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Abstract

Robotic manipulation of elastoplastic material has recently attracted much attention with
applications in e.g. health care services, medical surgeries, and food processing. The absence
of rigidity poses unique challenges regarding perception, modelling, and control which are
barely addressed in previous research. While the use of simulations and learned world mod-
els is prevalent in recent approaches, this thesis investigates the applicability of the offline
reinforcement learning paradigm in this domain. In an elastoplastic manipulation task, the
agents are trained to map actions from pixels that form a piece of dough into a target shape.
However, acquiring large datasets that meet the standards of offline reinforcement learning
seems infeasible for this task. Instead, a limited set of human demonstrations is recorded and
a model-based data augmentation approach, leveraging conditioned U-Nets and diffusion-
based re-projection, is applied. As this stresses the need for high-quality demonstrations, the
teleoperation setup was gamified with the idea of motivating users to spend more effort on the
task. The trained policies are evaluated in 8 tasks focusing on key actions from the original
tasks. Though no clear correlation between augmentations and performance was identified in
this setting, the results hint that the combination of augmentations can lead to more careful
behaviour. Additionally, the qualitative analysis points out various difficulties that were not
sufficiently covered by the training data which could be addressed in the future.

Zusammenfassung

Das Formen von elastoplastischem Material durch Roboter hat in letzter Zeit an Popularität
gewonnen. Anwendungen gibt es z.B. in der Gesundheitsfürsorge, bei medizinischen Eingrif-
fen und in der Lebensmittelverarbeitung. Flexible Objekte stellen besondere Herausforderun-
gen an die Wahrnehmung, Modellierung und Steuerung dar, welche in bisheriger Forschung
kaum behandelt wurden. In neueren Ansätzen werden häufig Simulationen und gelernte
Weltmodelle genutzt, diese Arbeit untersucht jedoch ob Offline Reinforcement Learning in
diesem Bereich verwendet werden kann. Agenten werden mit einer dafür konzipierten Auf-
gabe trainiert, Befehle anhand von Bildern so zu wählen, dass ein Stück Teig in eine Zielform
überführt wird. Allerdings scheint es unmachbar, üblich große Datensätze für Offline Re-
inforcement Learning Ansätze zu sammeln. Stattdessen werden begrenzt viele menschliche
Demonstrationen gesammelt und erweitert, wofür konditionierte U-Nets und diffusionsbasierte
Re-Projektion eingesetzt werden. Da dies hochwertige Demonstrationen voraussetzt, wurde
eine gamifizierte Robotersteuerung entwickelt. Die Idee dahinter ist, die Nutzer spielerisch
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zu motivieren sich engagiert mit der Aufgabe zu befassen. Die trainierten Agenten wurden
in 8 verschiedenen Aufgaben evaluiert, welche sich auf die Schlüsselaktionen der eigentlichen
Aufgaben fokussieren. Trotz keiner eindeutigen Korrelation zwischen den Datenerweiterun-
gen und der Leistung in diesem Szenario, gibt es Hinweise darauf, dass eine Kombination
der Datenerweiterungen zu vorsichtigerem Verhalten führen könnte. Darüber hinaus weist die
qualitative Analyse auf verschiedene Schwierigkeiten hin, die nicht genug in den Trainings-
daten abgebildet sind, und somit noch zukünftig behandelt werden könnten.
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1. Introduction

In robotics, object manipulation is a crucial skill enabling robots to meaningfully interact with
the physical world in order to achieve their goals. Existing research commonly assumes that the
object is rigid [49] simplifying problems related to modelling, perception, or control. However,
in the real world, this assumption does not hold for every object or material specifically for
those where softness or non-rigidity is a primary trait including e.g. clothes, cables, plasticine,
or silicone. Even jointed objects that are made up of rigid materials, or liquids fall into this
category. Being able to manipulate such materials would allow for the use of robots in many
additional applications. These include some in the fields of manufacturing, service and health
care, gardening and agriculture, medical surgeries, and food processing [49, 45, 11] (see
Figure 2.1). Despite the variety of deformable materials and their applications, this work will
focus on the manipulation of elastoplastic materials such as plasticine, ground beef, or dough.

Dealing with non-rigid objects poses unique challenges that are not addressed by previous
research. The inherently high dimensional state space presents a major difficulty as it makes
deformable objects hard to perceive and to model [11]. Additionally, it increases the complexity
of the dynamics which can vary between different materials. Recent advancements in deep
reinforcement learning, learned world models, and differentiable physics simulators provide
new perspectives on overcoming these problems. Hence, deformable object manipulation has
grown in popularity in the past few years mostly utilizing data-driven methods. The goal of
this thesis is to have a real robot solve a deformable object manipulation task (see section 4.2)
by learning a pixel-to-action mapping from data only.

When working with robots directly, data-driven methods can be problematic as data col-
lection on real hardware is usually costly in terms of time and effort. Therefore, simulations
are popular in research as they can be used to e.g. train a reinforcement learning agent in
a fraction of the time. But often the simulated performance cannot be achieved in the real
environment due to the complexity and uncertainty of our physical world. Furthermore, in
some scenarios, there might be no simulation available stressing the need for more data effi-
cient methods. A recently developed paradigm is offline reinforcement learning where a policy
is trained from using exclusively recorded experiences without any environmental interaction.
Since this work refrains from using simulations, offline reinforcement learning presents an
appealing choice to learn behaviours as costly policy training in the real world can be omit-
ted. Instead, the data can be acquired independently of the learned agent allowing for the
utilization of human demonstrations that are collected more safely and with a high quality.

In general, there is a growing demand for data acquisition used not only to learn decision-
making engines. A recent, large-scale experiment utilized gamification to tackle a multiple
alignment task concerning human ribosomal RNA sequences [34]. Gamification is a well-
known phenomenon where game design elements are used in non-game contexts to motivate
and increase user activity [8]. By designing the alignment task as a mini-game inside the pop-
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1. Introduction

(a) Robot Surgery [43]. (b) Garment-Folding [1] (c) Food-processing [44]

Figure 1.1.: Applications of deformable object manipulation.

ular mass-market game Borderlands 3, the authors collected over 135 million puzzle solutions
from over 4 million players. Since this work also involves acquiring user demonstrations, the
deformable object manipulation task will be gamified as well (see section 5.1), but with more
simplistic game interface design patterns. However, due to the necessity of running the task
on a real robot, it is foreseeable that only a few players can attend the gamified system.

To compensate for a low density in collected data distributions, a common technique is to
transform existing data points into new samples which is known as data augmentation. Specif-
ically for images, data augmentation techniques have been thoroughly applied in computer
vision tasks. While traditional augmentations help to keep trained models from over-fitting,
it is not clear whether they help agents to generalize in the presence of comparably few data
samples. Hence, this work also aims to develop a learned world model producing advanced
data augmentations that affect the context of the image samples (see section 5.2). Both,
traditional and model-based augmentations will be compared regarding their effect on the
agent’s performance.

In summary, the goal of this thesis is to investigate the applicability of offline reinforcement
learning to train an agent that autonomously solves a deformable object manipulation task.
The training is implemented without the use of simulations but using robotic hardware directly.
Human demonstrations are collected using a gamified version of the task and the collected
dataset is enlarged with traditional and model-based data augmentations. The impact of the
different augmentation techniques is compared by training multiple policies and measuring
their performance in real-world tasks.

To fully understand the details of this thesis, chapter 2 explains common concepts and
techniques used in related work and in later detailed methods. Chapter 3 takes a broader
look at similar work in previous research regarding deformable object manipulation, pixel-
based reinforcement learning, and offline reinforcement learning. In chapter 4, the overall
robotic setup, the control implementation, and the deformable object task are detailed. The
methods of this work are explained in chapter 5 which is divided into three parts. The first part
describes the gamification of the setup, the second part is concerned with the augmentation
techniques, and the third part explains the training of the policies. Chapter 6 goes into
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detail about how gamification, the model-based augmentation, and the policies are evaluated
and offers an explanation of the results. After that, chapter 7 discusses the results giving
hypotheses for some of the findings. Lastly, chapter 8 briefly summarizes this work’s most
important aspects giving also an outlook on what could be improved in the future.
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2. Fundamentals

This chapter briefly explains the fundamental concepts used for this work. Starting with
the basics of reinforcement learning and offline RL, a concrete offline RL implementation is
provided as it is used in this thesis. Then, contrastive learning is described as it is used for
pre-training convolutional encoders and lastly, the workings of diffusion models are provided
to better understand how the model-based augmentations function.

2.1. Reinforcement Learning

Reinforcement learning (RL) is a class of machine learning algorithms inspired by natural
learning in humans and animals which is different from supervised and unsupervised learning.
In essence, an RL agent repeatedly perceives some information about its environment and
then performs an action interacting with it (see Figure 2.1a). Along the way, it tries to
improve a numerical reward signal which evaluates the agent’s behaviour.

Formally, reinforcement learning can be described as a Markov decision process (MDP)
with states s ∈ S, actions a ∈ A, rewards r ∈ R, and transition probabilities p(s′|s, a) [42].
The agent draws its actions from a policy π based on the current state. The objective of
the agent is to learn a policy that maximizes the expected return J(π) which is the sum of
discounted future rewards:

J(π) =
H∑
t=0

γtr(st, at) (2.1)

where γ ∈ (0, 1] is the discount factor, r(st, at) returns the reward for choosing action
at in state st, and H is the time horizon indicating the maximum number of subsequent
steps. This means that good policies do not always choose actions greedily, yielding a high
immediate reward, but also consider rewards that are to be received in the future.

Nonetheless, due to the nature of online learning, reinforcement learning is hard to apply in
environments where policy interaction is either expensive (robotics, healthcare) or dangerous
(autonomous driving, healthcare) [24]. While self-supervised setups have been proposed for
learning rigid object manipulation tasks on real robots [23], doing so for elastoplastic material
is much harder to realize as the setup would need to autonomously manipulate the object
back into a desired start shape. Therefore, in this thesis, the focus is on offline RL where
policy interaction with the environment is not required. For further reading on reinforcement
learning, a good introduction on this topic was written by Richard S. Sutton and Andrew G.
Barto [42].

5



2. Fundamentals

(a) Online reinforcement learning (b) Offline reinforcement learning

Figure 2.1.: Visualization of online and offline reinforcement learning [24]. In online RL,
an agent πk directly interacts with its environment allowing for exploration to
maximize rewards. In offline RL, the data collection part is separate from the
learning process and can be done by any policy πb. However, during the training
phase, exploration is not possible anymore as the policy π learns from only the
collected data.

