the last
nine bits are set to zero. After the swapping process is over the signal
finish_swap is set high to inform the control unit. When the rst_swap signal is

high the signals are reset.

3.3.4 The Shifter Unit
There are two “if” blocks in the shifter. This is needed because the
assignments to “sub_temp” and “temp2” in the first block get updated in
the next “if” block and multiple clock cycles may besded to comlete
the shifting process. Therefore the first “if” block needs to be executed
only the first time a number arrives . Let us examine this in detail.
Initially when the processor is reset (this is done after each addition by
the control unit) the variables “temp3” and “t" are set to ‘1’ while
“finish_out” is reset to ‘0’. Whenever there is a change in the signals
given in the sensitivity list of the process, the process is executed. The
first time , the first “if” block is executed and thereafter the second
block. However we see that “temp3” is reset to ‘0’ in the first block. So
the first block will not be executed in the next clock cycle (since this
block is executed only for “temp3="1") unless the block is reset (when
reset, temp3 is set to ‘1’).
In the second “if” block the unit first checks whether “sub_temp” is
zero (last 8 bits only). If so, no more shifting is required and the number
is outputted. Also finish_out is set to ‘1'. If “sub_temg’hot zero then
the mantissa is shifted to the right . At the same time “sub_temp” is
decremented. This is given by the lines

elsif ( clock ='1" and clock'event ) then

temp2 :='0"' & temp2 (31 downto 1) ;

sub_temp := sub_temp - "00000001";
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In the next clock cycle the unit will first check if “sub_temp” is zero. If
so, it outputs the shifted mantissa to the summer, else the number is

shifted again.

3.3.5 The Summer Unit

This unit sums/subtracts the shifted mantissa of the smaller number and
the mantissa of the larger number. The summer adds an extra bit ‘0’ and
then sums/subtracts. This is to find out whether normalization is
required or not. If normalization (that is converting the result to IEEE
format) is required, this bit will be set. The information as to whether
addition or subtraction is to be done is received from the control unit
from the signal “addsub”. After the addition process, the “add_finish”

signal is set.

3.3.6 The Normalize Unit

As in the case of the shifter unit, there are two “if” blocks in this section
for the same reasons as that of the shifter unit. The normalization
process when one number is zero and when addition or subtraction is
used are all different from one another. The block under
“if(addsub="0")" gives the normalization procedure for the difference of
two numbers. The first statement wunder this section is
“if(numb_temp=0)". Such a condition occurs only when both numbers
are same and they have been subtracted (or they are of opposite sign
and they have been added). Obviously the result is zero. If a number is
normalized then numb_temp(31) is zero. In that case the final difference
can be outputted. If numb_temp(31) is not ‘1’ then it has to be shifted to
the left in successive clock cycles until this bit is ‘1’. For each shifting
the exponent is decrementeyl one. This igjiven by the section

elsif (clock = '1" and clock'event) then
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numb_temp := numb_temp(30 downto 0) &'0';

temp_exp = temp_exp - "00000001" ;

end if ;
The normalization process of addition is different. Here, if normalisation
is required, the bit “numb_temp(32)” will be ‘1’. In that case, the
exponent has to be incremented by one. If numb_temp(32)i@’ bits
of the sign, exponent and the mantissa just have to concantanated.
When one of the numbers is zero, the sum is the other number. The
subtractor gives the information as to which number is zero. If “a” is
zero, “zero_detect” is “01” and the output is “b”. If “b” is zero,

“zero_detect” is “10” and the output is “a”.

3.3.7 The Control Unit

The control unit is the “H.O.D” of the floating point adder unit. It
controls all the activities of the adder. It is modelled as a finite state
machine. So first, something about finite state machines.

Finite State Machine

A finite state machine (FSM) is a type of sequential circuit that is
designed to sequence through specific patterns of finite states in a
predetermined sequential manner. There are two types of FSM, Mealy
and Moore. The Moore FSM has outputs that are a function of current
state only. The Mealy FSM has outputs that are a function of the
current state and primainputs. An FSM consists of three parts:

1. Sequential Current State RegisterThe register, a set of n-bit flip-
flops

(state vector flip-flops) clocked by a single clock sigaalsed

to hold the state vector (current state or simply state) of the FSM. A
state vector with a length of n-bit has 2 to the power n possible binary

patterns, known as state encoding. Often, not all 2 to the power n
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patterns are needed, so the unused onesdsheulesigned not to occur
during normal operation. Alternatively, an FSM with m-state requires at
least

log2 (m) state vector flip-flops.

2. Combinational Next State Logic:An FSM can only be in one state
at any given time, and each active traos of the clock causeit

to change from its current state to the next state, as defined by the
next state logic. The next state is a function of the FSM’s inputs and
its current state.

3. Combinational Output Logic: Outputs are normally a function of
the current state and possibly the FSM’s primary inputs (in the case
of a Mealy FSM). Often in a Moore FSM, you may want to derive
the outputs from the next state instead of the current state, when
the outputs are registered for faster clock-to-out timings.

Moore and Mealy FSM structures are shown below.

