
B A C H E L O R T H E S I S

Quantifying Player Performance in
Simulated Humanoid Robot Soccer Games

vorgelegt von

Jan Gutsche

MIN-Fakultät

Fachbereich Informatik

Studiengang: Bachelor Informatik

Matrikelnummer: 7061491

Abgabedatum: 19.05.2023

Erstgutachter: Prof. Dr. Jianwei Zhang

Zweitgutachter: M. Sc. Niklas Fiedler

Betreuer: M.Sc. Jasper Güldenstein

Acknowledgments

I would like to thank my advisors for helping me if I had any questions and for providing
valuable feedback. Similarly, I want to thank the Hamburg Bit-Bots members, in particular
Timon Engelke, Florian Vahl, and Jörn Griepenburg for the help debugging hard problems
and providing a lot of infrastructure that I used to simulate matches. Special thanks to the
RoboCup humanoid league technical committee for the trust and commitment to run the data
collection software alongside the official Humanoid League Virtual Season 2023 games and for
providing me with the resulting data.

Abstract

This thesis proposes innovative methods for performance analysis of virtual humanoid soccer
robots, specifically in the virtual RoboCup humanoid soccer domain. The objective is to
extract meaningful and statistically significant metrics about team and player performance
from simulated games, enabling improved comparability. A data structure is designed to collect
data from official Humanoid League Virtual Season (HLVS) games. Data analysis is based on
the works of Pereira et al. [1] with their modular SoccerAnalyzer framework. Recorded game
data can be processed to calculate various metrics. Some proposed metrics are player speed,
ball possession, kick distance, and self-localization accuracy. Informative visualizations can
be created from those. The obtained metrics could also be utilized for automated testing of
robot software.

Zusammenfassung

Diese Arbeit schlägt innovative Methoden zur Leistungsanalyse von virtuellen, humanoiden
Fußballrobotern vor, insbesondere im Bereich des virtuellen, humanoiden Fußballs im RoboCup.
Das Ziel ist es, aussagekräftige und statistisch signifikante Metriken über die Leistung von
Teams und Spielern aus simulierten Spielen zu extrahieren, um eine verbesserte Vergleichbarkeit
zu ermöglichen. Es wird eine Datenstruktur entworfen, um Daten von offiziellen Spielen der
virtuellen, humanoiden RoboCup Liga zu sammeln. Die Datenanalyse basiert auf den Arbeiten
von Pereira et al. [1] mit ihrer modularen SoccerAnalyzer-Software. Aufgezeichnete Spieldaten
können verarbeitet werden, um verschiedene Metriken zu berechnen. Vorgeschlagen werden
z.B. Spielergeschwindigkeit, Ballbesitz, Schussweite und Genauigkeit der Selbstlokalisierung.
Hiervon können informative Graphen erstellt werden. Die ermittelten Metriken könnten auch
für automatisierte Tests der Roboter-Software genutzt werden.

Contents

List of Figures ix

List of Tables xiii

List of Listings xv

Acronyms xvii

1. Introduction 1
1.1. Research Questions . 1
1.2. Structural Outline . 2

2. Fundamentals 3
2.1. Data analytics . 3

2.1.1. Pandas . 3
2.2. Humanoid League Virtual Season . 3

2.2.1. HLVS 2022/23 . 4
2.2.2. Webots . 4
2.2.3. Automatic Referee . 6
2.2.4. Test Suite . 7
2.2.5. Game Controller . 7
2.2.6. Robot Controllers . 8
2.2.7. UDP-Bouncer . 8
2.2.8. Infrastructure . 9
2.2.9. Team-Communication . 9

3. Related Work 11
3.1. Data Analysis in Sports and Soccer . 11
3.2. Data Analysis in RoboCup . 12

4. Approach 13
4.1. Data Structure . 13

4.1.1. Components . 13
4.1.2. File Format . 19
4.1.3. Testing . 20

4.2. Data Collection . 20
4.2.1. Integration into the automatic referee software 21
4.2.2. Post-Processing . 24

vii

Contents

4.2.3. Running Test Games . 25
4.3. Data Analysis . 26

4.3.1. Extension of the SoccerAnalyzer . 26
4.3.2. Metrics . 26

5. Evaluation 33
5.1. Significance of Metrics . 33

5.1.1. Results . 33

6. Discussion 53
6.1. Research Questions . 53
6.2. Impact and Value . 53

7. Conclusion 55

8. Future Work 57
8.0.1. Dimensions and Aggregation . 57
8.0.2. Usability . 57

Bibliography 61

Appendix 61
A. Data Structure Complete UML Class Diagram 63
B. Pandas File Format Benchmarking Results 63
C. Additional plots from repeated experiments 65

viii

List of Figures

2.1. Screenshot taken from recording of the second match on game day 3 (K-GD3-2)
from the HLVS 2022/23. UTRA Robosoccer plays in blue, Hamburg Bit-Bots
in red. 4

2.2. Screenshot taken from the game controller’s graphical user interface (GUI) at
the beginning of a test game. The left and right columns display the current
state of and controls over the blue and red team, respectively (in this test
game, both teams are called Bit-Bots). The middle column shows the current
score, game state, clock and controls. 7

4.1. UML class diagram of the high-level classes DataCollector and Match.
StaticMatchInfo and Step have been simplified, as the details will be shown
later. 14

4.2. UML class diagram StaticMatchInfo related classes. 16

4.3. UML class diagram of the Step and related classes. 17

4.4. Bar plot showing the minimum write and read durations (in blue and yellow
respectively) including confidence intervals for the 8 remaining file formats
in Pandas measured in 10 trials. The format Feather has the shortest write
duration of 0.261 s and has the second-shortest read duration of 0.096 s close
behind Python Pickle with 0.093 s. The confidence intervals also show that
there is no large variation for this format. 21

4.5. Bar plot showing the size of exported files for each format compared as a
factor to the in-memory representation of the Pandas DataFrame which utilized
183.285 megabytes in RAM (shown in black). Formats represented by green
bars have a file size that is smaller compared to the in-memory size. Analogous,
bars is red are larger. The format Feather has the smallest file size with
0.341 · 183.285 megabytes = 62.500 megabytes. All file formats are smaller
than the in-memory representation, except for the JSON text format. 22

ix

List of Figures

4.6. Schematic overview of the modular architecture of the SoccerAnalyzer frame-
work [1]. The main component of this architecture is the MatchAnalyzer in the
center. Every other component interfaces with this piece. The MatchAnalyzer
needs a Match (on the left) as input to analyze data from. The Match module
represents a single soccer game. The .csv block signifies the import of a
Pandas DataFrame from a CSV file. Different RoboCup leagues have vastly
different rules and definitions, this is where the CategoryMapping helps to
unify the data such that the Match object can be analyzed regardless of the
current league. Category refers to some RoboCup league. Analysis modules
are used by the MatchAnalyzer to calculate requested metrics from the game.
Those can make use of auxiliary Modules that abstract common steps of
analyzing a match. Finally, the MatchAnalyzer provides the analysis’ results
through a programming interface. This interface can be used by a user, e.g.,
to visualize plots in JupyterNotebooks. 30

4.7. Exemplary drawing of the RoboCup Humanoid League (HL) pitch. 31

5.1. Repeated match 01: The speed of all players and teams 36
5.2. Repeated match 01: The absolute error of self-localization of all players and

teams . 36
5.3. Repeated match 01: The ball localization of all players 37
5.4. Repeated match 02: The speed of all players and teams 37
5.5. Repeated match 02: The absolute error of self-localization of all players and

teams . 38
5.6. Repeated match 02: The ball localization of all players 38
5.7. Repeated match 03: The speed of all players and teams 39
5.8. Repeated match 03: The absolute error of self-localization of all players and

teams . 39
5.9. Repeated match 03: The ball localization of all players 40
5.10. Repeated match 04: The speed of all players and teams 40
5.11. Repeated match 04: The absolute error of self-localization of all players and

teams . 41
5.12. Repeated match 04: The ball localization of all players 41
5.13. Repeated match 05: The speed of all players and teams 42
5.14. Repeated match 05: The absolute error of self-localization of all players and

teams . 42
5.15. Repeated match 05: The ball localization of all players 43
5.16. Repeated match 06: The speed of all players and teams 43
5.17. Repeated match 06: The absolute error of self-localization of all players and

teams . 44
5.18. Repeated match 06: The ball localization of all players 44
5.19. Repeated match 07: The speed of all players and teams 45
5.20. Repeated match 07: The absolute error of self-localization of all players and

teams . 45

x

List of Figures

5.21. Repeated match 07: The ball localization of all players 46
5.22. Repeated match 08: The speed of all players and teams 47
5.23. Repeated match 08: The absolute error of self-localization of all players and

teams . 47
5.24. Repeated match 08: The ball localization of all players 48
5.25. Repeated match 09: The speed of all players and teams 48
5.26. Repeated match 09: The absolute error of self-localization of all players and

teams . 49
5.27. Repeated match 09: The ball localization of all players 49
5.28. Repeated match 10: The speed of all players and teams 50
5.29. Repeated match 10: The absolute error of self-localization of all players and

teams . 50
5.30. Repeated match 10: The ball localization of all players 51

1. Complete UML class diagram of the data_collection software module . . . 66
2. Experiment Repeated 01 The self-localization of all players 67
3. Experiment Repeat 01 Absolute error of the ball localization on the field . . . 68
4. Experiment Repeated 02 The self-localization of all players 69
5. Experiment Repeat 02 Absolute error of the ball localization on the field . . . 70
6. Experiment Repeated 03 The self-localization of all players 71
7. Experiment Repeat 03 Absolute error of the ball localization on the field . . . 72
8. Experiment Repeated 04 The self-localization of all players 73
9. Experiment Repeat 04 Absolute error of the ball localization on the field . . . 74
10. Experiment Repeated 05 The self-localization of all players 75
11. Experiment Repeat 05 Absolute error of the ball localization on the field . . . 76
12. Experiment Repeated 06 The self-localization of all players 77
13. Experiment Repeat 06 Absolute error of the ball localization on the field . . . 78
14. Experiment Repeated 07 The self-localization of all players 79
15. Experiment Repeat 07 Absolute error of the ball localization on the field . . . 80
16. Experiment Repeated 08 The self-localization of all players 81
17. Experiment Repeat 08 Absolute error of the ball localization on the field . . . 82
18. Experiment Repeated 09 The self-localization of all players 83
19. Experiment Repeat 09 Absolute error of the ball localization on the field . . . 84
20. Experiment Repeated 10 The self-localization of all players 85
21. Experiment Repeat 10 Absolute error of the ball localization on the field . . . 86

xi

List of Tables

4.1. Listing and description of proposed metrics. 29

5.1. Summary of the ten repeated games. 35

8.1. Description of possible dimensions . 58
2. All Measurements of the Pandas file format benchmarking tests. Each row

represents a single test run, producing measurements for the write and read
durations (in seconds) and the size of exported files (in Bytes). 65

xiii

List of Listings

1. Source code of the StaticMatchInfo Python class 18
2. Snippet from the save(...) method from the Match class source code . . . 19

xv

Acronyms

AWS Amazon Web Services. 9, 25

DOF degrees of freedom. 22, 24

GPU graphics processing units. 9

GUI graphical user interface. ix, 7, 8

HL RoboCup Humanoid League. x, 3, 4, 6, 7, 9, 15, 25, 26, 31

HLVS Humanoid League Virtual Season. v, ix, 1, 3–9, 13, 20, 21, 24–26, 33, 54, 55

ODE Open Dynamics Engine. 4, 5

Protobuf Protocol Buffers. 8, 9, 25

SIM2D RoboCup 2D Soccer Simulation League. 26

SSL RoboCup Small Size League. 26

xvii

1. Introduction

In this thesis, novel methods for analyzing the performance of virtual humanoid soccer robots
will be developed and evaluated for usage in the virtual RoboCup humanoid soccer domain.
The goal of this development is, to enable quantifiable analytics of virtual robot soccer games
with statistical significance or, in other words, to be able to extract meaningful team- and
player-performance data from these simulated games to achieve better comparability. Recent
advancements in the realm of robot soccer simulation environments are enabling these new
possibilities (see section 2.2).

Soccer analytics, as an application of data science and data mining, that has been utilized
for several years in the field of professional human soccer games. Products from various
commercial vendors and community-driven tools are being used to improve a team’s decision-
making and to better the insight as well as understanding for the public (see section 3.1).
Another application of soccer analytics is to provide predictions for the sports betting industry.
To the best knowledge of the author, only recently, some methods of soccer analytics were
introduced to the humanoid robot soccer domain. Nevertheless, some approaches from the
human soccer domain could be transferred to our domain.

The approach of this work includes the development of a data structure designed to collect
data from official Humanoid League Virtual Season (HLVS) matches. Therefore, the setup for
generating those games has been extended. The recorded files will be processed, to calculate
various game metrics, which later can be used to create meaningful visualizations. Such a set
of metrics could include average speed of players, ball possession, maximum kick distance and
accuracy of self-localization. Assuming, reliable metrics could be extracted from simulated
game recordings, this data could further be used for manual or automated tests, by running
simulated games and quantitatively comparing new player strategies and algorithms to previous
versions. This could even be included in the workflow of a Continuous Integration (CI) pipeline.
Another conceivable application of the resulting data is in the development of machine learning
and, especially, reinforcement learning models.

1.1. Research Questions

This thesis tries to answer the following research questions:

• Which metrics are meaningful in humanoid robot soccer?

• Do these metrics have the same predictive capability as in human soccer?

1

1. Introduction

1.2. Structural Outline

Knowledge that is fundamental for reading this thesis will be given in chapter 2. Afterwards,
related work in chapter 3 gives an overview of sports analysis and data analysis in the real of
RoboCup. The approach of this thesis will be presented in chapter 4. Results of this approach
are then evaluated in chapter 5. A discussion about the results and achievements of this thesis
follows in chapter 6. Finally, this thesis will be concluded in chapter 7 and future work can be
found in chapter 8.

2

2. Fundamentals

This chapter presents and describes topics and software that is fundamental for the under-
standing of this thesis.