2.2. Offline Reinforcement Learning

In offline reinforcement learning, the goal remains to find a policy that maximizes the ex-
pected return. Online RL agents can learn this objective by exploring different actions since
these immediately affect the environment. However, an offline RL algorithm must do so,
without any environmental interaction [24]. Instead, a static dataset D of past interactions
(sit, a

i
t, s

i
t+1, r

i
t) ∈ D with the MDP is provided allowing no further exploration (see Fig-

ure 2.1b). The behaviour policy πb that generated the data may be unknown. It can be
for example random sampling, human demonstrations, or a previously learned policy. What
makes offline RL different from imitation learning, is the presence of the reward function. In
imitation learning, the policy is trained to mimic the behaviour found in the demonstration
data. Thus, the policy’s performance is limited to the expert’s performance. The reward
function in offline RL enables the policy to learn more independent behaviours for example
by avoiding actions that result in penalties. Generally, both imitation learning and offline RL
allow for learning policies when many environmental interactions are costly or dangerous.

The difficulty of learning from only a static set of experiences is that the state/action
distribution induced by πb is different from the environmental distributions in non-trivial
scenarios, yet the policy is tested against the latter. This is because the distributions cannot be
assumed to be i.i.d as future states depend on the policy’s past actions. Additionally, the policy
should ideally be better than πb meaning that it should learn something different from what is
directly observable in the provided data. However, diverging too much can impose errors which
cause the agent to end up in unseen states which unavoidably leads to more severe errors. This
shift in distributions is well studied and one of the fundamental problems in both imitation
learning and offline RL. Practically, this means that simple empirical risk minimization (ERM)
algorithms, which are popular with supervised and unsupervised problems, are unsuitable. It
has been shown that policies trained with ERM are at least quadratically more erroneous
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2.3. Implicit Q-Learning

with respect to the time horizon H than the behavioural policy from the dataset, even with
optimal actions given [32]. Targeting these issues, researchers have come up with many
different offline RL algorithms with different strengths and weaknesses.

For further reading on offline reinforcement learning, an introduction by Sergey Levine,
Aviral Kumar, G. Tucker, and Justin Fu [24] can be referred to.

2.3. Implicit Q-Learning

Implicit Q-Learning (IQL) is an offline RL algorithm based on approximate dynamic program-
ming [20]. It is used in this as the only offline RL algorithm which is why is it explained
in detail. IQL minimizes a modified Temporal Difference loss and aims to approximate the
policy improvement without evaluating out-of-distribution (OOD) actions. Temporal differ-
ence (TD) [42] is used to evaluate a policy by finding a state-value or action-value function
V (St). TD updates its value estimations using its own estimation for future states St+1:

V (St)← V (St) + α[r(st+1, at+1) + γV (St+1)− V (St)] (2.2)

This way, the trajectory does not need to finish in order to take gradient steps. The TD
loss with respect to the action-value function parametrized by θ can be implemented with the
mean squared error (MSE):

L(θ) = E(s,a,s′,a′)∼D[(r(s, a) + γQθ̂(s
′, a′)−Qθ(s, a))2] (2.3)

where the difference between the predicted value of the current state-action Qθ(s, a) and
the immediate reward plus the discounted target network prediction of the next state-action
r(s, a) + γQθ̂(s

′, a′) is minimized. A drawback of using the MSE is that the action-value
model will predict the mean return for a given state-action. Hence, it can occur that the
presence of few high returns might be outweighed by many low returns for the same state-
action. IQL incorporates expectile regression into the TD loss, meaning that the action-value
function averages more towards optimism or pessimism depending on τ :

Lτ2(u) = |τ − 1(u < 0)|u2 (2.4)

A visualization of the asymmetric expectile loss is given in Figure 2.2. Skewing the target
values towards optimism (selecting τ > 0.5) approximates maximum Q-values for a state over
actions from the dataset:

L(θ) = E(s,a,s′)∼D[(r(s, a) + γ max
a′∈A

s.t.πβ(a′|s′)>0

Qθ̂(s
′, a′)−Qθ(s, a))2] (2.5)

which satisfies the Bellman equation used in dynamic programming approaches [42]. This
allows for stitching parts from suboptimal trajectories in order to form a better one. This
feature seems crucial to succeeding in the deformable object manipulation task in this thesis
(see section 4.2) because it could allow for learning the effect of certain actions on the dough

7



2. Fundamentals

Figure 2.2.: The asymmetric expectile loss Lτ2(u). Selecting τ = 0.5 results in a symmetric
L2 loss. In IQL, choosing τ > 0.5 penalizes pessimistic value predictions more
than optimistic ones.

in order to produce an action sequence that leads to suitable deformations. The modified TD
loss with expectile regression is defined as follows:

L(θ) = E(s,a,s′,a′)∼D[L
τ
2(r(s, a) + γQθ̂(s

′, a′)−Qθ(s, a))] (2.6)

Compared to Equation 2.3 only the MSE was substituted with the expectile loss. A draw-
back of this loss is excessive optimism. This means, that single high values, that might only
be encountered due to transition probabilities, have a large impact on the action-value model.
To mitigate this issue, the expectile regression is only applied to the state-value function V
so that the value integrates over all actions a ∼ D:

LV (ψ) = E(s,a)∼D[L
τ
2(Qθ̂(s, a)− Vψ(s))] (2.7)

Using the MSE in the action-value model together with the state-value estimates Vψ(s′)
helps to reduce the excessive optimism:

LQ(θ) = E(s,a,s′)∼D[(r(s, a) + γVψ(s
′)−Qθ(s, a))2] (2.8)

Since IQL relies on a target Q-network with soft updates, the parameters θ̂ need to be
updated via exponentially moving average (EMA):

θ̂ ← (1− α)θ̂ + αθ (2.9)

Lastly, after fitting Vψ, Qθ, and Qθ̂ the policy is extracted with advantage-weighted re-
gression (AWR) [30] by minimizing the following loss:

Lπ(ϕ) = E(s,a)∼D[exp(β(Qθ̂(s, a)− Vψ(s))) log πϕ(a|s)] (2.10)

where Qθ̂(s, a) − Vψ(s) represents the advantage which is exponentiated with the hyper-
parameter β ∈ [0,∞) as inverse temperature.
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2.4. Contrastive learning

(a) Create positive pairs with data aug-
mentation.

(b) Maximize agreement between positive sam-
ples.

Figure 2.3.: Visualization of contrastive representation learning. First, positive pairs are cre-
ated with data augmentation (a). In this example, random-crop is used. Then,
the agreement between positive samples is maximized using the contrastive loss
(b). Here, g0 and g1 are example dimensions in the contrastive space.

2.4. Contrastive learning

Contrastive Learning is a type of representation learning that can be used in an unsupervised
fashion. The idea is to use augmentations of data points to create similar samples, encoding
them, and then maximise the agreement of the embeddings using the contrastive loss [5].

After sampling a minibatch x, stochastic data augmentation transformations are applied
to obtain two positive samples xi, xj for each data sample resulting in 2N samples (see
Figure 2.3a). When dealing with images, this can be e.g. random-resized-crop, random
colour distortions, or adding random noise. The choice of augmentation depends on the
context as not every method works equally well. The remaining pairs from the batch are
considered negative samples. The contrastive loss is defined as

Li,j = − log
exp(sim(zi, zj)/β)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/β)
(2.11)

where zi and zj are pairwise encodings, sim is the cosine similarity, and β is a temperature
parameter. A model trained with this loss encodes positive samples into similar embedding
contrary to negative samples (see Figure 2.3b). However, using the encoder f(·) alone gives
suboptimal results. Instead, the authors of [5] suggest adding a small non-linear MLP g(·)
with one hidden layer after the encoder zk = g(f(xk)). After training, this projection head
is discarded. Nevertheless, the embeddings need to be normalized otherwise they could be
pushed apart arbitrarily. Similar to the work of Zhan et al. [48], contrastive representation
learning is used to pre-train the convolutional neural networks (CNNs) in this thesis in an
unsupervised manner.
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2. Fundamentals

Figure 2.4.: Example of the diffusion processes. During the forward process, the image is
stepwise destroyed with noise. During the reverse process, a model predicts the
added noise which will be subtracted from the image generating new samples.

2.5. Diffusion Models

Denoising Probabilistic Diffusion models [17, 27] are a class of generative models where a
model repeatedly denoises an input until it follows a learned distribution. The idea is to have
a forward process destroy information of a sample x0 and then restore this during the reverse
process. During the forward process, Gaussian noise ϵ ∼ N (0, 1) is added on x0 T times.
During the reverse process, the model ϵθ(xt, t) predicts ϵ to subtract it from xt. This way,
new images can be synthesized (see Figure 2.4).

In this work, a diffusion model is utilized to re-project a flawed sample back into its original
distribution. To understand how that works, it is required to know how the t coefficient
works: First, the loss function L(θ) is defined as:

L(θ) = Et,x0,ϵ[∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2] (2.12)

where t is uniformly sampled from 1, ..., T and ϵ ∼ N (0, 1). ᾱ corresponds to a (non-)
linear schedule determining how much noise is added at timestep t. As ϵθ predicts ϵ, no image
synthesis is done during training. Overall, t determines the level of noise added during the
forward process and gives that information to the network. Thus, ϵθ learns to predict ϵ given
xt with any level of noise.

The reverse diffusion process handles generating images by querying ϵθ T times to denoise
xt which initially is xT ∼ N (0, 1):

xt−1 =
1
√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)) +
√
βtz (2.13)

where at each step, z ∼ N (0, 1) and βt describes the forward process variances, in this
case a t-depended constant, which is used to derive αt := 1− βt and ᾱt :=

∏t
s=1 as. These
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2.5. Diffusion Models

constants simply ensure that the right amount of (predicted) noise is added or subtracted
resulting in a synthesized, fully denoised image.

However, in this thesis, the objective is not to synthesize new images but rather improve
flawed ones. To do so, the forward and reverse process is not repeated T times but for K < T
steps. This has the effect, that xK is not fully noisy meaning that the image content is still
present to some extent. During the reverse process, image details are restored pushing the
sample back into the learned distribution. An example is given in Figure 2.5.

Figure 2.5.: Visualization of the re-projection. On a flawed image (top left), noise is added
for K < T steps (forward diffusion). A learned diffusion model denoises the
sample (reverse diffusion) restoring some image of the details (bottom left). This
prevents compounding errors when predicting longer trajectories.
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3. Related Work

In this chapter, related work to this thesis is listed. It is divided into three sections: section 3.1
details other deformable object manipulation tasks and the corresponding approaches, sec-
tion 3.2 features methods that aim to solve pixel-based reinforcement learning problems, and
section 3.3 outlines research about offline reinforcement learning used in different contexts.

3.1. Deformable Object Manipulation

Cherubini et al. [6] use visual servoing to deform kinetic sand with push and pat actions (see
Figure 3.1). Two heuristic methods and one learning approach were investigated for selecting
the pushing action. With contour detection, the pushing path is determined using either
the maximum distance of two contour points (maximum) or along the contours centroids
(average). The learning approach used a three-layer MLP with user demonstrations collected
from an earlier study. The metric consists of the mutual information error over the images.
In the experiments, the three pushing methods were compared against each other doing three
different shapes. Overall, the average strategy showed the lowest performance while the
learning and the maximum approach were similar. Though the latter showed the overall best
results in the long run.

