
B A C H E L O R T H E S I S

IMU-based robot pole balancing

vorgelegt von

Sven Kristof Schmidt

MIN-Fakultät

Fachbereich Informatik

Studiengang: Informatik B. Sc.

Matrikelnummer: 6217064

Abgabedatum: 17.03.2023

Erstgutachter: Dr. Norman Hendrich

Zweitgutachter: Dr. Florens Wasserfall



Abstract

In robotics a careful consideration which sensors should be used for gathering necessary information to
perform a certain task can be crucial to its success. Prior experiments [1] show, that a robotic arm is able
to learn the balancing of an inverted pendulum or pole based on visual data. In this thesis data provided
by an inertial measurement unit (IMU) is used in an attempt to teach a robotic arm to balance a pole in
two dimensions. The results suggest, that balancing a pole using an IMU is possible for a basic cartpole
setup, where the cart moves freely in two dimensions. Balancing the pole with a robotic arm however,
proved itself to be too di�cult, as it becomes impossible to calculate the pole's orientation, if the IMU is
subjected to high linear accelerations and thus requires a very smooth and stable movement of the arm in
a two dimensional plane.



Contents

1 Introduction 2
1.1 Theoretic Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 MoveIt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Setup 7
2.1 Basic Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 IMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Development setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 WSL-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Third Party Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Learning Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 ROS Publisher and Subscriber . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Robot Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Results 17
3.1 2-Dimensional Cartpole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Simulation of the Diana-7 robotic arm . . . . . . . . . . . . . . . . . . . . . 28

4 Conclusion 35

1



1. Introduction

In recent years, the use of robotic arms in industrial and research applications has grown
signi�cantly, with these machines being used to perform increasingly complex tasks with high
precision and accuracy. In this thesis we want to let a robotic arm try to balance a pole based
on the data provided by an inertial measurement unit (IMU).

The problem of balancing a pole using a robotic arm can be seen as a variation of the
well known cartpole [6] problem, with increased complexity in the control of the 'cart's'
movement. This task requires a high degree of precision and control, as even small deviations
from the optimal position can cause the pole to fall over. We want to explore, if the data
provided by an IMU is su�cient and that it would allow a learning agent to solve the problem
in comparison to other methods used to observe the environment [1].

We will use a reinforcement learning approach to �rst teach an agent to balance the pole in
a classic 2-dimensional cartpole setup, in order to identify the di�culties speci�cally related
to using an IMU as a source of real-time data. We will then attempt to use the knowledge
gained from the �rst setup and evaluate if a robotic arm can be controlled with su�cient
precision to directly emulate the previous setup.

Overall, this thesis aims to evaluate the potential and di�culties of using IMUs as a source
of real-time data in highly dynamic situations and if it can be used in solving complex tasks
such as balancing a pole.

1.1 Theoretic Foundation

In this experiment a reinforcement learning approach, or more speci�cally a Q-learning algo-
rithm, was used in order to train an agent, that is balancing the pole. The following chapter
is giving a brief explanation of the theoretic foundations and was heavily reliant on [2]. There-
fore additional citation was used to specify more accurately where exactly a speci�c piece of
information was found.

1.1.1 Reinforcement Learning

Reinforcement learning is based on real world observations, in which humans and animals learn
through interaction with their environment and observation of the e�ect their actions have

2



on it [2] [21]. In machine learning this concept is realized by letting the learning individual,
also called agent, learn how they can maximize a numerical reward when interacting with the
environment. It is important that the agent learns on their own through trial and error, as
this is one of the core concepts of reinforcement learning.

The main elements of reinforcement learning, aside from the aforementioned agent and
environment, are the policy, immediate reward and long term value. The policy largely
determines which action is taken by the agent on encountering a given state. The immediate
reward is a form of evaluation how bene�cial the state of the environment is, after the agent
has taken their action. The value of an action is more of a long term reward, as it speci�es
the expected cumulative reward the agent could receive further into the future [2] [23].

The value of an action can be higher than that of another one, even if the immediate reward
from taking it is lower, because it might allow the agent to enter a state in which new actions
promise an even greater reward than what could have been received before. The goal of any
reinforcement algorithm is to maximize the long term reward and to prefer the value of an
action over its immediate reward [2] [23].

One of the challenges an agent might �nd themselves confronted with, that is unique to
reinforcement learning, is when to exploit their acquired knowledge and when to explore new
possibilities. Just using exploitation will cause an agent to favor less than optimal actions
over ones that would be better, because the expected reward of the former is known to the
agent, while that of the latter isn't. However if the agent just explores using random actions
all the time, they can not maximize the reward function in the long term by using the infor-
mation they learned. A mix of both exploration and exploitation is necessary, as every state
has to be visited multiple times before the expected reward can be reliably determined [2] [22].

One possible way to deal with the problem of exploration and exploitation is to use the
ϵ-greedy method, in which a parameter 0 < ϵ < 1 determines when to explore and when to
exploit. An agent using this method will choose to explore with a probability of ϵ and to
exploit with a probability of 1− ϵ [2] [3] [24].

Formally reinforcement learning is modeled after a Markov decision process. An agent in-
teracting with its environment is at time step t presented with the state st, causing them to
take action at. On the next time step t + 1 the environment is now in state st+1 and the
agent receives a reward rt+1 giving rise to the sequence st, at, rt+1, st+1, at+1, rt+2, st+2, ....
Any state at any given time is solely dependent on its directly preceding state and the action
taken. As such the state st+2 is neither dependent on st nor on at. This allows it to de�ne
a function pa(s, s

′), for the state transition probability from s to s′ with action a [2] [25].