2.1. Data analytics

Data analytics is a process with the goal of gaining insights or knowledge from data. This
process often involves multiple steps which can include defining requirements for data, data
collection, processing, cleaning, analyzing, and visualizing.

2.1.1. Pandas

Pandas is a widely used open-source library for the Python programming language for data
analysis. [2, 3]. The library provides two flexible data structures, a Series for 1-dimensional
and a DataFrame for 2-dimensional data. Additionally, Pandas provides many functions for
filtering, cleaning, reshaping, and aggregating diverse datasets. Integrations with other libraries
for handling data in Python such as NumPy, Matplotlib, and Seaborn simplifies workflows.
Finally, Pandas can import data from various formats and export to many as well, including
CSV, HDF5, Microsoft Excel, and SQL.

2.2. Humanoid League Virtual Season

The HLVS is an annual remote competition organized and carried out by the RoboCup
Humanoid League (HL) since 2021. This event originates from the remote RoboCup 2021
(worldwide) competition that took place during the SARS-CoV-2 pandemic. Due to travel
restrictions, in-person robot matches (supported by human team members) were not possible.
This triggered the development of a common virtual simulation environment for humanoid
robot soccer games.

The HLVS as a virtual competition is very much less expensive and less effort to both
participate and conduct, since no travel expenses and no robot-hardware problems occur. Due
to these advantages, it and the standalone simulation environment are particularly suited for
testing the robot’s high-level software.

Virtual matches get simulated biweekly, giving participating teams time to prepare for the
next match and to improve their robot software. This competition format begins with a
round-robin phase, where each team plays against each other once and collects points, similar
to soccer tournaments. Afterward, in a series of final games, the winner, and subsequent
ranking gets selected.

3

2. Fundamentals

Figure 2.1.: Screenshot taken from recording of the second match on game day 3 (K-GD3-2)
from the HLVS 2022/23. UTRA Robosoccer plays in blue, Hamburg Bit-Bots in
red.

Similarly to the real RoboCup Humanoid League (HL), a set of rules exists, that describes
criteria for the game of play, constraints on the player’s robot design and other game objects,
and allowed and disallowed player behavior [4].

2.2.1. HLVS 2022/23

The latest season is the HLVS 2022/23 originally planned to begin in December 2022, but was
delayed to start on the 19th of March 2023 with its final game day on the 30th of April 2023.
The results, live-stream commentary and recordings can be found on the official website1.
Figure 2.1 taken from this season shows the simulated environment including the field and
multiple robots.

2.2.2. Webots

The simulation of the HLVS virtual matches gets performed using the open-source robot
simulator Webots. Webots is developed and maintained by the Swiss company Cyberbotics
Ltd. [5]. It uses a fork of the physics engine Open Dynamics Engine (ODE) [6] providing
rigid-body dynamics and collision detection, is compatible with multiple platforms, and provides

1https://humanoid.robocup.org/hlvs2023/schedule-for-the-humanoid-league-virtual-seaso
n-2022-23/

4

https://humanoid.robocup.org/hlvs2023/schedule-for-the-humanoid-league-virtual-season-2022-23/
https://humanoid.robocup.org/hlvs2023/schedule-for-the-humanoid-league-virtual-season-2022-23/

2.2. Humanoid League Virtual Season

interfaces to interact with the simulation in many programming languages such as C++, Java
and Python.

Running a simulation in Webots is not continuous, instead the simulation is performed
in discrete time steps, typically on the millisecond scale. The simulator always progresses
the environment by this basic time step. HLVS games are simulated using a basic time step
of 8 ms, meaning every change of the simulated environment spans a multiple of 8 ms of
in-simulation time.

The real-time factor describes how fast a running simulation progresses compared to the
real-time. A real-time factor of 1.0 means that the time inside the simulation progresses
synchronously with the real time. Factors larger than 1.0 mean that the simulation time
progresses faster than real time, for example, a real-time factor of 2.0 means two seconds of
simulation happen during one real second. Analogous, a real-time factor of less than 1.0 means
the time inside the simulation runs slower than real time. The real-time factor for calculating a
simulation using Webots depends on the complexity of the environment. Collisions of objects
and robots with each other have a large impact on the runtime performance. Other factors
are the robot control software, and the available hardware.

The simulation environment consists out of a world, usually defined by a world-file. This
world defines basic simulation properties as the basic time step, gravity, and friction between
different materials. The world can then be augmented by Nodes, which are defined in .proto-
files. Syntactically, those files are based on the VRML97 standard, as defined in [7, 8], but
since then, the PROTO definition has been enhanced. PROTO definitions can also contain
scripting languages such as Lua or JavaScript, drastically increasing the possibilities. A Node
object can represent light sources, geometry such as solid objects and devices such as actuators
and sensors [9].

This 3D physics-based simulation, however, can only be considered an approximation of
the real world. This is due to multiple reasons: First, typically, objects from the real world
cannot be modeled perfectly, as there are always some imperfections and inaccuracies in the
transfer to 3D geometry, for example considering mass distributions and surface properties
like friction. Secondly, there is a trade-off in the integration process (calculating new rigid
body states after a given time step) between accuracy and stability. In this context, accuracy
means, how well does the simulated behavior matches the real world. Stability is concerned
with non-physical behavior, such as sudden explosions of the environment for no particular
and reality-based reason. ODE has chosen to be very stable, in a trade for less accuracy. Still,
the accuracy can be improved by simulating or integrating in smaller time steps, but this, on
the other hand, increases computing times [10].

Simulation inaccuracies and simplifications limit the possibilities of knowledge- and model-
transfer from the simulation environment to the real world. This reality gap effect also appears
in the official simulation environment of the HLVS, for example, algorithms for stand-up
motions for humanoid robots that have been tuned using this environment do not perform
perfectly similarly in reality [11].

The HLVS competition makes use of Webots’ web animation feature. During simulation,
3D recordings can be created, which can be interactively replayed using HTML and other web
technologies. This enables simple and user-friendly presentations to spectators in real-time

5

2. Fundamentals

after the long-running simulation has completed.

2.2.3. Automatic Referee

Relying on the judgment of human referees for HLVS and unofficial test games is not feasible
because of the time expense, scheduling issues, and reduced reproducibility. Therefore, an
automatic refereeing software has been developed for the RoboCup 2021 Worldwide as part
of the HL simulation setup. This automatic referee is written in the programming language
Python and acts as a supervisor controller for the Webots simulator. As a supervisor, it can
query the states of all simulated objects and control and manipulate the simulation. This
happens in an alternating way in a loop, where the supervisor controller runs and then gives
control to the Webots simulator to progresses the environment by an amount of time set by
the supervisor. Thereby, the supervisor controller is capable of limiting the real-time factor
of the simulation. A required feature of the automatic referee is to guarantee a maximum
real-time factor of 1.0, in order to allow the player’s robot controllers enough time to process
and act. This is done by delaying the next stop of the simulator by a respective amount of
time, in case the automatic referee finished its control loop early.

The automatic referee has a diverse set of configurable options, to influence its be-
havior. These options are split into two configuration files. The first one is called the
referee_config.yaml, which contains constants and threshold values which mostly depend
on the rule set; this file does not need to get changed between different games. The second
file is the game.json which is used to define game setups. It includes parameters that define
the type of match (e.g., normal or knockout), which teams participate in which lineup, host IP
addresses and others, that are susceptible to change. This file also contains options to enable
or disable other components of the HLVS setup. For official games, however, the following
components are enabled: the UPD-bouncer (see section 2.2.7), web-animation recording (see
the previous section 2.2.2), and data collection methods from this thesis (see section 4.2).

The runtime of the referee software can be thought of as three distinct phases of the
HLVS simulation process. These phases can be summarized as follows: The automatic referee
software starts with the initial setup phase, which loads the configuration, starts necessary
sub processes for the game-controller (see next section 2.2.5) and UDP-bouncer, randomizes
and loads the simulation world and loads the robots, starts a recording, and starts the game
simulation with the initial state; all according to the configuration. The second phase is
running the main loop, which gets iterated for each simulation step until the game is over.
This loop progresses the Webots simulation, measures the latest players states, calculates
decisions according to the rules, and then enforces them by, e.g., placing the players to the
sides and communicating penalties to the game controller. The third and final phase runs
after the game has finished or was somehow interrupted before the end. This determines the
winning team of the game, and afterwards finalizes all the network sockets and sub processes,
ends the recording and closes the Webots simulator.

6

2.2. Humanoid League Virtual Season

Figure 2.2.: Screenshot taken from the game controller’s GUI at the beginning of a test game.
The left and right columns display the current state of and controls over the blue
and red team, respectively (in this test game, both teams are called Bit-Bots).
The middle column shows the current score, game state, clock and controls.

2.2.4. Test Suite

In conjunction with the automatic referee, a comprehensive test suite has been implemented
to verify and track its correctness. Many tests exist to check the behavior of the referee in
standard situations. Each test starts a separate game setup, including a Webots environment
and referee. Then simulation objects are manipulated by the test to generate a desired game
situation, afterwards checks verify that the referee acted as expected.

2.2.5. Game Controller

The game controller is a component of the official HLVS simulation setup. However, originally,
it was developed to be operated and monitored by human referees during HL games. Figure 2.2
exemplarily shows the game controller’s graphical user interface (GUI), as it would be used by
a human referee.

This software is intended to track the current state of a match and communicate this to
the players. This state involves the main clock, timers for penalties, and standard situations,
it tracks the goal score, and player’s warnings, and cards. Communicating this state to the
players usually happens over UDP broadcast messages over the local wireless network. Similarly,

7

2. Fundamentals

players frequently send hearth-beat messages back to the game controller. The protocol that
defines this communication is not based on Protocol Buffers (Protobuf) or similar tools, but
instead uses raw bytes2.

For HLVS games, some changes have been made to reuse this software. The most significant
change is, that the game controller is not operated through its GUI, but rather remotely
through an extension protocol. This protocol is text-based and enables communication between
the automatic referee and game controller software. The automatic referee sends simulation
time updates and decisions like penalties, cards and standard situations. The game controller
acknowledges this and returns the current tracked state, this includes updates, like passing
of player’s timeouts. Another change is, that the communication with the players does not
happen over UPD-broadcasts directly, rather both parties exchange UPD packets via a proxy,
which is the UPD-bouncer (see section 2.2.7).

2.2.6. Robot Controllers

Robot controllers are another component of the HLVS. During the setup phase, the automatic
referee spawns one robot controller process per player to interface between Webots and a
team’s robot software on a different host machine. To bridge these components, a Protobuf
based protocol specified by the technical committee is used3. The robot controller software
queries the latest sensor measurements from Webots after simulation steps with a frequency,
that is defined by the teams. Allowed sensors are accelerometers, touch sensors, cameras,
force sensors, gyroscopes, and joint position sensors. These measurements together with the
current simulation time are then converted to Protobuf messages to be forwarded directly
to the team’s software using a TCP connection. The robot controller also listens for new
actuator commands coming from the team players to set them in the Webots simulator.

2.2.7. UDP-Bouncer

The UPD-bouncer is also part of the HLVS setup. It is a proxy for UDP network packets for
the game controller and team-communication, distinguished by different ports. This software
consumes the game.json configuration file similarly to the automatic referee, and thus knows
the IP-addresses and network ports of the simulator host machine and the hosts for both
team’s player’s software. In the case of packets coming from the game controller, those get
forwarded to all players. When receiving team-communication packets, the bouncer uses
the sender IP-address to determine the sender’s team and then forwards these packets to all
remaining team players. To verify that the software is working correctly, it writes a log of
its configuration and all team-communication packets to a file, which can be inspected by a
human.

2https://github.com/RoboCup-Humanoid-TC/GameController/wiki
3https://cdn.robocup.org/hl/wp/2021/06/v-hsc_simulator_api_v1.01.pdf

8

https://github.com/RoboCup-Humanoid-TC/GameController/wiki
https://cdn.robocup.org/hl/wp/2021/06/v-hsc_simulator_api_v1.01.pdf

2.2. Humanoid League Virtual Season

2.2.8. Infrastructure

The official HLVS infrastructure is hosted on remotely accessed Ubuntu virtual machines
by Amazon Web Services (AWS). Those machines, also called instances, are all running
simultaneously in the same location. The hardware specifications for the servers are defined
by the technical committee4. The instance running the Webots simulator, automatic referee,
UDP-bouncer, and robot controllers is of type g4dn.4xlarge. The up to eight machines
hosting team player software are specified as 4dn.xlarge. Both types have similarly powerful
graphics processing units (GPU) hardware, but the instance running the simulation has more
general processing power accompanied by more system memory. Teams provide their player
software in the form of Docker images, which are then pulled and started on the player
instances.

2.2.9. Team-Communication

Team-communication as specified in the HL ruleset is a method that allows the team’s robot
software to communicate internally during a game using UDP broadcasts over the local wireless
network [4]. For virtual games in the HLVS, the direct communication is not possible, this
is why the UDP-bouncer (see section 2.2.7) is used to forward this. This communication
should enable coordinated behavior, but is bandwidth-limited in order to not overwhelm the
network. Standard protocol definitions (mitecom and Protobuf-based) are recommended by
the technical committee to increase compatibility between teams. However, team-specific
extensions are possible and using the standard is completely optional.

4https://humanoid.robocup.org/wp-content/uploads/v-hsc_server_specification_v1.03.pdf

9

https://humanoid.robocup.org/wp-content/uploads/v-hsc_server_specification_v1.03.pdf

3. Related Work

During the last decades, much research and development has gone into data mining and
data visualization methods for human sports. In section 3.1, we will give an overview of
sport analytics and specifically soccer analytics. Afterward, we will continue this overview
with recent research from the RoboCup domain in section 3.2. Moreover, the SoccerAnalyzer
framework by Pereira et al. [1] will be presented in detail (see section 3.2, as our approach
will be based on their work.

3.1. Data Analysis in Sports and Soccer

The origins of sports analytics began in the 1950s, when Reep et al. in Skill and Chance in
Association Football [12] analyzed passes in soccer, that resulted in goals. In the 1960, notes
and recordings of basketball, American football and later on baseball sports were investigated
manually. Following technological developments in the 1980s, computers were involved for
data-gathering as well as its analysis [13].

