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Abstract

In this work, a classifier for clothes was developed which solely relies on depth information.
The task was approached using a neural network based on the PointNet architecture. The
classification of clothes serves as a use case to investigate the usability of PointNet as a
classifier of non-rigid objects. To train and evaluate the network, a new dataset was created
which consists of samples of eight types of clothes grasped at a single random point. In
the evaluation, diverse properties of the approach are shown and analyzed. The classifier was
integrated into the ROS environment to allow its usage in various robot systems. Results of the
evaluation indicate, that a sufficient classification accuracy can be reached when distinguishing
general types of clothes. Furthermore, diverse tools were programmed which aid with the
investigation of the recorded data and classification results.

Zusammenfassung

In dieser Arbeit wurde ein Klassifikator für Kleidung entwickelt, welcher ausschließlich auf
Tiefeninformationen arbeitet. Dafür wurde ein neuronales Netz basierend auf der PointNet
Architektur verwendet. Die Klassifizierung von Kleidung dient unter anderem als Anwen-
dungsbeispiel, um die Verwendbarkeit von PointNet an nicht festen Objekten zu testen. Um
das Netz zu trainieren und zu evaluieren, wurde ein neuer Datensatz erstellt, welcher Auf-
nahmen von acht an einem zufälligen Punkt gegriffenen Typen an Kleidungsstücken enthält.
In der Evaluation wurden diverse Eigenheiten des Ansatzes aufgezeigt und analysiert. Der
Klassifikator wurde in die ROS-Umgebung integriert, um in verschiedenen Robotersystemen
verwendet werden zu können. Ergebnisse der Evaluation zeigen, dass eine ausreichende Klas-
sifikationsgenauigkeit erreicht werden kann, um grundlegende Typen von Kleidung zu unter-
scheiden. Des Weiteren wurden diverse Werkzeuge programmiert, die der Untersuchung der
aufgenommenen Daten und Ergebnisse dienen.
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1. Introduction

In recent years, robots designed to mow lawns and to vacuum or wipe floors became popular
with customers and the market is expected to grow significantly in the future [Hä16, DT21].
Thus, robots assisting in household tasks can be considered a promising field of research, as
consumers are interested in the technology. While relatively simple tasks such as vacuuming
a floor are solved to a marketable degree, more complex tasks as for instance sorting and
folding laundry or assisting in dressing (see Figure 1.1) still need more research. This work
aims to contribute to this field of research.

Robots handling clothes need to be capable of detecting, classifying, grasping, and manip-
ulating them. A major challenge in all these tasks is that clothes are non-rigid objects. This
means that their shape is usually unknown and changes. The state of a rigid object can be
defined by its pose in six dimensions (three dimensions for the position and three dimensions
for the orientation). In contrast, non-rigid objects can change their shape within various
constraints. Consequently, the pose of each of the infinite number of points that construct
the objects are part of its state yielding an infinite dimensionality of the state.

Usually, models of the clothes are used to simulate their behavior to be able to plan steps
to manipulate them. But before a model can be applied to predict the behavior of the clothes,
the piece needs to be identified. Reinforcement learning architectures were developed which
are capable of handling clothes [TMRS11, TCUM19]. These systems are usually trained for
one specific model or use the clothes class as input. Thus, classification of clothes is also

Figure 1.1.: Exemplary image of a robot assisting a person in dressing. Image used with
permission from the TAMS research group of the University of Hamburg.
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1. Introduction

required for more sophisticated tasks such as manipulation as first, the clothes need to be
identified.