The Markov decision process can then be de�ned by the tuple (S,A,Ra, Pa) in which

� S is a set of states s a system can take on, also called state space,

3



� A is a set of actions a that can be taken, also called action space,

� Ra(s, s
′) is the reward received for transitioning from state s into state s′ after taking

action a.

� Pa(s, s
′) is the probability, that taking an action a causes the system to transition from

state s into state s′,

The policy based on which an agent selects the action in a given state can be de�ned as
a function mapping the state space to the action space. The goal of the Markov decision
process is to �nd an optimal policy function π∗. [2]26 [27]

1.1.2 Q-learning

The reinforcement learning algorithm used in this experiment is called Q-learning [5]. It re-
quires no model, and is an o�-policy algorithm. This means no knowledge about the state
transition probability is needed and the optimal action value function is approximated inde-
pendently from the policy [2] [23] [28] [29].

As a tabular algorithm that stores all values of the action value function Q(s, a) in a ta-
ble [2] [21], Q-learning requires a discrete state and action space [6]. This means in a case
were the state space of the environment is continuous, it �rst needs to be approximated by
a discrete state space. This can be done by creating buckets in which all states are sorted into.

Once the requirements for the state and action space are met, the Q-learning algorithm
can be described by the following steps [2] [6] [28]:

� Before the loop initialize Q(s, a) for all s ∈ S and a ∈ A.

� Select at(st) = maxaQ(st, a) or at(st) = rndaQ(st, a) using ϵ-greedy policy.

� Observe reward rt+1 and next state st+1

� Update Q(st, at) following the Bellman equation,

Q(st, at)← Q(st, at) + α
(
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

)
(1.1)

where α is the learning rate and γ is the discount factor for future rewards.

� Repeat the loop from step two by selecting at+1(st+1)

As many other reinforcement learning algorithms do, Q-learning also su�ers from the curse
of dimensionality. This means that for large state and action spaces the algorithm will take
exponentially longer to converge [6]. As an example, the state space used to describe the
environment in this experiment has four variables S = (p, v, θ, ω). If each of those variables
can take on ten di�erent values and if the action space also consists of ten di�erent values,
then the size of Q becomes sizeQ = sizeS ∗ sizea = 105. It is therefore bene�cial to keep
the state and action spaces as small as possible (but as large as necessary).

4



1.2 ROS

The framework used to operate the robot is called ROS (Robot Operating System) [7], it is
an open-source software framework for building robotic systems. It provides a set of libraries
and tools to help developers create complex robotic applications by abstracting many of the
low-level details of robotics, including hardware interfaces, messaging protocols, and driver
development. ROS is language independent and has been implemented in C++, Python, and
Lisp. Experimental libraries for Java and Lua also exist. The language used in this thesis
when working with ROS is Python. At its core, ROS is a messaging system, that enables
communication between di�erent software modules running on a robot. The implementation
of this experiment is highly reliant on three of the core concepts of ROS, which are publisher,
subscriber and services. Since these concepts are important to understanding the certain
elements of this thesis, they will be given a short explanation.

A publisher node is an executable, which will constantly broadcast messages to a set topic [8].
A publisher can be created through the command

pub = ro spy . P u b l i s h e r ( ' \ topic_name ' ,
MessageType ,
queue_s ize )

With this the node declares that it will publish a message of certain type to the topic with
the speci�ed name. Whenever a publisher wants to publish something they can do so using
the command

pub . p u b l i s h ( message )

It is important, that the message being published is of the speci�ed type. A message of the
type String can not be published on a topic that is advertised with a message of the type
Float, as every message type represents a class with a �xed data structure.

A subscriber node is a node that subscribes itself to an existing topic [8]. It can do so
by using the command

ro spy . S u b s c r i b e r ( ' \ topic_name ' , MessageType ,
c a l l b a c k_ fun c t i o n , queue_s ize )

Whenever a new message is published by a publisher node the callback_function of the
subscriber is executed allowing them to react to the message. Additionally to subscribing to
the topic the subscriber node also needs to implement the callback_function.

d e f c a l l b a c k_ f u n c t i o n :
#do someth ing

A node can be a publisher on multiple topics and be subscribed to multiple other topics at
the same time.

Services are used for request and reply interaction in ROS. They are somewhat similar

5



to public functions of classes in many object oriented programming languages. Every service
is o�ered under a unique name and consists of a pair of the same message structures that are
available for topics in the publisher and subscriber model. One message is for the request and
is send to the node providing the service. The other is send as a reply to the node requesting
the service. The requesting node is inactive while it waits for the reply to a requested service.

1.2.1 MoveIt

MoveIt is an open-source software package for motion planning and manipulation in robotics
[14]. One of the key features of MoveIt is its integration with ROS, which allows it to work
seamlessly with other ROS packages and tools.

In this experiment MoveIt is used for operating the robotic arm. The motion planning function
of the package is actually only used at the very beginning of the simulation, before starting
the training, to move the robotic arm into a suitable start position. This is done using its
integration with the graphical user interface Rviz.

The motion planning feature was not used to move the arm during the simulation because it
is simply not quick enough, needing up to 100ms when less than 10ms are available. However
the services computing the forward kinematics and inverse kinematics provided by MoveIt
were used.