Nowadays, sports analytics is a well established process and impacts sports in many aspects.
For example, individual performance metrics help sport scouts select new talents; during
games, real-time information gets evaluated, which a coach can use to influence a team’s
game play [13].

Sports analytics and therefore soccer analytics relies on the availability of data to extract
insight from. Some datasets for soccer games are publicly available [14], are open for academic
research [15, 16], or are provided by businesses as sample data1,2. Additionally, real-time data
and analysis from professional sports games is offered to various news outlets and betting
providers.

Data contained in those datasets often consists of a video (and sometimes also an audio)
recording, that can be augmented with data from wearable sensors and, recently, sensors
integrated into the soccer ball itself. FIFA, together with research institutions, introduced
an Inertial Measurement Unit (IMU) sensor running at 500Hz inside the soccer ball and a
camera system (at 50Hz) tracking all limbs of the players (in total 29 positions per player) to
detect offside situations and support the referees in their decision. Additionally, this system
provides detailed 3D reconstructions of the scene for spectators and viewers [17]. In [15],
Pettersen et al. used a lightweight, wearable sensor unit with radio transmission position
tracking, an accelerometer, a gyroscope, a heart-rate sensor and a compass. With a rate of
20Hz, the system returns, among other data points, the player’s heading, direction and speed.

1https://github.com/statsbomb/open-data
2https://github.com/metrica-sports/sample-data

11

https://github.com/statsbomb/open-data
https://github.com/metrica-sports/sample-data

3. Related Work

Kern et al. utilized a wearable sensor to gather data for a soccer headers detection neural
network [16].

3.2. Data Analysis in RoboCup

Recently, multiple RoboCup soccer leagues did make efforts gathering data which can be
used for analyzing and extracting interesting metrics. 2019, Mellmann et al. from the
Standard Platform League (SPL) presented tools for collection and synchronization of video,
communication, and robot’s log data in [18]. Their work also included a web platform3

for viewing the game recordings augmented with additional time synchronized events of the
individual robots (e.g., the falling of a robot).

In the SPL rule set for 2022 in [19], an open research challenge regarding video analysis
and statistics was formulated. The subsequent dataset of robot and ball annotations of 35000
images from the RoboCup 2019 is publicly available.4 Currently, only the B-Human team has
released its source code in [20], which uses a YOLOv55 neural network to detect robots and
balls in the images. Using intrinsic and extrinsic camera calibration, the detections are then
mapped to field coordinates, enabling metrics such as distance walked by players, and ball
possession. Additionally, visualizations of the area controlled by players on the field or a heat
map of ball positions on the field can be created.

Other RoboCup soccer leagues already provide a long-lasting archive of game logs and
recordings: Small Size League (SSL) [21], Simulation League 2D (SIM2D) [22], and Simulation
League 3D (SIM3D) [23]. Those game logs include among other information positions of
each player and other entities, game states, player states and scores. A recent approach of
analyzing data from two of those leagues will be presented in the following section 3.2.

SoccerAnalyzer

The SoccerAnalyzer is an open-source Python library for data analysis for game logs from
the SIM2D and SSL, written by Pereira et al. [1]. The authors propose a modular software
architecture which serves as a common framework to be extended for analysis in all soccer
leagues in the RoboCup domain.

A simple interface for Jupyter Notebooks was provided by the authors, whereas comprehensive
plans for building a user interface based on web technologies are planned. Parts of those plans
have already been implemented in the related project WebSoccerMonitor6.

3https://www2.informatik.hu-berlin.de/~naoth/videolabeling/index.php
4https://github.com/RoboCup-SPL/Datasets
5https://github.com/ultralytics/yolov5
6https://github.com/robocin/WebSoccerMonitor

12

https://www2.informatik.hu-berlin.de/~naoth/videolabeling/index.php
https://github.com/RoboCup-SPL/Datasets
https://github.com/ultralytics/yolov5
https://github.com/robocin/WebSoccerMonitor

4. Approach

The approach of this thesis concerns several parts that will be described in the next sections.
To analyze data from humanoid robot soccer matches, the data needs to be collected and
stored in a concise and structural manner. As described in section 2.2, running and simulating a
HLVS game includes many interrelated software systems. Each of those components processes
and holds different important information, of which a subset is of interest for this thesis
purposes. In section 4.1, a data structure to hold and manage this data will be proposed.
The utilization of this structure for data collection during the simulation of the matches is
described in section 4.2. Finally, data analysis is the topic of section 4.3.

4.1. Data Structure

A concise and efficient data structure is needed to enable correct, fast, and maintainable data
collection and analysis. To achieve this, a Python software module, called data_collection
has been developed, which makes heavy use of the dataclass feature provided by the standard
library. Although this software module could be used independently of the HLVS setup, it is
currently contained in a fork of the technical committee’s hlvs_webots software repository1.
Additional internal information of a player’s robot-control software, such as cognition of the
robot’s environment or actions intended by the behavior are of interest for analyzing some
metrics. Due to time constraints during this thesis, this data has not yet been represented in
the data structure.

4.1.1. Components

The data structure consists out of three main parts: firstly, high-level classes DataCollector
and Match that manage and store the following dataclasses, secondly the StaticMatchInfo
dataclass, and lastly the dataclass Step for dynamic match information. Those components
will be described in the following paragraphs.

High-level Data

The high-level classes present a simple and clean interface for later data collection usage,
they hold references to the dataclasses during the simulation phase of the game, and are
responsible for safely storing the information to the file system. The top-level class is called
DataCollector, which gets initialized by the user with some minimal configuration and a
Match object. Once the DataCollector is created, it will automatically save the given match

1https://github.com/jaagut/hlvs_webots/tree/main/controllers/referee/data_collection

13

https://github.com/jaagut/hlvs_webots/tree/main/controllers/referee/data_collection

4. Approach

to the file system in repeated intervals as defined by the autosave_interval. By calling
finalize() on the object, it will save the match data and close gracefully. In case of fatal
errors during the simulation process, when the DataCollector object gets deleted, it will
also try to save the latest match information. All of this storage logic has been implemented
to reduce the damage by data loss of the match information. The Match object, that has
been given to the DataCollector, implements a generalized save(...) method, which is
utilized by the storage logic from above. Although, the main purpose of the Match class is to
hold references to a StaticMatchInfo object and a history of Step objects. Those will be
described next. For a more detailed overview of these high-level classes, see the UML class
diagram in figure 4.1.

DataCollector

+save_dir: os.PathLike
+autosave_interval: int
+match: Match
+logger: Optional[Logger]

+__ init__ (save_dir, autosave_interval, match, logger)
+finalize()
+create_new_step(int time)
+current_step() : Step
#_autosave(...)

Match

#_static: StaticMatchInfo
#_steps: List[Step]

+__ init__ (static)
+get_static_match_info() : S taticMatchInfo
+get_steps() : List[Step]
+add_step(step: Step)
+current_step() : S tep
+save(save_dir: os.PathLike, file_name: str)

StaticMatchInfo

...

Step

...

Figure 4.1.: UML class diagram of the high-level classes DataCollector and Match.
StaticMatchInfo and Step have been simplified, as the details will be shown
later.

14

4.1. Data Structure

Static Data

The StaticMatchInfo class is designed to hold and organize metadata information, which
does not change during a match. This includes information such as the match type (normal,
knock-out, round-robin, or drop-in), the league of the match (HL kid- or adult-size), simulation
settings, and participating teams. This metadata is held in the form of an object tree, where
each object is defined by its own dataclass. For example, StaticMatchInfo has a reference
to a StaticTeams objects, which in turn holds two references to StaticTeam objects; and so
forth. An overview of this data structure can be seen in figure 4.2.

Variable Data

Finally, the Step class has been designed to organize dynamic information during the simulation
of a match. This information includes the poses of all moving objects, e.g., the ball and
team-players, and additionally decisions made by the automatic referee and game controller
software. Similar to the StaticMatchInfo class, Step organizes information on a higher
level by keeping references to more specific dataclasses in a tree hierarchy. As previously
described in section 2.2, the simulation runs in discrete time steps. This way, all relevant
match information can be measured and collected after each simulation step. In practice,
the user of this data_collection module creates and fills out a new Step object after each
simulation step, to append it to the Match object’s list of previous Step objects. Thereby,
the list grows during simulation-time and contains dynamic information about the match for
each measured time step. In figure 4.3, an UML class diagram detailing the Step class can be
found.

The complete UML class diagram showing all three parts of the data_collection module
can be found in figure 1 of the appendix.

Features

The usage of the dataclass feature from the Python standard library [24] for most components
was very deliberate, as this simplifies the class definition. For example, defining the class
StaticMatchInfo only involves adding a decorator (@dataclass) and listing the class field
names (optionally with types). This can be observed in the source code listing 1. Using
this decorator, an initializer method, getter- and setter-functions for all fields and string-
representation are generated. The decorator also takes optional arguments. In the example,
the optional frozen argument has been set. This guarantees, that fields of the respective
class cannot be overwritten after being initialized once. Wherever feasible, this feature is
used in the data_collection module to prevent accidental modifications. Additionally, the
dataclasses-json library2, which introduces a DataClassJsonMixin, has been used. All
previously mentioned dataclasses inherit from this mixin, which automatically adds to_json()
and to_dict() functions. With every dataclass in the hierarchy tree having this feature, it is
possible to easily convert the whole tree recursively to both Python dictionary objects and

2https://github.com/lidatong/dataclasses-json

15

https://github.com/lidatong/dataclasses-json

4. Approach

StaticMatchInfo

+id: str
+match_type: MatchType
+league_sub_type: LeagueSubType
+simulation: S imulation
+field: Field
+ball: S taticBall
+teams: StaticTeams
+kick_off_team: str
+version: str

«Enumeration»
MatchType

UNKNOWN: int
ROUNDROBIN: int
PLAYOFF: int
DROPIN: int
PENALTY: int

«Enumeration»
LeagueSubType

KID: str
ADULT: str

StaticBall

+id: str
+mass: float
+texture: str
+diameter: float

Field

+location_id: str
+location_name: str
+size_x: float
+size_y: float
+luminosity: Optional[float]
+friction: Optional[float]
+natural_ light: Optional[bool]
+weather: Optional[str]

S imulation

+is_simulated: bool
+basic_time_step: int
+data_collection_interval: int

StaticTeams

+team1: StaticTeam
+team2: StaticTeam

+get_teams() : Tuple[StaticTeam, StaticTeam]
+get_team_by_id(id: str) : S taticTeam
+get_team_by_color(color: TeamColor) : S taticTeam
+red() : S taticTeam
+blue() : S taticTeam
+get_team_by_name(name: str) : S taticTeam

StaticTeam

+id: str
+name: str
+color: TeamColor
+player1: StaticPlayer
+player2: StaticPlayer
+player3: StaticPlayer
+player4: StaticPlayer

«Enumeration»
TeamColor

BLUE: int
RED: int
YELLOW: int
BLACK: int
WHITE: int
GREEN: int
ORANGE: int
PURPLE: int
BROWN: int
GRAY: int

StaticMatchObject

+id: str
+mass: float

StaticPlayer

+id: str
+mass: float
+DOF: int
+platform: str
+mono_camera: Optional[Camera]
+stereo_camera_l: Optional[Camera]
+stereo_camera_r: Optional[Camera]

Camera

+frame_id: str
+FPS: float
+FOV: float
+pixel_count_x: int
+pixel_count_y: int

Figure 4.2.: UML class diagram StaticMatchInfo related classes.

JSON strings. This is used to save the StaticMatchInfo metadata as a JSON file and to
more easily convert the list of Step objects to a Pandas DataFrame.

Section 2.1.1 highlighted some advantages of using the Pandas [2, 3] software library for
data analysis purposes. To be able to use the features of Pandas, the dynamic match data has
to be converted to a DataFrame. This data format can only handle data in a flat, rectangular
shape with labeled columns of similar data. However, until this point, the dynamic match data

16

4.1. Data Structure

Step

+time: float
+delta_real_time: Optional[float]
+game_control_data: Optional[GameControlData]
+ball: Optional[Ball]
+teams: Optional[Teams]

GameControlData

+game_state: GameState
+first_half: bool
+kickoff_team: int
+secondary_state: SecondaryGameState
+secondary_state_ info_team: int
+secondary_state_ info_sub_state: int
+drop_in_team: bool
+drop_in_time: int
+seconds_remaining: int
+secondary_seconds_remaining: int

«Enumeration»
GameState

STATE_INITIAL: int
STATE_READY: int
STATE_SET: int
STATE_PLAYING: int
STATE_FINISHED: int

«Enumeration»
SecondaryGameState

STATE_NORMAL: int
STATE_PENALTYSHOOT: int
STATE_OVERTIME: int
STATE_TIMEOUT: int
STATE_DIRECT_FREEKICK: int
STATE_INDIRECT_FREEKICK: int
STATE_PENALTYKICK: int
STATE_CORNERKICK: int
STATE_GOALKICK: int
STATE_THROWIN: int
STATE_DROPBALL: int
STATE_UNKNOWN: int

MatchObject

+id: str

Ball

+id: str
+frame: frame

Frame

+id: str
+pose: Pose

Pose

+position: Position
+rotation: Rotation

+pose_from_affine(affine: numpy.ndarray) : Pose

Position

+x: float
+y: float
+z: float

Rotation

+x: float
+y: float
+z: float
+w: float

+quaternion() : Tuple[float, float, float, float]
+rpy() : Tuple[float, float, float]

Teams

+team1: Team
+team2: Team

+get_teams() : Tuple[Team, Team]
+get_team_by_id(id: str) : Team

Team

+id: str
+player1: Player
+player2: Player
+player3: Player
+player4: Player
+score: int
+penalty_shots: int
+single_shots: int

Player

+id: str
+base_link: Frame
+l_sole: Frame
+r_sole: Frame
+l_gripper: Frame
+r_gripper: Frame
+camera_frame: Optional[Frame]
+l_camera_frame: Optional[Frame]
+r_camera_frame: Optional[Frame]
+state: State
+role: Role
+action: Action
+robot_ info: Optional[RobotInfo]

+get_soles() : Tuple[Frame, Frame]
+get_grippers() : Tuple[Frame, Frame]
+get_stereo_camera_frames() : Tuple[Optional[Frame], Optional[Frame]]

«Enumeration»
State

UNKNOWN_STATE: int
UNPENALISED: int
PENALISED: int

«Enumeration»
Role

ROLE_UNDEFINED: int
ROLE_IDLING: int
ROLE_OTHER: int
ROLE_STRIKER: int
ROLE_SUPPORTER: int
ROLE_DEFENDER: int
ROLE_GOALIE: int

«Enumeration»
Action

ACTION_UNDEFINED: int
ACTION_POSITIONING: int
ACTION_GOING_TO_BALL: int
ACTION_TRYING_TO_SCORE: int
ACTION_WAITING: int
ACTION_KICKING: int
ACTION_SEARCHING: int
ACTION_LOCALIZING: int

RobotInfo

+penalty: Penalty
+secs_till_unpenalized: int
+number_of_warnings: int
+number_of_yellow_cards: int
+number_of_red_cards: int
+goalkeeper: bool

«Enumeration»
Penalty

UNKNOWN: int
NONE: int
SUBSTITUTE: int
MANUAL: int
HL_BALL_MANIPULATION: int
HL_PHYSICAL_CONTACT: int
HL_PICKUP_OR_INCAPABLE: int
HL_SERVICE: int

Figure 4.3.: UML class diagram of the Step and related classes.