When classifying clothes in a domestic environment, invariance to several changing con-
ditions needs to be achieved. Those conditions include the lighting or background as well
as the size, color, and pattern or print of the clothes. Image-based classification techniques
are generally highly sensitive to these aspects. The severity of unexpected differences to the
training data is demonstrated in other domains by adversarial samples [SZS+14, BHG+19].
Image-based information is inherently dependent on the mentioned changing conditions. Al-
ternatively, depth information can be used. It is not directly dependent on the lighting,
background, color, or pattern. However, the conditions can affect the measurement quality
depending on the sensor. Still, relying on depth information is a reliable method to gather in-
formation about the shape and rough texture (e. g. wrinkle pattern) of clothes [JYT+17]. The
most common format for raw depth information without knowing the actual object surfaces
are depth images and point clouds. As the information density in depth images is generally
lower compared to point clouds and their reduced flexibility, this work uses point clouds as
input information. Point clouds without color information can be an option to classify clothes
independently of the colors in the background as well as the color and patterns of the clothes.
Thus, a high grade of generalization could be reached in the classification. This would mean
that a training set with relatively small differences between the training samples is sufficient
to train a classification model for various clothes.

This work aims to approach the problem of asserting a specific class to a set of 3D points
captured by a depth camera of clothes grasped at a single position. The application of
PointNet is a widely known and used method applied for similar problems. However, prior
to this work, it was not evaluated in the field of classification of grasped clothes. Further,
methods of classifying non-rigid objects are usually evaluated with samples of humans or
animals which do not change their shape as significantly as clothes. Therefore, this work aims
to investigate the performance of PointNet in that specific task. In doing that, the foundation
for complex clothes handling and manipulation tasks is created. This is accomplished by
recording a novel dataset with depth information of clothes grasped at a single point, training
and evaluating a PointNet model on the dataset, and finally integrating the trained model
into a live classifier for a full robotic system.

This work is structured as follows: Fundamentals about the tools and components used in this
work are introduced in Chapter 2. Afterward, Chapter 3 presents work related to the thesis
focusing on datasets and clothes classification as well as manipulation. The approach taken
in this work is outlined in Chapter 4. This is followed by experiments conducted to evaluate
the work. Their results are presented in Chapter 5 and discussed in Chapter 6. Finally, in
Chapter 7, a conclusion is drawn and possible future work is described.
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2. Fundamentals

The approach developed in this work builds upon several components, which are presented
in the following sections. Section 2.1 presents the robot operating system, a middleware for
robotic systems. The live classifier proposed in Section 4.2.4 is integrated into this ecosystem
to be easily usable in an existing robot setup. The main type of data processed in the
developed approach are point clouds. Section 2.2 presents their properties and methods used
to represent and process them. PyTorch, the deep learning framework used to define, train and
test the neural networks developed, is introduced in Section 2.3. The PointNet architecture
used for the classification task posed in this work is presented in detail in Section 2.4. Finally,
Section 2.5 shows the features of the Microsoft Kinect depth camera used for the collection
of the point cloud data.

2.1. Robot Operating System

When developing software for robots, two patterns are very common: either the whole system
is implemented as a single program that handles all tasks such as computer vision and motion,
or each component is written as a separate program the sum of which communicate via shared
memory or a middleware. In larger applications, the second approach is generally favorable.
When developing small components, experts can focus on specific parts of the system and
their interface without further regard towards the remainder of the pipeline. The strict code
encapsulation also helps with code management, maintainability, and also reusability of code
as one package might be usable in various robotic setups. The robot operating system (ROS)
is such a middleware [QCG+09]. It was preferred for this work because it is especially popular
in robotics research.

In the ROS ecosystem, small software components called nodes are developed individually.
Usually, a system solving a complex task is composed out of multiple nodes each solving
a specific subtask. Nodes share information by publishing and subscribing to topics. On
these topics, an N:N communication can be achieved as multiple nodes can publish on and
subscribe to the same topic. The ROS master connects the nodes and enables the message
passing as shown in Figure 2.1. ROS2, the successor of ROS improves some of the features
while it keeps the general structure. The main change over ROS is the transition from the
ROS master to a data distribution service (DDS). However, it is not directly compatible with
ROS. This work is developed for ROS because the majority of current robotic systems still
rely on it and are not yet upgraded to ROS2.

In the following sections, the three inter-node communication channels messages, services,
and actions are explained in detail. Further, other essential components of the ROS ecosystem
are presented.

