
Bachelor Thesis

Capturing Pose Data for RoboCup
Humanoid Soccer using AprilTags and

YOLO

Florian Schleid

MIN-Faculty

Department of Informatics

florian.schleid@uni-hamburg.de

B.Sc. Computer Science

Matr.-No. 7306796

Thesis Supervisors: Prof. Dr. Jianwei Zhang, Niklas Fiedler

Advisor: Yannick Jonetzko

Submission date: 01.11.2022

i

Abstract

In the RoboCup Humanoid Soccer League autonomous robots from different teams com-

pete in soccer. The estimation of their position and orientation (their pose) on the field

as well as the pose of the other robots and the location of the ball is a crucial task for the

robots. To evaluate the algorithms that face these problems quantitatively, ground-truth

data is needed. To acquire such data easily, in this thesis a system that provides the pose

of each robot and the position of the ball is implemented and evaluated. To track the

pose of the robots AprilTags are used and YOLO is applied to track the ball. The images

in which the AprilTags and the balls are detected in are provided by a ceiling camera.

The results are published as ROS2 transforms.

Zusammenfassung

In der RoboCup Humanoid Soccer League spielen autonome Roboter verschiedener Teams

gegeneinander Fußball. Dabei ist das Ermittlen ihrer Position und Orientation (ihrer

Pose) auf dem Feld, sowie die der anderen Roboter und des Balls eine wichtige Aufgabe,

die von den Robotern gelöst werden muss. Um die Algorithmen, die dieses Problem

behandeln, quantitativ evaluieren zu können, werden ground-truth Daten benötigt. Um

solche Daten einfach erfassen zu können, wird in dieser Arbeit ein System implementiert

und evaluiert, das die Pose aller Roboter und die Position des Balles auf dem Feld be-

stimmt. Dabei werden AprilTags zum Tracken der Roboter und YOLO zum Tracken des

Balles verwendet. Die Bilder, mit deren Hilfe die AprilTags und der Ball getrackt werden,

stammen dabei von einer Deckenkamera. Die Ergebnisse werden als ROS2 transforms

für die Nutzung bereitgestellt.

ii

Contents iii

Contents

1 Introduction 1

2 Related Work 3

3 Fundamentals 7

3.1 Environment . 7

3.2 Camera . 7

3.2.1 The used ceiling camera . 8

3.2.2 Projection from 3D real world points to 2D points in the camera image 9

3.2.3 Camera calibration . 12

3.3 Intersection over Union (IoU) . 13

3.4 Precision-Recall curves and Average Precision (AP) 13

3.5 ROS2 . 15

3.6 YOLO . 16

3.7 AprilTags . 18

3.7.1 Encoding of an AprilTag . 19

3.7.2 Detection of an AprilTag . 19

3.7.3 Computation of the pose of an AprilTag 20

4 Implementation 23

4.1 Implementation of the AprilTag Detection System 23

4.2 Implementation of the Ball Detection System 25

4.2.1 Datasets . 25

4.2.2 Trained Models . 26

4.2.3 Calculation of the ball position in the real world 27

5 Evaluation 29

5.1 Evaluation of the AprilTag Detection System 29

5.1.1 Setup . 29

5.1.2 Position Accuracy . 30

5.1.3 Orientation Accuracy . 31

5.2 Evaluation of the Ball Detection System . 34

5.2.1 Precision of the trained models . 35

5.2.2 Accuracy of the System . 36

5.3 Performance of the System . 38

iv List of Tables

6 Conclusion 39

7 Future Work 41

Bibliography 43

Eidesstattliche Versicherung 47

List of Figures

3.1 System overview . 8

3.2 Rolling Shutter Effect . 9

3.3 Geometry of perspective projection . 10

3.4 Example of a distorted and an undistorted image 12

3.5 Camera calibration . 14

3.6 Transform results in rviz . 17

3.7 YOLO detection process . 18

4.1 Robot with mounted AprilTag . 24

4.2 AprilTag Mount . 24

4.3 Computation of the ball position in the real world 27

5.1 AprilTag evaluation setup for orientation accuracy 30

5.2 Results of AprilTag position evaluation for the 16h5 tag family 32

5.3 Results of AprilTag orientation evaluation for the 16h5 tag family 33

5.4 Evaluation of maximal AprilTag tilt angle for the 16h5 tag family 34

5.5 Outline of an alternative mount for the AprilTags. 35

5.6 Precision-Recall curves for all trained models 36

5.7 Precision-Recall curves for augmented ceiling camera model 37

5.8 Evaluation of the computed ball position 38

List of Tables

4.1 Overview over the datasets . 26

List of Tables v

4.2 Exemplary depiction of the data augmentation 26

5.1 Results from the evaluation of the AprilTag Detection System 32

5.2 Average precision at different IoU-thresholds 36

Acronyms

AI Artificial Intelligence

6DoF 6 Degrees of Freedom

IoU Intersection over Union

AP Average Precision

vi List of Tables

1

1 Introduction

In the RoboCup robots compete in different leagues and games against each other. The

objective of the RoboCup is to advance the research on robotics and Artificial Intelli-

gence (AI) by setting up a challenge in which multiple teams from across the world par-

ticipate. Soccer is the main game in the RoboCup and in the Humanoid League par-

ticipating robots are only allowed to use human-like sensors, like pressure sensors or

cameras. Furthermore, the robots must operate autonomously, so external sensors like a

ceiling camera are not allowed during a game. The humanoid league is again divided

into different sub-leagues which are determined by the size of the robots. Robots with a

height less than one meter are competing in the kid size class and robots above one meter

in the adult size class [1][34].

The introduced rules lead to the necessity that the robots must perform tasks like self-

localization and the detection of the pose of other robots and the ball just based on the

information they could acquire with their own sensors. There are already algorithms

that are able to solve these problems, but it is difficult to evaluate them since there is no

system to get ground-truth pose data of the robots and the balls easily. Without ground-

truth data it is not possible to determine the error of a system quantitatively since the

predicted pose cannot be compared with the actual ground-truth pose. By that it is dif-

ficult to quantify the improvements of different systems over time. This thesis should

provide a system that collects ground-truth pose data of the robots and the balls on the

field so that the performance of different algorithms can be quantitatively evaluated and

compared.

The final system should be able to determine the position and the orientation of every

robot and the position of the ball on the field in the real world. Furthermore, it should

be possible to identify the robots. The results should be published as ROS2 transforms

which makes them easily available for users.

The remainder of this work is structured as follows: In chapter 2 related work of other

RoboCup teams and techniques that could be used to track the robots or the ball are pre-

sented. The following chapter 3 discusses some fundamentals like a description of the

given setting and a brief introduction in the used techniques. After that the implemen-

tation of the system is presented in chapter 4. It is then evaluated in chapter 5 and a

conclusion is drawn in chapter 6. Finally, chapter 7 sketches the Future Work that could

improve the system.

2 1 Introduction

3

2 Related Work

There were already other teams participating in the RoboCup that implemented sys-

tems to provide ground truth data. RGB-D-cameras were used multiple times to provide

pointclouds in which the robots can be detected. Firstly Khandelwal et al. [20] use two

Microsoft Kinect RGB-D sensors and searches for clusters in the returned pointclouds

that belong to a robot on the field. By that they are able to detect the position of a robot

with an average error of 10.41 cm. They also perform ball detection with the additional

support of the known color of the ball but do not provide evaluation results for the ball

detection.

Secondly Pennisi et al. [28] use four Kinects and performs a similar process like Khan-

delwal et al. [20] to detect the position of the robots and the ball but also estimates the

orientation of the robot. This is done by estimating the normal of a plane that is tangent

to the surface of the pointcloud that represents the robot. Unfortunately, they only report

the evaluation results for the position of the robots which is a mean error of 15.5 cm.

Finally, Nezhad et al. [22] use six RGB-D cameras to track the position of the robots and

reaches an average error of 4.77 cm. One advantage of using RGB-D cameras is that no

additional hardware is needed to be added to the robots. By that the system can also be

used during real games in which additions to the robots are forbidden.

This is also the case for the system of Marchant et al. [21]. It uses a laser sensor and from

its measurements object candidates are computed and classified. The system can track

the position as well as the orientation of the robots and also provides evaluation data.

The average Mean Squared Error of the position across the field is 42.63 cm2 and the one

of the orientation is 0.649 rad2.

The approach presented by Niemüller et al. [24] instead uses reflective markers on the

tracked robot. These are then detected by fifteen infrared cameras. The system was de-

veloped by the company Vicon and enables the tracking of the markers with an accuracy

of less than a millimeter. The major downside of this system is the high cost and the

complexity of the hardware setup.

There is a number of other tracking systems that uses markers on the target that should

be tracked. The reflective markers of the Vicon system are passive markers since they do

not perform any active task and are instead recognized by other sensors. The Rhoban

Football Club implemented a tracking system with active markers [15]. They used a Vive

tracking system which uses photodiodes on the robot which detect if they were hit by a

laser. The lasers are emitted by two Lighthouses which send out infrared laser sweeps

horizontally and vertically. With the difference in time at which the photodiodes were hit

4 2 Related Work

by a laser it is possible to compute the pose of the robot. Since the photodiodes actively

detect the laser they are active markers [23].

Besides the tracking techniques that were already employed in tracking systems in the

RoboCup, there are also different techniques. One of them which again uses active mark-

ers consists of a number of LEDs which emit light in different frequencies and by that can

be identified and detected by a setup of three cameras. By that the position of each LED

can be computed and the identification of the LEDs makes it possible to trace each LED

and by that to predict the pose in case of an occlusion more accurately [40].

Another type of passive markers are AprilTags which enable the tracking of the complete

pose. They are similar to QR-Codes but encode less bits and can be put on the object of

interest. Through the known dimensions of the AprilTag it is possible to compute the 6

Degrees of Freedom (6DoF) of the tag from only one image from one camera perspective

and it is possible to differentiate between different AprilTags [25][41]. In contrast to the

so far used techniques in the RoboCup they are able to provide the position and also the

orientation quite accurately and the system is still quite cheap. That is because the April-

Tags can simply be printed out and only one camera is needed. Furthermore, they enable

the identification of the robots. Because of that they will be used in this thesis to track the

pose of the robots. As already mentioned, that comes with the downside that they need

to be added to the robot and by that the system cannot be used in real games.