The forward kinematics are used to determine the position of the last link within a move
group, the end-e�ector, based on a given set of joint states. There is always exactly one
solution for the forward kinematics.

The inverse kinematics are used to determine a set of joint states based on a given posi-
tion of the end-e�ector of a move group. Di�erent combinations of joint states can lead to
the same position of the end-e�ector, which is why the inverse kinematics can have multiple
solutions. The given point could also be out of reach for the robot, which means it is possible
for the inverse kinematics to have no solution.

It should be noted, that moving the end-e�ector from a starting point to a target point
might cause a great shift in the joint states of the arm even though the points are close to
each other, simply because no other con�guration of joint states would allow the arm to reach
the target. A requirement for the starting position was therefore, that no large shifts in the
joint states would be necessary for the arm to reach any given position within the vicinity of
the starting point.

6



2. Setup

Before any training of the learning agent can be done, some issues concerning the physical
setup of the experiment need to be sorted out. The main issue is how rotation around the
pole's z-axis can be prevented, since the IMU used in this experiment doesn't have a mag-
netometer. This means that the pole's rotation around the z-axis can not be measured. If
the pole were to rotate around the z-axis with θz = π and fall over to the left then the IMU
would send the same data as if it had no rotation around z (θz = 0) and fell over to the right.
The learning agent could therefore not di�erentiate between those cases but would need to
take two di�erent actions.

Smaller issues concern the length of the pole, its diameter and mass as well as where the IMU
is mounted to the pole. These are important to know, when training the agent in a simulator
�rst, because the physical setup and the simulation setup should be as close as possible.

2.1 Basic Setup

The model of the robotic arm, that is supposed to balance the pole, is a Diana7, which is a
force-controlled robotic arm with 7 degrees of freedom.

The pole used in this experiment has a length of l = 1m and a diameter of d = 0.008m.
It has a mass of m 0.170kg and the center of mass should be close to the middle. The
IMU is mounted on the bottom of the pole on a connector block with a spherical joint. At
the front side of the connector a pin is placed that connects with a hole in the socket to
prevent rotation around the z-axis. Fig 2.1 and 2.2 show the pin-in-hole concept from both
the bottom and the top.

To prevent the pole from completely falling over, the socket has wings added to each
of its corners, that allow for wires or rubber bands to be attached. Alternatively a cup could
be placed around the pole to limit the maximum rotation angle around its x- and y-axis. The
full physical setup can be seen in the �gures 2.3 to 2.6. They show the winged socket in
detail, as well as some pictures from the pole held by the robotic arm.

7



Figure 2.1: Pin-in-hole concept of the
spherical joint connector. Top view an-
gle

Figure 2.2: Pin-in-hole concept of the
spherical joint connector. Bottom view
angle

Figure 2.3: Laboratory shot of the IMU
and the winged socket.

Figure 2.4: Close up laboratory shot of
pole held in place by rubber bands

8



Figure 2.5: Close up laboratory shot of the
robotic arm holding the pole

Figure 2.6: Panorama laboratory shot of
the robotic arm holding the pole

2.1.1 IMU

The microchip, which is used in this setup, is the 'Arduino Nano 33 IoT'. It has a pro-
grammable micro controller, comes with a micro USB port, as well as a WiFi and Bluetooth
module for connectivity, and it contains the inertial measurement unit (LSM6DS3), which
combines an accelerometer and a gyroscope. The manufacturer of the board provides an IDE
(Arduino IDE), which can be used to program it. The manufacturer also provides a library
for easy access of the IMU (Arduino_LSM6DS3), which takes care of the IMU's initialization
and allows to easily read the data of both the accelerometer and gyroscope through a simple
command. It is important to note that the axes of the IMU are �xed according to 2.7 and
might need to be transformed depending on how the board is mounted to the pole. Fig 2.5
shows that the IMU is mounted with its x-axis facing upwards, which means the z-axis and
x-axis have to be switched before the data is transmitted.

2.2 Development setup

The ROS distribution used in this experiment is 'ROS Noetic Ninjemys' or just noetic for
short. It was released on May 23rd 2020 [9] and is primarily targeted at the Ubuntu 20.04
release [10]. The Development was exclusively done on a machine with Windows 10 as its
operating system, with which ROS noetic is incompatible. Because of this the development
had to be done within a virtual environment with 'WSL2' being one of the simplest ones.

9



Figure 2.7: Schematic of the Arduino Nano 33 IoT and the axes of its IMU [17]

10



2.2.1 WSL-2

WSL-2 stands for 'Windows Subsystem for Linux 2' and is a feature in Windows 10 that
enables users to run a full Linux environment directly on their Windows desktop. It runs a full
Linux kernel in a lightweight virtual machine, allowing users to install any Linux distribution
and run it natively on their Windows computer. It is possible to access the Windows �le system
from within the Linux environment, making the transfer of �les between virtual environment
and native machine very easy [19]. The development of my ROS package required some
features that were not supported by WSL-2 alone, which is why some additional con�guration
of the environment was needed.

Connecting an USB device

It is necessary to connect the Arduino board to the Linux environment for the purpose of
transmitting the IMU's data through serial connection. WSL-2 does not support a USB con-
nection natively but it can be done using the module 'usbipd-win'. Following the instructions
from [20] will install the usbipd service and command line tool to be usable in PowerShell on
the Windows desktop and the necessary usbipd client package on the Linux environment inside
WSL-2. Once this is done USB devices can be attached and detached using the commands

u sb i pd ws l a t t a ch ==bu s i d <bus id>

and

usb i pd ws l de tach ==bu s i d <bus id>

while the command

usb i pd ws l l i s t

will list all available devices.