Inputs Next State Next Current State |~ W00 Output output
Logic Register® Logic —
{Combinatorial) State (Sequential) State {Combinatorial)

Sychr Reset Asychronous Reset

* State Vector Flip-flops

Basic Structure of a Moore FSM
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Inputs Next State Current State Output
Next Output
Logic X Register® Current Logic |——2UIPS
{Combinatorial) State (Sequential) State {Combinatorial)

Sychri s Reset Asychronous Reset

* State Vector Flip-flops

Basic Structure of a Mealy FSM

Figure 3.3 Structure of a finite state machine

The control unit is modelled as a Mealy machine. The transition from
one state to another, takes place during the rising clock edge of the
positive cycle. If there is any change in the input numbers to the
subtractor, it sends out a pulse (change) to the control unit. The control
unit then starts the FSM from the beginning. Also when the processor is
reset externally, the control unit sets the current state as the first state
(resetl). The second process carries ouhefig actions.

The actions performed in each state in the first process are given below:
Resetl : Here, the various signals are reset.

Reset2 : The reset signal is brought back to ‘0’. (Otherwise the outputs
will not change, it will remain as 0). Also the subtractor and swap units
are enabled.

Reset3 : If one of the numbers is zero (indicated by “zero_num?”) the
shifting and adding operations can be skipped. Therefore the next state
is set as reset5. Else, the shifter is enabled when the operations in the
subtractor and swap unit are over. Also the subtractor and swap unit are
disabled.

Reset4 : When the function of the shifter is over, it is disabled and the

adder unit is enabled.
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Reset5 : If one of the numbers is zero, the normalize unit is enabled.
Else, the normalize unit is enabled when the function of the summer is
over. Also, the summer is disabled in this state.

Reset6 : Here, when the normalisation process is over, the normalize
unit is disabled in the positive cycle. Later, in the negative cycle, the
state is transferred to resetl.

Reset7 : This is the state into which the control unit comes when the
adder is disabled.

There is a third process in the control unit which gives information to
the summer as to whether addition or subtraction is to be performed. It
also gives information to the normalize unit about the sign of the result.
The operation to be performed and the sign of the result are determined

from the following table.

_ ) _ ) Operation to be
Sign of a Sign of b Bigger number| Sign of result
performed
+ve +ve aorb +ve addition
-ve -ve aorb -ve addition
+ve -ve a -ve subtraction
-ve +ve a -ve subtraction
+ve -ve b +ve subtraction
-ve +ve b +ve subtraction
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“a_small” (this signal is Igih if a is smaller) W be high even if both the
numbers are same. However it can be seen from the table that this does

not affect the result.

3.3.8 The Testbench for the Adder

The testbench is used to give the external inputs to the adder. It also
instantiates the various components. The input numbers are read in
through a text file. Here, each bit has to be read in and assigned to a
local variable. Then the entire string is assigned to either “a” or "b”.
The results are obtained in a file named simili.lst (if you use VHDL
Simili for simulation). It can be examined to verify the correctness of

the design.
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CHAPTER 4
THE FOURIER TRANSFORM

4.1 The Discrete Fourier Transform.

Fourier analysis is a family of mathematical techniques, all based on
decomposing signals into sinusoids. The discrete Fourier transform
(DFT) is the family member used witlgitizedsignals. Fourier analysis

is named after Jean Baptiste Joseph Fourier (1768-1830), a French
mathematician and physicist.

4.1.1 An lllustration

Figure 4.1 and 4.2 illustrate how a signal can be decomposed into
sine and cosine waves. Figure 4.1 shows an example signal, 16
points long, running from sample number O to 15. Figure 4.2 shows

the Fourier decomposition of this signal, nine cosine waves and
nine sine waves, each with a different frequency and amplitude.
Although far from obvious, these 18 sinusoids add to produce the
waveform in figure 4.1. Fodiscretesignals,this decomposition is
mathematically exact. There is no difference between the signal in
figure 4.1 and theumof the signals in figure 4.2, just as there is no
difference between 7 and 3+4. The frequency of each sinusoid is
fixed; only the amplitude is changed depending on the shape of the

waveform being decomposed.

(1]

418

28

MOCS==FTX»
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]

-28

-48

4 8
0 12 16

SAMPLE HUMBER

Figure 4.1 Sampled values of signal being decomposed
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Figure 4.2 Sine and cosine waves after Fourier decomposition

There are an infinite number of ways that a signal can be

decomposed. The goal of decomposition is to end up with something

34
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easier to deal with than the original signal. For example, impulse
decomposition allows signals to be examined one point at a time,
leading to the powerful technique of convolution. In Fourier
Transforms, the component sine and cosine waves are simpler than the
original signal because they have a property that the original signal does
not have: sinusoidal fideliy. A sinusoidal input to a system is
guaranteed to produce a sinusoidal output. Only the amplitude and phase
of the signal can change; the frequency and wave shape must remain the
same. Sinusoids are the only waveform that have this useful property.
While square and triangular decompositions possibé, there is no

general reason for them to beefu.

4.1.2 Types of Fourier Transforms

A signal can be eitherontinuousor discree, and it can be either
periodic or aperiodc. The combination of these two features generates
the four categories of Fourier Transforms described below and

illustrated in Fig. 4.3

Aperiodic-Continuous

This includes, for example, decaying exponentials and the Gaussian
curve. These signals extend to both positive and negative infinity
without repeating in a periodic pattern. The Fourier Transform for this
type of signal is simply called the Fourier Transform.
Periodic-Continuous

Here the examples include: sine waves, square waves, and any
waveform that repeats itself in a regular pattern from negative to
positive infinity. This version of the Fourier transform is called the

Fourier Series.
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Aperiodic-Discrete

These signals are only defined at discrete points between positive and
negative infinity, and do not repeat themselves in a periodic fashion.
This type of Fourier transform is called the Discrete Time Fourier
Transform.