There are also other systems which do not need any additional hardware on the tracked

objects. These can for instance estimate the pose by using a neural network with stereo

images as an input. While the position estimation is fairly accurate with deviations of a

few centimeters from the correct position the estimation of the orientation is quite poor

[27].

Since it is not possible to add an AprilTag to a ball, a neural network, in this case a YOLO

network, will be used to track the ball.

Unfortunately, there seems to be no team in the RoboCup that published evaluation data

for the tracking of the ball and the presented implementations to track the robots are al-

ready pretty old. Nonetheless there is data about the self-localization and ball detection

capabilities of algorithms that run on the robots used by the Bit-Bots team at the Univer-

sity of Hamburg. This gives a minimum for the precision requirements since the accuracy

of this system has to be better than the one of the systems used on the robots. If this is

not given this system cannot be used to evaluate the systems employed on the robots.

Hartfill implemented and evaluated Monte Carlo Localization for the robots with differ-

ent types of given input information [16]. Such input data are for example the field lines

or the goalposts. The method was evaluated in multiple scenarios with all combinations

of input information. Using the best combinations of input data, a median localization

error over all scenarios of around 0.08 m and a median orientation error of about 5 de-

grees could be achieved. It should be noted though that these measurements were made

in a simulation and not in the real world. Nonetheless these values can be seen as the

5

minimal requirements for the tracking accuracy of this thesis concerning the robots.

In the work of Fiedler et al. a new approach to track the ball position from the perspective

of a robot is evaluated. The approach reaches a mean detection error of 0.077 m while the

robot is standing still [13]. Therefore, this can be seen as the minimal requirement that

the implementation in this work has to outperform.

6 2 Related Work

7

3 Fundamentals

This chapter deals with the environment in which this work is implemented and will

introduce the fundamental concepts that are needed to follow this work. This includes

an overview over camera parameters and the relation of points in the image space and in

the cartesian space, so in the real world, as well as an introduction to ROS2, YOLO and

AprilTags. Furthermore, the IoU together with Precision-Recall curves and the AP will

be explained as basic metrics needed for the evaluation part.

3.1 Environment

Figure 3.1 shows an overview of the environment and the components of the system.

The base is a downsized version of a football field that is 5.48m long and 3.94m wide.

Above the field a ceiling camera is positioned. It looks down on the middle of the field

and the position and orientation of the camera with respect to the middle of the field is

known. This will be important to compute the positions of the balls on the field but also

to determine the pose of the robots on the field since the pose of the AprilTags will be

detected from the perspective of the camera. So, to infer where they are on the field it is

necessary to know the pose of the camera from the perspective of the field. On the field a

game can take place in which robots move across the field while an AprilTag is mounted

on their heads. Furthermore, one or multiple balls can be in the field. The ceiling camera

takes pictures of the field and sends them together with its camera info to a computer. The

camera info includes necessary parameters like the intrinsic camera parameters which

will be discussed in more detail in section 3.2. With this input information the computer

detects the AprilTags and the balls in the images and calculates their pose with respect to

the ceiling camera. These are published as ROS2 transforms which will be introduced in

section 3.5.

3.2 Camera

The ceiling camera is the only source of information during the acquisition of the ground-

truth data and returns 2D images in which the AprilTags and the balls are detected. By

that it is a crucial part of the system and will be introduced in the following.

8 3 Fundamentals

Figure 3.1: A schematic view of the system and the environment. Given is a 5.48m by
3.94m soccer field and a ceiling camera. The pose of the camera with respect
to the middle of the field is known. On the field balls and robots with attached
AprilTags can be placed which will be recorded by the camera. The camera
sends the images as well as the known camera information, like for example
the intrinsic camera parameters, to a computer which processes the informa-
tion. It detects the balls and the AprilTags on the robots and publishes their
poses as ROS2 transforms.

3.2.1 The used ceiling camera

The camera at hand is a Basler ace acA2040-35gc GigE-Camera. It can return 36 images

per second with a resolution of 3 MP [3]. Another feature of the camera is that it has a

global shutter instead of a rolling shutter. That means that it exposes the whole sensor

at once and not row by row how it is done with a rolling shutter. A rolling shutter can

lead to distortions if a moving object is recorded, since different parts of the sensors are

exposed at different times. Figure 3.2 shows an example image in which the distortions

introduced by a rolling shutter can be observed. This so-called rolling shutter effect could

be a problem concerning the AprilTag detection because the robots could move and the

detection of a distorted AprilTag is less accurate. For the ball detection it is also a problem

since the bounding box is less accurate if the ball is blurred in the image. Furthermore,

it could harm the detection capability of the neural network. Because of that the global

shutter is an advantage. A second effect that could arise is motion blur. This is connected

to the exposure time of the camera. The more an object moves during the exposure time,

the more it will be blurred. By that the faster the objects and the longer the exposure time,

the higher the risk that the objects are blurred. This is again a problem for the AprilTags

but also for the balls since it is harder to detect them when they are blurred [4]. In the im-

plementation an exposure time of 3 milliseconds is employed. This configuration results

in good input images in which the balls and the AprilTags can be detected.

3.2 Camera 9

Figure 3.2: An example image showing the rolling shutter effect [43].

3.2.2 Projection from 3D real world points to 2D points in the camera image

The system measures the position of the balls and the robots in the cartesian space. That

means that for instance the 3D-coordinates of the balls must be calculated from the 2D-

coordinates of the ball in the image. To discuss the transformation from 2D-coordinates

to 3D-coordinates the basic attributes of a camera should be discussed first.

A camera maps points from the 3D world on a 2D image plane. The way how this pro-

jection is calculated is described by the camera model. In computer vision perspective

projection is mostly used and the pinhole camera is the simplest camera model for per-

spective projection [19]. In figure 3.3 the geometry of perspective projection can be seen.

All three-dimensional points are located in the camera coordinate system. The z-axes of

it faces in the direction of the camera, the x-axes to the right and the y-axes to the bot-

tom of the camera. Points in the image, so two-dimensional points, are represented in

the image plane which is defined by the u- and the v-axes. These axes point in the same

directions as the x- and y-axes. The point where the z-axis intersects the image plane is

called principal point and the distance from the origin of the camera coordinate system to

the principal point is the focal length fc. The projection from a three-dimensional point

(Xc, Yc, Zc) in the camera coordinate system to a two-dimensional point on the image

plane (uc, vc) can now be described by:

uc =
fcXc

Zc

vc =
fcYc

Zc
.

(3.1)

10 3 Fundamentals

Figure 3.3: The geometry of perspective projection. The x, y and z-axes represent the
camera coordinate system in which the camera is positioned in the origin fac-
ing in the z direction. fc is the focal length of the camera. With fc a 3D point
(Xc, Yc, Zc) can be projected to the 2D point (uc, vc) in the image plane [19].

Since the images of a digital camera are divided into pixels the image coordinates should

be given in pixels as well. That means that the distance between two adjacent pixels

∆u and ∆v, for the u and v directions respectively, should be the unit length of the 2D-

coordinates. Furthermore, the origin of the image coordinate system should be in the top

left corner of the image which means that the results from equation 3.1 have to be shifted

as well. To achieve that let (cx, cy) be the coordinates of the principal point in the image

coordinate system. All together that results in this equation:

u =
fxXc

Zc
+ cx

v =
fyYc

Zc
+ cy,

(3.2)

where (u, v) are the 2D-coordinates in the digital image and fx and fy are calculated by

fx = fc

∆u
and fy = fc

∆v
.

Until now all three-dimensional points were located in the camera coordinate system

but it might be useful to represent them in a world coordinate system, in the context of

this thesis for example in the coordinate system of the field frame. To achieve this the

transformation from the point (Xw, Yw, Zw) in the world coordinate system to the point

(Xc, Yc, Zc) in the camera coordinate system can be described by:

Xc

Yc

Zc

= R

Xw

Yw

Zw

+ t, (3.3)

3.2 Camera 11

where R is a rotation matrix and t is a translation vector [19].

To describe the equations with matrices, homogeneous coordinates are needed. The ho-

mogeneous coordinate of a point in 3D space consists of four coordinate elements. More

precisely, the homogeneous coordinate [a, b, c, d]T with d 6= 0 is equal to the Euclidian

3D coordinate [a/d, b/d, c/d]T. Inversely, the Euclidian 3D coordinate [a, b, c]T equals

s[a, b, c, 1]T with s 6= 0 as a homogeneous coordinate. The same is true for Euclidian 2D

coordinates where [u, v]T is represented by s[u, v, 1]T, where s 6= 0.

Using homogeneous coordinates, the equation 3.2 can be represented as the following

matrix equation:

s

u

v

1

=

fx 0 cx 0

0 fy cy 0

0 0 1 0

Xc

Yc

Zc

1

. (3.4)

Furthermore, the projection from the camera coordinate system into the image plane and

the transformation from the world coordinate system in the camera coordinate system

can be describe by one matrix equation as well. This includes a skew parameter k as well:

s

u

v

1

= K

Xc

Yc

Zc

= K

[

R t

]

Xw

Yw

Zw

1

,

K =

fx k cx

0 fy cy

0 0 1

.

(3.5)

(Xw, Yw, Zw) is the coordinate of the 3D point in the world coordinate system and (Xc, Yc, Zc)

is the same point in the camera coordinate system. s(u, v, 1) is the homogeneous form of

the point in the image plane in pixels. The five parameters of K describe the projection of

a 3D point to the image plane and are called intrinsic parameters since they represent the

properties of the camera.
[

R t

]

represents the pose of the camera in the world coor-

dinate system and thus their parameters are called extrinsic parameters [19]. The matrix

that describes the complete projection from a 3D real world point to a 2D image point, so

the result of the matrix multiplication K

[

R t

]

, is called camera projection matrix [17].

Until now all equations describe the calculation of the coordinates in the image plane

from a 3D coordinate in the real world. For this work the inverse, so the calculation of

a 3D coordinate in the real world from a 2D coordinate in the image plane, is needed. If

the intrinsic and extrinsic parameters are known and a 2D coordinate in the image plane

is given, it is possible to determine a 3D vector that represents a ray that is casted from

the camera and on which the 3D point that was mapped on the 2D plane lies [19]. In this

thesis, the fact that the ball is located on the field plane, the position of which is known

12 3 Fundamentals

(a) (b)

Figure 3.4: (a) shows the original image taken by the camera which is distorted and (b)
shows the image after it was rectified.

with respect to the camera, makes it possible to determine the 3D coordinates of the ball

as discussed in section 4.2.3. The known parameters of the camera make it also possible

to determine the pose of an AprilTag. This is explained in section 3.7.3.