3



2. Fundamentals

Figure 2.1.: Exemplary representation of message passing in the ROS environment. A node
publishing to a topic advertises the topic to the ROS master. Another node
(the image viewer in this example) subscribes to the topic. Then, messages on
the topic (images in this case) are passed directly between the nodes. Figure
source: [1] (modified)

Messages

As mentioned, the main communication between nodes is conducted by publishing and sub-
scribing to topics on which ROS messages are sent. The messages are small data packages
sent and received over the network by nodes. By using the network for communication instead
of shared memory, it is possible to use multiple machines in the same ROS setup with nodes
communicating with each other. Messages published on a specific topic are of a specific mes-
sage type. The message type defines what kind of information is transferred. A message type
consists of named fields each assigned a data type. These types can be primitive types such as
boolean, int, float, or string or other message types. Also, lists of undefined length of a type
are an option. Additionally to the primitive types, more complex message types are available
in standard packages. The most relevant standard message type is the Header. It combines a
timestamp with a frame id and thus can be used in a message type to specify when and where
the data was ascertained. In the common_msgs repository [2], which includes several ROS
packages, various messages are defined for diverse use cases. If a more specific message type
is required in an application, the existing messages can be used as parts of a more complex
type. Some of the types are available in stamped and non-stamped versions. Stamped indi-
cates, that a field of the type Header is added to the definition. Thus, the stamped version
can be used directly as a message while the non-stamped version is supposed to be used as
part of another type.

Services

In contrast to asynchronous data transfer as implemented by messages, services offer a syn-
chronous way of data transfer. A service client sends a request to the service provider. After
processing the request, the service provider replies with a response to the client. Services

4



2.1. Robot Operating System

are designed in a similar manner as messages. However, their definitions are composed of
two parts: the request and the response. Because of this, services are more specific to the
domain they are used in. Still, the most simple and common service type, the Trigger service
is provided by default. It combines an empty request with a response consisting of a boolean
value indicating success and a text message. Besides this, an empty service, as well as a
SetBool service, are also available.

Actions

Actions extend the capabilities of services with a feedback component. While services are
designed to trigger tasks that are handled quickly such as setting parameters, actions are
meant to trigger longer running processes. Also, a service call blocks further processing of
the client, whereas an action client can send a request, continue with further processing, and
is notified about feedback and the response via a callback function. Examples are triggering
a robot motion or, as they are used in this work, the recording and classification of a point
cloud. The additional feedback component is added in the action definition similar to the
response in the service. Following the definition of the request and the response, the data
type of the feedback message is defined in the same file.

Launch Files

In a large and complex system, a large number of ROS nodes are running simultaneously.
Launch files define how nodes are started with an XML-like syntax. Parameters can be loaded
for specific nodes. Further, when calling a launch file, arguments can be defined. Using these
arguments, command groups can be selected and node parameters changed. With these
groups of commands, parts of a large software stack can be activated or deactivated on
launch as required. For example, this allows switching between a real-world and a simulation
configuration of a system by adapting a single command-line argument. Additionally, it is
possible to include other launch files. Thereby multiple layers of launch file abstraction can
be implemented as a single launch file could combine launch files that handle smaller parts
of the software stack and so on.

Packages

In the ROS ecosystem, the software is organized in packages. A package may contain one
or multiple nodes, configuration files, launch files, and definitions of messages, services, or
actions. The package concept adds a software management layer to the ROS environment.
A package description in the form of a package.xml-file is required. In the description file,
the name of the package, the name and contact information of the authors and maintainers,
license information, and dependencies to other packages are mandatory. In conjunction with
a CMakeLists.txt-file, dependencies can be resolved when the package is built.
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Tools

Additional to the general functionality, ROS provides several tools which help in developing,
maintaining, and debugging robotic systems. Many of the tools focus on data visualization
as it is an integral necessity for a user or researcher to understand what is happening in the
system. The tools presented in the further sections are only exemplary and focus on the
standards, as developers design various additional tools for the ecosystem as needed.