Periodic-Discrete

These are discrete signals that repeat themselves in a periodic fashion
from negative to positive infinity. This class of Fourier Transform is
sometimes called the Discrete Fourier Series, but is most ofted tad
Discrete Fourier Transform.

Type of Transform Example Signal

Fourier Transform
signals that are comtinious and aperiodic

Fourier Series
signals that are continions and periodic

Discrete Time Fourier Transform =

signals that are discrete and aperiodic ' - .I-'I.--n———
uE
- L} L]
"n "n "
Discrete Fourier Transform . " . " . "
signals thar are discrete and periodic e e, e, R
" =" ="

Figure 4.3 Types of Fourier Transforms
Fourier transform that can be used in DSP is the DFT. In other words,
digital computers can only work with information thatdiscreteand
finite in length.
Each of the four Fourier Transforms can be subdivided into real and
complex versions. The real version is the simplest, using ordinary

numbers and algebra for the synthesis and decomposition. For instance,
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Fig. 4.1 is an example of the real DFT. The complex versions of the four
Fourier transforms are immensely more complicated, requiring the use
of complex number These are numbers such as:3+4j , whexequal

to root of-1 (electrical engineers use the variable j, while
mathematicians use the variable, i). Complex mathematics can quickly

become overwhelming, even to those that specialize in DSP.

4.1.3 Notation and Format of the Real DFT

Time Domain Frequency Domain
XI ] E-'t:arwardDI> RCKI ] IITIX[ ]
COCIT I ITITITITIITITIT] CCITII I [COOIIITrITri

0 M-1 ( MN/2 0 N2
N samples N/24 1 samples N/2+1 samples
Inverse DFT feasine wave ampliftides) (sine wave amplitudes)

collectively referred to as X[ |

Figure 4.4 DFT Terminology

As shown in Fig. 4.4, the discrete Fourier transform changéspaint

input signal into two point output signals. The input signal contains the
amplitude of the signal being decomposed, while the two output signals
contain theamplitudesof the component sine and cosine waves (scaled
in a way we will discuss shortly). The input signal is said to be in the
time domain. This is because the most common type of signal entering
the DFT is composed of samples which are obtained at regular intervals
of time.

Any kind of sampled data can be fed into the DFT, regardless of how it

was acquired. When you see the term "time domain” in Fourier analysis,
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it may actually refer to samples taken over time, or it might be a general
reference to any discrete signal that is being decomposed. The term
frequency domain is used to describe the amplitudes of the sine and
cosine waves . The number of samples in the time domain is usually
represented by the variable N. In most cases, the samples run from 0 to
N-1, rather than 1 to N.

Standard DSP notation uses lower case letters to represent time domain
signals, such as X[ ],y[], and z[ ] . Therespondig upper case letters

are X[] Y[]Z[], used to represent their frequency domains, that is X[ ],
Y[ ], Z[ ].For illustration, assume ai point time domain signal is
contained in X[ ]. The frequency domain of this signal is called X] ], and
consists of two parts, each an array of N/2+1 samplbeseTlare called

the Real part of X[ ] ,written

as Re X[ ], and the Imaginary part of X[ ], written as Im X[ ] . The
valuesRe X[ ] are the amplitudes of the cosine waves, while the values

in Im X[ Jare the amplitudes of thers waves.

4.1.4 DFT Basis Functions
The sine and cosine waves used in the DFT are commonly called the
DFT basis functiors. In other words, the output of the DFT is a set of
numbers that represent amplitudes. The basis functions are a set of sine
and cosine waves witbnity amplitude. If you assign each amplitude
(the frequency domain) to the proper sine or cosine wave (the basis
functions), the result is a set s¢aledsine and cosine waves that can be
added to form the time domain signal.
The DFT basis functions are generated from the equations:

Ci] = cos(2 piki/N)

S{i]= sin (2 piki/N)
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where [ ] is the cosine wave for the amplitude held in Re X[k], and
S{ ] is the she wave for the amplitie held in Im X[k]. Each is N points

in length, running from i = 0 to N-1. The parameter, k, determines the
frequency of the wave. In an N point DFT ,k takes on values between 0
and N/2. The DFT basis functions dhastrated in figure 4.5.

Let's look at several of these basis functions in detail. Figure (a) shows
the cosine wavegfd. This is a cosine wave of zero frequency, which is a
constant. This means that it holds the average value of all the points in
the time domain signal. In electronics, it would be said that ReX[0]
holds theDC offsd. The sine wave of zero frequencyf] & shown in

(b), and is composed of atlercs. Since this can not affect the time
domain signal being synthesized, its valuerslevan, and always set

to zero.

Figures (c) & (d) showg[]&s1d[] the sinusoids that completen cycles

in theN points. These correspond to ReX[10] & ImX[10] , respectively.
The highest frequencies in the basis functions are shown in (g) and (h).
These are \g[] & sn2[] or in this example, €[]& s1d]. This discrete
cosine wave alternates in value between 1 and -1, which can be
interpreted as sampling a continuous sinusoid ap#ads. In contrast,

the discrete sine wave contains all zeros, resulting from sampling at the
zero crossing. This makes the value of ImX[N/2] the same aX[0h
always equal to zero, and does not affect the synthesis of the time

domain signal.
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Figure 4.5 DFT Basis Functions

Here's a puzzle: If there aisamples entering the DFT, and samples
N+2 exiting, where did the extra information come from? The answer:
two of the output samples contaio information, allowing the othex
samples to be fully independent. The points that carry no information
are ImX[N/2] and ImX[0] , the samples that always have a value of

Z€ero.
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4.1.5 Analysis, Calculating the DFT

The DFT analysis equations are given below. Here, X[i] is the time
domain signal being analyzed. ReX[k] and ImX[k] are the frequency
domain signals being calculated. The index i runs from 0 to N-1 while k

runs from O to N/2.