Figure 3.1.: The shape servoing task from [6]. The left image depicts the setup with the
robot actively moulding the material with the tool (blue). The top right image
shows the initial shape of the sand while a goal shape is depicted in the bottom
right image.
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(a) In [29], three types of deformable materials are
tested (left image). The task was to roll a piece
of material into a target shape (right image).

(b) The setup of [25]. A tape-like hand is used
to roll a piece of dough into a desired length.
The deformation can be seen on the right.

Matl and Bajcsy [25] used model-based reinforcement learning to roll dough with an elastic
end-effector into an elongated shape (see Figure 3.2b). The model was learned with random
samples and then used to train a policy that performed better than heuristic and random
methods. The dough shape is detected with a depth camera and represented by a bounding
box and the highest point. The action space is defined as a 5D vector comprising the 3D
position, the elastic band length, and the motion distance.

In the work of Ondras et al. [29], three different types of deformable material were deformed
using a rolling pin mounted on a robotic arm (see Figure 3.2a). The scene was captured using
an RGBD camera and a tactile sensor was attached to the arm, measuring the stiffness of
the material. The task involves flattening plasticine, Play-Doh, and kinetic sand from a ball
to fill a given circular shape. Given the target shape and the detected shape, a start and end
point were determined with different conventional methods. Actions include flattening as well
as shrinking and the performance is measured with the intersection over unit. Similarly, the
goals in this thesis are 2D as well hence the IOU metric will also be used here.

In the system called RoboCraft by Shi et al. [38], the goal is to automatically manipulate
dough with a two-finger gripper into an alphabet letter (see Figure 3.3). The setup captures
the dough state with four RGBD cameras and reconstructs a mesh from the point cloud
data to resample a fixed number of points from the geometry. A conditioned graph neural
network (GNN), which was trained with 6000 random samples, is used as a model to predict
the gripper actions’ impact on the dough. Using the model, several approaches to select
actions, including RL and gradient-based methods, were tested against each other. Due to
the differentiability of the GNN, the gradient-based models yielded the best performance even
compared to human actions. While RoboCraft processes the dough in 3D, the target shapes
are actually 2D letters. Similarly, this thesis looks at 2D goal shapes but omits to process 3D
data by restricting motion to only two axes. Hence, the setup could be simplified to only one
RGB-camera allowing to utilize existing pixel-based (offline) RL implementations.

RoboCook by Shi et al. [37] is the follow-up version of RoboCraft which makes use of 15
different tools to make dumplings. The setup is similar to RoboCraft but one GNN is trained
for each tool. The desired tool is selected based on PointNet and a policy is trained in a
self-supervised manner.
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3.2. Pixel-based Reinforcement Learning

Figure 3.3.: The RoboCraft setup [38]. The dough is manipulated with a two-finger gripper
to form a squared sough shape into alphabet letters. The system uses four RGBD
cameras to reconstruct the dough shape in order to select actions.

You et al. [46] use a large language model (LLM) for zero-shot dough manipulation. By
defining tools and their use for the LLM, it outputs a multi-step plan indicating what tool
to use for the geometry of the intermediate point cloud via Python code. A differentiable
physics module then predicts the actions given the tool, initial and target point cloud via
gradient descent on the Earth Mover Distance. The experiments include making a doughnut,
a baguette, and two pancakes multiple times.

Bartsch et al. [2] divide their point cloud into 64 clusters to use a pre-trained variational
auto-encoder from Point-BERT to obtain discrete point tokens for each cluster. A simplistic
physics-dynamics approximator predicts the positions of the 64 centroids which are then
passed, along with the point tokens, into a dynamic graph CNN to obtain the predicted
next states point tokens. To restore the predicted point cloud, the tokens are fed into the
decoder from Point-BERT along with the predicted centroids. This dynamics pipeline is used
with model predictive control to sample actions forming the dough into a target shape. The
dynamics model was trained on random samples as well as human demonstrations with the
overall performance being better when trained on the latter.

3.2. Pixel-based Reinforcement Learning

An early pixel-based reinforcement learning approach, namely deep Q-Learning (DQN), was
presented by Mnih et al. [26] in 2013 to play atari games. A 2-convolution layer network was
employed to approximate an optimal Q-function in an off-policy style. Since the action space
is discrete, the probabilities for all possible actions for a given state could be estimated. DQN
performed well on all seven tested atari games and even surpassed human performance on
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Figure 3.4.: The dynamics model approach from [18]. Roughly, the bottom part is a condi-
tioned U-Net predicting next the frames similar to this work. The top part trains
a recurrent inference network that produces a latent that will be, together with
the input action, used to condition the U-Net.

three of them.
Since then, more different approaches have been explored. Hafner et al. [14] used a state

latent dynamics model to train their policy. This requires an auto-encoder to compress the
images into more compact representations. A recurrent state-space model is learned to predict
the environment dynamics, including rewards and q-values, in the latent space. Experiments
with the DeepMind control suite (DMC) have shown that the approach, dubbed Dreamer,
outperforms off-policy algorithms specifically when the number of environment steps is limited.
This thesis aims to learn a world model as well but cannot be trained on millions of transitions.
To compensate for this, the actions used for state prediction are restricted to staying close
to the data distribution relaxing the need for strong generalization capacities of the dynamics
model.

Similarly, Kaiser et al. [18] trained a model to predict atari game dynamics with discrete
latent states, though the model predicts observations directly (see Figure 3.4). Due to im-
perfections of the model, each trajectory was cut short to 50 steps. The policy was trained
using proximal policy optimization (PPO) with 100K true environment steps and 15M sim-
ulated steps. The experiments were carried out on 26 atari games from the Atari Learning
Environment. The dynamics architecture of this thesis is inspired a lot by the architecture
from this work. Though, the inference network has been left out in favour of a more simplistic
implementation.

A model-free approach to pixel-based reinforcement learning was proposed by Srivanas et
al. [41] utilizing contrastive learning. The discrimination objective is based on random-crop
data augmentation and two encoders transform the cropped images into representations. Only
one encoder is trained jointly with the reinforcement learning task whereas the other one is
updated using the EMA. The policy is trained with either soft actor-critic (SAC) or Rain-
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3.3. Offline Reinforcement Learning

Figure 3.5.: The CoDER architecture [48]. It consists of three steps to quickly learn control
tasks with RL on a real robot. Around 10 demonstrations are collected (a) which
are used to train a CNN encoder via contrastive learning (b). Lastly, the pre-
trained encoder is used to train an online RL agent utilizing random-crop image
augmentations (c).

bowDQN using the learned representations. The approach, namely Contrastive Unsupervised
Representations for Reinforcement Learning (CURL), was tested on the DMC as well as the
same 26 atari games from [18].

Concentrating on image augmentations, Laskin et al. [22] used SAC and PPO without
altering the loss function outperforming Dreamer and CURL on the DMC. In detail, they
have shown how different image augmentation techniques, and their combinations, affect the
trained policies. Specifically, random-crop alone has shown to be most effective as it increases
the agent’s resilience towards pixel translations.

Combining contrastive pre-training and data augmentation for visual robotic control, Zhan
et al. [48] learned control policies on real robots in less than an hour of real-world training time.
Building upon the works of [41] and [22], the architecture named CoDER (see Figure 3.5)
requires around 10 human demonstrations for a given task. These are used to pre-train a
CNN-based key and query encoder via contrastive learning and EMA respectively. The key-
encoder is then used to train a SAC agent utilizing not only collected data by the policy
but also the human demonstrations. Throughout the pre-training and the online training,
random-crop augmentations are utilized. The CoDER architecture can be seen as a basis for
this thesis, though transferred into the offline RL setting but with more demonstrations as
the deformable object task is inherently more complex.

3.3. Offline Reinforcement Learning

Data augmentation in offline reinforcement learning was investigated by Sinha et al. [40].
Working with virtual environments only, their augmentations affect the true underlying state,
e.g., the robot’s simulated joint positions/velocities, and improve the smoothness of the
Q-function and policy performance on several virtual benchmarks. The authors tested their
approach on D4RL [9], Meta-World [47], and robosuite [50]. The datasets were either provided
or came from a learned SAC agent. While S4RL could sometimes even outperform the
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Figure 3.6.: The procedure of benchmarking offline RL. A PPO agent is trained in simu-
lation on the two tasks. With zero-shot transfer, the trained policy is used to
infer actions in a simulation and on the real platform generating two datasets.
The resulting datasets are used to benchmark five offline RL algorithms that are
evaluated in the respective environments.

behaviour policy, in this thesis, directly perturbing the states is impossible as only real-world
data is collected. However, by learning the dynamics model, trajectories can be recomputed
with slightly altered actions similar to the zero-mean Gaussian noise augmentations from
S4RL ideally causing similar effects.

Seno and Imai [36] developed d3rlpy, an offline RL benchmark offering tested implementa-
tions for many popular offline RL algorithms that can be trained not only offline but fine-tuned
online as well. The algorithms interface with the MDPDataset class during offline training
or with environments from OpenAI Gym [3] during online training. The plug-and-play API
allows for customizing the experiment e.g. by providing custom encoders. This way, complex
or pre-trained encoders can be utilized in order to assemble derivates of algorithms. This is
a vital feature for this thesis, as the encoders are pre-trained with contrastive learning.

Gürtler et al. [13] proposed a benchmark for offline reinforcement learning on real hardware
using a three-finger robot and two cube-handling tasks. On the TriFinger platform from the
Real Robot Challenge 2022 [12], an expert policy was trained in simulation using an already
developed, specialized version of PPO. With the trained policy, a simulation dataset and a
real-world dataset were created by running zero-shot inference in the respective environments
(see Figure 3.6). Using d3rlpy [36], five popular offline RL algorithms were compared regard-
ing their performance on the two tasks in the simulated and real domains. Generally, the
performance in the real world is worse than in simulation for most algorithms. Additionally, a
systematic hyperparameter optimization for all algorithms was performed which is of interest
for this thesis as the optimized hyperparameters for IQL can be adopted.
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4. Setup and Task

This chapter outlines the robotic setup and the deformable object task developed for this work.
Details about the control implementation as well as the workings of the task are provided.