17

4. Approach

@dataclass(frozen=True)
class StaticMatchInfo(DataClassJsonMixin):

"""Static information about a match.

:param id: Match id
:param match_type: Type of this match (Normal, KnockOut, RoundRobin, DropIn)
:param league_sub_type: Sub type of this match (Kid, Adult)
:param simulation: Simulation data
:param field: Field data
:param ball: Ball data
:param teams: Team data
:param kick_off_team: Id of the team that kicks off
:param version: Version of the match_info package
"""

id: str
match_type: MatchType
league_sub_type: LeagueSubType
simulation: Simulation
field: Field
ball: StaticBall
teams: StaticTeams
kick_off_team: str

version: str = "0.0.1"

Listing 1: Source code of the StaticMatchInfo Python class

is stored in a list of hierarchical Step objects. This data conversion can be achieved by first
utilizing the to_dict() method provided by the DataClassJsonMixin to get proper Python
dictionaries from the Step objects. Finally, using the json_normalize(...) function from
Pandas with the list of dictionaries, results in a DataFrame object. This method flattens the
hierarchical dictionary structure, by creating a column in the new DataFrame for each item and
labeling it with a concatenation of the item’s keys, including a separator character. Resulting
column labels may look like the following example, using a dot character as a separator:
teams.team1.player1.base_link.position.x. The column with this exemplary label
contains the values for every measured simulation step for the X-component of the position
of the base_link frame from the first player from the first team. A source code snippet
implementing the conversion process just described can be found in the listing 2.

18

4.1. Data Structure

steps: List[Step] = self.get_steps()
if steps: # Check if the steps list is not empty

df: pandas.DataFrame = pandas.json_normalize(
[step.to_dict() for step in steps]

)

Listing 2: Snippet from the save(...) method from the Match class source code

4.1.2. File Format

The Pandas DataFrames containing the variable match data need to be written to a file system
to make them persistent and sharable. The Pandas software library supports 13 formats for
exporting and importing DataFrames. Three basic format types exist for writing and reading
data: text, binary and SQL [2]. One of those various formats has to be selected. The SQL
format with a corresponding database is unnecessarily complex, as just a single exported file is
easier to manage and distribute. Thus, only text and binary formats are suitable. For further
selection, the HTML format has been disregarded, as it is rather intended to present data from
a DataFrame instead of storing it. Still, 10 file formats remain, with 3 text formats and 7
binary formats. The remaining available file formats are:

• text formats:

– CSV [25]

– JSON [26, 27]

– XML [28]

• binary formats:

– MS Excel [29]

– Python Pickle [30]

– HDF5 [31]

– Feather [32]

– Parquet [33]

– ORC [34]

– Stata [35]

To narrow those down further, benchmarks have been run to measure the read and write
durations, as well as the exported file sizes. Short export and imports durations should be
preferred over longer ones, as this occupies less CPU resources or enables more frequent
automatic saves. Similarly, smaller file sizes are considered a benefit, as less valuable storage
space gets taken. In order to create those benchmarks, a software called Pandas File
Format Benchmarking3 has been developed. The tests included in this software use a Pandas

3https://github.com/jaagut/PandasFileFormatBenchmarking/

19

https://github.com/jaagut/PandasFileFormatBenchmarking/

4. Approach

DataFrame that is held in memory. This data is then exported in one of the above-mentioned
file formats and re-imported afterwards. The time it took to export and import the DataFrame
as well as the file size are measured. For each file format, the tests are repeated several times,
at default 10 times.

The results, that will be presented shortly, were achieved using original data from the HLVS
2023 match from game day 3 the second game (K-GD3-2). All 10 above-mentioned file
formats were tested 10 times, except for XML and MS Excel which were only tested once, as
they took significantly longer than the other formats. This behavior also showed in preliminary
test runs, which suggests, this behavior is not uncommon for these. Thus, repeating runs for
XML and MS Excel unfeasible and not necessary, as fast imports and exports are of interest.
Compared to the average of all other formats (3.799 s), write durations for XML and MS
Excel are 15.568 and 73.475 times higher, respectively. Read durations are much higher,
with 7257.5055 times the average (2.224 s) for XML and 66.964 times for MS Excel. The
exported file sizes do not such extreme variations with 12.299 and 1.004 times the average of
152.121 MB for XML and MS Excel respectively.

The following charts disregard both file formats XML and MS Excel, as detail would get lost
when including them. Figure 4.4 shows that the format Feather is the fastest, i.e., it has the
shortest write and second-shortest read durations in this benchmark scenario. As can be seen
in figure 4.5 this format produces also the smallest exported file sizes. Measurements from all
tests can be found in the appendix in table 2.

Due to these results, Feather has been selected as the main file format for reading and
writing Pandas DataFrames in this approach. Although, as a backup solution, the close second
format Python Pickle was chosen.

4.1.3. Testing

To ensure the correctness of the management and store functionality of the DataCollector,
a few software tests using the pytest framework [36] have been implemented. These tests
ensure, that the creation of StaticMatchData, Step, and DataCollector objects with dummy
data is possible. Afterward, tests check if the automatic save and finalize methods write the
correct files to the file system.

4.2. Data Collection

This section is concerned with the actual process of gathering data from the simulation
environment and filling in the data structure as described in section 4.1. In order to reduce
manual effort from people simulating games, this process needs to be as automatic as possible.
As seen in section 2.2, the HLVS simulation environment consists out of many individual parts,
each having a specific purpose and handling different information. Therefore, it needs to be
decided which information should be gathered from what component. The main component
providing data will be the HLVS automatic referee software. However, it cannot provide
everything needed for the DataCollector data structure, which is why some post-processing
is needed.

20

4.2. Data Collection

0 2 4 6 8 10
Minimum duration [s]

csv

json

pickle

hdf5

feather

parquet

orc

stata

Fil
e

fo
rm

at
9.98043

2.87338

0.54845

0.60027

0.2606

2.47185

2.7888

8.48383

1.93251

7.34688

0.09268

0.18588

0.09611

0.11248

0.36048

6.2316

Method
Write duration
Read duration

Figure 4.4.: Bar plot showing the minimum write and read durations (in blue and yellow
respectively) including confidence intervals for the 8 remaining file formats in
Pandas measured in 10 trials. The format Feather has the shortest write duration
of 0.261 s and has the second-shortest read duration of 0.096 s close behind
Python Pickle with 0.093 s. The confidence intervals also show that there is
no large variation for this format.

4.2.1. Integration into the automatic referee software

Regarding all software components comprising the HLVS setup, the automatic referee –
hereafter just called referee – has access to most of the desired information. This is, since it
is a Webots supervisor-controller and therefore can access all data relevant to the simulation
itself, more than any robot-controller. Additionally, the referee software communicates with
the game controller software, thus always has the most recent state. Lastly, the referee
implements the game’s rule’s logic, and as such already uses information, wanted for collection
purposes. For those reasons, the referee was chosen as the primary component to extend with
the data collection process.

Section 2.2.3 established three distinct phases of the referee’s runtime. To tie into these
three phases, the data collection has been split into matching parts:

Initialization

The configuration that gets read in the initial setup phase also includes configuration regarding
the data collection. The data collection can be configured to be turned off, in which case,

21

4. Approach

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Output file size as a factor of in-memory usage

in-memory

csv

json

pickle

hdf5

feather

parquet

orc

stata

Fil
e

fo
rm

at

1.0

0.94149

1.80028

0.93272

0.95243

0.34063

0.40392

0.37314

0.8952

Figure 4.5.: Bar plot showing the size of exported files for each format compared as a fac-
tor to the in-memory representation of the Pandas DataFrame which utilized
183.285 megabytes in RAM (shown in black). Formats represented by green
bars have a file size that is smaller compared to the in-memory size. Analo-
gous, bars is red are larger. The format Feather has the smallest file size with
0.341 · 183.285 megabytes = 62.500 megabytes. All file formats are smaller than
the in-memory representation, except for the JSON text format.

everything regarding the gathering process is skipped, and the referee runs without it as
normal. In case, the data collection is enabled, first, references to each desired frame or
Node object from the supervisor controller gets collected. Having a reference to the Node
objects simplifies and speeds up the pose gathering later on. The references (one for the
ball and up to eight per player) are stored in a dictionary for later use during the main loop.
Secondly, the DataCollector data structure (see section 4.1) gets initialized. This involves
setting the configured output directory and interval for automatic saves, and setting the
StaticMatchInfo. As previously described in section 4.1.1, the StaticMatchInfo holds
hierarchical metadata about the match. To fill in this information, the game’s configuration and
previous referee setup are queried. However, not every necessary information can reasonably
be gathered at this time, due to high complexity or missing interfaces. Thus, the values
for a player’s mass, degrees of freedom (DOF), and camera settings get filled with dummy
information. Later on, a post-processing step fills in the correct information (see section 4.2.2).

22

4.2. Data Collection

Main loop

During the main loop of the referee, all time variable information is gathered that comprises
the Step class from section 4.1.1. Each iteration of the main loop progresses the simulation
and time. Shortly after that, and before any decisions and actions are taken by the referee, the
data collection runs if conditions apply. Two conditions determine whether the data collection
runs. The first condition checks whether the data collection process is enabled, this is the case,
if it was configured as such in the first place and no errors occurred during the data collection
process until now. In case, something goes wrong, an exception handler turns off the data
collection, so it does not further impact the game simulation. The second condition checks
whether a configurable interval of steps has passed. This subsampling mechanism of the data
collection process has been introduced to reduce computational resource overhead. At default,
the data collection is configured to run only every 8th step. With a basic simulation time step
of 8 ms and running every 8th step, this means 64 ms of simulation time passes between each
data collection run, i.e., it runs at 15.625 Hz.

In case both conditions apply, and thus the collection of variable data should run, four steps
happen. The first step is to create and set a new Step object to the DataCollector. This
only requires the current simulation time. The second step is to gather and set data regarding
the ball to the newest Step object. For this, the reference to the ball’s Node object is used to
query the current pose. The next step gathers the latest game controller message, if available,
and sets complete GameControlData to the Step object. As seen previously in figure 4.3,
the GameControlData object holds information such as the (main and secondary) game state,
remaining time and kickoff teams. Lastly, the fourth step happens, which sets the team data
to the Step object. This includes the current score of the team and information about each
player. For each player, current game controller information is used, such as the number of
penalties and cards. Additionally, a pose is queried from each of the previously collected up to
eight player’s Nodes:

• base_link

• l_sole

• r_sole

• l_gripper

• r_gripper

• camera_frame (optional)

• l_camera_frame (optional)

• r_camera_frame (optional)

Those nodes are based on REP 120 [37] and necessary, to compute the base_footprint
frame afterwards. After those four steps, and all decisions and action by the referee happened,
the final value gets set to the latest Step object, which is the duration it took from the

23

4. Approach

beginning of this simulation step, i.e., the current main loop iteration until this last action in
real time.

Finalization

The third and final phase of the data collection runs together with the finalization of other
components of the referee. This stops and finalizes the DataCollector object, which will save
the now complete data to the file system.

4.2.2. Post-Processing

After the integration of data gathering processes in the HLVS automatic referee software,
some information is still missing. As mentioned above, some metadata fields have been filled
with dummy data, which needs to be replaced. Additionally, some player-internal information
about cognition of the robot’s environment or actions intended by the behavior is of interest,
but could not be provided by the referee.

Additional robot data

The referee filled in dummy values for the player’s mass, DOF, and camera settings. In order
to replace this with the correct information, a small tool has been developed. It reads in a
JSON file with the static match information exported by the data collection process and a
second JSON file with manually collected correct data. The tool matches the name of the
robot platform and inserts the correct data for each player, thereby replacing the dummy data.
To manually determine the mass of each robot platform, a Webots simulation has been started
including that robot, then the mass can be read from the Webots GUI. Regarding the DOF,
the number of joints in the robot’s Proto model has been counted. Information about the
camera settings has also been read from the Proto model. This method is only feasible for a
small number of teams and robot platforms. The tool also assumes that the robot models do
not change during the virtual season.

Merging team-communication data

In need of the player-internal information about cognition and behavior, another HLVS setup
component has to be utilized. The most cohesive, flexible and accurate information could be
gathered by defining a standard interface that describes, how team software can expose those
internals at every time step, such that it can be collected and analyzed afterwards. However,
this approach was seemingly not feasible, as this would require considerable development effort
of each team.