2.2.2 Simulation Environment

The simulator Gazebo is used to pre-train the agent. The simulation setup can be split into
two cases.

The �rst case is a basic 'cartpole' setup [6] but in two dimensions. The setup is cre-
ated by placing two sliders in the simulation space. The �rst slider is connected to the world
frame through a prismatic joint and can only move along the x-axis. The second slider is
connected to the �rst one also through a prismatic joint and can only move along the y-axis.
The pole carrying an IMU is connected to the second slider through two revolute joints, with
one allowing rotation around the x-axis and one allowing rotation around the y-axis. A picture
of the setup is depicted in �g 2.8.

In the second simulation setup a model of the Diana7 is used in place of the slider. The
model consist basically of 8 links base_link, link_1, ..., link_7 all connected to their neigh-
bor through a revolute joint. The pole and IMU are the same as in the previous setup and

11



Figure 2.8: Gazebo screenshot of the x-y-slider setup

Figure 2.9: Gazebo screenshot of the simulation setup using the Diana7 model.

12



are connected to the last link link_7 through two revolute joints. A picture of the setup is
depicted in �g 2.9.

Both packages creating these simulation setups were provided to me, and are not my own
creation.

2.2.3 Third Party Modules

Two third party modules were used to handle the data provided by the IMU:

� rosserial [11] is a module that allows the wrapping of ROS messages and sends them
over a serial port or network socket. A speci�ed client library exists for Arduino boards
called rosserial_arduino. Tutorials are provided alongside the client library that
explain in detail how di�erent types of data can be accessed and transmitted using
rosserial. A node of the type rosserial_python needs to run on the host machine
otherwise no data can be received from the Arduino device.

� imu_�lter_madgwick [12] is used to process the raw data from the IMU. It fuses the
measured angular velocity and linear acceleration into an orientation quaternion. The
module allows for dynamic recon�guration of some key parameters most importantly
the parameter gain. With low values of the parameter leading to a smoother signal
at the cost of slower computation time and higher values leading to faster convergence
but more noise.

2.3 Implementation

The implementation of the learning agent is done in three steps.

� The primary agent, which implements the Q-learning algorithm and is responsible for
choosing an action based on a given state.

� The ROS publisher and subscriber listening to topics containing necessary information
about the environmental state, and publishing the actions chosen by the agent to an
appropriate command topic.

� The robot controller, that calculates the trajectory the robotic arm needs to move along
in order to execute a chosen action.

2.3.1 Learning Agent

The primary learning agent is implemented by the class CartHandler within the �le imu_listen-
er.py (and robot_controller.py), which should be referenced for detailed information of the
complete implementation, but a brief explanation for the basic structure of the class will be
given in the following section.

On initialization of the class, a four-dimensional array, called stateList, representing the state

13



space and an one-dimensional array, called actionList, representing the action space are cre-
ated. The stateList contains four lists with the state values of position, velocity, angle and
angular velocity the system can be sorted into. The actionList is basically a list of values
corresponding to the velocity with which the robotic arm should be moved.

From the stateList and actionList two �ve-dimensional Q-tables are created, one for training
movement along the x-axis and one for training movement along the y-axis. Both Q-tables
are initialized with random values.

The agent determines an action, when its function getActionFromStateX (or getAction-
FromStateY ) is called. It �rst takes a given state vector S(p, v, θ, ω) and turns it into an
index vector Is(ip, iv, iθ, iω) where ip, iv, iθ, iω are the indices of the values pi, vi, θi, ωi from
the stateList to which the given state values are closest to. This way the given state vector,
which can consist of real number values, is discretized. The index ia is the index, at which the
Q-table Q(ip, iv, iθ, iω, i) = Qmax(ip, iv, iθ, iω) takes on the maximum value for the given
state indices. The index ai is then used to get the action from actionList.

During training, the current state index vector Is and action index ai are stored until the
next step, at which an immediate reward is calculated based on the new state S′(p′, v′, θ′, ω′)
and the equation

RS =


−10000− 50 · |p′| − 100 · |θ′|, if − 0.7 < p′ < 0.7

or − 0.25 < θ′ < 0.25

10− 10 · |10θ′|2 − 5 · |p′| − 10 · |ω′|, otherwise.

(2.1)

The immediate reward given is positive if the system is in a state with small angle θ′, angular
velocity ω′ and if it is close to origin position. It can quickly take on high negative values
if any of the state values is deemed not bene�cial. The reward takes on a negative value of
higher magnitude if the state is deemed to be a fail state. The Q-table for state S is then
updated following eq1.1.

The training mode itself is activated through the command setTrainingMode, which takes
values for the learning rate α, the discount γ and the initial exploration rate ϵ as arguments.
The exploration rate ϵ decays with a factor of 0.999 on every step, but it has a minimal value
of ϵmin = 0.003.

Alongside the primary agent a debugging tool has been implemented in form of the class
Analytics. The purpose of this class is to count how often the system is in a certain state,
and how often a certain action is taken.

2.3.2 ROS Publisher and Subscriber

The ROS publisher and subscriber are implemented by the class DataListener, for which two
di�erent versions exist depending on the source �le.

14



The class DataListener implemented in imu_listener.py is designed for a scenario, where
the pole balancing has been simpli�ed to a two-dimensional 'cartpole' problem, in which the
pole is balanced on a simple cart that can move along the x- and y-axis.