4.1. Robotic Setup

The teleoperation setup consist of a wall-mounted UR5 robot equipped with a Robotiq 3-
finger hand (see Figure 4.1). Additionally, three custom fingertips were 3D printed to prevent
the dough from damaging the hardware (see Figure 4.2). The fingertips are designed in a
way that, when the gripper closes, the three parts align forming one tool that can be used to
push or dent the dough. When the gripper is opened, the fingers offer a large surface area in
between, allowing for gripping or squeezing the dough. Examples of how the fingers can be
utilized are provided in the appendix (section B, Figure 1). The dough is placed below the
gripper on a table. To increase friction with the table surface, a foil is affixed preventing the
dough from slipping easily when pushing it from the side. One RGB camera with a resolution
of 1280x720 is placed in front of the gripper, providing side view of the scene. A schematic
overview of the setup components is presented in Figure 4.3

4.1.1. Control

The idea is to move the gripper only along the y- and z-axis relative to the base-link (see Fig-
ure 4.3, green/blue arrows). Additionally, the gripper can be rotated around its z-axis and can
be opened and closed. Though, it is a 3-finger gripper, the two outer fingers are permanently
in pinch mode meaning they act as one larger finger when opening or closing the gripper.
The camera provides the primary observation source for the user. The control signals can
come from either humans or policies. In this chapter, only the technical control interface is
mentioned. The human interface will later be explained in section 5.1.

Robot commands should be intuitive for the user which is why the translation commands
are defined relative to the camera image. This means that normalized pixel coordinates ⟨x, y⟩,
with values in [0, 1], are used to determine the end-effector position in Cartesian space. These
need to be transformed to ⟨y, z⟩ coordinates relative to the base-link. The axis differences
arise due to the different frame orientations visible in Figure 4.3: While the end-effector’s
y-axis points towards the base-link, the same happens for the camera’s x-axis. This might
lead to confusion but generally, ⟨x, y⟩ is used in the context of input commands while ⟨y, z⟩
is only used to compute the 3D end-effector position.

The grippers orientation is restricted to the three intuitive modes −90◦, 0◦, and +90◦

which is expressed by γ ∈ {−1, 0, 1} respectively. Lastly, the opening width is determined by
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4. Setup and Task

Figure 4.1.: The setup consists of a UR5 equipped with a Robotiq 3-finger gripper. Custom
fingertips were 3D-printed to avoid hardware damage and to facilitate better
dough manipulation for the given tasks. While the material mostly prevents
sticking to the dough, a foil is fixed to the working surface minimizing side-
slipping of the dough due to the increased friction. The RGB-camera is placed
pointing at the scene with the end-effector being restricted to only move on the
orthogonal axis. A blue curtain serves as a background with few distractions.
The colour of the dough (green) is chosen to easily detect the contours.
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4.1. Robotic Setup

(a) (b) (c)

Figure 4.2.: Custom 3D printed fingertips and AprilTag [28] extension. The fingertip for the
middle finger is depicted in (a) having a thicker bottom side to have more surface
that could make dents in the dough. The fingertips for the outer finger (b) are
designed so that when those fingers pinch, the two parts construct a bigger
fingertip similar to the middle one. The fingertips are also used to mount the
AprilTag for calibration (c). The front side (c, left) shows the tag itself while
the back side (c, right) has a convex relief allowing for quick attachment on the
middle fingertip with a putty-like adhesive.

d with values in [0, 1] where 0 means fully closed and 1 fully opened. In summary, this leads
to a 4-valued control interface ⟨x, y, γ, d⟩:

Parameter Values Description

x 0 ≤ x ≤ 1 End-effector position along x-axis

y 0 ≤ y ≤ 1 End-effector position along y-axis

γ γ ∈ {−1, 0, 1} End-effector orientation

d 0 ≤ d ≤ 1 Gripper opening width

The control implementation is realized using the Robot Operating System (ROS) [31]. A
ROS-node was designed to receive the control commands ⟨x, y, γ, d⟩ from either policies or
the human interface. In the RL context this can be referred to as the action. For the actual
motor control, the high-level motion planning framework MoveIt [7] is leveraged.

First, the mapping from the ⟨x, y⟩ input coordinates to the Cartesian end-effector coor-
dinates on the ⟨y, z⟩ plane is described. This mapping can be described as a line-plane
intersection where the plane is defined by the y/z-axis of the base-link while the line is de-
fined by every point in Cartesian space that would be projected onto the image coordinates
⟨x, y⟩. However, this requires the transform from the base-link to the camera (BC) to be
known (see Figure 4.3, BC). Effectively, only the transform from the base-link to the end-
effector (BA) is known as it can be computed with forward kinematics. In order to estimate
BC, an AprilTag [28] is attached to the end-effector (see Figure 4.2c). This allows for an
estimated transform from the camera to the AprilTag. Since the transform from the AprilTag
to the end-effector is known, the transform from the camera to the end-effector (CA) can
be inferred. Knowing CA and BA, BC can finally be computed with BC = BA− CA.
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4. Setup and Task

Figure 4.3.: Schematic overview of the robot control. The position of the camera relative
to the base-link (BC) has to be determined. An AprilTag can be mounted to
the end-effector which allows for the estimation of CA. BA can computed with
forward kinematics providing all transforms necessary to estimate BC. Once it
is known, the robot can be controlled to only move along the y/z-axis of the
base-link (large, green/blue arrows) given 2D camera-image coordinates.

Given the cameras transform relative to the base-link along with the command coordinates
⟨x, y⟩, a ray can be computed with the PinholeCameraModel class that goes through ⟨x, y⟩.
The y,z-plane intersects with the base-link allowing to compute the intersection with the ray.
The intersection lies on the y,z-plane and aligns with the ⟨x, y⟩ coordinates on the image and
effectively determines the end-effector position.

To move the end-effector with MoveIt, the new end-effector pose needs to be submitted
to an instantiated MoveGroupCommander. The framework then takes care of planning and
executing the trajectory. With the target end-effector position available, only the orientation
has to be determined. Here, the γ parameter from the command is used to set the right
angle around the z-axis. The angles for the remaining axis are constant as the end-effector
should always face down. Lastly, the gripper’s opening width needs to be adjusted based on
d. The gripper state can be directly set using the Robotiq3FGripperRobotOutput class to
send a message to the respective node. As the MoveGroupCommander is instructed at the
same time, all robot motion happens simultaneously.
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4.2. Deformable Object Manipulation Task

Figure 4.4.: The deformable object manipulation task. The goal is to provide a sequence of
actions that deform the dough (green) into the target shape (magenta dashed
line) using the robot.

Figure 4.5.: The target shapes of the different tasks. The goal is to manipulate the dough to
match the white area as closely as possible. Ideally, the tasks are completed in
order as the shapes build up on each other.

4.2. Deformable Object Manipulation Task

Since this work focuses on the manipulation of elastoplastic objects, the choice of material
has to be carefully made as it will affect the agents training and behaviour. In prior research,
different materials like kinetic sand [29], plasticine [29], and dough/Play-Doh [38, 25, 29] were
explored. Play-Doh appears to be the most often used material which is more soft compared
to plasticine while not drying out too fast making it a good choice for this work. Throughout
the entire time, the dough was regularly moistened to maintain a steady softness.

The deformable object manipulation task of this work consists of forming a piece of dough
into a given target shape by providing a sequence of actions (see Figure 4.4). A total of five
shapes are defined (see Figure 4.5) which are ideally completed in order. There is no strictly
defined start state. The better the shape matches, the higher will be the reward.

The goal shape is provided as a 1D vector defining the relief with length equal to the
observed image’s width. Hence, it varies depending on whether the human interface is used
or a policy processes a state. To make the task less repetitive, the goal shape is randomized
along the x-axis while always staying between well-defined bounds.

4.2.1. Reward

To measure how much the dough matches the shape, the intersection over unit (IOU) is
used. This requires the target shape to be an image as well which is not immediately the
case. Instead, the 1D vector is rasterized onto an otherwise black image with a constant
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(a) (b) (c) (d)

Figure 4.6.: Dough masking process used to determine rewards. Given a regular observation
(a), a colour threshold in the HSV space is applied (b). Erosion and dilation are
used to remove noise and connected regions are labelled (c). If a region fails to
have a certain amount of pixels, it is deleted (d).

y-offset. Furthermore, the dough has to be masked in the observation image. The masking
process is shown in Figure 4.6. The image is first converted into the HSV colour space to
apply simple colour thresholding (see Figure 4.6b). Using erosion and dilation, smaller false
positives are eliminated leaving only larger regions (see Figure 4.6c). The area of all regions is
measured in order to eliminate the ones that fall below a certain threshold (see Figure 4.6d).
A mask remains that can be used to compute the IOU together with the rasterized goal shape:

J(A,B) =
|A ∩B|
|A ∪B|

(4.1)

where A and B are both masks. Therefore the reward values will be in range [0, 1].
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5. Methods

This chapter looks at the methods used in this work to obtain policies, that are compared
later concerning performance. Overall, it is split up into three sub-components:

1. The gamification of the setup concerns the implementation of the user interface for
the collection of human demonstrations.

2. The data augmentations aim to meaningfully increase the amount of collected data
without any further environmental interaction.

3. The policy training uses the produced data in order to train a policy with the offline
reinforcement learning algorithm IQL.

5.1. Gamification of the Setup

A gamified user interface for the teleoperation setup described in chapter 4 is developed to
motivate users to put in an effort during the demonstrations (see Figure ??). The objective
remains to manipulate the dough into a target shape, with a total of 5 goals to achieve.
Additionally, there is a free mode that allows users to practice without any specific goal.
Users define actions by configuring the orientation γ and gripper opening width d of the
robot and then clicking on the image to specify the end-effector position ⟨x, y⟩. The mouse
click ultimately commands the action to the teleoperation setup. A running score is displayed
during the game to inform the users about their current performance. Once satisfied with
their score, users can take on the next goal, adding the current score to the total score.
Finally, the total score is used to compile a leader-board. Each state/action pair is stored and
utilized to create a dataset for offline training.

5.1.1. Visual Elements

The top bar shows four elements: The current turn, the running score, the total score, and
a menu button. The turn increases with each action giving the user feedback on how many
commands were issued already for the current goal. The running score updates every second
recomputing the reward each time. The total score updates when the user proceeds to the
next goal and the menu button opens the menu.

In the centre, the camera image is presented depicting the scene. A yellow-magenta line
shows the current goal. The image is cropped to a resolution of 960x720 as 1280x720 would
be too wide. During reward computation (see subsection 4.2.1), the image is scaled down
to 128x128 to match the conditions during policy training which uses the same image size.
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Figure 5.1.: The gamified user interface of the teleoperation system. The controls are located
at the bottom while a task score and a total score are displayed at the top. The
robot can be moved by clicking inside the camera image after adjusting the
orientation with the three bottom-left buttons and the opening width with the
bottom-right slider. Once the user is satisfied, clicking Next will switch to the
next of the 5 tasks.
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Figure 5.2.: Reward distribution of the collected actions. The majority of rewards is 0 as every
new goal is placed randomly causing a reset in the reward as well.