So far, the camera has been assumed to be an ideal pinhole camera. In reality that is not

the case and the lens of the camera introduces distortions in the image. These distortions

can again be described in a model, which introduces the parameters k1, k2, k3, k4, k5, k6, p1

and p2 where k1 to k6 are radial distortion coefficients and p1 and p2 are tangential distor-

tion coefficients. Knowing them together with the matrix K makes it possible to remove

the distortions in an image [19]. Figure 3.4 shows an exemplary distorted image and the

resulting undistorted image. The effect of the distortion can be seen best at the curved

field lines which are straight in the undistorted image. Moreover, it can be observed that

at the edge of the undistorted image information is lost. For example, the table at the

lower left corner in the distorted image is removed in the undistorted image through the

undistortion process.

3.2.3 Camera calibration

To work with the ceiling camera and to track the robots and the balls the introduced

camera parameters have to be determined first. This process is called camera calibration

and is discussed in the following. The key idea is to find point pairs of 3D points in the

real world and 2D points in the image and then to solve the equation 3.5 for the camera

parameters. More precise a checkerboard pattern with a known size of each square can

be recorded to provide the known 3D points in the real world and the corresponding 2D

points in the image. The points are located at the position where two black squares have

touching corners. The world coordinate system is defined to be aligned with the checker-

board pattern such that the x and y-axes are aligned with the lines of the grid and the

z-axis is perpendicular to the checkerboard. By that each of the 3D points on the checker-

board have a z-value of zero and the x and y-values are known through the known size of

3.3 Intersection over Union (IoU) 13

the squares. Figure 3.5 visualizes this. In the image the intersections of the checkerboard

grid can be detected and by that the 2D points in the image can be determined.

A checkerboard with j intersections results in a set of j point pairs. For an accurate cal-

ibration multiple images of the checkerboard with differing angles of the checkerboard

are needed. The number of images is assumed to be i. By that let (Xi,j, Yi,j, 0) be the j-th

3D point in the i-th image and (ui,j, vi,j) the corresponding 2D point. By that equation 3.5

can be written as

s

ui,j

vi,j

1

= K

[

Ri ti

]

Xi,j

Yi,j

0

1

, (3.6)

where
[

Ri ti

]

describes the transformation from the checkerboard coordinate system

to the camera coordinate system in the i-th image. K only includes camera specific pa-

rameters, so it does not change for the different images. Using this set of i · j equations

K, Ri and ti can be estimated using linear algebra as a first step. In a second step non-

linear optimization is performed with the linear solution from the first step as the initial

solution [19]. OpenCV offers functions which can be used for the calibration process. The

code used in this thesis can be found at [26].

3.3 Intersection over Union (IoU)

In the evaluation of the trained YOLO-models in section 5.2 the IoU is a basic but im-

portant metric so it will be introduced in the following. The IoU is a metric to describe

the overlap between two shapes in this case between bounding boxes. It describes the

similarity by setting the intersection between the two boxes with the union of the two

boxes into relationship.

Given two bounding boxes A and B this results in this equation:

IoU =
|A ∩ B|

|A ∪ B|
(3.7)

Since the equation results in a normalized value between zero and one that describes the

similarity, it is invariant to the scale of the problem. The higher the IoU the greater is

the overlap between the two boxes. If the IoU is one the two boxes are identical. If it is

zero the two boxes do not overlap at all. The IoU is also the base for other metrics like

Precision-Recall curves and by that also for the Average Precision (AP) [33].

3.4 Precision-Recall curves and Average Precision (AP)

Besides the IoU, Precision-Recall curves and the AP will be used to evaluate the trained

YOLO-models as well. Therefore, they will be introduced in the following. To begin with

14 3 Fundamentals

Figure 3.5: A visualization of the camera calibration process. A checkerboard with known
square sizes provides 3D points (Xi,j, Yi,j, 0) that correspond to 2D points
(ui,j, vi,j) in the image. The 3D points are located in the coordinate system
of the calibration checkerboard which can be seen as the world coordinate
system. By using a checkerboard, the intersection points of the checkerboard
grid can be found in the image and by that corresponding point pairs are de-
termined. Ri and ti describe the transformation between the world coordinate
system so the current pose of the checkerboard and the camera coordinate sys-
tem [19].

there are two important thresholds. First there is the confidence threshold. The network

predicts a confidence value for each bounding box [30]. If the network is used in the final

system this is the value that is used to decide if a predicted bounding box should count

as a detected ball or if it should not be considered. This decision is taken by compar-

ing the predicted confidence value with the preset confidence threshold. The higher the

confidence threshold, the higher is the precision of the network on the one hand but the

lower is the recall of the network on the other hand.

The second threshold is the IoU-threshold. This can only be used if the ground-truth

bounding box of a ball is known. Then the IoU between the ground-truth bounding box

and the predicted bounding box can be computed, and the IoU-threshold can be used to

decide if a ball counts as detected. By that it can be used to test how accurate the pre-

dicted bounding boxes are.

To evaluate the trained models, Precision-Recall curves will be used. For a given confi-

dence and IoU-threshold one recall and one precision value can be computed from the

predictions of the model. A Precision-Recall curve results from calculating precision-

recall pairs for many confidence thresholds. The higher the threshold, the higher is the

precision but the lower is the recall as well. That results in curves that resemble the ones

3.5 ROS2 15

you can see in figure 5.6 [10].

One Precision-Recall curve shows how good the model is at recognizing the balls but not

how accurate the bounding boxes and by that the predicted locations are. For that the

IoU-threshold has to be considered and by computing Precision-Recall curves for differ-

ent IoU-thresholds for the same model can give an idea on how accurate the localization

is.

Another important metric is the AP. It is the area under the Precision-Recall curve and

by that results in a value between zero and one and summarizes the classification perfor-

mance in a single number [18].

3.5 ROS2

In this work ROS2 is used to exchange information between different parts of the system

like the ceiling camera, the AprilTag Detection System and the Ball Detection System.

Furthermore, the tf2 library which is part of ROS2 is used for working with positions

and orientations in space. This section describes the basic concepts of ROS2 and briefly

introduces tf2.

ROS2 is the successor of ROS which stands for Robot Operating System. By providing

software libraries and tools it enables a user to build robot applications [35]. The ba-

sic idea is that different ROS processes can exchange data through a publish/subscribe

mechanism. The ROS2 system is based on the ROS graph. This graph consists of nodes,

messages and topics. A node can be programed by a user using a ROS client library. It

can publish data to a topic but also subscribe to other topics to get data. A camera for

example could publish data on an “image-topic” and a node which is performing face

recognition could subscribe to the “image-topic” and detect faces on the received im-

ages. After that the detections could be published again on a “result-topic”. The data

is published and received as ROS messages which gives the data a data type [37]. The

AprilTag detection system publishes for instance a transform message for each detection.

In listing 3.1 it is shown that the message consists of a header message with information

about the time at which the message was published and the frame the data is associated

with, in this case the ceiling camera frame. Additionally, the frame id of the AprilTag is

provided and finally the transform, which is made up of the translation and the rotation,

is given.

To work with coordinates and orientations in the three-dimensional space tf2 can be used.

For that coordinate frames are created to corresponding positions and orientations in the

real world. For example, there is a frame for the ceiling camera and a frame for the mid-

dle of the field. A transform between them defines where they are in relation to each

other. If there would be another coordinate frame for example representing a ball with

a transform which sets it into relation with the ceiling camera, tf2 can be used as well to

16 3 Fundamentals

header:

stamp:

sec: 1665059995

nanosec: 23372116

frame_id: ceiling_cam

child_frame_id: myTag0

transform:

translation:

x: 0.48403332895963036

y: -0.6409454974689782

z: 2.506933951184234

rotation:

x: 0.5980276081829395

y: -0.4412318311274973

z: -0.4611595816128911

w: -0.4847775689298045

Listing 3.1: An exemplary transform message that is published by the AprilTag Detection
System and represents the pose of a detected AprilTag.

get the transform between the field middle and the ball. These relations can be visual-

ized using the tool rviz [36][38]. Figure 3.6 shows an example from rviz which shows the

different frames.

Since this thesis aims to track the pose of the playing robots and the position of the ball

tf2 will be used to make the results available. The tracked positions and orientations will

be published as transforms and a user of the system can subscribe to the tf topic and use

the results.

3.6 YOLO

Since fiducial markers are not easily attachable to balls, a different tracking approach

is needed. Neural networks can perform object detection and localization on images.

YOLO is such a network architecture and used to determine the position of balls in the

images given by the ceiling camera. This section will describe how YOLO works.

YOLO stands for “You only look once” which is already summarizing its key feature,

namely that it is a single shot detector. That means that it only processes the input image

once and immediately returns the final result. This makes it fast. Figure 3.7 depicts the

detection process. It works by dividing the input image into a grid of a fixed size. For

each grid cell a preset number of bounding boxes can then be predicted together with

a class prediction for this grid cell and a confidence value for each bounding box. By

that the network output can have a constant size for every input image. The set of pre-

dicted bounding boxes might include a number of boxes that belong to the same object.

From these only the best ones are selected with the non-maximal suppression algorithm.

It works by selecting the bounding box with the highest confidence value as a final de-

3.6 YOLO 17

Figure 3.6: On the left the transforms that correspond to the detected poses are shown
together with the coordinate frame of the ceiling camera and of the field center.
On the right a part of the corresponding input image from the perspective of
the ceiling camera is depicted.

tection and removes all bounding boxes that have an IoU with the selected box that is

greater than a preset threshold. Then from the remaining bounding boxes the one with

the highest confidence is selected again, and similar bounding boxes are removed. This

process is repeated until all bounding boxes are removed or considered as final bounding

boxes [30][39].

The base version of YOLO was improved several times. YOLOv2 introduces besides

to other improvements the concept of anchor boxes. Instead of directly predicting the

coordinates of the bounding boxes the network predicts offsets from predefined anchor

boxes. This is simpler for the network and makes it easier for it to learn. Furthermore, the

class is not anymore predicted for a grid cell but instead for each anchor box a class and

an objectness is predicted. The objectness is a prediction of the IoU of the ground-truth

and the predicted bounding box. By that it is a confidence value for the accuracy. Using

anchor boxes can increase the recall but the anchor boxes have to be determined prior to

training the network. This can be done by running the k-means clustering algorithm on

the given bounding boxes in the training dataset [31].