N-1
Re X|k] EJ;M cos(2nki/N)

i=10
N-1

ImX|k] Z.Tl:'] sim{2nki/N)

The DFT can be calculated in three completely different ways. First, the
problem can be approached as a setsimiultaneous equati@n
Thismethod is useful for understanding the DFT, but it is too inefficient
to beof practical use. The second method is called correldios is
based on detecting a known waveform in another signal. The third
method, called the Fast Fourier Transform (FFT), is an ingenious
algorithm that decomposes a DFT witlpoints, intoN DFTs each with
a single point. The FFT is typically hundreds of times faster thanthe
other methods. It is important to remember that all three of these
methods produce an identical output. In actual practicagelation is
the preferred technique if the DFT has less than about 32 points,

otherwise thd-FT is used.

4.2 THE FAST FOURIER TRANSFORM

J.W. Cooley and J.W. Tukey are given credit for bringing the FFT to the
world in their paper: "An algorithm for the machine calculation of
complex Fourier SeriesMathematics Computatio The FFT is based

on thecomplex DH, a more sophisticated version of treal DFT.
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These transforms are named for the way each represents data, that is,
using complex numbers or using real numbers.
Real DFT
Time Domain Frequency Domain
'['mc ]Jnnain 11al Real Part

N T T 0 T ) D D R L CEEE L
0 MN-1 0 N2

Imaginary Part
BRNENRNRS
0 M2

Complex DFT

Time Domain Frequency Domain
Real Part F.eal Part
W ) N T
0 M1 0 N2 N-1
-
Imaginary Part Imaginary Part
(HEEEEEEEEEEEER BRERNRERSEAEEEEN

0 M-1 0 NiZ N-1

Figure 4.6 Comparison of real and complex DFT
4.2.1 Comparison of Real DFT and Complex DFT
Since the FFT is an algorithm for calculating the complex DFT, it is
important to understand how to transfeal DFT data into and out of
the complex DFTformat. The real DFT transforms ah point time
domain signal into two point frequency domain signals. The time
domain N/ 2 + 1 signal is called just that: timme domain signaThe
two signals in the frequency domain are called ried part and the
imaginary pat, holding the amplitudes of the cosine waves and sine
waves, respectively.
In comparison, the complex DFT transforms tWaooint time domain
signals into twoN point frequency domain signals. The two time

domain signals are called tiheal partand theimaginary pat, just as
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are the frequency domain signals. In spite of their names, all of the
values in these arrays are just ordinary numbers. Suppose therd is an
point signal, and we need to calculate teal DFT by using the FFT,
then set all of the samples in the imaginary pageto. Then, move the

N point signal into the real part of the complex DFT's time domain, and
compute DFT using the FFT. The result is a agl an inaginary signal

in the frequency domain, each composel pbints. Samples 0 through

N/2 of these signals correspond to the real DFT's spectrum .

4.2.2 How the FFT works

The FFT is a complicated algorithm, and its details are usually left to
those that specialize in such things. This section describes the general
operation of the FFT. The FFT operates by decomposing jaoint

time domain signal intdN time domain signals each composed of a
single point. The second step is to calculate Nhigequency spectra
corresponding to thegé time domain signals. Lastly, tispectra are
synthesized into a single frequency spectrum. There are basically two
algorithms in FFT. One is called DIT(Decimation in time) and the other
DIF(Decimation in frequency).

In the DIT approach, the initial DFT is divided into two transforms, one
consisting of a transform of even samples and the other consisting of a
transform of odd samples. This process is carried out until the initial
transform is reduced to a set of two-point transforms of the initial data.
An in-place FFT implementation allows the results of each FFT
butterfly to replace its inputs. In order to use an in place algorithm it is
necessary either to re-order the input data array or re-order the output
array. This re-ordering is simply arranged by reversing the address bits.
Before starting to calculate the DFT, the input data is ordered such that

its address is bit-reversed, that is if the binary address of the required
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sequence of data is 110 then the bit reversed version on that becomes
011. Given below is the signal flow graph for the DIT.

4 of2point 2 of 4 point 1 of 8 point
DFT’s DFT's DFT’s

x(000a1) X000

x(00L2)
x(0L0a)

KiD01a)
XK(0OL0a)

x(01 La)
x(100a1)

L A(REY
XK(LDDa)

®x(L0La)
x(110a)

XilDly

X KillDe

x(LLl1a) HKillla)
Figure 4.7 Signal flow graph for 8 point DIT-FFT with input
scrambling
This signal flow graph caists of a number of butterflies. Each butterfly
takes a pair of input data values A and B and outputadd B as
shown below. The input data is multiplied by the twiddle factaf W

The solid dots represent addition\subtraction.