When the user clicks somewhere on the image, the selected ⟨x, y⟩ coordinates are used to
issue a command which moves the robot. To simplify control for the user, the last issued
position is indicated by a purple circle connected with a white line to the current mouse cursor
position. This line indicates the path the end-effector will move.

At the bottom, the controls for orientation as well as opening width are displayed including
the button for the next goal. While for the orientation, one of the three states can be selected,
the opening width is controlled with a slider. Changing the state with the bottom controls
does not immediately affect the robot. Instead, the robot’s new state is computed only when
the user clicks on the camera image, assembling a command with the image coordinates along
with the preferences from the bottom controls. After that, the command is forwarded to the
control ultimately moving the robot.

5.1.2. Dataset Analysis

Overall, 12 people attempted the game playing for around 30-45 min per session. As a result,
a total of 7250 actions were collected in the process. Since the policies will be trained by this
data without further environmental interaction, the recorded rewards present an indicator of
how well the learned policies could perform.

The reward distribution is shown in Figure 5.2. It can be seen that 10% of all rewards
have a value of close to 0. This is probably due to the random x-offset that replaces the
goal each time a new goal is presented. Other than that, there is a slow increase towards 0.8
forming the second highest number of rewards. This could indicate that most users aimed to
increase their running score to a certain level before continuing with the next task. After the
0.8, rewards fall rapidly due to the complexity of shaping the dough pixel-perfect. No one
achieved a perfect match however, as the reward is computed from observations as well, it
can be assumed that this was likely due to imperfect dough masking.
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Figure 5.3.: Three, with fcrop augmented trajectories. The original samples are displayed
on the left, and the augmented ones on the right. The randomized parameters
⟨x, y, size⟩ are kept constant for a given trajectory to preserve translational in-
formation.

5.1.3. Action and Reward Pre-processing

So far, the recorded data contains absolute actions and rewards. This means that the same
action will put the robot into the same configuration independent of its current state. Rewards
are still defined by the raw IOU. However, during this thesis, it was empirically found that
relative actions and rewards allowed for better training. Therefore, in the following sections
relative values are assumed unless stated otherwise. The rewards now indicate an improvement
compared to the last state if positive, or a deterioration if the value is negative. The value
range of the actions slightly differs from before (see subsection 4.1.1):

Parameter Values Description

x −1 ≤ x ≤ 1 End-effector translation along x-axis

y −1 ≤ y ≤ 1 End-effector translation along y-axis

γ γ ∈ {−1, 0, 1} Relative end-effector orientation

d −1 ≤ d ≤ 1 Relative gripper opening width

5.2. Data Augmentations

Data augmentation has been shown to improve performance in image-based online reinforce-
ment learning [22, 21]. In this work, two types of data augmentations are explored: traditional
resize-crop and model-based augmentations. Each type is used to increase the number of
samples in the buffer by up to 10x as much. In this work, a transformation f is applied to

28



5.2. Data Augmentations

trajectories τ yielding randomly augmented versions τ̂ :

f : D × T → D (5.1)

where T is the parameter space for the respective transformation. Since augmentations
can alter states, actions and rewards it is important to keep the parameters consistent over
the trajectory.

5.2.1. Traditional Augmentations

Traditional data augmentation methods regarding images have been thoroughly studied [39].
Regarding pixel-based reinforcement learning, traditional image augmentations help in terms
of learning efficiency and policy performance. Specifically, random-resize-crop is effective for
certain tasks where pixel translation invariance helps to generalize to the task [22, 21]. Since
the robot moves along the image axes in this work, random cropping could lead to similar
improvements with learning, though prior experiments have been mostly done in simulation
indicating there might still be a gap compared to this work.

Nevertheless, the first of two augmentations fcrop is chosen to perform random-resize-
crop on the trajectories. It is important to point out, that the randomly chosen parameters
stay constant for one trajectory as shown in Figure 5.3. Otherwise, task-related translation
information would be destroyed. Additionally, since the relative translation of an action ⟨x, y⟩
is normalized to image coordinates, a crop will skew the length of this translation. Hence, it
has to be scaled accordingly: Given a random scale u ∈ [0.5, 1.0] then the adjusted relative
translation âxy =

axy
u . The reward stays unchanged as it is assumed the dough shape is not

altered by the crop even if it might be cut off.

5.2.2. Model-based Augmentations

With random-resize-crop, the depicted scene remains unchanged, only the visuals are af-
fected. Due to the small buffer size, image augmentations changing the context might enable
significantly better offline learning.

To acquire context alterations, the recorded data is utilized to train a dynamics model Uθ
predicting the next image state given the current one in combination with a desired action.
A conditional U-Net with skip connections is designed similarly to [18] (see Figure 5.4).
The network consists of ResNet blocks [16] operating on the images combined with strided
convolutional layers. To condition the feature layers, the action is position-encoded and passed
to a multilayer perceptron (MLP). The number of output neurons matches the number of
features of the corresponding layer so that each feature map is multiplied by one output
neuron. Skip connections between the feature layers allow for faster training. Overall, the
network consists of around 4M parameters.

The objective is simply to minimize the MSE between the next state s′ and the predicted
state Uθ(s, a):

Ldyna(θ) = E(s,a,s′)∼D[(s
′ − Uθ(s, a))2] (5.2)
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5. Methods

Figure 5.4.: Visualization of the Conditional U-Net architecture. The input is an image and
an action. The output is an image only. The action is first transformed with
sinusoidal positional encoding and then forwarded into 2-layer MLPs. The MLPs
outputs condition the feature maps with scalar multiplication. Skip connections
connect the convolutional encoding blocks with the decoding blocks to accelerate
the training process.

Dynamics model training

The training data was split into 20 test episodes and 96 training episodes corresponding to
1044 and 6206 samples respectively. The model was trained for 1000 epochs with a batch size
of 32 resulting in approximately 193000 gradient updates. To increase robustness, the random-
resize-crop augmentation was applied to the transition analogous to subsection 5.2.1. Overall,
training Uθ took around 2 hours on a NVIDIA RTX 4090. The training loss converged at
around 1000 episodes while the test loss converged after 300 episodes already (see Figure 5.5).
The losses diverge likely due to the difficulty of predicting details in unseen test samples
whereas for the training sample, the details can slowly be memorized by the network.

After the training, Uθ can be used to predict sequences. An example is given in Figure 5.6:
A trajectory with 11 actions is predicted entirely given only s0. However, compounding
errors deteriorate the visual quality with increasing t. At step t = 11, several visual errors
can be identified: The left fingertip is divided, the end-effector’s appearance turned round
and smooth, and white artefacts emerge in the top-left corner as well as below the dough.
Furthermore, the dynamics of the dough show flaws visible in t = 10, where the dent from
t < 10 suddenly vanishes. A positive result is the reasonable preservation of the dough shape
and lighting from t = 0 to t = 7, where no manipulation took place. While the imperfections
are difficult to avoid completely, utilizing Uθ alone could only allow for generating trajectories
limited to H < 10.

Re-projection with Diffusions Models

The compounding errors by Uθ let the state predictions diverge more with each step from the
state distribution. To mitigate this issue, an unconditional diffusion model is used. Diffusion
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Figure 5.5.: Training and testing losses of the dynamics model Uθ. The testing loss already
converges after 300 episodes while training loss still improves slightly. Overall,
training and testing loss diverge a bit.

models have shown to be exceptional at learning image distributions. The reverse diffusion
process allows not only to generate new samples given only Gaussian noise. Instead, an
existing image can serve as intermediate result when noise is applied only to a certain degree.
This way, details can be restored, while the overall image context is preserved (see Figure 2.5).

Utilizing the states from D, a diffusion model Uψ based on the same conditional U-Net with
skip connection is trained to restore erroneous visuals of the output of Uθ while keeping the
image context as close as possible. Following [17], the time step parameter t (see section 2.5)
was used to condition the feature maps. Compared to Uθ, only around 2M parameters were
used due to the necessity of running the network multiple of times for one reverse diffusion
process. For the same reason, T is set to 200, sacrificing quality for a 5x speedup during
reverse diffusion. Uψ was trained for 500 episodes with the test loss converging after around
200 episodes (see Figure 5.8). The batch size was set to 64 and the overall training took
only about one hour on the NVIDIA RTX 4090. After training Uθ and Uψ, the model-based
augmentation technique fmodel can be defined as in Algorithm 1.

When applying K = 20 noise steps to the output of Uθ, and then do the reverse diffusion
process with Uψ, the image quality changes significantly (see Figure 5.7, t = 11). However,
when inspecting the trajectory closely, the dough shape is less invariable over consecutive steps
where no deformation occurred, as visible t = 8 where the dent almost completely vanished
without physical cause. Also the lighting changes unreasonably which can be observed from
t = 0 to t = 4. This trade-off between dynamics accuracy and visual quality has to be
considered when choosing a K for the re-projection.

Since both models are only trained on 6206 samples, their generalization capabilities might
not be sufficient to produce new trajectories based on entirely new actions. Instead, given
a trajectory τ , the transformation is done with s0 and all at from that trajectory where the
translation, as well as the opening width from at is altered with Gaussian noise parametrized
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Figure 5.6.: Inference of only the dynamics model Uθ for 11 steps. The dough manipulations
are rather good but compounding errors in visuals deteriorate the image quality
after a few steps. The result at t = 11 shows a blurry image with severe defor-
mations in the robots shape and white artefacts in the corner and at the bottom.

Figure 5.7.: Inference of the dynamics model Uθ with re-projection using the diffusion model
Uψ for 11 steps. Compared to Figure 5.6 the visual quality improved and allows
for predicting longer trajectories. However, the dynamics are less accurate.

Algorithm 1 The model-based augmentation procedure fmodel

1: ŝ0 ← s0 ∈ τ ▷ Initialize
2: for all at ∈ τ do
3: ât ← at + ϵt with ϵt ∼ N (0, σ) ▷ Augment action
4: ŝt+1 ← Uθ(ŝt, â) ▷ Predict dynamics
5: ŝt+1 ←

√
ᾱK ŝt+1 +

√
1− ᾱKϵ with ϵ ∼ N (0, 1) ▷ Forward diffusion

6: for i← K, 1 do ▷ Reverse diffusion
7: ŝt+1 ← 1√

αi
(ŝt+1 − 1−αi√

1−ᾱi
Uψ(ŝ, i)) +

√
βtz with z ∼ N (0, 1)

8: end for
9: r̂t ← r(ŝ, â) ▷ Determine reward

10: yield (ŝt, ât, ŝt+1, r̂t)
11: end for
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Figure 5.8.: Training and testing loss of the diffusion model Uψ. The testing loss converges
after 200 episodes while training loss still improves slightly. Overall, both losses
do not seem to diverge too much.

by σ (see Algorithm 1, line 3). Keeping the augmented states close to the training distribu-
tion like that reduces the amount of necessary extrapolation and hence, the need for strong
generalization capabilities.