In this thesis YOLOv3 is used. It implements some minor improvements over YOLOv2.

For instance, the network is now larger than the YOLOv2 network but also more accurate

and still fast. Furthermore, the capability to detect small objects was improved. This is

especially important in this context since the balls are quite small objects in the images

[32].

18 3 Fundamentals

Figure 3.7: An overview about the YOLO system. An input image gets divided into an S
by S grid. For each grid cell a number of bounding boxes with a corresponding
confidence prediction and the class is predicted. The set of bounding boxes is
then reduced to the final detections [30].

3.7 AprilTags

An additional challenge when it comes to the detection of the robots is that besides their

position on the field, their orientation should be tracked as well. This is the reason why

the YOLO-models are not trained to detect the robots as well. If only the position should

be tracked the training process of a neural network would be similar to the training to

just detect balls. A dataset would be created with bounding boxes for each robot and

each ball on an image. The network would have to differentiate now between robots and

balls and predict their classes correctly but this should not be a big problem. But to detect

the orientation of the robots as well it would be necessary to divide the 360 degrees in

which the robot could face in subclasses, for instance in four classes each covering 90

degrees which then could represent the robot facing up, down, to the left and to the right

on the image. The problem with this is that for each class training data would have to

be provided so the process of creating a dataset would be much more time consuming

and even then, the result would be quite poor because only four orientations could be

distinguished. So, even more classes would be needed which means even more work to

create the dataset. Bergter already implemented that approach with eight classes for the

different orientations. By that the results could deviate up to 45 degrees from the correct

orientation and that assumes that the network always classifies the orientations correctly

which was not the case [6].

AprilTags on the other hand are much more accurate and much easier to use. The major

downside of them is that they cannot be used in a normal game and that they change

3.7 AprilTags 19

the appearance of the robot which might hurt the robot recognition capabilities of other

robots vision system. Nonetheless, their advantages are superior and they will be used

in this work. Because of that they will be introduced in this section.

3.7.1 Encoding of an AprilTag

An AprilTag is a passive marker. From the outer appearance it is similar to a QR-Code

but it encodes only a few bits. For example, there are pregenerated tag families available

with 16, 25 and 36 bits. In figure 4.1 for instance, you can see an AprilTag of the tag family

16h5. These tag families are generated in a way that there are as many different tags as

possible while the detection rate stays high and the inter-tag confusion rate stays low.

For that the number of bit errors that can be detected and corrected should be maximized

so the Hamming distance between the codes should be high. This of course results in a

trade-off between these goals because for example a higher Hamming distance results in

a lower number of different codes. Using longer codes permits more different tags and

a higher Hamming distance between them but it makes the detection of the tag more

difficult since the individual squares, which represent the bits, get smaller if the edge

length of the tag is kept the same.

To generate AprilTags with a specific size and Hamming distance a method which is

based on lexicodes is used. Lexicodes guarantee a minimum Hamming distance between

all codes by testing the Hamming distance between a possible code and all codes that

were already added to the tag family. If the Hamming distance is at least the preset

threshold the code is added to the tag family. For the generation of the AprilTags it is

necessary that the code that results from rotating an AprilTag also has the minimum

Hamming distance to all other codes in the tag family. Furthermore, the code should

result in a sufficient complex AprilTag so that its pattern does not occur accidently in the

real world. As a measure of complexity, the number of white or black rectangles that are

required to create the tag is used. The complexity of each tag in the family must be at

least a preset threshold [25].

3.7.2 Detection of an AprilTag

To compute the pose of an AprilTag in an image the tag first must be detected and iden-

tified. This process consists of multiple steps. The first step is to binarize the grayscale

input image with an adaptive thresholding approach. Firstly, the image is divided into

tiles. These have a size of four-by-four pixels and in each of those tiles the minimum

and maximum value is determined. Secondly in a neighborhood of three-by-three tiles

around each tile the extrema (max and min values) are computed. These are then used to

derive a threshold (min + max)/2 which is used to binarize each pixel in the tile. To de-

tect a tag only the lines which form the tag are needed and these are characterized by the

light and dark pixels located next to each other. By that, regions without a great contrast

can be ignored which can save computation time in the upcoming processing steps [41].

20 3 Fundamentals

The next step is to find edges which could belong to the AprilTag. This is done by first

segmenting black and white regions in the image with the union-find algorithm and then

computing the pixels between adjacent black and white regions. These then form a clus-

ter which represents a boundary between the two regions.

Now four-sided shapes, or quads are fitted to each cluster. These fitted quads are then

prefiltered and poor fitting quads get rejected. The remaining quads are then forwarded

to the decoding step which compares the quads with AprilTags from the tag family.

It is furthermore possible to use the original image for edge refinement on the candidate

quads because the binarization can lead to noise in the thresholded image and by that

may lead to poorer pose estimation results. It can also advance the decoding of small or

far away tags [41].

3.7.3 Computation of the pose of an AprilTag

Finally, the poses of the detected AprilTags have to be computed. More precisely a ro-

tation matrix and a translation vector have to be found that describe the transformation

from the camera coordinate frame to the AprilTag coordinate frame. To compute this

transformation, homography matrices will be needed. A 3x3 homography matrix can be

used to project homogeneous 2D coordinates from the AprilTag coordinate system to the

2D image coordinate system. That means that with the homography matrix a distinct

point in the camera image like the center of the AprilTag can be transformed to the point

at the center of the AprilTag in the AprilTags coordinate system. To compute the ho-

mography matrix four corresponding point pairs in both coordinate systems are needed.

Since the AprilTags were already detected in the camera image there are already known

points like the detected corners of the AprilTag in the image. The coordinates of the cor-

ners in the AprilTag coordinate system are also known because the coordinate system of

the AprilTag originate in the center of the tag and the edges of the tag are located one

unit in the x and y direction per definition. With the four corresponding points the Di-

rect Linear Transform (DLT) algorithm can be used to determine the homography matrix

[17][25].

Besides the described way to calculate the homography matrix the following equation

holds as well:

H = sPE. (3.8)

H is the 3x3 homography matrix, P is the 3x4 camera projection matrix that is already

known, E is a truncated 4x3 extrinsics matrix that describes the transform from the April-

Tag to the camera and which should be computed and s is an unknown scale factor. Writ-

3.7 AprilTags 21

ten out the equation is equal to:

h00 h01 h02

h10 h11 h12

h20 h21 h22

= s

1/ fx 0 0 0

0 1/ fy 0 0

0 0 1 0

R00 R01 Tx

R10 R11 Ty

R20 R21 Tz

0 0 1

. (3.9)

where hij are the components of the homography matrix, Rij represent the rotation com-

ponents of P and Tk the translation components. This equation can be split up in a set of

simultaneous equations for each hij:

h00 = sR00/ fx

h01 = sR01/ fx

h02 = sTx/ fx

h10 = sR10/ fy

...

(3.10)

Through the unit magnitude of each column of a rotation matrix and the knowledge

that the AprilTag should be in front of the camera s can be constrained and the system

of equations can be solved. This results in the truncated 4x3 extrinsics matrix in which

the third column of the rotation matrix was removed. It can be recovered with the two

known columns since they all have to be orthonormal. Together this is the transform

which describes the pose of the AprilTag in relation to the ceiling camera [25].

22 3 Fundamentals

23

4 Implementation

After introducing the employed methods in the Fundamentals (3) this chapter describes

how these techniques were used to implement a system that is able to fulfill the goals

that were stated in chapter 1. The Implementation of the AprilTag Detection System is

depicted first and after that the Ball Detection System is discussed.

4.1 Implementation of the AprilTag Detection System

The AprilTag Detection System is used to track the pose of each robot. For that a custom

3D-printed attachment with an AprilTag is added to the head of the robot as it is shown in

figure 4.1. The model of the mount can be seen in figure 4.2. The transformation between

the middle of the platform of the mount and the head of the robot is calculated to enable

transformations between every point of the robot to the published pose of the AprilTag.

This is especially important since the robot moves the head with the AprilTag and by

that the detected orientation is the direction the robot is looking at but not the direction

its feet are facing at. The transformation was calculated with the provided 3D-model of

the Wolfgang-OP robot which is available at [8] and the 3D-model of the self-designed

mount which can be found at 1. The Wolfgang-Op robot is the used robot of the Hamburg

Bit-Bots RoboCup team [9].

The AprilTag on the mount is recorded on the images of the ceiling camera. At 2 and 3

the employed code to connect to the ceiling camera can be found. The images of the ceil-

ing camera are originally distorted and get undistorted. The undistorted camera image

together with the camera projection matrix are published on a ROS2 node. By that they

are available to the AprilTag Detector that is running on a ROS2 node as well. This node

subscribes to the previously published image and projection matrix topic. It calculates

the poses of all the AprilTags in the image and publishes the pose and the ID of each

detection as an array on an AprilTag detection topic. Furthermore, the detections are

published on the tf-topic as transforms. By that they are available for users of the system

since they can subscribe to these topics. The used code for the AprilTag Detection System

originates from 4 and 5.

Different AprilTag families can potentially be used. In this implementation the 16h5 tag

1https://github.com/Flo0620/Tracking_System_Balls_Robots
2https://github.com/bit-bots/bitbots_meta
3https://github.com/basler/pylon-ros-camera/tree/galactic
4https://github.com/AprilRobotics
5https://github.com/Adlink-ROS/apriltag_ros

https://github.com/Flo0620/Tracking_System_Balls_Robots
https://github.com/bit-bots/bitbots_meta
https://github.com/basler/pylon-ros-camera/tree/galactic
https://github.com/AprilRobotics
https://github.com/Adlink-ROS/apriltag_ros

24 4 Implementation

Figure 4.1: A robot with the mounted AprilTag. The AprilTag is part of the 16h5 tag
family.

Figure 4.2: The CAD model of the mount that is added to the head of the robots.

family was employed first since they are the smallest AprilTags with a size of only four

by four bits. That means that each individual bit of the AprilTag can be larger while

keeping the whole AprilTag as small as possible. This seemed to be desirable because it

effects the robot less if the mount is smaller and it makes it easier to detect the AprilTag if

the bits are larger. Nonetheless the performance evaluation in section 5.3 showed that the

system is significantly faster with tags from the 25h9 family. This will be discussed closer

in chapter 5. Furthermore, a potential risk with the 16h5 tag family is that it could lead

to more false detections since it is more likely that similar patterns can be found in the

environment than with a larger tag family. This could actually be observed sometimes in

the implementation while using a 16h5 tag.