Inputs Outputs
g
A —— A'=A+WB
W k
B : B'=A-WB
where
A= x +jX
B=y+jY

Wi = cos(2ITk/N) — jsin(2ITk/N)

A=x"+jXt = A + BW\

Bl= y'+jY! = A-BW\
Subsituting for A , B and W we obtain
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A'=[(x+ycos(2ITk/N)+Y sin(2ITk/N))+j(X+Y cos(2ITk/N)-ysin(2ITk/N))]
B*=[(x-ycos(2ITk/N)-Y sin(2ITk/N))+j(X- Y cos(2ITk/N) + ysin(2ITk/N))]

An in-place algorithm makesfafient use of memory as the transformed
data overwrites the input data. However the indexing required to
determine which location in memory to fetch the input data is quite
complex. This is explained later on when the processor is discussed.
The algorithm used in this processor is a variation of the DIT algorithm
discussed above. The difference is that output scragisliused and the
inputs are in natural order. The signal flow graph for this algorithm is

shown below.

x(000:) X(000:)
x(001:) X(001:)
x(010z) /‘7}({0[&]
x(0LLlz) X(0L 12)
x(100:) X(100:)
= 10L1=) X(101=)
x(110,) LX{ 110:)
x(L1l3) X(LLL2)

. “— .

Stage L Stage 2 Stage 3 Unscramble

Figure 4.8 Signal flow graph for modified DIT-FFT
with output scrambling
An illustration of the modified version of the FFT-DIT algorithm is
given below. The inputs are first stored in the addresses shown. The
results of FFT computation at each stage is shown. The results of the

final stage are outputted in a bit reversed addresses.
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Addr Input O/P of O/P of O/P of Bit-reversed
ess Stagel |stage 2 stage 3 o/P

0000 | -1 -3 -2.5 0 0

0001 | 1 -0.5 2.5 -5 2.06065
0010 | 1.5 0.5 -3.5 -3.5 -3.5
0011 | 2 3 -3.5 -3.5 -0.06065
0100 | -2 1 1 2.06065 | -5

0101 | -1.5 2.5 2.5 -0.06065 -0.06065
0110 | -1 2.5 1 -0.06065| -3.5
0111 | 1 1 2.5 2.06065 | 2.06065
1000 | O 0 0 0 0

1001 | O 0 0 0 -4.9749
1010 | O 0 0 3.5 3.5

1011 | O 0 0 -3.5 0.02515
1100 | O 0 -2.5 -4.9749 0

1101 | O 0 -1 -0.02515| -0.2515
1110 | O 0 2.5 0.02515| -3.5
1111 | O 0 1 4.9749 4.9749
4.3 Synthesis, Calculating the Inverse DFT

The synthesis equation isvgh as

NI _ NZ
x[i] = Z ReX[k]cos(2mki/N) + Z ImX k] sm(2nki/N)

k=0 k=10

In words, anyN point signal, can be created by adding N/2 cosine
waves and N/2+1 sine waves. The amplitudes of the cosine and sine
waves are held in the arrays ReX[k](bar) and ImX[K](baespectively.

The synthesis equation multiplies these amplitudes by the basis
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functions to create a set of scaled sine and cosine waves. Adding the
scaled sine and cosine waves produces the time domain signal, X[ i].
In the equation given above, the arrays are called ReX[k](bar) and
ImX[K](bar), rather than ReX[k] and ImXJk], This is because the
amplitudes needed for synthesisare slightly different from the
frequency domainReX[k] and ImX[k], of a signal This is the scaling
Im X[ k] Re X[ k] factor issue we referred to earlier. Although the
conversion is only a simple normalization, it is a common bug in
computer programs. The conversion between the two is given by

ReX[K](ba) = ReX[k]/(N/2)

ImX[k](bar) = -ImX[k]/(N/2)
except for two special cases

ReX[0](ba) = ReX[0]J/N

ReX[N/2](ba) = ReX[N/2]/N
The conversion is required because the frequency domain is defined as
a spectral densiy. Figure 4.9 shows how this workSpectral density
describes how much signal (amplitude) is prepentunit of bandwidt.
To convert the sinusoidal amplitudes into a spectral density, divide each
amplitude by the bandwidth represented by each amplitude. This brings
up the next issue: how do we determine the bandwidth of each of the
discrete frequencies in the frequency domain? As shown in the figure,
the bandwidth can be defined by drawing dividing lines between the
samples. For instance, sample number 5 occureiband between 4.5
and 5.5; sample number 6 occurs in the band between 5.5 and 6.5, etc.
Expressed as a fraction of the total bandwidth (i.e., N/2), bandwidth of
each sample is 2/N. An exception to this is the samples on each end,
which have one-half of this bandwidth, 1/N. This accounts for the
scaling factor between the sinusoidal amplitudes and frequency domain,

as well as the additional factor of two needed for the first and last
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samples. Why the negation of the imaginary part? This is done solely to

make theeal DFT consistent with its big brother, ttemplex DH.

1/

Amplitude

wviclth |

| | wedth
1N

T T T T T T T T T T T T T T
3 4 5 &6 T B 8 DI IZ I3 415 16

Frequency sample number

Figure 4.9 The bandwidth of frequency domain signals

4.4 lllustration of the DFT and IDFT in Matlab

Given below is an illustration of the DFT and IDFT in Matlab using an
8-point sample. The commands and the results are given.

» p=[-1.2 23 -2 04 -0.23 1]; Y%sampled input

» y=fft(p); Yocommand to find the fft

» disp(y); % display y

Columns 1 through 4

6.5700 -0.4929 + 0.3055i -3.9700 - 7.0000i -1.9071 + 6.7655i
Columns 5 through 8
-3.4300 -1.9071 - 6.7655i -3.9700 + 7.0000i -0.4929 - 0.3055i

% The commands below calculate the time domain signal from the
% frequency domain signals obtained above.

% The following lines take into account the scaling factors.