ROS Bags

When integrating software in robotic systems, complex setups may be required to achieve
a desired system state. Thus, researchers need to be able to collect valuable data in such
situations to inspect it in detail or use it later on in tests. In the ROS environment, the
collection of such data is done by recording ROS bags. They provide an option to record all
messages on all or a selection of topics. During recording, the time of receiving the messages
is saved. Thus, a bag can be played back when needed. For example, a bag can be recorded
on a large system during an experiment. Then, this bag can be replayed later on different
systems to evaluate or test a single node. It is also possible to change the playback speed
when required.

RQT

While the communication via messages, services, and actions is sufficient between nodes, it is
not intuitive for a user. With RQT, ROS offers a framework for user interface design within
a robotic system. It allows the user to interact with the robot setup using various graphical
user interfaces. The general tool relies on various plugins each of which is designed to solve
a single visualization or user interaction task. Both, the tool itself and its plugins are written
using the QT framework [3]. In the following, some of the plugins available are presented.

• Image View: Visualizes Image messages and is therefore the de facto standard in
introspecting any kind of image stream in the ROS environment. In this work, it is
used to provide feedback during data recording (see Figure 4.3).

• Dynamic Reconfigure: Allows the user to change the parameters of nodes while they
are running. Thus, the behavior and movements of the robot can be adapted on the fly.
However, this requires a separate description of the parameters, their types, and value
ranges. Further, a callback to handle the changed parameters has to be implemented
by the node.

• Node Graph: Gives an overview of the whole system by visualizing the flow of in-
formation. A graph is shown indicating which nodes publish and subscribe to which
topics.

• Console: Filters and sorts logging information in the system. Logging messages can
be inspected filtered by their severity and the nodes which issued them.
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RViz

In contrast to RQT, RViz focuses on data visualization in cartesian space. It features a
3D visualization of one or more robot models in their current state. The RViz window is
generally separated into three areas. On the left, the visualized components of the system
can be selected. This helps focus on a specific part of the system. Also, component-wise
visualization parameters can be adjusted. On the right, the parameters of the view and
perspective are configurable. In the center, the 3D visualization is located. Via the mouse,
users can rotate, translate and zoom their current viewpoint.

While RViz is capable of visualizing various kinds of standard messages including Point-
Cloud2, these are not sufficient for all domains. In those cases, RViz markers can be specified
and published by a node as a message. The marker message (defined in the visualization
message package) allows to define custom shapes that represent domain-specific informa-
tion. Similar to RQT, its capabilities can be extended using plugins. However, it does not
completely rely on them as RQT does.

Simulation

Simulators are a popular option to evaluate software components or a whole software stack.
When a specific system state is required, it can be generated in a simulator. Also, depending
on the requirements and computation performance available, applications can be simulated
faster than real-time or in parallel. This is usable both in testing a large range of scenarios
and in training applications that learn behavior by exploration such as deep reinforcement
learning. Training and evaluating a system in simulation also significantly reduces the load
on the robot’s hardware. Especially with the increase of computing power available and the
advancements in deep reinforcement learning over recent years [ADBB17], the relevance of
simulation in robotics increased significantly. As photo-realistic image generation is possible,
there are multiple examples of training data generation in a simulation environment [BEF+21].

While many general physics simulators exist, only a few are easily usable for robotic appli-
cations. And only a fraction of those offers an integration into the ROS environment. The
Gazebo simulator [KH04] was originally designed for the Player/Stage framework [GVH03],
the ideological predecessor of ROS. Later, it was adapted and integrated into the ROS en-
vironment. In recent years, the Webots simulator [Mic04] also gained popularity because of
advantages in computation performance. This work does not utilize simulation for the dataset
generation as detailed in Section 4.1.