As a compromise, the team-communication system could be utilized to gather the missing
information. Compared to the new standard interface, this method does not necessarily
provide the internal information for every simulation step, as the team-communication’s
frequency is controlled by the individual teams. Team-communication is used by team players
to exchange internal information between team members via a computer network. Such

24

4.2. Data Collection

communication could include perceptual data as the self-localization pose, or a pose of a
recently detected game objects, and strategical information enabling players to agree on
tactics. The HL technical committee published a common and standardized communication
protocol, RobocupProtocol4 based on Protobuf [38] messages. This protocol already gets
used by some teams, and thus no additional effort is needed from those teams. It is also
extensible, for example, the team Hamburg Bit-Bots has extended the RobocupProtocol5.
The team-communication works by sending UDP packets to a network host provided by the
HLVS infrastructure during the simulation time. This host runs the so called UDP-bouncer
software. The main purpose of the UDP-bouncer, as described in section 2.2.7, is to distribute
the game-controller and team-communication packages over the local network. However, this
tool also logs every received package, including the team-communication data, to a file called
bouncing_log.txt.

The post-processing step consists of reading this log file, parsing the team-communication
messages, and finally extending the DataFrames exported by the data collection framework.
This is done in multiple steps using another tool. The bouncing_log.txt file is a simple text
file and contains logs apart from team-communication messages as well. The file also contains
a list of IP addresses that are associated with one of two teams. Each logged message is
written to a new line prefixed with a header containing the receiving time, sender IP, and
sender port address. Thus, each line can be evaluated individually. Using the sender IP
address, a message can be correlated with a team. This tool tries to parse the raw binary
message contents as a RobocupProtocol message using a library generated by the Protobuf
compiler. If this succeeds, the tool has access to the original data sent by a team player. Using
a similar column label naming scheme as in section 4.1.1, the tool adds many new columns
to the previously exported DataFrame. Before running this tool, an exemplary DataFrame6

had 461 columns, afterwards 2593 columns. To fill in data from the team-communication
messages to the new columns, the tool iterates through the parsed messages. Synchronizing
the simulation times is necessary, as the data collection and team-communication can run with
different frequencies. Synchronization is done by selecting the first row in the DataFrame with
a simulation time greater than the message’s simulation time. Once all team-communication
messages have been inserted into the data collection, the DataFrame is re-exported to the file
system.

4.2.3. Running Test Games

Some experiments require simulating test games locally without using the AWS as described in
section 2.2.8. To simplify this process and reduce mistakes, a bash script has been developed.
This tool reads a game.json file given as a single argument to gather the IP-address and
port configuration for all hosts. Using the command ssh, it cleans up possible residues from
previous test games, pulls the latest team’s docker image and starts it on the machines
configured as team players. Afterwards, it starts the Webots simulation world, including the

4https://github.com/RoboCup-Humanoid-TC/RobocupProtocol
5https://github.com/bit-bots/RobocupProtocol/
6https://data.bit-bots.de/17gutsche/BA/test_repeat10/ba_repeat_01/data/

25

https://github.com/RoboCup-Humanoid-TC/RobocupProtocol
https://github.com/bit-bots/RobocupProtocol/
https://data.bit-bots.de/17gutsche/BA/test_repeat10/ba_repeat_01/data/

4. Approach

automatic referee and the other components. Once the simulation is finished, every process
and docker container gets stopped. One important note is, that it seems to be the game
controller software can handle only one team player connection per IP address. Running
multiple docker containers on the same machine but with different ports leads to connection
issues.

4.3. Data Analysis

This section will concentrate on analyzing the structured data that has been gathered using
the methods previously mentioned. By analyzing the data, new knowledge and insight should
appear. The main contribution of this approach is the implementation and visualization of
additional metrics based on the SoccerAnalyzer architecture.

4.3.1. Extension of the SoccerAnalyzer

After structured data has been collected using the methods previously presented in the
sections 4.1 and 4.2, it needs to be analyzed in order to gain knowledge from it. This approach
will build on top of the SoccerAnalyzer by Pereira et al. in [1] as introduced in section 3.2.
The SoccerAnalyzer has a modular architecture, that is designed to be extended further.
A schematic overview of the SoccerAnalyzer framework’s architecture can be found in
figure 4.6.

Instead of only allowing CSV files for input, the Match object takes any DataFrame and
optionally additional metadata. Thereby, Match holds both, the static and the time-variable
data from HLVS games. On its own, the SoccerAnalyzer can handle games from the RoboCup
2D Soccer Simulation League (SIM2D) and RoboCup Small Size League (SSL). This has been
extended by creating an additional CategoryMapping for the RoboCup Humanoid League
(HL) kid size. This class maps between league-agnostic terms used in the SoccerAnalyzer
and terms used in the HLVS data, which are mostly column labels from the DataFrame.
Additionally, the CategoryMapping contains landmarks from the HL, which represent the
field-, line-, and goal dimensions as specified in the rules [4]. A new function has been
introduced to draw the field-lines in plots created with Matplotlib [39]. An example can be
seen in figure 4.7.

The MatchAnalyzer module did not require any adjustments besides enabling new analysis
modules. Some metrics were already implemented by Pereira et al. as Analysis modules,
including a ball history, expected goals and ball possession. However, those modules needed
to be modified to handle three-dimensional information in addition to the two-dimensional
information as before.

4.3.2. Metrics

The following table 4.1 proposes the metrics to implement.

26

4.3. Data Analysis

Metric Input Description
Sim/real-time quotient Time to calculate simulation,

Start-, End time
also called Real-time-
factor

Correlation between ob-
ject localizations and sim-
ulation environment pa-
rameters

Object localizations of players
(team communication), field- and
ball characteristics

Self-localization Player pose, player localization
(team communication)

Accuracy of player’s
own localization on the
field

Ball estimation Player’s localization of the ball
(team communication), Ball pose

Accuracy/Recall

Robot estimation Player’s localization of other
players (team communication),
Player poses

Accuracy/Recall

Looking direction Player’s camera frame Where does a player
look

Objects in view Player’s camera frame, camera
matrix, object poses

What objects should be
visible to a player

Ball touches Collision matrix Ball collided with an-
other object

Ball kicks Collision matrix, player’s sole
frame

Ball collided with a
player’s foot with con-
siderable force

Ball kick force Collision matrix, player’s sole
frame

Ball kick distance Ball kicks, ball poses Distance moved by ball
after being kicked

Ball kick speed Ball kicks, ball poses Speed of ball movement
after being kicked

Successful kicks (excl.
dribbles)

t.b.d.

High kick Ball kicks, ball poses Ball gained height dur-
ing kick

Ball dribble Collision matrix, ball poses,
player poses

Ball moves together
with a player after re-
peated collisions

Ball dribble distance Ball dribbles
Ball dribble speed Ball dribbles
Kicks vs. dribble Ball kicks, ball dribbles

27

4. Approach

Metric Input Description
Time to kick Ball kicks, player poses Time between a player

stops in ball’s vicinity
and kicks

Passing accuracy Ball kicks, player poses Kicks towards a team-
mate

Ball distance to own goal Ball pose, goal pose
Ball possession Ball pose, player poses Ball is in possession of

nearest player
Time under control Ball possession Duration of ball posses-

sion by player or team
Ball movement distance
while in possession

Ball possession, ball pose

(Own-)Goals Goal event
Goal kick Ball kicks, goal pose, goal event Kicks in the vicinity and

direction of a goal, re-
sulted in a goal?

Defended goals Goal kick, collision matrix Unsuccessful goal kick,
defended via collision
with opponent’s player

Meantime between goals
and standard situations

Game controller events

Goalie switches, cards,
warnings

Game controller events Count and frequency
of...

Active player Player state and role Player is active, if state
unpenalized and role is
not supporter or idling

Base-footprint frame Base-link pose, l/r-sole pose As in REP 120
Walking distance Base-footprint pose
Walking speed Base-footprint pose
Walking acceleration Base-footprint pose
Walking step Sole pose Count, frequency, and

distance of a step
Support polygon Sole frames
Upright? Player base link If a player is upright
Player is falling? Player base link Player falls, if base-link

is outside of support
polygon or tilted and be-
low median height?

Player has fallen? Player base link If a player has fallen
down

28

4.3. Data Analysis

Metric Input Description
Time to stand up Falling, upright Time it takes for a

player to get from
Falling → (Fallen →)
Upright

Table 4.1.: Listing and description of proposed metrics.

However, only a subset of these metrics has been fully implemented:

• Waling speed

• Absolute errors of self-localization

• Absolute errors of ball estimation

29

4. Approach

Figure 4.6.: Schematic overview of the modular architecture of the SoccerAnalyzer frame-
work [1]. The main component of this architecture is the MatchAnalyzer in the
center. Every other component interfaces with this piece. The MatchAnalyzer
needs a Match (on the left) as input to analyze data from. The Match module
represents a single soccer game. The .csv block signifies the import of a Pandas
DataFrame from a CSV file. Different RoboCup leagues have vastly different rules
and definitions, this is where the CategoryMapping helps to unify the data such
that the Match object can be analyzed regardless of the current league. Category
refers to some RoboCup league. Analysis modules are used by the MatchAn-
alyzer to calculate requested metrics from the game. Those can make use of
auxiliary Modules that abstract common steps of analyzing a match. Finally, the
MatchAnalyzer provides the analysis’ results through a programming interface.
This interface can be used by a user, e.g., to visualize plots in JupyterNotebooks.

30

4.3. Data Analysis

Figure 4.7.: Exemplary drawing of the HL pitch.

31

5. Evaluation

To answer the research questions from the beginning of this thesis (see section 1.1), the
approach needs to be evaluated. Metrics that are calculated in the approach need to be
statistically significant in order to be meaningful. For this, several experimental games with
the same player software version have been simulated in the section 5.1.

However, this is not enough to answer questions about the predictive capability of the
metrics. For this, multiple simulated matches with different team’s software versions would be
needed to compare those and to reason about. Unfortunately, this has not been done in the
realm of this thesis. Therefore, no conclusions can be made about this.

5.1. Significance of Metrics

To evaluate whether the metrics introduced in section 4.3.2 are statistically significant,
multiple matches have been simulated using the exact same team’s robot software version.
The simulation with identical configuration has been repeated ten times. The outcome of those
matches varied widely, as the simulation and often times the robot’s code is not deterministic.

The specific configuration that was chosen is a four players against four players setting
with the usual domain randomization and the default data collection interval of 8. The
robot software for both teams was an identical version from the Hamburg Bit-Bots team.
Software from other teams participating in the HLVS 2022/23 did not work properly, as
stable or as intended, which can be observed in the recordings. Selected was a Docker image,
that previously has been used on the second and third game day’s match during the season.
Qualitatively compared to other versions, this image showed the least breakdowns and failures
during the official games. The recordings and collected data of the ten trials can be found
online 1.

5.1.1. Results

All ten repeated games start similarly, with, in total, eight robots walking onto the field and
placing; the red team has kick-off in the first half of the game. Normally, a match spans
20 minutes of simulated game time, with 10 minutes each per half-time. However, four
out of ten games, with over 25 minutes, ran considerably longer caused by many accidental
collisions and ball-holdings which were penalized by the automatic referee with direct free
kicks and penalty kicks. The remaining six games were stopped preliminary, due to an error in
the communication between the automatic referee and the game controller. The error was

1https://data.bit-bots.de/17gutsche/BA/test_repeat10/

33

https://data.bit-bots.de/17gutsche/BA/test_repeat10/

5. Evaluation

seemingly caused by non-normal player behavior (e.g., fouls) during direct free kick-timers.
For example, the shortest game 08 ran just over one minute of simulation time.

Another anomaly appeared in most games: This is that some players, after seemingly
random time, stopped moving and reacting to any situation. When this happened, the player
usually was in the transition between different actions (from walking to falling, from falling to
standing up or from standing up to walking again), or the player was just teleported to the
field’ side by the automatic referee.

The following table 5.1 shows a summary of key events during the ten repeated games. All
time stamps are rough estimates of the exact time an event happened. Moreover, the time
stamps have been read from the game’s main clock; thus it shows the remaining minutes and
seconds per half-time and decreases.

Match Half-
Time

Time
Stamp

Description

01 1st 3:26 Player blue4 is unresponsive on the side
1st 1:48 Game ends 0-0 preliminary with 15:01 minutes total simulation

time
02 1st 2:32 0-1 score for blue after penalty kick

1st 1:10 A blue player in unresponsive on the ground
1st 0:25 1-1 scored by red
2nd 10:00 Three players per team are unresponsive
2nd 5:40 1-2 score for blue
2nd 5:40 2-2 scored by red
2nd Remaining red player is unresponsive after collision
2nd 0:50 2-3 score for blue
2nd 0:00 Regular ending with 26:54 minutes total simulation time

03 1st 9:15 Player blue2 unresponsive on the side
1st 8:50 1-0 score for red after penalty kick
1st 1:39 Game ends 0-0 preliminary with 13:14 minutes total simulation

time
04 1st 5:33 Game ends 0-0 preliminary with 8:41 minutes total simulation

time
05 1st 6:54 Game ends 0-0 preliminary with 6:15 minutes total simulation

time
06 1st 8:20 0-1 score for blue

1st 4:40 0-2 score for blue after penalty kick
1st 2:30 1-2 scored by red
2nd 10:00 All players but blue2 are unresponsive
2nd 7:00 1-3 score for blue
2nd 4:30 1-4 score for blue
2nd 2:00 1-5 score for blue
2nd 0:00 Regular ending with 27:52 minutes total simulation time

07 1st 8:30 1-0 score for red after penalty kick

34

5.1. Significance of Metrics

Match Half-
Time

Time
Stamp

Description

1st 5:00 Player blue3 unresponsive after getting up
1st 2:10 One red player receives a red card, seemingly for hand play
2nd 10:00 Only two players per team remain responsive
2nd 7:38 Game ends 1-0 for red preliminary with 22:20 minutes total

simulation time
08 1st 9:48 Game ends 0-0 preliminary with 1:12 minute total simulation

time
09 1st 7:19 Player blue2 unresponsive after falling

1st 4:50 Player blue3 unresponsive after falling
1st 3:25 1-0 score for red after penalty kick
2nd 7:50 1-1 scored by blue
2nd 5:30 2-1 score for red after own goal by blue
2nd 2:40 2-2 score by blue
2nd 0:30 2-3 score for blue
2nd 0:00 Regular ending with 27:56 minutes total simulation time

10 1st 9:25 Player blue2 unresponsive after getting up
1st 8:30 1-0 score for red
1st 5:40 Player red3 is unresponsive after falling
1st 3:30 1-1 score by blue after penalty kick
1st 0:25 Player red4 unresponsive after getting up
2nd 5:50 2-1 score for red
2nd 4:40 Player blue4 unresponsive after falling
2nd 0:20 Player blue3 unresponsive after falling
2nd 0:00 Regular ending with 27:39 minutes total simulation time

Table 5.1.: Summary of the ten repeated games.