The main objective of the DataListener is to build the state vector S = (p, v, θ, ω). To do
this the class creates subscribers for the topics /imu/data_raw, /imu/data and /joint_states.
The data topics contain linear acceleration and angular velocity measured by the IMU as well
as its orientation, which is either the exact orientation provided by the simulator or the com-
puted one calculated by the �lter module. The orientation provided by the simulator is more
accurate and much more convenient to use, but it would not be available using the actual
IMU on the Arduino board.

Before the state vector S is build, the orientation, which is provided in quaternion repre-
sentation needs to be transformed into Euler angles. After this is done S can be created by
adding the position and velocity directly from the joint states. It should be noted, that the
rotation around the x-axis corresponds to movement along the y-axis and vice versa.

The action, once determined by the agent, is published to the topics *_joint_co- ntroller/-
command by the DataListener. This happens for every callback to the topic /imu/data (or
/imu/data_raw).

In the scenario, where the pole is balanced by a robotic arm instead of a cart, the cur-
rent position and velocity of said arm are not directly available by subscribing to the topic
/joint_states. The class DataListener implemented in the �le robot_controller.py is there-
fore slightly modi�ed. Instead of subscribing to the topic /joint_states, a listener for the
topic /tf is created. On each callback for the topic /imu/data (or /imu/data_raw) a lookup
for the coordinate transformation from the links /world to link_7 is done, to get the latest
position of the latter, which is the last link of the robotic arm excluding the gripper and is
therefore its end-e�ector. This position is stored each step, which allows it to approximate
the current velocity using the distance traveled between the last and the current step as well
as the time that passed between them.

The action is not published by the DataListener class in this scenario but by the class Motion-
Controller instead, because of the increased complexity of moving the robotic arm compared
to moving the cart.

Both versions implement a function to reset the pole and cart/arm to their origin positions,
if the system is determined to be in a fail state, at which either the position is too far away
from its origin or the angle θ is so large that the pole is seen as having fallen down.

15



2.3.3 Robot Controller

The class MotionController is implemented in the �le robot_controller.py and its primary
objective is to calculate the trajectory, which the arm has to move along. This is necessary
because the action chosen by the agent is in the form of a velocity but the arm can only be
moved to a new position and not into a direction with a speci�ed velocity.

On initialization the MotionController �rst sets its current position as its origin, making
it necessary to �rst move the robotic arm into a desired starting position by using the graph-
ical user interface of the motion planning tool MoveIt. This origin is not only used on reset
as a point to return to, as the orientation and z-axis coordinate are also always used as part
of the target position, whenever a new trajectory is calculated.

A new goal for the robotic arm is created on every call of the function motion, which is
in turn called on every callback of the subscriber to the /imu/data topic in the class DataLis-
tener. To determine a new trajectory the current position is �rst calculated using the current
joint positions of the robotic arm and a service called /compute_fk provided by MoveIt, which
calculates the position using forward kinematics. The distance the arm should be moved in
x- and y-direction is added to this position in order to create the trajectory goal. The exact
distance is dependent on the action determined by the agent and a constant time interval of
roughly 10ms because the IMU publishes its data with 108Hz.

Once the target position as been determined a service called /compute_ik is used, which
calculates the joint states for a given position using inverse kinematics and is also provided by
MoveIt. Since the distances that needs to be traveled in the given time frame can be several
centimeters long, multiple points between the start and target positions are calculated. This
is done because the trajectory is not necessarily following a straight line and additional way
points along the path might help to smooth out the movement. One of the drawbacks doing
this, is that calculating the inverse kinematics takes some time, which means creating too
many way points is also not feasible, since the time allocated to the completion of the entire
callback is 10ms. Taking longer would cause the DataListener to miss some of the messages
send by the IMU and the movement of the robotic arm to slow down.

The trajectory was at �rst published to the topic /diana7_trajectory_controller-/follow_joint-
_trajectory/goal and a queue size of 1. This caused the simulation to arbitrarily run into a
segmentation fault after a relatively short time. The reason for this went undetected for a long
time until it was �nally solved by switching to the topic /diana7_trajectory_controller/comm-
and and a queue size of 5.

16



3. Results

The experiment was split into three steps. During the �rst step the agent would learn how
to balance the pole on a cart moving in two dimensions inside a simulator. The second step
would use the pre-trained agent and further train it to balance the pole using a robotic arm
inside a simulator. The last step would have been to use this agent to then balance the pole
on a real Diana-7 robotic arm. This last step had to be forfeited however, as the agent never
learned to balance the pole on the arm inside the simulator, which means the experiment
failed on step two.

3.1 2-Dimensional Cartpole

The main objective of this step is to �nd a setup, that allows an agent to learn, how a pole
is balanced by only using corrective movement in two dimensions in an acceptable amount of
time. Since it is to be expected, that each step will require further training, the time needed
for the learning agent to stably balance the pole is of utmost importance.

The time it takes for the agent to learn is highly dependent on the size of the Q-table,
which is in turn dependent on the size of the state and action spaces. It is therefore bene�cial
to choose the state and action space as small as possible, while still maintaining high enough
resolution of both spaces for the agent to still e�ectively learn.

The state space used is S = (P, V,Θ,Ω) with

P = (−0.4,−0.1, 0, 0.1, 0.4),
V = (−0.75,−0.25, 0, 0.25, 0.75),
Θ = (−0.25,−0.15,−0.05,−0.025, 0.025, 0.05, 0.15, 0.25),
Ω = (−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3).