2.2. Point Clouds

Together with depth images and voxel grids, point clouds are one of the most common rep-
resentations of depth measurements. Depth images (see Figure 2.2 (c)) are a less dense
representation than point clouds, as they only encompass rectangular areas in the sensors
field of view (FOV) because they project depth measurements on a two- dimensional plane.
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Moreover, the distances between the points are fixed in image space and it is impossible to
model measurements behind each other. Without knowing the characteristics of the camera,
it is not possible to derive information in Cartesian space from the data. Despite their short-
comings, depth images are often preferred because, in many regards, they can be processed
similar to images for example in convolutional neural networks.

Voxel grids (see Figure 2.2 (d)) divide the three-dimensional Cartesian space into voxels.
A voxel is, as their name, a combination of the words volume and pixel indicates, a vol-
umetric pixel. They can be used to describe the occupancy of volumes, but also include
more information such as the color or type of the objects contained in the area. Voxel grids
solve many of the problems occurring with depth images as they allow the representation
of measurements behind each other and represent the volumes in Cartesian space. Similar
to depth images, they can be processed by conventional methods such as computer vision
filters or convolutional networks adapted for three-dimensional input. However, they are very
restrictive in the resolution because the storage required grows in a cubical manner. This
means that the information contained in a voxel grid is usually very sparse even compared to
depth images.

In contrast, point clouds (see Figure 2.2 (b)) work the other way around: instead of
describing what is in a predefined area, they represent measurements by describing where
something is in the space. They are defined as a set of points in 3-dimensional Euclidian space.

(a) Mesh

(b) Point Cloud

(c) Depth Image

(d) Voxel Grid

Figure 2.2.: Comparison of various depth information representations at the example of a
single shape. The mesh in (a) is represented by a point cloud (b), a depth
image (c), and a voxel grid (d).
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Depending on the use case, additional information such as the color is included with each
point. By describing specific points in space, positions and distances in the point cloud directly
reflect the positions and distances in the real world. Compared to the other methods, point
cloud processing is not possible with many conventional methods as there is no method of
converting them to a canonical form available. This means that there is no way to sort a point
cloud for example into a grid without massively decreasing the information density. This means
that new forms of processing them in a neural network had to be developed when PointNet
was introduced (see Section 2.4.1). Point clouds are for example generated by 3D scanning
methods such as contact 3D scanners or contact-free methods such as time-of-flight (ToF) or
structured light. Also, photogrammetry (and especially stereophotogrammetry) is a method
of extracting 3D information from 2D data. RGB-D cameras such as the Microsoft Kinect
(see Section 2.5) combine a 3D scanner with an RGB camera in a single device. The libraries
PCL [RC11] and Open3D [ZPK18] are commonly used to process point cloud data.

2.2.1. Point Cloud Representation

Point clouds are represented by a set of points consisting of their positions and, as mentioned,
in some cases by additional features such as color. Thus a point cloud consisting of n points
can be formally represented by {Pi|i = 1, ..., n} with the position of each point Pi defined as
(x, y, z) [QSKG17].

In the ROS environment (see Section 2.1), point cloud data is transferred in form of the
PointCloud2 message [4] (see Listing D.1), which is part of the sensor_msgs package. It is
designed to be flexible and to be used for different kinds of point clouds. The message mainly
contains a Header, the point cloud size, definition of the channels of the points, the length
of a point and a row of points in bytes, and an array of bytes containing the raw data. Each
channel is defined by a PointField message [5] (see Listing D.2). It specifies the name,
datatype and element count of each field. Thus, PointCloud2 messages can be interpreted
without any additional information. All this information is used to allow the decoding of
the array of bytes that contains the raw data in a compressed form. The sensor_msgs
package also provides helper functions to convert and conveniently extract information from
PointCloud2 messages.