5.3. Policy Training

The goal is to learn a policy with offline reinforcement learning given only a dataset. Because
of limited data in the recorded dataset Dsrc, two different augmentation techniques are applied
to increase the buffer size without further environmental interaction. In order to compare the
effects of the augmentations, 7 different dataset variations are created in addition to Dsrc
(see Table 5.1). While Dcrop1 - Dcrop9 use only augmentations from fcrop, Dmodel1 - Dmodel9
use augmentations from fmodel in addition to Dsrc ranging from 2x to 10x as many samples.
Finally, Dall is a combination of Dcrop9 and Dmodel9 creating the largest dataset with both
augmentation techniques.

The policies consist of a convolutional encoder conditioned on the current goal shape with
16 feature neurons (see Figure 5.9). The input is the camera image scaled down to 128x128
pixels. The output of the policy is 4 neurons directly forming the relative action command (see
subsection 5.1.3). The same architecture is also used for the action-value and the state-value
model which only output one neuron representing the estimated return.

Each dataset is used to train one policy for 1M gradient steps. The training progress
is monitored using the mean-absolute error over actions of a test set unseen by the agent.
It contains one trajectory for each goal and a hand-picked set of keyframes (see appendix,
Figure 5). A keyframe is a special frame where the action is semantically very clear for
example by making a dent or cutting the dough in half. Additionally, these keyframes are
also augmented with random-resize-crop to observe whether the policy generalizes to pixel
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Dataset
Number of transitions

Source Traditional Model-based Total

Dsrc 7250 0 0 7250

Dcrop1 7250 7250 0 14500

Dcrop3 7250 21750 0 29000

Dcrop9 7250 65250 0 72500

Dmodel1 7250 0 7250 14500

Dmodel3 7250 0 21750 29000

Dmodel9 7250 0 65250 72500

Dall 7250 65250 65250 137750

Table 5.1.: Table showing the eight different dataset variations. They are chosen to evaluate
the effects when increasing the amount of the respective augmentations. Dall
combined the full amount of both augmentations. All datasets contain the full
unmodified source trajectories.

Figure 5.9.: The encoder architecture. Depending on the algorithm, the d3rlpy framework
automatically creates policies, action-value and state-value models based on the
same encoder architecture. In this work, the encoder consists of convolutional
blocks conditioned on the goal shape.
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Figure 5.10.: The contrastive pre-training losses across all datasets. All losses converge after
around 150 epochs. Dsrc appears as an upper bound whileDall as a lower bound.
In between there seems to be no pattern followed by the remaining datasets.

translations.
Before the policies are trained, the encoders are pre-trained with contrastive learning on

the respective dataset for 250 episodes (see Figure 5.10). The 16 output neurons from the
encoders are transformed into an 8-dimensional contrastive space via a non-linear projection
head (see section 2.4). The augmentations for the positive embeddings are obtained using
the AutoAugment implementation from PyTorch. Similarly, the Triplet Loss [35] was used as
it is already implemented in PyTorch as well.

Finally, the policies are trained with IQL based on the implementation from d3rlpy. For all
training runs, the expectile parameter is set to τ = 0.9, the target network synchronization
coefficient to α = 0.00005, the temperature coefficient of AWR to β = 5, and the batch size
to 64 (see section 2.3 for all parameter definitions). The d3rlpy framework allows to split the
total number of training steps into epochs which in this case is set to 200 steps resulting in
5000 epochs. Training one policy took about 8h 15min each on the NVIDIA RTX 4090, with
45min spent on the pre-training. Despite empirical attempts to tune the hyperparameters,
the critics would in all cases have exploding losses with the actor receiving large rewards (see
appendix, Figure 4, Figure 3). However, the mean-absolute-error with regards to the test set
indicated no severe behaviour changes in the policies (see Figure 5.11).
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Figure 5.11.: Mean absolute error over the predicted actions compared to the test dataset
during training with IQL. The values of one relative action ⟨x, y, γ, d⟩ range
in [−1, 1], hence an error of 0.1 for x means that the end-effector was 1/10
of the image width off. At Step = 0 the error is rather low as the values for
⟨x, y, γ, d⟩ are all close to 0. Since the test set actions are relative, on average
0 is a good estimate. However, since IQL was trained with τ = 0.9, the policy
action distribution does not necessarily equal the test action distribution.
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This chapter contains experiments for the gamified setup, the model-based augmentations,
and the trained policies. Furthermore, all results are listed and briefly reviewed.

6.1. Survey for Gamified Setup

The idea behind the gamification of the teleoperation setup is to motivate users to put in
an effort in order to acquire high-quality demonstrations. Hence, a survey was created to
qualitatively evaluate the setup. The survey consists of 25 questions including the NASA
Task Load Index (NASA-TLX) [15], the system usability scale (SUS) [4], and questions
related to the teleoperation setup. Twelve people operated the robot for 30-45 minutes and
then participated in the survey. The entire survey can be viewed in the appendix (section A).

Generally, the system was well received (see Figure 6.1a). In Figure 6.2, the responses to
questions specifically about the system are shown. Overall, the game instructions were mostly
clear and people quickly learned to control the robot. However, there were technical issues
for some participants including one longer-lasting outage tarnishing the experience of one
individual. Nevertheless, the gamification did not fail in its purpose as almost everyone felt
encouraged to achieve a high score which should hypothetically produce good demonstrations.
Interestingly, when asking whether people found the single RGB camera to be sufficient for
the task, the opinions were split as shown in Figure 6.1b. No one absolutely disagreed with
the single camera, but half of the responses were more negative while the other half was more
positive leaving a gap in between.

The NASA Task Load Index (NASA-TLX) is a questionnaire used to subjectively rate the

(a) (b)

Figure 6.1.: Two bar charts showing the response distribution of two task-specific questions.
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Figure 6.2.: Box-plot of the task-specific survey questions. The orange line indicates the
median while the green triangle shows the mean. Circles correspond to outliers
while the whiskers are drawn within the interquartile range of 1.5.

Figure 6.3.: Responses for the NASA-TLX.

perceived workload of various applications [15]. The responses are shown in Figure 6.3. It
reveals that people found this task to be rather mentally demanding. As the task was carried
out in front of a computer, most people felt not physically strained except for two participants.
Furthermore, the participants agreed that the task would not put them under time pressure.
Similarly, the task was also not perceived as frustrating except by one person. However, the
amount of effort spent varies a lot between participants with a tendency that the task requires
to work hard. Nevertheless, all participants were rather satisfied with their accomplishments
indicating that the method is suitable to collect demonstrations.

The system usability scale (SUS) is a ten-item scale subjectively assessing the general
usability of a system [4]. Figure 6.4a shows the distribution of individual scores by each
participant. Most scores lie within the upper third of possible scores indicating that there
might still be some potential to improve the system’s usability in order to obtain better or
more demonstrations. Figure 6.4b focuses on the score contribution of each questionnaire
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6.1. Survey for Gamified Setup

(a) (b)

Figure 6.4.: The scores of the System Usability Scale.

item. When looking at the means (green triangles), four scales fail to reach a value of at
least 3:

1. I think that I would like to use this system frequently. The participants indicate that
the system lacks appeal to be frequented more. This could be due to the nature of a robotic
system that made participants suspect a complicated, time-consuming setup for a game that
might not be worth the effort. Another cause could be the technical complications some
participants experienced or that the game is simply not rewarding enough (e.g. with sounds,
visuals, or in-game progression).

4. I think that I would need the support of a technical person to be able to use this
system. The participants indicate a certain dependency on a technical person in order to play
the game. This is the case as the hardware setup is not explained to the participants and thus
could not be done without help. And again, the technical errors could not be fixed without
knowledge of the system. While in this work, independent starting of the game was not in
the scope, this has to be considered when further unsupervised data collection is intended.

7. I would imagine that most people would learn to use this system very quickly. The
participants indicate at least some parts of the game are hard to learn. This could mean that
a certain level of technical experience is required to learn to control the robot, or that the
control itself lacks simplicity. Another reason might be that certain actions are not intuitive,
for example, that the dough shape can be enlarged by repeatedly opening and closing the
gripper facing the viewer with the dough in between.

9. I felt very confident using the system. The participants indicate a lack of confidence
while using the system. This could be because it was each participant’s first attempt at
the game. However, confidence might cease with a lack of control. This could be due to
uncertainties like low end-effector precision or bad calibration which limits the player’s ability
to improve over time.
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6.2. Model Experiments

In this section, the models used in fmodel are evaluated regarding their performance. The
aim of fmodel is to accurately predict the dynamics of the dough shaping task given modified
actions. However, when leaving the actions as they are, the predicted trajectories should not
deviate much from the ground truth. Therefore, the performance of the models is measured
by predicting the test set of 20 trajectories given only s0 and at. As a metric, the intersection
over unit (IOU) regarding the detected dough shape is used.

Table 6.1 shows the overall results. Four statistics are shown for all predicted states as well
as only the last predicted state. In both cases the median is higher than the mean, meaning
that there are more low-score outliers. The average scores of the last step are generally worse
than the average of all scores as the states diverge less at the beginning and more towards
the end. There are states in which the IOU is 0.0 due to dough occlusion which can be seen
later. The overall max is not 1.0 as s0, which does not have to be predicted, is not considered
in this evaluation.

Figure 6.5 shows 4 exemplary trajectories with 5 steps depicted. In 6.5a a good example is
shown with the IOU falling notably below 0.8 only once and then recovering above 0.8. This
is likely due to the shorter length of the trajectory and the comparably simple actions. As
discussed in subsection 5.2.2, the lighting conditions of the dough change the most. Also,
the shape is not preserved ideally, which is explained later on.

6.5b depicts a bad example where the trajectory length is similarly short like 6.5a, but the
dynamics are more complex as the dough is cut in half and dragged for a longer distance.
Specifically after the cut, the IOU falls quickly below 0.4 since the dough was predicted to
stay in one piece contrary to the true data.

6.5c shows a rather long trajectory with 27 steps. While the IOU stays consistent roughly
over 0.7, a growing visual deviation of the end effector size can be identified with the largest
difference in t = 27. The reason lies in the data augmentation with random-resize-crop during
the training of Uθ and Uψ and is discussed in more detail later on.

Finally, in 6.5d reveals a dough occlusion at t = 17. Due to the missing area where dough
could be detected, the IOU suddenly drops to zero explaining the minimum value over all
steps in Table 6.1 and the smaller mean compared to the median.