The used AprilTag including the white boundary around the tag had an edge length of

17.6cm and by that have the same edge length as the mount.

4.2 Implementation of the Ball Detection System 25

4.2 Implementation of the Ball Detection System

This section describes how YOLOv3 networks were trained to locate balls in the images

which are provided by the ceiling camera. Firstly, the used datasets are described and

secondly the trained models are introduced. The used implementation of YOLOv3 can

be found at 6.

4.2.1 Datasets

There are three different datasets that were used for training and a fourth one for testing,

which will be introduced in the following. Table 4.1 shows an overview about them. The

first one is a part of the TORSO-dataset. The TORSO-dataset was developed by the Bit-

Bots Team at the University of Hamburg for the RoboCup Humanoid Soccer domain. It

consists of images from the real world and images from a simulation. These images are

annotated and include balls, goalposts, robots, lines, field edges and three types of line

intersections. Most of the images are recorded from the perspective of the robots [7].

From this variety of labeled images only the ones which were recorded in reality and

which contain at least one ball are used. The decision to not include any images without

balls will be discussed in chapter 5. All in all, around 4500 images from the TORSO-

dataset were used.

The second dataset used for training contains 1600 manually labeled images which were

recorded by the ceiling camera. The labeling was done with the ImageTagger which is a

tool developed by the Hamburg Bit-Bots [12]. During the recording of 1000 of the 1600

images eight balls of different size and color together with a collection of other objects

were moved across the field. The remaining 600 images only contain the objects and no

balls. These 600 images were added after getting a high number of false positive detec-

tions in the first trained models.

This second dataset is the base for the third dataset which is created by applying data

augmentation on the second dataset. Since the ceiling camera records the images from

above the field they can be mirrored horizontally and vertically and still remain realistic

images that can be used for training. Furthermore, a higher variety of illuminance should

be introduced by brightening and darkening each image by a constant. Applying each of

these augmentations to one image results in twelve images (see figure 4.2). This results

in more than 19000 images in the third dataset.

For the purpose of testing the trained models a testing dataset with 200 images was cre-

ated. It is also recorded from the perspective of the ceiling camera and includes one

before unseen ball as well as different light levels and several objects which could lead to

false positives.

6https://github.com/eriklindernoren/PyTorch-YOLOv3

https://github.com/eriklindernoren/PyTorch-YOLOv3

26 4 Implementation

Dataset Source #Images #Balls
TORSO-based
dataset

Images with balls from the
TORSO-dataset [7] from the perspective
of robots

4500 5200

Ceiling camera
dataset

Images recorded from the ceiling camera 1600 7700

Augmented
ceiling camera
dataset

Images from ceiling camera dataset
mirrored with changed illuminance

19200 92400

Test dataset Images from ceiling camera with varying
light levels

200 1400

Table 4.1: An overview over the used datasets.

Transformation

Original Mirrored
horizontally

Mirrored
vertically

Mirrored
horizontally

and vertically

L
ig

h
ti

n
g Original

Darkened

Brightened
Table 4.2: The augmented images created from one original image (top-left).

4.2.2 Trained Models

Using the described datasets four different YOLOv3-models were trained. One on the

ceiling camera dataset, one on the TORSO-dataset, one was pretrained on the TORSO-

dataset and after that trained on the ceiling camera dataset and the fourth one was trained

on the augmented ceiling camera dataset. All of them used weights that were pretrained

on the ImageNet dataset. More precisely the Darknet53 weights were taken as a starting

point [29]. The first three datasets were trained for 1000 epochs. The fourth one, so the

one on the augmented data, was only trained for 200 epochs since the training took a

lot more time due to the increased number of images. In each training 90% of the im-

ages were used for training and 10% for validation to recognize possible overfitting. The

learning rate was set to 0.001.

4.2 Implementation of the Ball Detection System 27

To determine the sizes of the anchor boxes the k-means clustering algorithm was applied

on the TORSO-dataset and on the ceiling camera dataset [2]. This results in two sets of

anchor boxes that were used during the training with the specific dataset.

4.2.3 Calculation of the ball position in the real world

The trained models can detect the balls in the images provided by the ceiling camera.

They return an array with all the detections for one image. Each detection consists of the

2D image coordinates of the predicted bounding box and the confidence value for the

prediction. Now the center of each bounding box is computed and this 2D point is the

one that should be mapped to a 3D point that represents the position of the ball on the

field. This process is depicted in figure 4.3. Using the camera projection matrix, which

was introduced in section 3.2, a ray can be casted in the three-dimensional space in the

direction of the 3D point that corresponds to the 2D point in the image. In other words

that means that this ray is a vector that points from the camera towards the ball on the

field. Now the distance of the ball from the camera has to be calculated since that would

result together with the vector in the final position of the ball. To calculate the distance

it is assumed that the ball is laying on the field. The field can be described by a plane

and the position of this plane with respect to the ceiling camera is known. Together the

intersection of the ray with the plane is the point where the ball is located on the field.

But since the 2D point was the center of the bounding box the ray should run through

the center of the ball as well. That means it does not intersect with the field plane exactly

where the ball is located. To fix this the plane is shifted up by the ball radius. Now the

3D point at the intersection between the ray and the plane is the center of the ball.

Figure 4.3: The computation of the ball position in the real world. With the camera pro-
jection matrix a ray is casted in the direction of the depicted ball. The center of
the ball is located at the intersection of the ray and the plane of the field that
is shifted up by the radius of the ball.

28 4 Implementation

29

5 Evaluation

Now that the system to detect the AprilTags is implemented and the YOLO models are

trained they need to be evaluated. By that it can be decided which trained model and

which tag family should be used in the final implementation. Furthermore, the evalua-

tion leads to results about the accuracy of the system and about limitations. Moreover,

the performance of the system is evaluated to see if the implementation is fast enough

to be used. Firstly, the AprilTag Detection System will be examined. Secondly, the Ball

Detection System and finally the performance analysis is discussed.

5.1 Evaluation of the AprilTag Detection System

To evaluate the AprilTag Detection System an AprilTag will be placed in a known pose

and then the pose that the system detects is compared with the known pose. There are

two experiments to evaluate the AprilTag Detection System. In the first one the localiza-

tion accuracy should be evaluated by detecting the tag at different positions with fixed

orientations and in the second one the orientation accuracy is evaluated by alternating

the orientation of the AprilTag. Since in the performance evaluation in section 5.3 the

25h9 tags were significantly faster than the so far used 16h5 tags the evaluations are done

for both tag families. The results are summarized in table 5.1

5.1.1 Setup

The AprilTags had a side length of 17.6 cm, since it seemed to be a good size at which the

tags are well recognizable in the camera images while the mount is not too big. Nonethe-

less there were no experiments with other sizes so it is possible that smaller tags would

be sufficient. For the localization experiment one AprilTag is placed at 15 different po-

sitions across the field which were measured by hand. These positions are displayed in

figure 5.2.

In the second experiment the AprilTag was mounted on a tripod with a similar height

to that of a robot and the angle of the tripod was altered stepwise (see figure 5.1). In the

region where the AprilTag could not be detected consistently anymore a smaller step size

was used. This was done once in the middle of the field and once at the edge of the field

in front of a goal. In the second case the AprilTag was also tilted away from the ceiling

camera. By that the maximum angle at which a robot can look at the bottom and at which

30 5 Evaluation

Figure 5.1: The setup to evaluate the orientation accuracy of the AprilTag Detection Sys-
tem. The AprilTag is mounted on a tripod in the middle of the field and tilted
away from the ceiling camera. In this case it is tilted away 60 degrees. The
image is taken from the ceiling camera.

it is still possible to detect the AprilTag can be found.

5.1.2 Position Accuracy

In figure 5.2 the results from the first experiment with the 16h5 tags are displayed. At

each of the 15 locations the deviation of the detected location from the location that was

measured by hand is given. It shows that the AprilTags that were closer to the edge of the

camera image were detected with a larger error. This could be explained by the fact that

the recorded images are distorted in the beginning and after that undistorted. Because of

that the regions in the middle of the image have a higher resolution whereas some pixels

at the edge of the image were not even in the originally recorded image but derived from

their neighbors during the undistortion process. By that there are less details at the edge

of the image [14]. Furthermore, the AprilTags at the edges of the field are further away

from the ceiling camera which means that they are smaller and less detailed in the im-

age. These reasons could both explain the worse localization accuracy at the edges of the

field. Another factor that could lead to a higher error could be inaccuracies in the camera

calibration. This is not unlikely since multiple calibrations of the camera deviated in their

results and by that an error in the used calibration is assumable.

Nonetheless it must be taken into account that the measurements by hand were taken

with the middle of the field as the reference point. By that it is likely that the error in

these measurements also grow the further away from the field middle the AprilTag is

located. All in all, the mean euclidian distance to the measured positions is 5.36 cm for

5.1 Evaluation of the AprilTag Detection System 31

the 16h5 tag. This includes the error in the z direction although the z direction is less

important since the 2D position of the robot on the field is mainly searched for. The self-

localization algorithm for the robot presented in [16] also only returns a 2D position on

the field. If only the x and y direction is considered the mean error reduces to 3.83 cm.

Since the 25h9 tags were much faster in the performance evaluation in section 5.3 the

same evaluation was done for them as well. The reason why the 16h5 tag family was

used first was that the size of each individual bit is larger for them than for a tag from

the 25h9 family with the same tag width. If this really effects the detection accuracy in

the given environment will be evaluated now. The measurement errors at the same 15

positions are similar to the errors of the 16h5 family. The mean deviation including the z

direction is 4.01 cm and by that even a bit better. Taking only the x and y direction into

account results in an error of 2.53 cm which is also even more accurate than the result

of the 16h5 tag family. The distribution of the errors across the field is similar. Again

the highest deviations were at the edges of the field. A reason why the precision of the

25h9 tags is not worse than the one of the 16h5 tags might be that the distances from the

camera are small enough that the individual bits of the tags of both tag families have a

good resolution in the image. The effect would than only start to make a difference at

further distances. Another advantage of the 25h9 tag family is that they are more robust

against false positives since they are more complex than the 16h5 tags. By that seldomly

occurring false positives that could be observed using the 16h5 family do not occur any-

more.