» cosines=real(y)/4; % divide real parts of fft result by N/2

» sines=-imag(y)/4; % divide imaginary parts of fft result —N/2

» %special cases of scaling factors are given below
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» cosines(1)=real(y(1))/8;
» cosines(5)=real(y(5))/8;
»i=[01234567];
% The following lines multiply the basis functions with the
corresponding amplitudes
% obtained from the fft. Note that only frequencies from 0 to N/2 are
present.
% Also the Matlab representation of an array starts from cosines(1) and
not cosines(0)
» cO0=cosines(1)*cos(2*3.1416*0*/8);% d.c component
» cl=cosines(2)*cos(2*3.1416*1*i/8);% aritpde of cos wave
completing one cycle in the sampled %period
» c2=cosines(3)*cos(2*3.1416*2*/8);
» c3=cosines(4)*cos(2*3.1416*3*/8);
» c4=cosines(5)*cos(2*3.1416*4*/8);
» s0=sines(1)*sin(2*3.1416*0*/8);
» sl=sines(2)*sin(2*3.1416*1*/8);
» s2=sines(3)*sin(2*3.1416*2*/8);
» s3=sines(4)*sin(2*3.1416*3*/8);
» s4=sines(5)*sin(2*3.1416*4*/8);
» result=cO+cl+c2+c3+c4+s0+sl+s2+s3+s4;
» disp(result);
Columns 1 through 8
-1.2000 2.0000 3.0000 -2.0000 0.0001 4.0000 -0.2300 1.000
It can be seen that the results of the synthesis agree with that of the

original signal.
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CHAPTER S5
ARCHITECTURAL DESIGN OF THE FFT PROCESSOR

The operation of the processor is partitioned into three main processes.
These are the Data Input, FFT Computation and Data Output Processes.

This patrtitioning is depicted in figure 5.1

Input Data o Data Input Process

oo

FFT/IFFL___| FFT Computation

Process

]

Output Data Data Output

Process

Figure 5.1 FFT Computation Process

The procdsg cycle starts with the Data inputrqress,
during which sampled data is read in and stored in memory. During the
FFT computation process, the FFT is computed on the stored data.
During the Output process results of the FFT computation process are
read out to the outside world. These processes are then mapped to

hardware resources.

5.1 Block Diagram of the FFT Processor
The FFT processor architecture consists of a single radix-2 butterfly

(which is referred as the butterfly processing element), a dual-port FIFO
RAM, a coefficient ROM, a controller and an address generation unit. It
also consists of a “cycles unit” to separate the various cycles, namely cO,
cl, c2 and c3. This unit also outputs the ORed output of some of these
cycles such as c0 and cl. The process of writing into the RAM during
FFT computation, begins only five cycles after the first data is read from
RAM. The counter unit is used to count these cycles. Data pathways are
in the form of 32-bit signed fractions. Coefficients are stored as 32-bit

words.
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Figure 5.2 Block diagram of FFT Processor
A brief description of the important signals used in the processor is given below.
staged : goes high when a stage is completed
fftd : goes high when the fft operation is completed
iod : goes high when input/output operation is over.
fit_en : enable the address generation for collecting data from RAM during FFT
calculation.
io_mode : High when input/output operation is going on.

op : High when output is going on.
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ip : high when input is going on.

romgen_en : enable address generation for ROM.

ram_rd : RAM read address.

ram_wr : RAM write address.

enbw : write enable of RAM

enbor : read enable of RAM

out_data : Data to be written to RAM

data_ram : Data from RAM to butterfly processing unit.

cycles : consists of signals c0,c1,c2,c3,c0_c1,c2_c3,c0_c2,c1l_c3.
Note that the clock and initialising signals are not shown.

5.2 BUTTERFLY PROCESSING ELEMENT .

TR ¥ . J
Co o I - I 1--\\“-&._\_\_\_
0 L .
ey o D R = Cc3 e E
L €163, _ G o <
+ 01 L ol !
w // il _.--"' - o1 ]
L ¥ C2.C3 I B -y e d T =
ci L 4]
&= R co,c1
ROM Address coafficient
| RAM Read — RAM Write
. + ROM - Address Address
R X o H‘"‘ﬂ-u.___\_\_\_ S L3 *
= . ' ny Dual Port
o= o™, \/> LD E I+ FIFO RAM
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LBy f;,ff"_“‘ | | r
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Figure 5.3 Butterfly Processing Unit
The butterfly is the basic operator of the FFT. It computes a two
point FFT. It takes two data words from memory and computes the FFT.
The results are written back to the same memory locations of the inputs
since an in-place algorithm is used. The butterfly processing element
computes one butterfly every four cycles. It consists of one multiplier

and two adders. The architectureitas depicted in figure 5.3
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The blocks named “R” are a set dgative edge triggered D flip
flops. That is, each “R” block consists of 32 D-flip flops, one for each
bit. Similarly the “L” blocks are positive level triggered. The blocks
labeled “D” are positive edge triggered. c0,c1,c2 and c3 are the four
cycles that the processor takes to calculate the fft . cO,cl is the OR
output of the cycles c0 and cl. Similarly c0,c2 is the OR output of cO

and c2 and so forth. This is shown below.

clock_main

- \
1 . T

cl

c2

c3

c0,cl

Figure 5.4 Waveform of the cycles used in the FFT Processor
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The multiplier forms the partial products of the complex multiplication
and poduces 82 bit signed fraction result. This is followed by the first
adder which sums the cross products of the complex multiplication. The
second adder produces the sum and difference outputs of the butterfly
operation.