The action space used is

A = (−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1).

17



Figure 3.1: Frequency of the position y for di�erent values of the parameter p

The learning rate α and discount factor γ in eq.1.1 were kept constant throughout all simu-
lations, as modifying these parameters for each setup was not part of the optimization process.

The parameter values for each setup were therefore: α = 0.25, γ = 0.99.

The controller, that determines how quick the cart reaches an assigned velocity is a p-controller
(pid-controller with i = 0,d = 0). The �rst step for training the agent is therefore to �nd the
correct range for the parameter p in which the agent can operate.

The �gures 3.1 to 3.4 show the frequency with which the cart and pole take on certain
state values while moving along the y-axis.

It is visible, that cart and pole are both heavily inclined to move in a single direction
for values of p ≤ 7. Fig 3.1 shows the cart to be either only on the positive or only on the
negative side along the y-axis. Fig 3.2 shows that the velocity, with which the cart moves
along the y-axis is a little more evenly spread, but still with a clear peak in one direction.

The pole is also more inclined to either always fall over to the left or always fall over to
the right as depicted in �g 3.3. For values of p < 7 the agent also tends to choose the

18



Figure 3.2: Frequency of the velocity v for di�erent values of the parameter p

19



Figure 3.3: Frequency of the angle θ for di�erent values of the parameter p

20



Figure 3.4: Frequency of the action a for di�erent values of the parameter p

21



Figure 3.5: Y-axis frequency of state values for parameter p = 12

strongest actions signi�cantly more often then the rather moderate ones. For p ≥ 7 the
actions taken become more centered and for p = 12 all state values are more centered as
shown by �g 3.5

The agent was trained on the given state and action space and a value p = 12 for 12
hours until it was able to balance the pole stably. Movement along the x-axis was restricted
for both cart and pole during that time.

The parameter p needed to be tuned for movement along the x- and y-axis separately. A �rst
attempt with p = 60 was made for x-axis movement because the part of the cart that moves
along the x-axis has 10 times the mass of the part moving along the y-axis.

Fig 3.6 and 3.7 show that the state and action values are even better centered than they are
for p = 12 on the y-axis. The agent is therefore trained for 12 hours again, this time with
the y-axis movement restricted and a value of p = 60. Once the agent learned to balance the
pole separately for both x- and y-axis, the agent was trained a 3rd time for 12 hours with no
restriction to the movement.

All in all this means the agent needed 36 hours with the relatively small state and action

22



Figure 3.6: X-axis frequency of state values for parameter p = 60

23



Figure 3.7: X-axis frequency of action values for parameter p = 60

space to learn, how to balance the pole stably. An attempt was made to increase the size of
the state and action space for higher accuracy and even more resistant balancing using the
new state space S′ = (P, V,Θ,Ω) with

P = (−0.5,−0.3,−0.1, 0, 0.1, 0.3, 0.5),
V = (−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75),
Θ = (−0.25,−0.15,−0.1,−0.05,−0.025, 0, 0.025, 0.05, 0.1, 0.15, 0.25),
Ω = (−0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3),

and the new action space

A = (−1,−0.9,−0.8,−0.7,−0.6,−0.5,−0.4,−0.3,−0.2,−0.1,
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1).

However even after 72 hours of combined training the agent did not learn to balance the pole
on that state and action space and no further attempts were made to improve the former
results.

The training up to this point was done using the true orientation of the IMU, which is
directly provided along the linear acceleration and angular velocity by the simulator. In reality
the orientation is not directly available an needs to be calculated from the other two values
using a �lter from the package imu_�lter_madgwick.

24



Figure 3.8: Pitch angle calculated by the �lter based on IMU data and true angle provided
by the simulator

Unfortunately the pole fell within �ve seconds of starting the simulation when using the
orientation calculated by the �lter instead of the true one provided by the simulator. Fig 3.8
and 3.9 show the pitch and roll angles from both the �lter and simulator. It shows that both
pitch and roll angle from the �lter start to diverge slowly from their true value, though the
general forms of the graphs are quite similar up until the �rst fail state is reached, at which
point the immediate reset causes the �lter to lose orientation completely.

There are two steps that can be taken to improve the performance of the �lter. The
�rst one is to simply reduce the gain parameter of the �lter, which results in it being more
accurate but slower with the calculation. The second step is to reduce the parameter p of
the p-controller responsible for moving the cart in y-direction.

As shown by �g 3.10 the linear acceleration in y-direction measured by the IMU can get
close to 1g, which might lead to the �lter not being able to accurately approximate orienta-
tion.

The agent is retrained for the parameters px = 60 and py = 8, were the value of py was
determined to be close to the minimum, that still allows the agent to work in the previous
section. The training was successful and �nished quickly after only 4 hours by using the

25



Figure 3.9: Roll angle calculated by the �lter based on IMU data and true angle provided by
the simulator

Figure 3.10: Linear accelerations measured by the IMU

26



Figure 3.11: Roll and pitch angle calculated by the �lter based on IMU data and true angle
provided by the simulator

existing Q-table as a starting point. Additionally to reducing the gain of the �lter and the p
parameter of the controller, a bu�er was added to the reset function, which holds the pole in
place for a few seconds after it was brought back to the origin due to the system reaching a
fail state. This allows the the �lter to re-orientate itself after the reset and makes it possible
to add further training for the agent using the data provided by the �lter should this be needed.