As stated in chapter 2 the reached median error for the self-localization of a robot in [16]

is 8 cm. It has to be mentioned that this evaluation was done in the simulation and by

that there is no additional error induced by the measurement of ground-truth data. The

evaluation in the thesis was done in the real world and the measurements which are

used as ground-truth data were made by hand which leads to additional inaccuracies.

Furthermore the 8 cm achieved in [16] is the median which is better than the mean since

the distribution of the individual deviations is positively skewed towards larger errors.

Nonetheless the presented implementation of this thesis reaches a better localization ac-

curacy for both evaluated tag families and the 25h9 AprilTag reached the best accuracy

with a mean euclidian error of 2.53 cm for the 2D position on the field. This is also better

than the accuracies reached by the other ground truth providing tracking system pre-

sented in chapter 2 except for the Vicon system and the Vive system. Even though no

evaluation data is presented for the application in tracking systems for the RoboCup the

used Vicon system had a reported accuracy of below one millimeter [24] and the Vive

system is capable to reach accuracies of a few millimeters [5].

5.1.3 Orientation Accuracy

After the evaluation of the position detection the accuracy of the detected orientation and

especially the steepest angle at which the robot can look down while the AprilTag is still

32 5 Evaluation

Tag family Position
accuracy in

cm

Position
accuracy

without the
z-axis in cm

Orientation
accuracy in

degrees

Detection rate
in detections
per seconds

16h5 5.36 3.83 2.8 4.6
25h9 4.01 2.53 3.28 9.85

Table 5.1: The evaluation results of the AprilTag Detection System for the two tag fami-
lies.

Figure 5.2: Average distance in meters of the detected 3D position to the real 3D position
of a 16h5 AprilTag at each of the 15 positions on the field.

detected should be determined. Again, the evaluation is done for the 16h5 tag family as

well as for the 25h9 tag family. The 16h5 family is evaluated first.

In the evaluation of the orientation accuracy the axis-angle representation is used. The

representation consists of a unit vector e and an angle θ. The vector acts as an axis around

which the detected pose needs to be rotated by the angle θ to result in the correct orien-

tation. By that the error of the detected orientation can be expressed with only the angle

θ [42].

For a 16h5 AprilTag in the middle of the field, so below the ceiling camera, it was possi-

ble to tilt the AprilTag up to 60 degrees away from the camera until the AprilTag could

not be detected consistently anymore and until the error in the orientation prediction

as well as in the localization increased dramatically. Figure 5.3 and figure 5.4 show the

error increase after 61.5 degrees but at this angle the AprilTag was not detected consis-

tently anymore and it took multiple camera images to detect the AprilTag on one of them.

Figure 5.3 also shows that if the AprilTag is detected at an angle that is smaller than 60

5.1 Evaluation of the AprilTag Detection System 33

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70

D
e

v
ia
�o

n
 f

ro
m

 m
e

a
su

re
d

 o
ri

e
n

ta
�o

n
 i

n
 d

e
g

re
e

s

Tilt angle of the AprilTag in degrees

Figure 5.3: The error of the detected orientation from the hand measured orientation de-
pending on the tilt angle of an AprilTag of the 16h5 family. The AprilTag was
placed in the middle of the field and tilted away from the ceiling camera.

degrees the detected orientation differs only by a few degrees from the hand measured

one. The mean deviation for the tilt angles up to 60 degrees was 2.8 degrees.

At the edge of the field the 16h5 AprilTag could only be detected up to an angle of 30

degrees. That means that if the robot faces to the goal and looks down in a steeper angle,

for example to see the ball right in front of him to shoot a goal, the AprilTag cannot be de-

tected and by that the robot not tracked anymore. This is a major problem of the current

implementation. It could be addressed by adding more AprilTags in different angles to

the robot. One way of doing this could be a different mount with two AprilTags. Instead

of the flat mount that is currently used a triangular hat with an AprilTag facing to the

front and one AprilTag facing to the back would enable the camera to see at least one of

the two tags independent of the angle at which the robot looks down. An outline of such

a head is presented in figure 5.5.

For the 25h9 AprilTags the results are again much the same. The maximum tilt angle in

the middle is 60 degrees as well and for angles above 62.5 degrees the AprilTag is not

detected anymore. At the edge of the field the maximum tilt angle is 30 degrees as well.

Moreover, the error of the detected orientation in the middle of the field for a tilt angle

up to 60 degrees is with 3.28 degrees quite similar. This is also better than the minimal

requirement defined in chapter 2. This requirement was 5 degrees which originated from

the evaluation of the self-localization of a robot in [16]. It has to be taken into account that

the 5 degrees again are the median error in the orientation prediction and that the mean

error is higher. Furthermore, the predicted orientation in [16] was only the direction the

robot is facing at so the yaw angle of the robot. This implementation returns the full 6DoF

pose of the AprilTag and by that the pose of the head of the robot. This leads to a higher

error since the deviations of roll, pitch and yaw are taken into account but also returns

34 5 Evaluation

0,01

0,1

1

10

0 10 20 30 40 50 60 70

D
e

v
ia
�o

n
 f

ro
m

 M
e

a
su

re
m

e
n

t
in

 m

Tilt angle of the AprilTag

Figure 5.4: The deviation from the hand measured position depending on the tilt angle of
the AprilTag of the 16h5 tag family. The AprilTag was placed in the middle of
the field and tilted away from the ceiling camera.

more information about the robot for example if it is leaning in a certain direction which

can be determined with the roll and pitch angles.

The result is also significantly better than the one in [21] where evaluation data con-

cerning the orientation accuracy was provided. Their tracking system achieved a Mean

Squared Error of 0.649 rad2. The Mean Squared Error for the 25h9 AprilTag in this system

is 0.0035 rad2. Nonetheless it has to be taken into account that [21] measured the orienta-

tion accuracy at multiple positions across the field while the orientation accuracy in this

thesis was only measured in the middle of the field. In the middle of the field [21] reaches

a Mean Squared Error of 0.012 rad2 and at their best position a Mean Squared Error of

0.0032 which is even a bit better than the result in this thesis. The deviations in [21] are

that high since they only used one laser sensor at the edge of the field and the closer the

measurement positions are to the laser the higher is the accuracy. With multiple sensors

around the field the accuracy could be similar to the one of this system.

5.2 Evaluation of the Ball Detection System

In the first part of the evaluation the best one from the four trained models is chosen

by computing Precision-Recall curves and AP values for them. These metrics were in-

troduced in section 3.4. After the best model was determined the final accuracy of the

localization of balls will be tested by running the final system against measurements that

were made by hand.

5.2 Evaluation of the Ball Detection System 35

Figure 5.5: An outline of an alternative mount for the AprilTags. By the angled position-
ing on the head of the robot at least one of the AprilTags can be detected even
if the robot looks down since the AprilTag that is facing backwards is then still
flat enough that it can be detected in the camera image.

5.2.1 Precision of the trained models

The models were evaluated on the test dataset described in section 4.2.1. An IoU-threshold

of 0.4 was used and the resulting four Precision-Recall curves can be seen in figure 5.6.

The model that was trained on the TORSO dataset performed quite poor only reaching

a recall of 0.6 and also quite low precision values and that already at a relatively low

IoU-threshold. What is surprising is the comparison between the model that was trained

only on the ceiling camera dataset and the one that was pretrained on TORSO and after

that on the ceiling camera dataset. It seems like the pretraining on the TORSO dataset

actually harmed the performance of the model since the AP of the ceiling camera model

that was not pretrained is higher as evident in table 5.2.

One reason for the poor performance of the models that were trained on TORSO could

be that the balls on the TORSO images were recorded from the perspective of a robot,

whereas the images in the test dataset were recorded from the ceiling camera. Because of

that the balls in the TORSO images were bigger since they were closer to the camera most

of the time. Another reason could be the decision that only images containing balls were

used from the TORSO dataset. This could lead to a higher number of false positives since

adding images without balls and instead with objects that could lead to false positives

reduced the number of false positives of the model that was trained on the ceiling camera

dataset. This would suggest that it was a mistake to discard the images in the TORSO

dataset that do not contain balls and it could improve the performance to add them in

the used dataset.

The model that was trained on the augmented ceiling camera dataset performed slightly

better than the one that was only trained on the original ceiling camera dataset. This can

also be seen in table 5.2. But the difference with an IoU-threshold of 0.4 or 0.6 is quite

small. A major improvement can be seen at an IoU-threshold of 0.8. While the original

36 5 Evaluation

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

P
re
ci
si
o
n

Recall

CeilingCam a�er Torso

Torso

CeilingCam

CeilingCam Augmented

Figure 5.6: Precision-Recall curves for the trained models with an IoU-threshold of 0.4.

Model IoU-threshold
0.4 0.6 0.8

TORSO 0.339 0 0
Ceiling Camera pretrained on TORSO 0.896 0.846 0.541
Ceiling Camera 0.911 0.888 0.491
Augmented Ceiling Camera 0.929 0.899 0.65

Table 5.2: Average Precision of the trained models at different IoU-thresholds.

ceiling camera model only achieved an AP of 0.49 the augmentation led to an AP of 0.65

(see table 5.2). That shows that the data augmentation leads to more accurate bounding

boxes.

The model that was trained on the augmented ceiling camera dataset is the best one at

all three IoU-thresholds. In figure 5.7, the Precision-Recall curves for the different IoU-

thresholds are depicted. For an IoU-threshold of 0.6, so an overlap between the predicted

and the ground-truth bounding box of at least 60%, the model still reaches a precision of

85% for a recall of 90%.

5.2.2 Accuracy of the System

After evaluating the differently trained models, the model that was trained on the aug-

mented ceiling camera dataset has proven to be the best one. But this evaluation so far

only compared the trained models with each other and did not show how accurate the

final position detections are. This should be done in the following for the augmented

ceiling camera model.

The setup is similar to the position accuracy evaluation for the AprilTags in section 5.1.2.