The following sections present plots from the evaluated metrics. A more detailed view can
be found in the appendix.

35

5. Evaluation

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sp
ee

d
[m

/s
]

Speeds of players and teams

Figure 5.1.: Repeated match 01: The speed of all players and teams

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

1

2

3

4

5

6

7

Ab
so

lu
te

 e
rro

r [
m

]

Absolute self-localization errors of players and teams

Figure 5.2.: Repeated match 01: The absolute error of self-localization of all players and teams

36

5.1. Significance of Metrics

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

20

40

60

80

100

120

140
Ab

so
lu

te
 e

rro
r [

m
]

Absolute ball-localization errors of players and teams

Figure 5.3.: Repeated match 01: The ball localization of all players

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Sp
ee

d
[m

/s
]

Speeds of players and teams

Figure 5.4.: Repeated match 02: The speed of all players and teams

37

5. Evaluation

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

1

2

3

4

5

6

7

Ab
so

lu
te

 e
rro

r [
m

]

Absolute self-localization errors of players and teams

Figure 5.5.: Repeated match 02: The absolute error of self-localization of all players and teams

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

20

40

60

80

100

120

140

Ab
so

lu
te

 e
rro

r [
m

]

Absolute ball-localization errors of players and teams

Figure 5.6.: Repeated match 02: The ball localization of all players

38

5.1. Significance of Metrics

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0.00

0.05

0.10

0.15

0.20

0.25

Sp
ee

d
[m

/s
]

Speeds of players and teams

Figure 5.7.: Repeated match 03: The speed of all players and teams

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

1

2

3

4

5

6

7

Ab
so

lu
te

 e
rro

r [
m

]

Absolute self-localization errors of players and teams

Figure 5.8.: Repeated match 03: The absolute error of self-localization of all players and teams

39

5. Evaluation

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

20

40

60

80

100

120

140

Ab
so

lu
te

 e
rro

r [
m

]

Absolute ball-localization errors of players and teams

Figure 5.9.: Repeated match 03: The ball localization of all players

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sp
ee

d
[m

/s
]

Speeds of players and teams

Figure 5.10.: Repeated match 04: The speed of all players and teams

40

5.1. Significance of Metrics

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

1

2

3

4

5

6
Ab

so
lu

te
 e

rro
r [

m
]

Absolute self-localization errors of players and teams

Figure 5.11.: Repeated match 04: The absolute error of self-localization of all players and
teams

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

20

40

60

80

100

120

140

Ab
so

lu
te

 e
rro

r [
m

]

Absolute ball-localization errors of players and teams

Figure 5.12.: Repeated match 04: The ball localization of all players

41

5. Evaluation

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0.00

0.05

0.10

0.15

0.20

0.25

Sp
ee

d
[m

/s
]

Speeds of players and teams

Figure 5.13.: Repeated match 05: The speed of all players and teams

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

1

2

3

4

5

Ab
so

lu
te

 e
rro

r [
m

]

Absolute self-localization errors of players and teams

Figure 5.14.: Repeated match 05: The absolute error of self-localization of all players and
teams

42

5.1. Significance of Metrics

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

20

40

60

80

100

120

140
Ab

so
lu

te
 e

rro
r [

m
]

Absolute ball-localization errors of players and teams

Figure 5.15.: Repeated match 05: The ball localization of all players

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sp
ee

d
[m

/s
]

Speeds of players and teams

Figure 5.16.: Repeated match 06: The speed of all players and teams

43

5. Evaluation

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

1

2

3

4

5

6

Ab
so

lu
te

 e
rro

r [
m

]

Absolute self-localization errors of players and teams

Figure 5.17.: Repeated match 06: The absolute error of self-localization of all players and
teams

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

20

40

60

80

100

120

140

Ab
so

lu
te

 e
rro

r [
m

]

Absolute ball-localization errors of players and teams

Figure 5.18.: Repeated match 06: The ball localization of all players

44

5.1. Significance of Metrics

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Sp

ee
d

[m
/s

]

Speeds of players and teams

Figure 5.19.: Repeated match 07: The speed of all players and teams

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

1

2

3

4

5

6

Ab
so

lu
te

 e
rro

r [
m

]

Absolute self-localization errors of players and teams

Figure 5.20.: Repeated match 07: The absolute error of self-localization of all players and
teams

45

5. Evaluation

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

20

40

60

80

100

120

140

Ab
so

lu
te

 e
rro

r [
m

]

Absolute ball-localization errors of players and teams

Figure 5.21.: Repeated match 07: The ball localization of all players

Repeated match 01

Repeated match 02

Repeated match 03

Repeated match 04

Repeated match 05

Repeated match 06

Repeated match 07

Repeated match 08

Repeated match 09

Repeated match 10

46

5.1. Significance of Metrics

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Sp
ee

d
[m

/s
]

Speeds of players and teams

Figure 5.22.: Repeated match 08: The speed of all players and teams

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

1

2

3

4

Ab
so

lu
te

 e
rro

r [
m

]

Absolute self-localization errors of players and teams

Figure 5.23.: Repeated match 08: The absolute error of self-localization of all players and
teams

47

5. Evaluation

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

20

40

60

80

100

120

140

Ab
so

lu
te

 e
rro

r [
m

]

Absolute ball-localization errors of players and teams

Figure 5.24.: Repeated match 08: The ball localization of all players

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sp
ee

d
[m

/s
]

Speeds of players and teams

Figure 5.25.: Repeated match 09: The speed of all players and teams

48

5.1. Significance of Metrics

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

1

2

3

4

5

6

7
Ab

so
lu

te
 e

rro
r [

m
]

Absolute self-localization errors of players and teams

Figure 5.26.: Repeated match 09: The absolute error of self-localization of all players and
teams

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

20

40

60

80

100

120

140

Ab
so

lu
te

 e
rro

r [
m

]

Absolute ball-localization errors of players and teams

Figure 5.27.: Repeated match 09: The ball localization of all players

49

5. Evaluation

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Sp
ee

d
[m

/s
]

Speeds of players and teams

Figure 5.28.: Repeated match 10: The speed of all players and teams

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

2

4

6

8

10

12

Ab
so

lu
te

 e
rro

r [
m

]

Absolute self-localization errors of players and teams

Figure 5.29.: Repeated match 10: The absolute error of self-localization of all players and
teams

50

5.1. Significance of Metrics

tea
m1.p

lay
er1

tea
m1.p

lay
er2

tea
m1.p

lay
er3

tea
m1.p

lay
er4

tea
m2.p

lay
er1

tea
m2.p

lay
er2

tea
m2.p

lay
er3

tea
m2.p

lay
er4

tea
m1

tea
m2

Player/Team

0

20

40

60

80

100

120

140

Ab
so

lu
te

 e
rro

r [
m

]

Absolute ball-localization errors of players and teams

Figure 5.30.: Repeated match 10: The ball localization of all players

51

6. Discussion

In this chapter, the degree of answering the research questions will be discussed, especially
regarding the evaluation (see section 6.1). Another discussion in section 6.2 surrounds possible
impacts and values of this thesis and its development.

6.1. Research Questions

To recapitulate, this thesis tried to answer two research questions:

• Which metrics are meaningful in humanoid robot soccer?

• Do these metrics have the same predictive capability as in human soccer?

For measuring the meaningfulness of metrics, the evaluation in section 5.1 tried to determine
statistical significance for each of the implemented metrics. This could not be achieved for
multiple reasons. Firstly, not many of the proposed metrics have been fully implemented,
and therefore they could not be evaluated. Secondly, no quantitative evaluation showed the
significance of single metrics. The evaluation experiment did run 10 repeated simulations and
collected the data of those, but only qualitative comparisons were given, though it should
be possible to conduct quantitative evaluation from that. Moreover, the simulated games
showed many anomalies, which reduces the validity of the results even more. Assuming,
several functioning Docker images of more multiple teams would exist, the evaluation of the
statistical significance of metrics could be vastly improved by running multiple experiment-sets
of repeated games.

Answering the second question about the predictive capability would have required data
from many experimental matches with progressing versions of team software. This has not
been done, and thus no validation has happened to resolve this question.

6.2. Impact and Value

Besides not being able to answer the research questions, the approach provides value to
RoboCup teams that plan to participate in upcoming virtual seasons. The value lays in the
development of the data structure and data collection methods in the previous approach.
Those components appear to be working very reliable. The resulting data can be analyzed
using many other common tools. The data is not specifically tailored towards the (extended)

53

6. Discussion

SoccerAnalyzer. Additionally, all data collected from official HLVS 2023 games1 and
simulated game for the purpose of evaluating this thesis2 are fully available online.

1https://data.bit-bots.de/HLVS/2023/
2https://data.bit-bots.de/17gutsche/BA/test_repeat10/

54

https://data.bit-bots.de/HLVS/2023/
https://data.bit-bots.de/17gutsche/BA/test_repeat10/

7. Conclusion

The goal of this thesis was to apply common methodologies from data analysis to simulated the
RoboCup Humanoid League Virtual Season (HLVS) games. For this, a data structure written
in Python has been proposed and the official setup to run HLVS matches has been extended
to collect necessary data from the season’s games. The data that resulted from that has
been made available online. Analyzing the data was done by extending the SoccerAnalyzer
Python framework from Pereira et al. [1]. This tool already provided some metrics; however,
others have been proposed in this work. A small subset of the proposed metrics have been
implemented to be evaluated. The evaluation tried to show the meaningfulness of the metrics
by measuring the statistical significance. A quantitative validation of this could not be provided.
Moreover, a possible predictive capability of the metrics has not been measured. Therefore,
the impact of this thesis is reduced, still the approach can be used by RoboCup teams to
develop and extend tools and gain insight themselves.

55

8. Future Work

Many questions are still unanswered and need more work to be resolved. In other cases,
simplification have been made, but components need to be completed. This chapter lists
some ongoing work.

Regarding the data structure, the team-communication, and player collision have not been
modeled. Collecting collisions from the supervisor controller may be computationally expensive,
this needs to be investigated. The Webots supervisor API also provides a feature called pose
tracking to reduce querying overhead. Unfortunately, this did not work in versions used by
this thesis, but in newer Webots versions, this should be fixed. The data collection interval for
subsampling has not been empirically tested. All of this may impact the runtime performance
of the automatic referee, this needs to be investigated. The impact of the data collection
extension in the automatic referee on correctness has not been investigated.

8.0.1. Dimensions and Aggregation

Almost all metrics can be filtered down or aggregated over a range of dimensions. However,
this has not been implemented. In a match, we can filter metrics by spacial or temporal
relations. For example, a user wants to know the distance walked by a specific robot in the
second halftime in the own side; therefore as a time frame, we select the second half, we
select the own field half and the player we want. All dimensions and their subtypes can be
seen in table 8.1.

Additionally, for many data fields and metrics, it is useful, to gather them in an aggregated
way instead of raw values. Raw values can be a boolean, string, integer, floating-point value or
a vector, matrix, or list. Whereas an aggregated value can be a minimum, maximum, average,
median, count, or trajectory of a collection of values or a frequency of or meantime between
events.

Progress in Team’s Performance

Once the significance of metrics has been determined, another set of test games will be
simulated, this time using different versions of the same team’s software. The goal of this
experiment is to find out, whether the analysis of the recordings can show progress between the
software versions. - correlation: metric <-> shot goals then predictive capability - applicability
of sim in real world

8.0.2. Usability

web platform

57

8. Future Work

Dimension Subtype Description

Matches
Season Matches belonging to one season
Set of matches Custom selection of matches

Time frame

Match Time frame of a whole match (incl. extension and
penalty shootout)

Halftime Time frame of one halftime
Time slice Custom time frame (optionally depends on game event)

Time step Discrete step in time of soccer simulation or recording

Area
Field half Area of a soccer field half
Area Custom area on the field (optionally moving with an

object)
Team Team consisting out of multiple players
Player Robot playing on the soccer field

Object
Ball Ball object from the game
Goalpost A goalpost object from the game

Table 8.1.: Description of possible dimensions

Assuming, reliable metrics could be extracted from simulated game recordings, this data
could further be used for manual or automated tests, by running simulated games and
quantitatively comparing new player strategies and algorithms to previous versions. This
could even be included in the workflow of a Continuous Integration (CI) pipeline. Another
conceivable application of the resulting data is in the development of machine learning and,
especially, reinforcement learning models.

58

Bibliography

[1] F. N. A. Pereira, M. F. B. Soares, O. R. C. ao, T. T. Alves, T. H. R. P. Gonçalves, J. R.
da Silva, T. I. Ren, P. S. G. de Mattos Neto, and E. N. S. Barros, “A Library and Web
Platform for RoboCup Soccer Matches Data Analysis,” in RoboCup 2022 Symposium.
Springer, 2023, pp. 177–189.

[2] The pandas development team, “pandas-dev/pandas: Pandas,” 2023. [Online]. Available:
https://zenodo.org/record/7857418

[3] Wes McKinney, “Data Structures for Statistical Computing in Python,” in Proceedings
of the 9th Python in Science Conference, Stéfan van der Walt and Jarrod Millman, Eds.,
2010, pp. 56–61.

[4] RoboCup Humanoid League TC, “RoboCup Soccer Humanoid League Laws
of the Game 2021/2022,” accessed: 2023-05-17. [Online]. Available: https:
//humanoid.robocup.org/wp-content/uploads/RC-HL-2022-Rules-3.pdf

[5] O. Michel, “ Cyberbotics Ltd. Webots™: professional mobile robot simulation ,” Interna-
tional Journal of Advanced Robotic Systems, vol. 1, no. 1, p. 5, 2004.

[6] R. Smith et al., “Open dynamics engine,” 2007.

[7] A. L. Ames, D. R. Nadeau, and J. L. Moreland, The VRML 2.0 sourcebook. John Wiley
& Sons, Inc., 1997.