Fig 3.11 shows both the pitch and roll angles provided by the �lter and simulator. It
can be seen, that the accuracy, with which the �lter approximates the orientation, has sig-
ni�cantly improved. From �g 3.12 we can see, that the reduction of py also had the desired
e�ect and reduced the maximum value the linear acceleration in y-direction can reach. This
highly likely had a positive e�ect on the accuracy of the �lter.

After the improvements done to the �lters accuracy, the agent is now able to balance the
pole signi�cantly longer than before. It is still not as stable as when using the actual orienta-
tion provided by the simulator, but the result is good enough as a proof of concept that the
'cartpole' problem can be solved in two dimension based on the data provided by an IMU.
This is why no further training was done on the �ltered data, even though it could possibly
increase the performance of the agent even further.

27



Figure 3.12: Linear accelerations measured by the IMU with reduced y-direction acceleration
due to smaller parameter py

3.2 Simulation of the Diana-7 robotic arm

The agent pre-trained on the 2-dimensional 'cartpole' is next used to try balancing the pole
using a robotic arm of the model Diana-7 inside the simulator. Movement of the pole was
restricted to 1-dimension again, allowing only rotation around the x-axis, which means it
could only fall over along the y-axis. Similar to the parameter p in the previous section the
parameters t, a, s were implemented for this step, with t being a time parameter, a an action
parameter and s the number of points calculated for the trajectory.

Since movement of the pole is restricted to 1-dimension, the robotic arm also only needs
to moves along one axis, in this case the y-axis. The distance from starting to end point of
a trajectory is determined by

d = ya ∗
t

108
∗ a,

where ya is the action value chosen by the agent. Fig 3.13 reveals why the introduction is
necessary, as it shows the frequency, with which states are visited, for all parameters set to
1. It can be seen from the �gure, that the action chosen by the agent results in barely any
movement by the robotic arm and the pole always falling over in the same direction.

However �g 3.14, which compares the distance of the trajectory goal to the actual distance

28



Figure 3.13: State frequency for y-axis movement with no parameter modi�cation

29



Figure 3.14: Comparison of the trajectory goal and the distance traveled

traveled by the robotic arm indicates that the robot is actually pretty accurate when moving
to the ordered position. This means the action chosen by the agent result in a movement
that is simply too slow and too small to prevent the pole from falling over.

The action parameter a was therefore introduced to increase the distance traveled by the
arm for all actions, also resulting in a higher velocity. The time parameter twas introduced in
order to make sure the robotic arm is still in movement when it receives the next trajectory
hoping it would smooth out the movement. It proved to be largely ine�ective however. The
steps parameter was introduced because for higher action parameters and farther distance
traveled the arm would move in a visible curve instead of a straight line. Additional way
points on the trajectory would force the arm closer along a straight line, but not completely
and at the cost of a signi�cantly longer calculation time.

Fig 3.15 and 3.16 show the frequency with which states are visited for action parameters
a = 3 and a = 5. The simulation using an action parameter of a = 5 was the only one that
showed a signi�cant improvement of the agents ability to balance the pole, however even then
the pole would usually fall over after 3-5 seconds.

It can be seen from the �gures 3.15 and 3.16 that the system is often in a state of high
angular velocity, which is a problem because the agent learned to minimize the angular ve-
locity in the previous steps and might still be unfamiliar with it, when it comes to handling a

30



Figure 3.15: State frequency for y-axis movement with action parameter increased to a = 3

31



Figure 3.16: State frequency for y-axis movement with action parameter increased to a = 3
and double the amount of steps in the trajectory

32



Figure 3.17: Linear accelerations measured by the IMU during simulation with a robotic arm

situation where they are constantly high.

The reason for those high angular velocities is likely that the robotic arm is subject to severe
vibrations causing it to constantly inject additional energy into the system. Fig 3.17 reveals
how severe those vibrations are. It shows the linear accelerations measured by the IMU and
that they reach up to multiple g in all directions making the data extremely noisy.

It remains unclear what exactly causes these vibrations. They might be a side e�ect of
the robotic arm not moving in a completely straight line, which makes it necessary to always
explicitly set the x- and z- coordinates of the trajectory goal to be those of the origin position
in order to restrict its movement along the x- and z-axis. Movement along the other axes
is however just as accurate as it is along the y-axis shown in �g 3.14 but much smaller in
amplitude. It is possible that the vibrations occur at the beginning of each step when the
command to execute a new trajectory replaces the old one and high acceleration on change
in direction causes the arm to vibrate.

In the previous section it could be seen, that �lter used to calculate the orientation of the
IMU based on its measurement of the linear acceleration and angular velocity, becomes in-
creasingly inaccurate if the measurement is not dominated by the acceleration on the z-axis
due to gravity. Considering how noisy the IMU's data as shown in �g 3.17 is, it wouldn't be
surprising if the �lter is unable to provide any feasible data itself.

33



Figure 3.18: Comparison of pitch and roll angles provided by the �lter and the simulator
during simulation with a robotic arm

Fig 3.18 shows that the �lter still does surprisingly well to approximate the angles, see-
ing how the form of both graphs are still pretty similar. However it also shows a signi�cant
divergence of the actual orientation and the calculated one. Reducing the gain parameter
further could improve the results, however it caused the �lter to publish its result with a time
stamp later than the one on the next message of the IMU.