Min Mean Median Max

IOU all states 0.0 0.7284 0.7553 0.9731

IOU last state 0.3436 0.6485 0.6653 0.8349

Table 6.1.: Results of recreating test trajectories with fmodel measured by the intersection
over unit of the dough.
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(a) Positive example

(b) Negative example

(c) Medium but lengthy example, growing end effector due to random-crops

(d) Dough occlusion example

Figure 6.5.: Selection with 4 of 20 reconstructed trajectories. On the left, extracts of the
trajectories are shown, while on the right the IOU progression over all steps is
depicted.
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6.3. Policy Evaluation

Each policy was tested on 8 different tasks three times. They resemble the original tasks
but focus more on specific actions. This promotes dough contact as the end-effector can be
placed close to the dough. Additionally, a random policy πrandom was implemented serving as
a simple baseline. πrandom chooses actions by sampling an action ait ∈ Dsrc randomly. Since
the policies were trained without stopping condition, each attempt has a limited number of
steps. An overview of the tasks including their number of steps is given in Table 6.2.

Every single task attempt was manually prepared with an evaluation script, allowing for
similar starting conditions. Because of the dough’s plasticity, it is hard to form identical
figures with complex shapes. Hence, the script captures a starting state for each test which is
used as a reference when setting up a new attempt. The reference state is then continuously
overlayed with the current setup when starting an attempt. A visualization of each start state
is given in Figure 6.6. The script also records the pixel differences between the reference and
the actual start state allowing for low deviations concerning dough shape.

The mean pixel differences of the start states for each task are shown in Figure 6.7.
Generally, the error ranges from 5 to 13 and it can be observed that for tasks with less
end-effector presence (Place L, Merge, Snail) the error is also smaller on average compared
to tasks with full end-effector presence (Cut, Push). Another aspect is that outliers are
consistently towards higher errors. This might be due to external influences like lighting
conditions, hardware calibration, or drapes in the background curtain as the experiments
could not be all done in one session. Another reason might be human fatigue towards the
end of a session.

After an attempt finished, the gripper was moved away from the dough to ensure no occlu-
sion was present on the last frame. However, since the policies were trained without stopping
condition, using only the last frame as performance measurement might be insufficient, as the
IOU improvement might be higher during episodes and then lowered towards the end again.
To also consider intermediate results, the best IOU improvement of an episode is measured
as well. This leaves two metrics: 1. the IOU improvement of sH , and 2. the best IOU

Nr. Task Steps H Description

1 Place R 10 Pick and place to the right

2 Place L 10 Pick and place to the left

3 Dent 10 Lower gripper to make a dent

4 Cut 10 Move gripper left to cut the dough

5 Smooth 10 Lower gripper to flatten surface elevation

6 Push 10 Push sideways to shrink dough

7 Merge 50 Merge two pieces

8 Snail 50 Form rectangular shape into snail shape

Table 6.2.: The policy evaluation tasks including a description of the crucial actions needed.
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Figure 6.6.: Each policy evaluation task. The state is s0 and the goal shape is visualized
(magenta, dashed line).

improvement compared to s0.
The final results of the sH improvement can be seen in Table 6.3. Generally, the trend is to

have negative improvements, meaning that the dough in the last state matches less than in
the starting state. πcrop1 and πall are similar in overall performance. While πcrop1 has the best
results in 4/8 cases and the best sum, it shows large negative results in the remaining tasks.
πall overall less deteriorating behaviour, but also improved the IOU only in small quantities.
In almost every task, πrandom behaves significantly worse than all other policies. Interestingly,
πsrc performs better than most augmented policies (except πcrop1 and πall). There is also no
clear pattern with increasing amounts of augmentations. The table also reveals differences
in difficulty across the tasks themselves: Tasks like Dent or Push show significantly more
deterioration than Place R/L, Merge or Smooth.

Compared to the best intermediate IOU improvement in Table 6.4, similarities and differ-
ences can be found. πcrop1 still has the best results, but this time, followed by πmodel1. πall
still scores highest on two tasks but with a lower margin towards the next best policy in the
overall score. Furthermore, a monotonically falling overall score can be observed with an
increasing amount of observations for πcrop and πmodel. Also πrandom is almost on the same
level as πsrc.

Finally, Figure 6.8 shows the IOU improvement over time for each policy on each task. The
lines show the mean IOU over the three attempts while the ranges indicate the smallest IOU
on the lower bound and the largest IOU on the upper bound. A larger range thus indicates less
consistency in performance. It can be observed, that certain tasks (Place R/L, Cut, Merge)
are less prone to IOU variance than others (Smooth, Push, Snail).
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Figure 6.7.: Mean pixel error over s0 for the different attempts compared to the reference
state. The error is lower when less of the end-effector is seen. Here, the whiskers
denote the minimum and maximum value.

Policy Place R Place L Dent Cut Smooth Push Merge Snail Sum

πsrc 0.000 0.000 0.001 0.076 -0.012 -0.231 0.013 -0.317 -0.469
πcrop1 0.073 0.227 -0.160 -0.014 -0.170 -0.286 0.249 -0.110 -0.191
πcrop3 0.000 0.025 -0.086 0.116 -0.062 -0.413 -0.033 -0.263 -0.717
πcrop9 0.032 0.000 -0.115 -0.009 -0.425 -0.135 -0.032 -0.199 -0.883
πmodel1 0.015 0.191 -0.455 0.007 -0.196 -0.180 -0.039 -0.591 -1.248
πmodel3 0.000 0.020 -0.037 0.005 -0.123 -0.124 -0.016 -0.424 -0.700
πmodel9 0.000 0.000 -0.017 -0.027 -0.343 -0.236 0.032 -0.236 -0.828
πall 0.000 0.025 0.075 0.008 -0.083 0.042 -0.034 -0.247 -0.215
πrandom 0.000 0.000 -0.403 -0.019 -0.475 -0.574 -0.047 -0.602 -2.120

Table 6.3.: Mean IOU improvement of the last state compared to s0.

Policy Place R Place L Dent Cut Smooth Push Merge Snail Sum

πsrc 0.000 0.000 0.025 0.125 0.027 0.008 0.080 0.079 0.34
πcrop1 0.073 0.227 0.013 0.090 0.016 0.028 0.303 0.055 0.81
πcrop3 0.000 0.131 0.044 0.139 0.002 0.032 0.032 0.082 0.46
πcrop9 0.032 0.000 0.027 0.080 0.000 0.036 0.092 0.013 0.28
πmodel1 0.017 0.191 0.072 0.081 0.002 0.023 0.160 0.016 0.56
πmodel3 0.000 0.045 0.007 0.065 0.027 0.000 0.016 0.037 0.20
πmodel9 0.000 0.000 0.028 0.002 0.015 0.005 0.069 0.055 0.17
πall 0.009 0.036 0.152 0.069 0.009 0.055 0.145 0.057 0.53
πrandom 0.027 0.000 0.001 0.112 0.001 0.035 0.075 0.002 0.25

Table 6.4.: Mean IOU improvement of the best states compared to s0.
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Figure 6.8.: IOU improvement relative to s0 for all goals for all policies. Each goal was
attempted 3 times. The range indicated the overall upper and lower bound.
The line indicates the mean IOU. For each task, the mean IOU of s0 across all
attempts is given.
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In the previous chapter, the setup gamification, the model-based augmentation, and the policy
have been evaluated in different aspects. This chapter discusses the results more in-depth.

7.1. Survey Results

The survey about the gamified setup asks 12 participants for their subjective perception of
different aspects of the system. Although most parts were well received, some results indicate
how the system could be changed in the future to improve data collection. A recurring point
was the technical problems which are hard to completely eliminate in interactive robotic sys-
tems. However, this stresses that efforts have to be directed towards the system’s robustness
as it limits the quantity and quality of the player’s demonstrations.

Half of the participants stated the single RGB camera is not sufficient for the game. This
could have multiple causes, but it is most likely due to the inability to observe the scene along
the z-axis. Certainly, it raises the question of whether introducing additional sensors (e.g. a
second camera) to the user but not necessarily to the RL agent would be beneficial for data
collection or would overwhelm the player with information.

The results of the NASA-TLX show that the mental demand and the effort required to
spend are comparably high for this task. This might be due to the complexity of the task itself
as dough manipulation without the use of our hands is quite hard. Additionally, the robot
control is not optimized for precision, hence the tolerances are high meaning that it is hard
to predict the outcome of the player’s intended actions. This also correlates with the lack of
confidence seen in the SUS results. Spending a lot of time and effort on the accuracy and
reliability of the system was not prioritized in this work. However, the resulting limitations
reveal that this does make a difference, not due to the (expected) imperfections in data, but
due to user satisfaction in the collection process. Optimizing the system in these aspects
could not only reduce mental demand and required effort but probably decrease frustration
levels even further.

Limitations: While the survey provided insights into the participants perception, a study
with two groups might be better suited to compare whether gamification positively impacts
the data collection process. Providing two teleoperation systems, one with gamification, and
one without, could give subjective insight with questionnaires as well as allow for numerical
comparisons between the achieved rewards or participation time. Unfortunately, this was not
in the scope of this work.
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7.2. Model-based Augmentations

The idea of model-based augmentations is to alter the context of the state images. This
requires a model of the transition dynamics of the MDP. Utilizing only Uθ for dynamics
prediction trained with the MSE loss function results in compounding errors. This is due to
the nature of the pixel-wise MSE as the resulting image becomes blurry where high variances
occur like the edges of the dough or the robot [19, 10]. To counteract blurriness, a diffusion
model Uψ was trained to re-project erroneous images back into the training distribution. Even
though the diffusion model is trained with MSE as well, the combination of predicting noise
rather than the denoised image and repeating this step multiple times result in better image
quality. Utilizing Uψ, details like sharp edges can be restored allowing for the prediction
of longer trajectories – at the cost of dynamics accuracy. This is because the diffusion
model is trained without considering the current state resulting in erroneous reconstructions
in e.g. shape and light. This leads to a tradeoff between dynamics accuracy and long-term
predictability that has to be borne in mind. Ultimately, the augmented trajectories are used
to train a policy with offline reinforcement learning, so the effects of using different diffusion
factors on the policy could be further studied.

Another noticeable behaviour of the predicted trajectories is the growing end-effector. This
can be explained by the training process of the diffusion model. Since random-resize-crop
augmentations were utilized to regularize Uψ, the model learned a different distribution in
which the average scene appears magnified compared to the ones from the original data
distribution. This leads to a subtle but steady magnification of the whole scene with each
prediction. Hence, in longer trajectories, this effect is more apparent than in shorter ones.
Interestingly, the magnification of the dough seems less severe, which could be due to its
deformable property allowing for a more diversity of shapes.

One other aspect is the occlusion of dough through the end-effector removing information
about the dough shape. This can be problematic as drastic shape changes can occur without
physical reason which leads to wrongful assumptions on behalf of the offline RL algorithm
about the MDP. This issue could be mitigated by keeping more information about the past
e.g. using recurrent neural networks or stacking the last N states as input.