A ball was put at 15 positions across the field that were measured by hand. For each

5.2 Evaluation of the Ball Detection System 37

0

0,2

0,4

0,6

0,8

1

0 0,2 0,4 0,6 0,8 1

P
re
c
is
io
n

Recall

IOU=0,4

IOU=0,6

IOU=0,8

Figure 5.7: Precision-Recall curves for the augmented ceiling camera model with differ-
ent IoU-thresholds.

position the ball location was predicted 10 times and the error of these predictions were

calculated. Figure 5.8 shows the average error at each of the 15 measurement positions.

Similar to the AprilTags the evaluation shows that the accuracy is the highest in the mid-

dle of the field and decreases the further the ball is at the edge of the field. The possible

reasons for that are also similar since again the rectified images are used as input infor-

mation for the trained model, which means that the edges of the images are less detailed

and accurate. Furthermore, the balls at the edge of the image are smaller since they are

further away from the camera which means that a bounding box prediction error of for

instance one pixel has a higher effect than for a ball in the middle of the image with a big-

ger bounding box. Through the larger distance between the ball and the camera an error

in the direction of the casted ray also results in a bigger error for the projected intersection

of the ray. Inaccuracies in the camera calibration could also again cause an error. It also

has to be considered again that the measurements were made by hand with the middle

of the field as a reference point. By that the measurement error can also be expected to

grow with higher distance from the middle.

Nonetheless, the evaluation shows quite promising results with a mean error of 2.1 cm

across the field. In [13], the ball localization algorithm that was developed for the robots

reaches a mean error of 7.7 cm while the robot is standing still. A difference in their eval-

uation compared to this evaluation is that their ball was moving while in this evaluation

the ball was stationary. For moving balls this implementation could perform a bit worse

if the balls are fast enough that motion blur occurs in the recorded images such that the

YOLO-network might have problems predicting the right bounding box. Nonetheless,

this is not expected to be a problem since during the recording of the training dataset,

with the same camera that is used in the implementation, the balls were moving and no

significant motion blur was observed on the training images.

38 5 Evaluation

Figure 5.8: Average error in meters of the predicted ball position at 15 points on the field.

5.3 Performance of the System

Besides the precision of the system, the performance needs to be evaluated as well since

it is necessary that it is fast enough to be useful. If it only returns the poses every few

seconds, a ball that is rolling across the field, or maybe even bouncing off a robot or a

goal post, cannot be tracked accurately. To evaluate the performance of the system the

rate at which the transforms for the tracked balls and robots are published is measured.

They were measured across a time of one minute while one ball and one AprilTag were

placed on the field. The measurement was performed on an AMD Ryzen 9 3900X 12-core

processor and a TITAN X graphics card.

For the ball detections a rate of 11.84 published results per second was achieved which

seems to be useful but since the camera images are published at a rate of 19 images per

seconds there might be some room for improvements. More interesting are the results

for the AprilTag detections. For the 16h5 tag family a rate of 4.6 results per second was

measured. For the 25h9 tag family on the other hand the determined rate was 9.85 results

per second. The rest of the setup was kept the same only the used AprilTag differed. It

is quite surprising that this made the detection approximately two times faster. A reason

why this is the case could be connected with the fact that for the 16h5 tags the AprilTag

Detector returns the message that there are duplicates which are removed. A speculation

could be that there are many duplicates and false detections which need a long time to

compute but which are discarded afterwards. Anyway, the major performance increase

together with the similar accuracy of the 25h9 tag family as shown in section 5.1.2 lead to

the use of the 25h9 tag family in the implementation instead of the 16h5 tag family.

39

6 Conclusion

In this thesis an implementation to collect pose data of robots and balls was presented

and evaluated. AprilTags were employed to detect the pose and the identity of each

robot on the field. The evaluation showed that this is working as long as the AprilTags

on the heads of the robots are not tilted away from the camera too far. Until that prob-

lem is solved, for instance by adding more AprilTags, the implementation is only useful

in specific scenarios in which the robot is not looking down too much. Furthermore,

the evaluation showed that the 25h9 AprilTag family is preferable to the 16h5 tag family

since it leads to a better performance and also to a slightly higher accuracy. To track the

ball, YOLOv3-models were trained to detect balls on the images of a ceiling camera. A

comparison of multiple models trained on different datasets indicates that the balls on

the training images should have a similar size as the balls on the images provided by the

ceiling camera in the final implementation. By that the training with images from the

TORSO-dataset was not successful, instead the model that was trained with augmented

images from the ceiling camera performs the best.

The achieved results concerning the accuracy of the localization of the balls and the robots

as well as the detected orientation of the robots are better than the results of the system

that is implemented on the robots. Nonetheless, the results are not differing by orders

of magnitude. In comparison with the tracking systems that were implemented by other

RoboCup teams, and which provided evaluation data for the robots pose [20][21][22][28],

this implementation outperforms them. Unfortunately for the tracking of the ball no eval-

uation data was provided from the other teams. Furthermore, even though there was no

evaluation data given for the implementations using the Vicon [24] and the Vive system

[15], it can be assumed that they reach better results concerning the robots pose than the

proposed system since the systems can track their markers with an accuracy below one

millimeter with the Vicon system and within a few millimeters using the Vive system.

The applicability of the proposed system depends on the scenario it should be used in. It

is usable to provide ground-truth data of moving robots and balls which pose cannot be

measured by hand easily. But if the robots and the balls are stationary in the evaluation

scenario and an accuracy up to a few millimeters is required, measuring their positions

by hand is favorable. If a great number of measurements is needed with an accuracy of

a few millimeters an implementation using the Vicon or the Vive system could be de-

veloped although they could only be used to track the pose of the robot since they need

markers attached on the object of interest.

This system could be further improved with the approaches presented in the Future Work

40 6 Conclusion

(7). The current state of the implementation is available at 1. Besides the implementation

the newly created datasets with labeled balls from the perspective of the ceiling camera

are available at 2 and can be used for further projects or as a base for improvements.

1https://github.com/Flo0620/Tracking_System_Balls_Robots
2https://imagetagger.bit-bots.de/users/team/801/

https://github.com/Flo0620/Tracking_System_Balls_Robots
https://imagetagger.bit-bots.de/users/team/801/

41

7 Future Work

Considering the current state of the system the evaluation was so far only done for sta-

tionary robots and balls. Therefore, it should be evaluated for moving robots and balls as

well.

To improve the current state of the system there are a few approaches. The most im-

portant upgrade is to add additional AprilTags to the robot to enable the tracking inde-

pendent of the robots position on the field and the tilt angle of the head as presented in

section 5.1.3.

Furthermore, it could be tried to calibrate the camera with a higher precision. Attempts

to do this unfortunately did not lead to better results yet but the measured calibrations

varied in each attempt which indicates that the current calibration is not very precise. A

better camera calibration would improve the tracking accuracy of both the robots and the

balls.

42 7 Future Work

43

Bibliography

[1] RoboCup Soccer Humanoid League Laws of the Game 2021/2022. Avail-

able at http://humanoid.robocup.org/wp-content/uploads/

RC-HL-2022-Rules.pdf Last accessed: 22.03.22.

[2] AlexeyAB. Generate anchors script. Available at https://github.

com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py Last ac-

cessed: 27.08.22.

[3] Basler AG. Basler ace acA2040-35gc - Flächenkamera. Available at https:

//www.baslerweb.com/de/produkte/kameras/flaechenkameras/ace/

aca2040-35gc/ Last accessed: 09.09.22.

[4] Basler AG. Global Shutter, Rolling Shutter - Functionality and Characteristics of

Two Exposure Methods (Shutter Variants), May 2018.

[5] P. Bauer, W. Lienhart, and S. Jost. Accuracy Investigation of the Pose Determination

of a VR System. Sensors, 21, Feb. 2021.

[6] E. C. Bergter. Image Based Robot Localization and Orientation Classification Using

CGI and Photographic Data, June 2020.

[7] M. Bestmann, T. Engelke, N. Fiedler, J. Güldenstein, J. Gutsche, J. Hagge, and F. Vahl.

Torso-21 dataset: Typical objects in robocup soccer 2021. In RoboCup 2021.

[8] M. Bestmann, J. Güldenstein, F. Vahl, and J. Zhang. Wolfgang-OP On-

shape CAD model. Available at https://cad.onshape.com/documents/

8c6aa9a8917f764cb7039c2d/w/af71e5083243affec9ac82a8/e/

e42d9814ef6f704f62b6758c Last accessed: 26.09.22.

[9] M. Bestmann, J. Güldenstein, F. Vahl, and J. Zhang. Wolfgang-op: A robust hu-

manoid robot platform for research and competitions. In IEEE Humanoids 2021, 07

2021.

[10] K. Boyd, K. H. Eng, and C. D. Page. Area under the Precision-Recall Curve: Point

Estimates and Confidence Intervals. In H. Blockeel, K. Kersting, S. Nijssen, and

F. Železný, editors, Machine Learning and Knowledge Discovery in Databases, Lecture

Notes in Computer Science, pages 451–466, Berlin, Heidelberg, 2013. Springer.

http://humanoid.robocup.org/wp-content/uploads/RC-HL-2022-Rules.pdf
http://humanoid.robocup.org/wp-content/uploads/RC-HL-2022-Rules.pdf
https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py
https://www.baslerweb.com/de/produkte/kameras/flaechenkameras/ace/aca2040-35gc/
https://www.baslerweb.com/de/produkte/kameras/flaechenkameras/ace/aca2040-35gc/
https://www.baslerweb.com/de/produkte/kameras/flaechenkameras/ace/aca2040-35gc/
https://cad.onshape.com/documents/8c6aa9a8917f764cb7039c2d/w/af71e5083243affec9ac82a8/e/e42d9814ef6f704f62b6758c
https://cad.onshape.com/documents/8c6aa9a8917f764cb7039c2d/w/af71e5083243affec9ac82a8/e/e42d9814ef6f704f62b6758c
https://cad.onshape.com/documents/8c6aa9a8917f764cb7039c2d/w/af71e5083243affec9ac82a8/e/e42d9814ef6f704f62b6758c

44 Bibliography

[11] H. Chen, T. Chang, and A. Synodinos. Apriltag_ros ROS2 Node, Feb. 2021. Available

at https://github.com/Adlink-ROS/apriltag_ros Last accessed: 28.08.22.

[12] N. Fiedler, M. Bestmann, and N. Hendrich. ImageTagger: An Open Source Online

Platform for Collaborative Image Labeling. In D. Holz, K. Genter, M. Saad, and

O. von Stryk, editors, RoboCup 2018: Robot World Cup XXII, volume 11374, pages

162–169. Springer International Publishing, Cham, 2019. Series Title: Lecture Notes

in Computer Science.