Code e�ciency was one of the major problems during the experiment. The IMU publishing
with a rate of 108Hz gave only 10ms to handle each callback. The service '/compute_ik'
needed at least 2ms to reliably generate a solution for the inverse kinematics and only 2 points
could be calculated in order to allow the simulation to run close to full speed.

Unfortunately the agent was never able to learn how to balance the pole for more than 5
seconds, even with movement restricted to 1-dimension, due to the strong vibrations of the
arm. Continuing to train the agent using the arm might still bear some results, however with
the large divergence of the orientation provided by the �lter from the actual one, it is unlikely
that the arm would ever be able to balance the pole outside the simulator. The last step, to
let an actual robotic arm try to balance the pole, is therefore forfeited

34



4. Conclusion

Unfortunately the experiment failed, likely because I could not prevent the vibrations during
the movement of the robotic arm. It is however possible to conclude three major issues that
could be addressed in order to allow a future experiment to succeed. These issues are �rst,
the IMU's reliability to provide the accurate orientation while it is constantly moving around
and therefore subject to potentially high linear accelerations. Second is the code e�ciency.
Third are the vibrations, probably the most import issue to �x as they a�ect the other two
issues as well.

An agent could possibly learn how to balance a pole using an IMU as it was proven when
using a cart moving in two dimensions. However for this to work properly the IMU cannot be
subject to high linear accelerations, either mandated by the chosen action or as a side e�ect
due to a di�erent problem. This means a very smooth movement is absolutely necessary if
an IMU is used to provide information about the pole's orientation. It can also mean that an
IMU might not be feasible for balancing the pole if it is too short or too light, even though
it might be possible doing so using a di�erent approach. The pole in this experiment wasn't
tempered with however, so no �nal judgment can be passed in this regard.

Code e�ciency is very important, since there is relatively little time for the agent to act.
Increasing the time frame would result in a loss of reactivity and would require the distance
traveled in each step to increase accordingly. This would in turn require the computation of
more way points in order to keep the arm from moving in a curve. Since more way points
result in a longer computation time, this is not a good solution to increase e�ciency anyways,
even without regarding the loss in reactivity that comes along with it. A possible solution
would be to decouple the determination of the action and the implementation of it by pub-
lishing the action to a topic and have another node implement it. This way the node making
the callback on a message from the IMU would be free to react to the next one even if the
chosen action has not resulted in any movement yet. However this might also cause issues
with reactivity as the agent would be rewarded for an action which had not been executed
yet and with its e�ect still unknown.

Smoothing out the movement would probably have the greatest e�ect. It is possible that
the vibrations not only a�ect the IMU but also dominate the behavior of the pole. This would
mean that slower and smaller movement is su�cient to balance the pole if the vibrations
don't have to be compensated for. A possible solution would be to switch from 'MoveIt' to

35



a framework that allows it to just set a velocity and direction for the robot to follow along,
or implement it themselves. However this would be a huge project on itself, and might not
even help if the vibrations are a result of the rapid changing of directions after each message
from the IMU.

36



Bibliography

[1] Christopher G. Atkeson, Stefan Schaal. Learning Tasks From A Single Demonstration.
1997 IEEE, International Conference on Robotics and Automation. April 1997.

[2] Richard S. Sutton, Andrew G. Barto. Reinforcement Learning: An Introduction (2nd
Edition). Cambridge, MA: MIT Press; 1998.

[3] Michel Tokic, Günther Palm, (2011), "Value-Di�erence Based Exploration: Adaptive
Control Between Epsilon-Greedy and Softmax"

[4] Dimitri P. Bertsekas, Dynamic Programming and Optimal Control 3rd Edition, Volume II

[5] Watkins, C.J.C.H. (1989). Learning from delayed rewards. PhD Thesis, University of
Cambridge, England.

[6] Swagat Kumar, Balancing a CartPole System with Reinforcement Learning,
arXiv:2006.04938

[7] http://wiki.ros.org/ROS/Introduction

[8] http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber

[9] http://wiki.ros.org/Distributions

[10] http://wiki.ros.org/noetic

[11] http://wiki.ros.org/rosserial

[12] http://wiki.ros.org/imu_�lter_madgwick

[13] https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/

[14] Ioan A. Sucan and Sachin Chitta, "MoveIt", [Online] Available at moveit.ros.org.

[15] https://docs.arduino.cc/hardware/nano-33-iot

[16] https://www.arduino.cc/reference/en/libraries/arduino_lsm6ds3/

[17] https://docs.arduino.cc/tutorials/nano-33-iot/imu-accelerometer, Image modi�ed
based on data read.

37



[18] https://content.arduino.cc/assets/mkr-microchip_samd21_family_full_datasheet-
ds40001882d.pdf

[19] https://learn.microsoft.com/en-us/windows/wsl/about

[20] https://learn.microsoft.com/en-us/windows/wsl/connect-usb

[21] R. Sutton, A. Barto. Reinforcement Learning, Introduction

[22] R. Sutton, A. Barto. Reinforcement Learning, 1.1

[23] R. Sutton, A. Barto. Reinforcement Learning, 1.3

[24] R. Sutton, A. Barto. Reinforcement Learning, 2.1, 2.2

[25] R. Sutton, A. Barto. Reinforcement Learning, 3.1

[26] R. Sutton, A. Barto. Reinforcement Learning, 3.6

[27] R. Sutton, A. Barto. Reinforcement Learning, 3.5

[28] R. Sutton, A. Barto. Reinforcement Learning, 6.5

[29] R. Sutton, A. Barto. Reinforcement Learning, 3.5

38