The butterfly processing element takes four cycles to compute a
two-point FFT/ It has a latency of five cycles. Three of these are
associated with the fact that three input components (y,Y,and x) are
required before an output can be computed and two are to pipeline the
RAM read and write operations. The table shows the outputs of the
multipliers, adders and that read from the ROM and RAM and written
into RAM at different cycles.

Cycle RAM ROM Multip O/F First Adder 2rd RAM
read Read QP Adder write
QP
Co ¥ cosd previous settling prevy’ prev X'
ysind

c1 Y sind ycosd previous prev Y’ prevy’
Ycosd-ysind

cz2 X cos® Ysind settling prev x prev "

C3 X sind Ycosd ycosd+ prev X' | prevx
Ysind

co next y cosd ysind settling y' prev X

C1 next Y | sind next ycos® | Y cosd- Y ¥
ysind

cz next x cos® next Ysind settling e A

G3 next X | sind next Ycos® | nexty cosd+ X X
Ysind

Co next y cos® next ysind settling next y’ ¥

5.3 ADDRESS GENERATION UNIT (AGU)

The purpose of the address generation unit is to provide the RAM and
the coefficient ROM with the correct addresses. It also keeps track of
which butterfly is being computed in which stage. For an 8-point

complex FFT there are 3 stages, each stage consisting of 4 butterflies. In
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addition to this, since address generation during input, output and FFT
computation processes are different, it keeps track of the mode of
operation of the chip and generates the required address. Mode of
operation information is supplied by the controller. A block level
description of the AGU is shown in figure. The different blocks of the

AGU are explained separately.

incr

el > BUTTERELY
staged >
clear »| GENERATOR

‘ ‘ butterfly_iod

incr ———» ———»staged
STAGEDONE_. ——» 10
10 DONE - fftd

io_mode > rﬂbutterfly

STAGE

staged——»
GENER-
clear ATOR stage

butterfly ———»

stage ___ |

stage ——»  BASEINDEX fftadd rd
fft_en ———» GENERATOR H -,
cycles » j> ram_rd
(c0,c1,c2,c3) :: P
butterfly ————» SHIFTERS
io_mode ——» 10 ADDRESS
ip — » GENERATOR LN ) ram_wr
op —*™ io_add / ‘
stage > io_mode

butterfl
utertly ——» RoM ADDRESS rom_add
romadd_gen______ ) GENERATOR -
cycles o
(c0,c1,c2,c3)

Figure 5.5 Address Generation Unit
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5.3.1 Butterfly Generator

The butterfly generator keeps track of which butterfly is being computed
in a particular stage. It is basically a 16-bit up counter since for an 8-
point complex FFT there are 4 butterflies per stage and Awdatis per
butterfly (2 real and 2 imaginary).

Note that during data input and data output the butterfly is incremented
by the clock while during fft computation mode, itnsiemented by cO.
This is because, 4 cycles are required to calculate one butterfly. Hence
the butterfly generator need to be incremented only once in every 4
cycles during FFT computation. The selection between the clock and
“c0” is made by a multiplexer. The “io mode” signal is used for
selection. Whenever “clear” or “stage done” signal goes high, the
butterfly generator is reset. The block diagram of the buttgeiherator

is shown above.

5.3.2 Stage Generator

The stage generator keeps track of the current stage in the FFT
computation. The stage generator supplies the base index generator with
the number of the stage which is currently being computed. For an 8-
point FFT there are 3 stages hence the stage generator is basically a two-
bit counter which is incremented one every 4 butterfly counts (by the

“stage done” signal).

5.3.3 Stage done_lO done block

It generates four signals called “iod”, “staged” “fftd” and “butterfly”.
“iod” is generated when the “butterfly” count is 15. This informs the
controller that either the Data Input or Output process is finished. The
“staged” signal is generated when the current “butterfly” count is 4, it

increments the stage generator by one. fftd is generated when the stage
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count is three. This informs the controller that the FFT computation
process is done, hence forcing the FFT processor to start the data output

process. The block diagram of stage generator is shown below.

5.3.4 10-Address Generator

The 10 Address Generator is responsible for generating addresses
for RAM during the data input and output processes. During the data
input process the output of the butterfly generator “butterfly” can be
used for addressing 16 locations in the RAM. However, during the data
output process data should be bit-reversed while being written to outside
world. Once in the output process bit-reversed address is selected by the
muxes in the AGU. The controller gives the information whether the
process is in IO-mode through the signal “iomode”. This signal is used
for selecting.
5.3.5 Base Index Generator

The base index generator produces the addresses for reading from the
RAM as shown below.

EUTTERFLY CYCLE STAGE WALUE READ ADDRESS
00 oty 00 5 0100
00 o1 00 Y 1100
00 o2 00 x 0000
00 3 00 ble 1000
01 o 00 ¥ 0101
01 1 00 Y 1101
11 o 00 v 0111
11 1 00 4 1111
11 o2 00 = 0011
11 <3 00 ple 1011
00 ol 01 ¥ 0010
00 1 01 Y 1010
11 o 01 ¥ 0111
11 1 01 e 1111
00 co |10 ¥ 0001
11 C3 10 ble 1110
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The butterfly has two complex data inputs A and B. These inputs
when manipulated produces four outputs x, X, y and Y, out of which X
and Y are complex values. Since there are 16 locations, the BIG is a
mode-16 counter. The FFT mode address generation is quite complex.
The address generation is obtained by manipulating the outputs of the
butterfly generator, stage generator and the cycles.