[13] N. Fiedler, M. Bestmann, and J. Zhang. Position Estimation on Image-Based Heat

Map Input using Particle Filters in Cartesian Space. In 2019 IEEE International Confer-

ence on Industrial Cyber Physical Systems (ICPS), pages 269–274, Taipei, Taiwan, May

2019. IEEE.

[14] V. Fremont, M. Bui, D. Boukerroui, and P. Letort. Vision-Based People Detection

System for Heavy Machine Applications. Sensors, 16:128, Jan. 2016.

[15] L. Gondry, L. Hofer, P. Laborde-Zubieta, O. Ly, L. Mathé, G. Passault, A. Pirrone,

and A. Skuric. Rhoban Football Club: RoboCup Humanoid KidSize 2019 Champion

Team Paper. arXiv:1910.11744 [cs], Oct. 2019.

[16] J. Hartfill. Feature-based monte carlo localization in the robocup humanoid soccer

league. Master’s thesis, Universität Hamburg, Hamburg, Sept. 2019.

[17] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision, Second

Edition. 2004.

[18] J. Hui. mAP (mean Average Precision) for Object Detection,

Apr. 2019. Available at https://jonathan-hui.medium.com/

map-mean-average-precision-for-object-detection-45c121a31173

Last accessed: 09.08.22.

[19] K. Ikeuchi, Y. Matsushita, R. Sagawa, H. Kawasaki, Y. Mukaigawa, R. Furukawa,

and D. Miyazaki. Active Lighting and Its Application for Computer Vision: 40 Years

of History of Active Lighting Techniques. Advances in Computer Vision and Pattern

Recognition. Springer International Publishing, Cham, 2020.

[20] P. Khandelwal and P. Stone. A Low Cost Ground Truth Detection System for

RoboCup Using the Kinect. In RoboCup 2011: Robot Soccer World Cup XV, pages

517–527. Springer Berlin Heidelberg, 2012.

[21] R. Marchant, P. Guerrero, and J. Ruiz-del Solar. A Portable Ground-Truth System

Based on a Laser Sensor. In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg,

F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,

M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, T. Röfer, N. M. Mayer,

https://github.com/Adlink-ROS/apriltag_ros
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173

Bibliography 45

J. Savage, and U. Saranlı, editors, RoboCup 2011: Robot Soccer World Cup XV, volume

7416, pages 234–245. Springer Berlin Heidelberg, 2012. Series Title: Lecture Notes in

Computer Science.

[22] M. S. R. Nezhad and O. A. Ghiasvand. Ground-truth localisation system for hu-

manoid soccer robots using RGB-D camera. Int. J. Computational Vision and

Robotics, Vol. 7, No. 3:285–301, 2017.

[23] D. C. Niehorster, L. Li, and M. Lappe. The Accuracy and Precision of Position and

Orientation Tracking in the HTC Vive Virtual Reality System for Scientific Research.

i-Perception, 8(3):2041669517708205, June 2017. Publisher: SAGE Publications.

[24] T. Niemüller, A. Ferrein, G. Eckel, D. Pirro, P. Podbregar, T. Kellner, C. Rath, and

G. Steinbauer. Providing Ground-Truth Data for the Nao Robot Platform. In

RoboCup 2010: Robot Soccer World Cup XIV. Springer Berlin Heidelberg, 2011.

[25] E. Olson. AprilTag: A robust and flexible visual fiducial system. In International

Conference on Robotics and Automation, pages 3400–3407. IEEE, May 2011. ISSN: 1050-

4729.

[26] OpenCV. Camera Calibration. Available at https://docs.opencv.org/4.x/

dc/dbb/tutorial_py_calibration.html Last accessed: 01.10.22.

[27] R. Pandey, P. Pidlypenskyi, S. Yang, and C. Kaeser-Chen. Efficient 6-DoF Tracking of

Handheld Objects from an Egocentric Viewpoint. In V. Ferrari, M. Hebert, C. Smin-

chisescu, and Y. Weiss, editors, Computer Vision – ECCV, volume 11206, pages 426–

441. Springer International Publishing, Cham, 2018. Series Title: Lecture Notes in

Computer Science.

[28] A. Pennisi, D. D. Bloisi, L. Iocchi, and D. Nardi. Ground Truth Acquisition of Hu-

manoid Soccer Robot Behaviour. In D. Hutchison, T. Kanade, J. Kittler, J. M. Klein-

berg, A. Kobsa, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan,

B. Steffen, D. Terzopoulos, D. Tygar, G. Weikum, S. Behnke, M. Veloso, A. Visser, and

R. Xiong, editors, RoboCup 2013: Robot World Cup XVII, volume 8371, pages 560–567.

Springer Berlin Heidelberg, 2014. Series Title: Lecture Notes in Computer Science.

[29] J. Redmon. Darknet: Open Source Neural Networks in C, 2013–2016. Available at

http://pjreddie.com/darknet/ Last accessed: 31.07.22.

[30] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You Only Look Once: Unified,

Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 779–788, Las Vegas, NV, USA, June 2016. IEEE.

[31] J. Redmon and A. Farhadi. YOLO9000: Better, Faster, Stronger. In 2017 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), pages 6517–6525, Honolulu,

HI, July 2017. IEEE.

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
http://pjreddie.com/darknet/

46 Bibliography

[32] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement, Apr. 2018.

arXiv:1804.02767 [cs].

[33] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese. Generalized

Intersection over Union: A Metric and A Loss for Bounding Box Regression, Apr.

2019. arXiv:1902.09630 [cs].

[34] RoboCup. Official RoboCup Website. Available at https://www.robocup.org/

Last accessed: 03.07.22.

[35] O. Robotics. ROS 2 Documentation: Humble. Available at https://docs.ros.

org/en/humble/index.html Last accessed: 15.07.22.

[36] O. Robotics. ROS 2 Documentation: Humble About tf2. Available at https://docs.

ros.org/en/humble/Concepts/About-Tf2.html?highlight=tf2 Last ac-

cessed: 15.07.22.

[37] O. Robotics. ROS 2 Documentation: Humble Concepts. Available at https://docs.

ros.org/en/humble/Concepts.html Last accessed: 15.07.22.

[38] O. Robotics. ROS 2 Documentation: Humble Introducing tf2. Avail-

able at https://docs.ros.org/en/humble/Tutorials/Intermediate/

Tf2/Introduction-To-Tf2.html Last accessed: 15.07.22.

[39] J. Ruan and Z. Wang. An Improved Algorithm for Dense Object Detection Based

on YOLO. In Q. Liu, M. Mısır, X. Wang, and W. Liu, editors, The 8th International

Conference on Computer Engineering and Networks (CENet2018), Advances in Intelli-

gent Systems and Computing, pages 592–599, Cham, 2020. Springer International

Publishing.

[40] P. Ruppel, N. Hendrich, and J. Zhang. Low-cost multi-view pose tracking using

active markers. In International Conference on Industrial Cyber Physical Systems (ICPS),

pages 261–268. IEEE, May 2019.

[41] J. Wang and E. Olson. AprilTag 2: Efficient and robust fiducial detection. In Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 4193–4198, Daejeon,

South Korea, Oct. 2016. IEEE.

[42] Wikipedia. Axis–angle representation, Apr. 2022. Available at https:

//en.wikipedia.org/w/index.php?title=Axis%E2%80%93angle_

representation&oldid=1081876619 Last accessed: 05.10.22.

[43] Wikipedia. Rolling-Shutter-Effekt, July 2022. Available at https:

//de.wikipedia.org/w/index.php?title=Rolling-Shutter-Effekt&

oldid=224160519 Last accessed: 11.10.22.

https://www.robocup.org/
https://docs.ros.org/en/humble/index.html
https://docs.ros.org/en/humble/index.html
https://docs.ros.org/en/humble/Concepts/About-Tf2.html?highlight=tf2
https://docs.ros.org/en/humble/Concepts/About-Tf2.html?highlight=tf2
https://docs.ros.org/en/humble/Concepts.html
https://docs.ros.org/en/humble/Concepts.html
https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Introduction-To-Tf2.html
https://docs.ros.org/en/humble/Tutorials/Intermediate/Tf2/Introduction-To-Tf2.html
https://en.wikipedia.org/w/index.php?title=Axis%E2%80%93angle_representation&oldid=1081876619
https://en.wikipedia.org/w/index.php?title=Axis%E2%80%93angle_representation&oldid=1081876619
https://en.wikipedia.org/w/index.php?title=Axis%E2%80%93angle_representation&oldid=1081876619
https://de.wikipedia.org/w/index.php?title=Rolling-Shutter-Effekt&oldid=224160519
https://de.wikipedia.org/w/index.php?title=Rolling-Shutter-Effekt&oldid=224160519
https://de.wikipedia.org/w/index.php?title=Rolling-Shutter-Effekt&oldid=224160519

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und

ohne fremde Hilfe angefertigt und mich anderer als der im beigefügten Verzeichnis

angegebenen Hilfsmittel nicht bedient habe. Alle Stellen, die wörtlich oder sinngemäß

aus Veröffentlichungen entnommen wurden, sind als solche kenntlich gemacht. Ich ver-

sichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen Prüfungsverfahren

eingereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen

Speichermedium entspricht.

Ich bin mit einer Einstellung in den Bestand der Bibliothek des Fachbereiches einver-

standen.

Hamburg, den Unterschrift:

	Introduction
	Related Work
	Fundamentals
	Environment
	Camera
	The used ceiling camera
	Projection from 3D real world points to 2D points in the camera image
	Camera calibration

	Intersection over Union (IoU)
	Precision-Recall curves and Average Precision (AP)
	ROS2
	YOLO
	AprilTags
	Encoding of an AprilTag
	Detection of an AprilTag
	Computation of the pose of an AprilTag

	Implementation
	Implementation of the AprilTag Detection System
	Implementation of the Ball Detection System
	Datasets
	Trained Models
	Calculation of the ball position in the real world

	Evaluation
	Evaluation of the AprilTag Detection System
	Setup
	Position Accuracy
	Orientation Accuracy

	Evaluation of the Ball Detection System
	Precision of the trained models
	Accuracy of the System

	Performance of the System

	Conclusion
	Future Work
	Bibliography
	Eidesstattliche Versicherung