[8] R. Carey and G. Bell, The annotated VRML 2.0 reference manual. Addison-Wesley
Longman Ltd., 1997.

[9] Cyberbotics Ltd., “Webots Reference Manual,” accessed: 2023-05-17. [Online]. Available:
https://cyberbotics.com/doc/reference

[10] R. Smith, “Open Dynamics Engine Manual,” accessed: 2023-05-17. [Online]. Available:
https://ode.org/wiki/index.php/Manual

[11] S. Stelter, M. Bestmann, N. Hendrich, and J. Zhang, “ Fast and Reliable Stand-Up
Motions for Humanoid Robots Using Spline Interpolation and Parameter Optimization ,”
in IEEE ICAR, 12 2021.

[12] C. Reep and B. Benjamin, “Skill and Chance in Association Football,” Journal of the
Royal Statistical Society. Series A (General), vol. 131, no. 4, pp. 581–585, 1968.

59

https://zenodo.org/record/7857418
https://humanoid.robocup.org/wp-content/uploads/RC-HL-2022-Rules-3.pdf
https://humanoid.robocup.org/wp-content/uploads/RC-HL-2022-Rules-3.pdf
https://cyberbotics.com/doc/reference
https://ode.org/wiki/index.php/Manual

Bibliography

[13] E. Morgulev, O. H. Azar, and R. Lidor, “Sports Analytics and the Big-Data Era,”
International Journal of Data Science and Analytics, vol. 5, no. 4, pp. 213–222, 2018.

[14] L. Pappalardo, P. Cintia, A. Rossi, E. Massucco, P. Ferragina, D. Pedreschi, and F. Gian-
notti, “A Public Data Set of Spatio-Temporal Match Events in Soccer Competitions,”
Scientific data, vol. 6, no. 1, pp. 1–15, 2019.

[15] S. A. Pettersen, D. Johansen, H. Johansen, V. Berg-Johansen, V. R. Gaddam,
A. Mortensen, R. Langseth, C. Griwodz, H. K. Stensland, and P. Halvorsen, “Soc-
cer Video and Player Position Dataset,” in Proceedings of the 5th ACM Multimedia
Systems Conference, 2014, pp. 18–23.

[16] J. Kern, T. Lober, J. Hermsdörfer, and S. Endo, “ A Neural Network for the Detection
of Soccer Headers From Wearable Sensor Data ,” Scientific Reports, vol. 12, no. 1, pp.
1–12, 2022.

[17] Fédération internationale de Football Association (FIFA), “Semi-automated Offside
Technology to Be Used at FIFA World Cup 2022 (TM),” accessed: 2023-05-19. [Online].
Available: https://www.fifa.com/technical/media-releases/semi-automated-offside-tec
hnology-to-be-used-at-fifa-world-cup-2022-tm

[18] H. Mellmann, B. Schlotter, and P. Strobel, “Toward Data Driven Development in
RoboCup,” in Robot World Cup. Springer, 2019, pp. 176–188.

[19] RoboCup Standard Platform League Technical Committee, “RoboCup Standard
Platform League (NAO) Rule Book,” accessed: 2023-05-19. [Online]. Available:
https://spl.robocup.org/wp-content/uploads/SPL-Rules-2022.pdf#subsection.B.4

[20] B-Human, “B-Human’s Video Analysis App,” accessed: 2023-05-19. [Online]. Available:
https://github.com/bhuman/VideoAnalysis

[21] RoboCup Small Size League, “RoboCup Small Size League Game Log Archive,” accessed:
2023-05-19. [Online]. Available: https://ssl.robocup.org/game-logs/

[22] RoboCup Soccer Simulation League, “RoboCup Soccer Simulation League 2D Game Log
Archive,” accessed: 2023-05-19. [Online]. Available: https://archive.robocup.info/Socce
r/Simulation/2D/

[23] RoboCup Soccer Simulation League, “RoboCup Soccer Simulation League 3D Game Log
Archive,” accessed: 2023-05-19. [Online]. Available: https://archive.robocup.info/Socce
r/Simulation/3D/

[24] Python Software Foundation, “Python 3.10.11 documentation – data classes,” accessed:
2023-05-07. [Online]. Available: https://docs.python.org/3.10/library/dataclasses.html

[25] Y. Shafranovich, “Common Format and MIME Type for Comma-Separated Values (CSV)
Files,” RFC 4180, Oct. 2005. [Online]. Available: https://www.rfc-editor.org/info/rfc4180

60

https://www.fifa.com/technical/media-releases/semi-automated-offside-technology-to-be-used-at-fifa-world-cup-2022-tm
https://www.fifa.com/technical/media-releases/semi-automated-offside-technology-to-be-used-at-fifa-world-cup-2022-tm
https://spl.robocup.org/wp-content/uploads/SPL-Rules-2022.pdf#subsection.B.4
https://github.com/bhuman/VideoAnalysis
https://ssl.robocup.org/game-logs/
https://archive.robocup.info/Soccer/Simulation/2D/
https://archive.robocup.info/Soccer/Simulation/2D/
https://archive.robocup.info/Soccer/Simulation/3D/
https://archive.robocup.info/Soccer/Simulation/3D/
https://docs.python.org/3.10/library/dataclasses.html
https://www.rfc-editor.org/info/rfc4180

Bibliography

[26] T. Bray, “RFC 8259: The JavaScript object notation (JSON) data interchange format,”
2017.

[27] Ecma International, “ECMA-404 – The JSON Data Interchange Syntax 2nd Edition,”
December 2017, accessed: 2023-05-12. [Online]. Available: https://www.ecma-internati
onal.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf

[28] W3C - World Wide Web Consortium, “Extensible Markup Language (XML) 1.1
(Second Edition),” September 2006, accessed: 2023-05-12. [Online]. Available:
https://www.w3.org/TR/2006/REC-xml11-20060816/

[29] Ecma International, “ECMA-376 – Office Open XML file formats 5th edition,” December
2021, accessed: 2023-05-12. [Online]. Available: https://www.ecma-international.org/p
ublications-and-standards/standards/ecma-376/

[30] Python Software Foundation, “Python 3.10.11 documentation – pickle – Python object
serialization,” accessed: 2023-05-12. [Online]. Available: https://docs.python.org/3.10/l
ibrary/pickle.html

[31] HDF Group, “HDF5 Documentation,” accessed: 2023-05-12. [Online]. Available:
https://portal.hdfgroup.org/display/HDF5/HDF5

[32] W. McKinney, “Feather GitHub Repository,” accessed: 2023-05-12. [Online]. Available:
https://github.com/wesm/feather

[33] Apache Software Foundation, “Apache Parquet Documentation,” accessed: 2023-05-12.
[Online]. Available: https://parquet.apache.org/docs/

[34] Apache Software Foundation, “Apache ORC,” accessed: 2023-05-12. [Online]. Available:
https://orc.apache.org/

[35] StataCorp LLC, “File formats .dta – Description of .dta file format 115,” accessed:
2023-05-12. [Online]. Available: https://www.stata.com/help.cgi?dta_115

[36] H. Krekel, B. Oliveira, R. Pfannschmidt, F. Bruynooghe, B. Laugher, and
F. Bruhin, “pytest 6.2.5,” 2004, accessed: 2023-05-07. [Online]. Available:
https://github.com/pytest-dev/pytest

[37] T. Moulard, “Coordinate Frames for Humanoid Robots,” accessed: 2023-05-19. [Online].
Available: https://www.ros.org/reps/rep-0120.html

[38] Google LLC, “Protocol Buffers Documentation,” accessed: 2023-05-16. [Online].
Available: https://protobuf.dev/

[39] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engi-
neering, vol. 9, no. 3, pp. 90–95, 2007.

61

https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://www.w3.org/TR/2006/REC-xml11-20060816/
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/
https://www.ecma-international.org/publications-and-standards/standards/ecma-376/
https://docs.python.org/3.10/library/pickle.html
https://docs.python.org/3.10/library/pickle.html
https://portal.hdfgroup.org/display/HDF5/HDF5
https://github.com/wesm/feather
https://parquet.apache.org/docs/
https://orc.apache.org/
https://www.stata.com/help.cgi?dta_115
https://github.com/pytest-dev/pytest
https://www.ros.org/reps/rep-0120.html
https://protobuf.dev/

Appendices

A. Data Structure Complete UML Class Diagram

B. Pandas File Format Benchmarking Results

File Format Write Duration [s] Read Duration [s] File Size [B]
csv 10.286947048036382 2.1948208790272474 180942721
csv 10.023249280173331 1.9335246719419956 180942721
csv 9.98883936717175 1.9953098089899868 180942721
csv 10.192911381833255 1.9325142491143197 180942721
csv 10.102485560113564 2.1530611768830568 180942721
csv 10.125943074934185 1.9474970770534128 180942721
csv 10.110906084999442 1.9553595760371536 180942721
csv 10.215702585177496 2.0022814080584794 180942721
csv 9.980430486844853 2.006097888108343 180942721
csv 10.14780302811414 1.992749661207199 180942721
json 3.193962930003181 8.32795168994926 345991506
json 3.2353430609218776 8.328224291093647 345991506
json 3.1948386910371482 8.449956130003557 345991506
json 3.241574323968962 7.849857060937211 345991506
json 3.0512268820311874 7.380913545144722 345991506
json 2.9032476018182933 7.860276029910892 345991506
json 2.902596662985161 7.613485580077395 345991506
json 3.475083524128422 7.3509946160484105 345991506
json 2.928332105046138 7.346875760005787 345991506
json 2.873381247976795 7.712733270134777 345991506
xml 59.14449173491448 16139.828588937875 1961486431
excel 279.1365820460487 148.92179826204665 160116324
pickle 0.5484468378126621 0.3314504351001233 179257732
pickle 0.568036031909287 0.3469477309845388 179257732
pickle 0.5616264417767525 0.3337416781578213 179257732
pickle 0.66393374488689 0.10860279784537852 179257732
pickle 0.8907915260642767 0.11045060004107654 179257732
pickle 0.8373289639130235 0.35091720009222627 179257732
pickle 1.0111449100077152 0.09267587587237358 179257732

63

Bibliography

File Format Write Duration [s] Read Duration [s] File Size [B]
pickle 0.6130795690696687 0.1128802530001849 179257732
pickle 0.670917300041765 0.11561686987988651 179257732
pickle 0.6322005169931799 0.1221329199615866 179257732
hdf5 0.600272913929075 0.18587912898510695 180583292
hdf5 1.0059687909670174 0.4776888801716268 181274748
hdf5 0.9605527459643781 0.4562627640552819 181964156
hdf5 1.0132272210903466 0.5145521408412606 182424004
hdf5 0.9457813289482147 0.48141981987282634 182883852
hdf5 0.6929234419949353 0.44616533489897847 183343700
hdf5 1.2064036149531603 0.44097292609512806 183803548
hdf5 1.0340712869074196 0.4890656170900911 184263396
hdf5 0.8493852431420237 0.45685938210226595 184723244
hdf5 0.6657042820006609 0.45922697708010674 185183092
feather 0.26414139894768596 0.202806465793401 65465578
feather 0.27630632114596665 0.099273368017748 65465578
feather 0.2611083360388875 0.09611283615231514 65465578
feather 0.27651436091400683 0.18111494183540344 65465578
feather 0.28596399701200426 0.10481450916267931 65465578
feather 0.28555155522190034 0.10845902794972062 65465578
feather 0.26125139417126775 0.11720397416502237 65465578
feather 0.26060459204018116 0.1920069910120219 65465578
feather 0.3067712539341301 0.19267511297948658 65465578
feather 0.41317550209350884 0.1776385388802737 65465578
parquet 3.0819843269418925 0.17009179899469018 77628286
parquet 2.9701130150351673 0.1557669979520142 77628286
parquet 2.988494185032323 0.13251241808757186 77628286
parquet 3.2292723490390927 0.11247510300017893 77628286
parquet 3.0991539279930294 0.11964415619149804 77628286
parquet 3.0169663338456303 0.13040212308987975 77628286
parquet 3.0957914078608155 0.13498451886698604 77628286
parquet 3.106660140911117 0.12388993101194501 77628286
parquet 2.471850768197328 0.23204648192040622 77628286
parquet 2.99633996700868 0.11567287403158844 77628286
orc 3.808645844226703 0.3774917018599808 71713603
orc 3.653143160045147 0.3790003480389714 71713603
orc 3.650477315997705 0.3713955990970135 71713603
orc 3.356333422008902 0.3952555258292705 71713603
orc 4.119027923094109 0.3604830331169069 71713603
orc 2.7888031071051955 0.5332794091664255 71713603
orc 3.249960631830618 0.4005263508297503 71713603
orc 3.6549363310914487 0.3639301718212664 71713603

64

C. Additional plots from repeated experiments

File Format Write Duration [s] Read Duration [s] File Size [B]
orc 3.7039073570631444 0.5615057570394129 71713603
orc 3.5258315990213305 0.37877844204194844 71713603
stata 9.12018607603386 6.56543051591143 172046339
stata 8.792505032150075 6.648476668866351 172046339
stata 8.715335379820317 6.688728197943419 172046339
stata 8.809489796170965 6.231604540953413 172046339
stata 8.483828759053722 6.528916190145537 172046339
stata 8.606506797950715 6.384347824146971 172046339
stata 8.760864146985114 6.643513730028644 172046339
stata 8.79665143089369 7.027401988161728 172046339
stata 8.529906493844464 6.712406593840569 172046339
stata 8.70403677993454 6.690408627036959 172046339

Table 2.: All Measurements of the Pandas file format benchmarking tests. Each row represents
a single test run, producing measurements for the write and read durations (in
seconds) and the size of exported files (in Bytes).

C. Additional plots from repeated experiments

65

Bibliography

DataCollector

+save_dir: os.PathLike
+autosave_interval: int
+match: Match
+logger: Optional[Logger]

+__ init__ (save_dir, autosave_interval, match, logger)
+finalize()
+create_new_step(int time)
+current_step() : S tep
#_autosave(...)