Let the 4 bits of the butterfly signal be “b3 b2 bl b0”. Then the
addresses for “x”, “X” , “y” and “Y” are generated based on the
following table.

Stage Address for “x” Stage Address for “y”
1 0 0 bl b0 1 0 1 bl bO
2 0 bl 0 b0 2 0 bl, 1 b0
3 0 bl b0 0 3 0 bll b0 1

The addresses for “X” and “Y” are obtained by segftihe M.S.B as ‘1’

in the addresses of “x” and “y” respectively. Note that “y” is collected
from RAM during cycle “c0”. Similarly “x” is collected during the cycle
“c2” and so forth. This information is used while writing the VHDL
code.

5.3.6 The Shifters

As mentioned, the result of FFT computation is written back into the
same location as it was read. However there is a latency of five cycles.
For example, if “y” is read from the RAM during cycle “c0”,™yis
written into the same location as it was read after 5 cycles, that is during
cycle “cl”. So the read address is shifted in each on these five cycles.

The output of the last shifter is then given as the write address.

5.3.7 ROM Address Generator
The ROM Address Generator is used to provide the ROM with the
correct address for collecting the sine and cosine co-efficients. It is

modeled based on the co-efficients given in the signal flow graph.
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5.4 CONTROLLER

The controller is modeled as a finite state machine which has been
explained already. It has seven states ranging from rstl to rst 7. The
actions performed in each state is clearly commented in the code. The

signals to and from the controller are given in figure 5.2

5.5 RAM AND ROM
The input is first written into the RAM. During the FFT computation
process, the FFT of two numbers is calculated and written back into the
same location in the RAM. During the output process bit reversed
address is given to the RAM and it outputs the data in it accordingly.

The ROM is used to store the sine and cosine values needed in the
FFT computation process. It outputs these values according to the

address given to it.
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CHAPTER 6
RTL SIMULATION OF THE FFT PROCESSOR

The implementation of the design in VHDL is verified by simuigitihe
design. A testbench is written for the purpose. It reads the input data
from a file. It also instantiates the various components and provides the
main entity with the signals such as clock and reset. Note that there are
two clocks, one for the entire processor and the other(of a higher
frequency) for the adder unit. Alternatively, one can use a muliiply
circuit to increase the frequency of the main clock and give it to the
adder.

The results of simulation and a comparison with the results of Matlab
are given below. It is seen that the first value (d.c value) of our design
does not match with the Matlab result. This is a bug in the program
which we could not eliminate. However, the FFT is used to find the
frequency components of a signal and the d.c value is not important.
Infact, for analysis purposes, the d.c value is quite often set to zero. In
our program, the d.c value is invariably zero.

So, ina sense itis a blessing in disguise.

Sampled data input: [-1 1 2 —0.5 -3 —1 2 0]. The imaginary parts are set
to zero. The IEEE standard format of these numbers are given in the file

“rom_ram.vhd”. The testbench reads the input numbers from this file.

10111111100000000000000000000000
00111111100000000000000000000000
01000000000000000000000000000000
10111111000000000000000000000000
11000000010000000000000000000000
10111111100000000000000000000000
01000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
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The output of the simulation was written into a file named “result.txt”.
The contents of this file for the input given above is as follows.

00000000000000000000000000000000
01000000011100010010001011010000
11000001000000000000000000000000
00111110011011011101001100000000
00111111000000000000000000000000
00111110011011011101001100000000
11000001000000000000000000000000
01000000011100010010001011010000
00000000000000000000000000000000
10111111100001111100001101100000
10111111000000000000000000000000
10111111100001111100001101100000
00000000000000000000000000000000
00111111100001111100001101100000
00111111000000000000000000000000
00111111100001111100001101100000

The C routine which converts these binary numbers to decimal reads

from the file “result.txt” and outputs the result into another file as

follows.

--REAL PARTS
0

3.76775

-8

0.23225

0.5

0.23225

-8

3.76775
--IMAGINARY PARTS
0
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-1.06065

-0.5

-1.06065

0

1.06065

0.5

1.06065
Matlab Results

Columns 1 through 4
-0.5000 3.7678 - 1.0607i -8.0000 - 0.500@322 - 1.®07i
Columns 5 though 8

0.5000 0.2322 + 1.0607i -8.0000 + 0.5000i 3.7678601..
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CHAPTER 7

SYNTHESIS OF THE FFT PROCESSOR

The processor was synthesised using Synopsis’ FPGA Express for the
FLEX 10K family of Altera’'s FPGAs. The adder unit, the butterfly
processor unit and the address generation unit were synthesised
separately. Then, the entire design was synthesised. The synthesis
software produces a number of files of which the synthesis report file
and the EDIF netlist file are important. The report file is given in
appendix B. The EDIF netlist file is too large to be given (It has more
than 1 lakh lines!). It also produces some schematics as its output. We
tried to place and route the processor using Altera’s MAX PLUS- I
tool. However, the design did not fit into any of the available devices.
The tool used was a shareware version and so only smaller designs

could be phce and routed.
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CONCLUSION

An 8 point 32 bit FFT processor was designed, simulated and

synthesized using VHDL. First, a VHDL by example approach was used
to illustrate the basics of VHDL. For this a floating gadder unit was
designed and tested. The FFT processor was then simulated. The results
of the simulation were seen to match with the results of Matlab. It was
synthesized and optimized for speed using Synopsis’ FPGA Express.
The chip is expected to run at a clock frequency of about 25 MHz. The

chip can be easily upgraded #0128 point or 256 poirkFT.
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