Overall, the combination of the two models Uθ and Uψ is able to reconstruct unseen
trajectories with an IOU of around 0.65 over the dough shape in the final state. This result
itself leaves room for improvement but is also not surprising, as less than 6000 training samples
were used to train a total of around 6M parameters. While longer trajectories tend to have
lower IOU because of compounding errors, the complexity of the manipulation actions plays
a much more important role in determining the quality.

7.3. Policy Results

The policies were evaluated with eight, more specialized tasks focusing on key-actions that are
crucial to receiving good rewards. This promotes dough contact rather than having policies
move the robot aimlessly above the dough. Each of the 8 trained policies and one random
policy were evaluated three times on the 8 tasks. Generally, none of the policies excelled
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at all the tasks. At the mean IOU improvement over the last state, πcrop1 showed the best
overall performance followed by πall. Looking at the increase of augmentations of πcrop and
πmodel, there seems to be no correlation to the performance. One thing to notice is that πall
shows the most careful behaviour whereas the other policies significantly fail in at least two
tasks. This might be due to the more dense training distribution as more actions showing
destructive behaviour can be learned to avoid.

However, as the policies were trained without stop condition, evaluating just the last state is
insufficient. When inspecting the best improvement during the trajectories, it can be observed
that for all tasks there is at least one policy achieving at least 5% improvement except for
the Smooth task. This is likely due to the fact that there is no dough with such a distinct
bump in the training data, though attempts to smooth smaller bumps in general are present.

7.3.1. Qualitative Analysis

The quantitative analysis shows information about the general performance with regard to
the reward. However, it lacks details about the actual behaviours of the policies. This section
discusses qualitative findings about the policies. Here, πrandom is ignored as the random
behaviour requires no further explanation.

The first aspect that reduces performance severely is the dough falling over. Recovering
the dough from a lying position is not only hard for humans, but also underrepresented in the
collected data. Hence it is unlikely to be learned by any of the policies. In 204 trajectories, the
dough fell over 26 times meaning that around every 8th trajectory was impossible to recover.
Most of them can be described with one of four observed error-classes (see Figure 7.1):

(a) Gripper rotation. Rotating the gripper while being close to the dough causes a physical
impact along the scene’s z-axis knocking the dough over.

(b) Passive joints. The spring-equipped, passive joints of the gripper may misalign during
the manipulation building up undesired forces potentially pushing the dough over.

(c) Rapid gripper relocation. Long-distance translations of the gripper can cause the dough
to fall over when the robot collides during the motion with the dough. This is because
longer motion trajectories allow for more acceleration and thus higher velocities.

(d) Dropping the dough. Occasionally, policies would grip the dough and then drop it from
an elevated position resulting in an abrupt, instable landing.

Another aspect that can be observed is utilizing key-action from a different task. Specif-
ically, the denting and cutting action can be seen in several cases where it is inappropriate
(see Figure 7.2). This indicates that the conditioning on the task using the goal shape is
insufficient.

At last, an undesirable behaviour that occurred was to translate the dough while performing
a key-action (see Figure 7.3). This was not due to sudden movements but rather small
displacements over multiple steps. This could be explained by training data where the dough
is intentionally displaced in small steps towards the target to prevent overshooting. However,
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7. Discussion

(a) Gripper rotation (b) Passive joints

(c) Rapid gripper relocation (d) Dropping the dough

Figure 7.1.: Four reoccurring reasons why the dough fell over were identified (a-d). In around
every 8th trajectory the dough was pushed over.

(a) A cutting action was performed during the Dent task by πcrop9.

(b) A denting action was performed during the Place L task by πall.

Figure 7.2.: Two exemplary trajectory extracts were key-actions from different tasks were
performed.
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(a) A well shaped snail received low reward due to the faulty dough translation from πmodel1.

(b) The key-action was performed with translation by πcrop1 resulting in a malformed dent. Further-
more, it caused to dough to end up in the wrong position yielding a low reward.

Figure 7.3.: Two exemplary trajectory extracts were an undesired translation of the dough
caused a low reward despite the presence of correct key-actions. The red line
indicates the target goal.

the opposite case where small steps reduce overlap is much less represented causing a lack of
negative feedback from such actions during training.
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8. Conclusion

This work looks at the utilization of offline reinforcement learning to carry out a deformable
object manipulation task on a real robot with the help of different augmentation techniques.
Various aspects are examined, starting from the implementation of the robotic system, over
the data collection process, to the details of the model-based augmentations and the evalua-
tion of the trained policies on the real system.

The setup was gamified with game design patterns to motivate users to achieve a high
score leading to high-quality demonstrations. The survey revealed that almost everyone felt
encouraged to do so. Despite being a mentally demanding task, the frustration levels stayed
rather low indicating that the gamification might have a positive effect on the data collection
process. However, technical failures have to be prevented as they negatively affect user
satisfaction.

A model was developed to predict the environment dynamics which alone could not produce
longer trajectories due to the compounding errors. By leveraging an unconditioned diffusion
model, the predicted states could be re-projected so that the visual errors were mitigated
allowing for advanced data augmentation. Together with the traditional random-size-crop
augmentation, 7 additional datasets with up to 20x as much data were generated.

For each dataset, a policy was trained with the IQL offline reinforcement learning algorithm
under the same conditions. While a numerical correlation between increasing augmentations
and performance could not be clearly identified, several observations were made. The policy
trained on all augmentations made the fewest errors, though it did not lead in performance.
This hints that a combination of augmentations might help to avoid selecting destructive
actions. The qualitative analysis explained several bad behaviours leading to low rewards.
Several types of pushing the dough over were identified and also undesired translations while
performing key-actions could be observed. At last, the analysis revealed that the task condi-
tioning might be insufficient as key-actions were performed in the wrong task leading to good
shapes but in the wrong context.

8.1. Future Work

During the work of this thesis, many aspects came up that could be further investigated,
improved, and evaluated. While there are common facets e.g. hyperparameters, network ar-
chitectures, or reward signals that are underexplored, this work also reveals specific limitations
that could be improved in the future:

Dataset improvement A problem encountered in the policy evaluation (see subsection 7.3.1)
was repeating destructive behaviour of different policies by either pushing the dough
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over or translating the dough incorrectly. This indicates that policies tend to encounter
states uncovered by the training data that trigger destructive actions. This problem
has already been studied by Ross et al. [33] suggesting the use of learned policies for
incremental dataset generation whereas the expert (in this case humans) corrects the
actions of the encountered states. This could be done by utilizing the game interface
to show states visited by the policy and letting the user decide the best next action
generating new datasets.

Single-Task offline RL Since the policies sometimes performed the right actions but for the
wrong task, the conditioning seems to be insufficient. Hence it could be investigated,
whether the augmentations have a more apparent effect when training the policies for
only one task.

Random-resize-crop in diffusion model The regularization using random-resize-crop dur-
ing the training of the diffusion model leads to a step-wise magnification of the scene in
the trajectory predictions. Further investigations could show whether the use of other
regularization techniques helps to reduce this problem.

Improvement of setup The teleoperation setup was developed without high precision in
mind. This potentially leads to a lack of confidence during gameplay. To improve
the control accuracy, a different calibration method might be preferred. This could be
realized by e.g. using a fixed setup where the positions of all hardware components are
known and thus the end-effector pose can be computed more precisely.

IQL parameter tuning Since it was not possible to find hyperparameters that ensured con-
vergence of the critics during the policy training with IQL, more time could be spent
to understand why the algorithm failed in this setting. Lastly, the d3rlpy framework
seems to continuously extend its selection of offline RL algorithms giving the possibility
to evaluate different approaches beyond IQL.
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Appendix

A. Questionnaire

In the following, all questions of the questionnaire regarding the gamified teleoperation setup
are listed.

Introduction

Which gender do you feel you belong to?
Choose one of the following answers. Please choose only one of the following:
□ woman □ man □ non-binary □ prefer not to disclose □ Other

What is your age?
Choose one of the following answers. Please choose only one of the following:
□ 18-24 □ 25-34 □ 35-44 □ 45-54 □ 55-64 □ 65 or higher

Experience

How would you rate your overall experience using the system?
Please choose the appropriate response for each item:
□ Terrible □ Bad □ Okay □ Good □ Fantastic

How strongly do you agree or disagree with the following statements?
Please choose the appropriate response for each item:

The game instructions were clear to me
□ 1 (not at all) □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 (yes, absolutely)

I encountered many technical issues
□ 1 (not at all) □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 (yes, absolutely)

I quickly learned to control the robot
□ 1 (not at all) □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 (yes, absolutely)

I felt encouraged to achieve a high score
□ 1 (not at all) □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 (yes, absolutely)

The visual feedback (camera image) is not sufficient for the game
□ 1 (not at all) □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 (yes, absolutely)
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(Optional) How could the system be improved to enchance your experience?

Workload

How mentally demanding was the task?
Very Low Very High

Mental Demand ⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝

How physically demanding was the task?
Very Low Very High

Physical Demand ⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝

How hurried or rushed was the pace of the task?
Very Low Very High

Temporal Demand ⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝

How successful were you in accomplishing what you were asked to do?
Perfect Failure

Performance ⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝

How hard did you have to work to accomplish your level of performance?
Very Low Very High

Effort ⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝

How insecure, discouraged, irritated, stressed, and annoyed were you?
Very Low Very High

Frustration ⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝⃝
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Usability

Please rate the system’s usability
Please choose the appropriate response for each item:

1 -
Strongly
Disagree

2 3 4 5 -
Strongly
Agree

1. I think that I would like to use
this system again

⃝ ⃝ ⃝ ⃝ ⃝

2. I found the system unnecessarily
complex

⃝ ⃝ ⃝ ⃝ ⃝

3. I thought the system was easy
to use

⃝ ⃝ ⃝ ⃝ ⃝

4. I think that I would need the
support of a technical person to be
able to use this system

⃝ ⃝ ⃝ ⃝ ⃝

5. I found the various functions in
this system were well integrated

⃝ ⃝ ⃝ ⃝ ⃝

6. I thought there was too much
inconsistency in this system

⃝ ⃝ ⃝ ⃝ ⃝

7. I would imagine that most peo-
ple would learn to use this system
very quickly

⃝ ⃝ ⃝ ⃝ ⃝

8. I found the system very awkward
to use

⃝ ⃝ ⃝ ⃝ ⃝

9. I felt very confident using the
system

⃝ ⃝ ⃝ ⃝ ⃝

10. I needed to learn a lot of things
before I could get going with this
system

⃝ ⃝ ⃝ ⃝ ⃝
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B. Additional Images

(a) Pushing from the side (b) Grasping and translating (c) Making a dent

(d) Cutting the dough (e) Squeezing the dough

Figure 1.: Exemplary actions that utilize the custom fingertips in different ways.
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B. Additional Images

Figure 2.: The action-value losses of the IQL training.

Figure 3.: The state-value losses of the IQL training.
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Figure 4.: The actor losses of the IQL training.
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