Match

#_static: StaticMatchInfo
#_steps: List[Step]

+__ init__ (static)
+get_static_match_info() : S taticMatchInfo
+get_steps() : List[Step]
+add_step(step: Step)
+current_step() : S tep
+save(save_dir: os.PathLike, file_name: str)

StaticMatchInfo

+id: str
+match_type: MatchType
+league_sub_type: LeagueSubType
+simulation: S imulation
+field: Field
+ball: S taticBall
+teams: StaticTeams
+kick_off_team: str
+version: str

«Enumeration»
MatchType

UNKNOWN: int
ROUNDROBIN: int
PLAYOFF: int
DROPIN: int
PENALTY: int

«Enumeration»
LeagueSubType

KID: str
ADULT: str

StaticBall

+id: str
+mass: float
+texture: str
+diameter: float

Field

+location_id: str
+location_name: str
+size_x: float
+size_y: float
+luminosity: Optional[float]
+friction: Optional[float]
+natural_ light: Optional[bool]
+weather: Optional[str]

S imulation

+is_simulated: bool
+basic_time_step: int
+data_collection_interval: int

StaticTeams

+team1: StaticTeam
+team2: StaticTeam

+get_teams() : Tuple[StaticTeam, StaticTeam]
+get_team_by_id(id: str) : S taticTeam
+get_team_by_color(color: TeamColor) : S taticTeam
+red() : S taticTeam
+blue() : S taticTeam
+get_team_by_name(name: str) : S taticTeam

StaticTeam

+id: str
+name: str
+color: TeamColor
+player1: StaticPlayer
+player2: StaticPlayer
+player3: StaticPlayer
+player4: StaticPlayer

«Enumeration»
TeamColor

BLUE: int
RED: int
YELLOW: int
BLACK: int
WHITE: int
GREEN: int
ORANGE: int
PURPLE: int
BROWN: int
GRAY: int

StaticMatchObject

+id: str
+mass: float

StaticPlayer

+id: str
+mass: float
+DOF: int
+platform: str
+mono_camera: Optional[Camera]
+stereo_camera_l: Optional[Camera]
+stereo_camera_r: Optional[Camera]

Camera

+frame_id: str
+FPS: float
+FOV: float
+pixel_count_x: int
+pixel_count_y: int

Step

+time: float
+delta_real_time: Optional[float]
+game_control_data: Optional[GameControlData]
+ball: Optional[Ball]
+teams: Optional[Teams]

GameControlData

+game_state: GameState
+first_half: bool
+kickoff_team: int
+secondary_state: SecondaryGameState
+secondary_state_ info_team: int
+secondary_state_ info_sub_state: int
+drop_in_team: bool
+drop_in_time: int
+seconds_remaining: int
+secondary_seconds_remaining: int

«Enumeration»
GameState

STATE_INITIAL: int
STATE_READY: int
STATE_SET: int
STATE_PLAYING: int
STATE_FINISHED: int

«Enumeration»
SecondaryGameState

STATE_NORMAL: int
STATE_PENALTYSHOOT: int
STATE_OVERTIME: int
STATE_TIMEOUT: int
STATE_DIRECT_FREEKICK: int
STATE_INDIRECT_FREEKICK: int
STATE_PENALTYKICK: int
STATE_CORNERKICK: int
STATE_GOALKICK: int
STATE_THROWIN: int
STATE_DROPBALL: int
STATE_UNKNOWN: int

MatchObject

+id: str

Ball

+id: str
+frame: frame

Frame

+id: str
+pose: Pose

Pose

+position: Position
+rotation: Rotation

+pose_from_affine(affine: numpy.ndarray) : Pose

Position

+x: float
+y: float
+z: float

Rotation

+x: float
+y: float
+z: float
+w: float

+quaternion() : Tuple[float, float, float, float]
+rpy() : Tuple[float, float, float]

Teams

+team1: Team
+team2: Team

+get_teams() : Tuple[Team, Team]
+get_team_by_id(id: str) : Team

Team

+id: str
+player1: Player
+player2: Player
+player3: Player
+player4: Player
+score: int
+penalty_shots: int
+single_shots: int

Player

+id: str
+base_link: Frame
+l_sole: Frame
+r_sole: Frame
+l_gripper: Frame
+r_gripper: Frame
+camera_frame: Optional[Frame]
+l_camera_frame: Optional[Frame]
+r_camera_frame: Optional[Frame]
+state: State
+role: Role
+action: Action
+robot_ info: Optional[RobotInfo]

+get_soles() : Tuple[Frame, Frame]
+get_grippers() : Tuple[Frame, Frame]
+get_stereo_camera_frames() : Tuple[Optional[Frame], Optional[Frame]]

«Enumeration»
State

UNKNOWN_STATE: int
UNPENALISED: int
PENALISED: int

«Enumeration»
Role

ROLE_UNDEFINED: int
ROLE_IDLING: int
ROLE_OTHER: int
ROLE_STRIKER: int
ROLE_SUPPORTER: int
ROLE_DEFENDER: int
ROLE_GOALIE: int

«Enumeration»
Action

ACTION_UNDEFINED: int
ACTION_POSITIONING: int
ACTION_GOING_TO_BALL: int
ACTION_TRYING_TO_SCORE: int
ACTION_WAITING: int
ACTION_KICKING: int
ACTION_SEARCHING: int
ACTION_LOCALIZING: int

RobotInfo

+penalty: Penalty
+secs_till_unpenalized: int
+number_of_warnings: int
+number_of_yellow_cards: int
+number_of_red_cards: int
+goalkeeper: bool

«Enumeration»
Penalty

UNKNOWN: int
NONE: int
SUBSTITUTE: int
MANUAL: int
HL_BALL_MANIPULATION: int
HL_PHYSICAL_CONTACT: int
HL_PICKUP_OR_INCAPABLE: int
HL_SERVICE: int

Figure 1.: Complete UML class diagram of the data_collection software module

66

C. Additional plots from repeated experiments

team1.player1
Source

Ground Truth
Self-Localization

team1.player2
Source

Ground Truth
Self-Localization

team1.player3
Source

Ground Truth
Self-Localization

team1.player4
Source

Ground Truth
Self-Localization

team2.player1
Source

Ground Truth
Self-Localization

team2.player2
Source

Ground Truth
Self-Localization

team2.player3
Source

Ground Truth
Self-Localization

team2.player4
Source

Ground Truth
Self-Localization

Figure 2.: Experiment Repeated 01 The self-localization of all players

67

Bibliography

Source
Player right 1
Player right 2
Player right 3
Player right 4
Ground Truth

Figure 3.: Experiment Repeat 01 Absolute error of the ball localization on the field

68

C. Additional plots from repeated experiments

team1.player1
Source

Ground Truth
Self-Localization

team1.player2

Source
Ground Truth
Self-Localization

team1.player3

Source
Ground Truth
Self-Localization

team1.player4

Source
Ground Truth
Self-Localization

team2.player1
Source

Ground Truth
Self-Localization

team2.player2

Source
Ground Truth
Self-Localization

team2.player3

Source
Ground Truth
Self-Localization

team2.player4

Source
Ground Truth
Self-Localization

Figure 4.: Experiment Repeated 02 The self-localization of all players

69

Bibliography

Source
Player right 1
Player right 2
Player right 3
Player right 4
Ground Truth

Figure 5.: Experiment Repeat 02 Absolute error of the ball localization on the field

70

C. Additional plots from repeated experiments

team1.player1
Source

Ground Truth
Self-Localization

team1.player2
Source

Ground Truth
Self-Localization

team1.player3
Source

Ground Truth
Self-Localization

team1.player4
Source

Ground Truth
Self-Localization

team2.player1
Source

Ground Truth
Self-Localization

team2.player2
Source

Ground Truth
Self-Localization

team2.player3
Source

Ground Truth
Self-Localization

team2.player4
Source

Ground Truth
Self-Localization

Figure 6.: Experiment Repeated 03 The self-localization of all players

71

Bibliography

Source
Player right 1
Player right 2
Player right 3
Player right 4
Ground Truth

Figure 7.: Experiment Repeat 03 Absolute error of the ball localization on the field

72

C. Additional plots from repeated experiments

team1.player1
Source

Ground Truth
Self-Localization

team1.player2
Source

Ground Truth
Self-Localization

team1.player3
Source

Ground Truth
Self-Localization

team1.player4
Source

Ground Truth
Self-Localization

team2.player1
Source

Ground Truth
Self-Localization

team2.player2
Source

Ground Truth
Self-Localization

team2.player3
Source

Ground Truth
Self-Localization

team2.player4
Source

Ground Truth
Self-Localization

Figure 8.: Experiment Repeated 04 The self-localization of all players

73

Bibliography

Source
Player right 1
Player right 2
Player right 3
Player right 4
Ground Truth

Figure 9.: Experiment Repeat 04 Absolute error of the ball localization on the field

74

C. Additional plots from repeated experiments

team1.player1
Source

Ground Truth
Self-Localization

team1.player2
Source

Ground Truth
Self-Localization

team1.player3
Source

Ground Truth
Self-Localization

team1.player4
Source

Ground Truth
Self-Localization

team2.player1
Source

Ground Truth
Self-Localization

team2.player2
Source

Ground Truth
Self-Localization

team2.player3
Source

Ground Truth
Self-Localization

team2.player4
Source

Ground Truth
Self-Localization

Figure 10.: Experiment Repeated 05 The self-localization of all players

75

Bibliography

Source
Player right 1
Player right 2
Player right 3
Player right 4
Ground Truth

Figure 11.: Experiment Repeat 05 Absolute error of the ball localization on the field

76

C. Additional plots from repeated experiments

team1.player1

Source
Ground Truth
Self-Localization

team1.player2
Source

Ground Truth
Self-Localization

team1.player3

Source
Ground Truth
Self-Localization

team1.player4

Source
Ground Truth
Self-Localization

team2.player1
Source

Ground Truth
Self-Localization

team2.player2

Source
Ground Truth
Self-Localization

team2.player3

Source
Ground Truth
Self-Localization

team2.player4

Source
Ground Truth
Self-Localization

Figure 12.: Experiment Repeated 06 The self-localization of all players

77

Bibliography

Source
Player right 1
Player right 2
Player right 3
Player right 4
Ground Truth

Figure 13.: Experiment Repeat 06 Absolute error of the ball localization on the field

78

C. Additional plots from repeated experiments

team1.player1

Source
Ground Truth
Self-Localization

team1.player2

Source
Ground Truth
Self-Localization

team1.player3
Source

Ground Truth
Self-Localization

team1.player4

Source
Ground Truth
Self-Localization

team2.player1
Source

Ground Truth
Self-Localization

team2.player2

Source
Ground Truth
Self-Localization

team2.player3
Source

Ground Truth
Self-Localization

team2.player4
Source

Ground Truth
Self-Localization

Figure 14.: Experiment Repeated 07 The self-localization of all players

79

Bibliography

Source
Player right 1
Player right 2
Player right 3
Player right 4
Ground Truth

Figure 15.: Experiment Repeat 07 Absolute error of the ball localization on the field

80

C. Additional plots from repeated experiments

team1.player1
Source

Ground Truth
Self-Localization

team1.player2
Source

Ground Truth
Self-Localization

team1.player3
Source

Ground Truth
Self-Localization

team1.player4
Source

Ground Truth
Self-Localization

team2.player1
Source

Ground Truth
Self-Localization

team2.player2
Source

Ground Truth
Self-Localization

team2.player3
Source

Ground Truth
Self-Localization

team2.player4
Source

Ground Truth
Self-Localization

Figure 16.: Experiment Repeated 08 The self-localization of all players

81

Bibliography

Source
Player right 1
Player right 2
Player right 3
Player right 4
Ground Truth

Figure 17.: Experiment Repeat 08 Absolute error of the ball localization on the field

82

C. Additional plots from repeated experiments

team1.player1
Source

Ground Truth
Self-Localization

team1.player2

Source
Ground Truth
Self-Localization

team1.player3

Source
Ground Truth
Self-Localization

team1.player4

Source
Ground Truth
Self-Localization

team2.player1
Source

Ground Truth
Self-Localization

team2.player2
Source

Ground Truth
Self-Localization

team2.player3

Source
Ground Truth
Self-Localization

team2.player4

Source
Ground Truth
Self-Localization

Figure 18.: Experiment Repeated 09 The self-localization of all players

83

Bibliography

Source
Player right 1
Player right 2
Player right 3
Player right 4
Ground Truth

Figure 19.: Experiment Repeat 09 Absolute error of the ball localization on the field

84

C. Additional plots from repeated experiments

team1.player1

Source
Ground Truth
Self-Localization

team1.player2
Source

Ground Truth
Self-Localization

team1.player3

Source
Ground Truth
Self-Localization

team1.player4

Source
Ground Truth
Self-Localization

team2.player1
Source

Ground Truth
Self-Localization

team2.player2
Source

Ground Truth
Self-Localization

team2.player3
Source

Ground Truth
Self-Localization

team2.player4

Source
Ground Truth
Self-Localization

Figure 20.: Experiment Repeated 10 The self-localization of all players

85

Bibliography

Source
Player right 1
Player right 2
Player right 3
Player right 4
Ground Truth

Figure 21.: Experiment Repeat 10 Absolute error of the ball localization on the field

86

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Introduction
	Research Questions
	Structural Outline

	Fundamentals
	Data analytics
	Pandas

	Humanoid League Virtual Season
	HLVS 2022/23
	Webots
	Automatic Referee
	Test Suite
	Game Controller
	Robot Controllers
	UDP-Bouncer
	Infrastructure
	Team-Communication

	Related Work
	Data Analysis in Sports and Soccer
	Data Analysis in RoboCup

	Approach
	Data Structure
	Components
	File Format
	Testing

	Data Collection
	Integration into the automatic referee software
	Post-Processing
	Running Test Games

	Data Analysis
	Extension of the SoccerAnalyzer
	Metrics

	Evaluation
	Significance of Metrics
	Results

	Discussion
	Research Questions
	Impact and Value

	Conclusion
	Future Work
	Dimensions and Aggregation
	Usability

	Bibliography
	Appendix
	Data Structure Complete UML Class Diagram
	Pandas File Format Benchmarking Results
	Additional plots from repeated experiments