2.2.2. Point Normal Estimation

When a point cloud is used to represent an object, it is a collection of points sampled on
the object’s surface. However, no matter the point density used, the points are only able to
capture the position of the surface at that point and not its orientation. The orientation of
a surface is described by its surface normals. In three-dimensional space, a surface normal is
a vector perpendicular to the tangent plane of the surface at a specific point in every axis.
Due to this definition, the vector can point in two directions: inwards and outwards. Usually,
the vectors are scaled to the unit length meaning that their length is 1. While the surface
normals can be calculated based on the surface tangents when a full surface is given, this
is not the case for point cloud measurements because the surface is not known and only
described by the points. Therefore, point normals need to be estimated based on the points
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describing the surface. In that case, for each point, the N nearest neighbors are collected,
and using them, a surface tangent is estimated followed by the calculation of the surface
normal of that tangent. During this process, the density of sample points and the magnitude
of random sensor error have a large impact on the quality of the estimated surface and thereby
the estimated point normals. With a low point density, uneven parts of the surface might
not be considered resulting in an estimated even surface. The opposite is caused by the
random sensor error in the depth measurements as a random offset between the points can
lead to estimating an uneven surface given an even one. This can be approached by adapting
parameters such as N , the number of neighbors considered. But because no ground truth of
the point normals for the scanned shapes is available, it is not possible to tune the parameters
using a quantitative metric. Using point cloud measurements, it is not known, whether the
individual point normals are pointing inwards or outwards. In PCL, point normals are oriented
towards the view point [6]. Open3D does not enforce such a constraint [7]. However, it does
offer a method to align the normals consistently given a number of nearest neighbor points
to consider. Then, the correct direction is still not known, but they are aligned consistently.

2.3. PyTorch

When developing deep learning models, common structures and algorithms are used in various
approaches. Deep learning frameworks provide an environment, general structure, algorithms,
and tools necessary for the development, training, and usage of neural networks. PyTorch
is such a deep learning framework mainly developed by Facebook AI researchers [PGM+19].
Its development focused on combining usability and processing speed. This was achieved by
supporting an iterative programming style as it is commonly used in Python. Models can
be defined in Python code which is intuitive for users and allows flexible experiments. As
every component of PyTorch can be accessed as a regular Python program, the user retains
control over every part even in complex architectures. The feature is not only beneficial
in the definition of a model but also a significant help in debugging, as every aspect of a
model can be inspected transparently and intuitively. However, to be competitive with other
deep learning frameworks, PyTorch also has to provide a high runtime performance on both
the CPU and GPU. This was achieved by implementing the core of the library in C++. The
C++ components include the tensor data structure and GPU as well as CPU operators. Also,
fundamental computation functions such as the automatic differentiation system are imple-
mented in C++. Thereby, the global interpreter lock (GIL) of Python is bypassed. The GIL
is the reason that it is not possible in Python to execute multiple threads in parallel [EE19].
The original multiprocessing module which bypasses the GIL by spawning multiple pro-
cesses was extended in torch.multiprocessing to optimize parallel processes implemented
in Python. Additionally features such as a separate control and data flow, a custom caching
tensor allocator and reference counting were implemented. The combination of high usability
and efficient processing makes PyTorch uniquely capable especially for researchers when com-
pared to other deep learning frameworks such as Tensorflow [ABC+16]. Recently, the gap
between Tensorflow and PyTorch was significantly reduced as Tensorflow 2 was introduced.
Still, PyTorch is favored in many research environments.
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2.4. PointNet Architecture

PointNet is a neural network architecture presented by Qi, Su et al. in 2017 [QSKG17].
It is designed to be capable of object classification, part segmentation, and scene semantic
parsing on point cloud data. It was one of the first approaches which process raw point
clouds and is similarly accurate in classification tasks as competing conventional approaches
but significantly more efficient. The general architecture is shown in Figure 2.3. As this work
focuses on the classification task, this overview of PointNet also prioritizes the classification
aspects of the architecture.

Figure 2.3.: The PointNet architecture [QSKG17].

When applied on rigid objects, methods processing point clouds need to consider permu-
tations of the points in the set, and rigid motions (rotations and translations along three
axes). The authors note that prior to their work, to use point cloud data in neural networks,
the data was usually transformed into 3D voxel grids or collections of images. Due to the
nature of point clouds, this results in very sparse input data for the neural networks and also
quantization artifacts.

By default, the input of PointNet consists of 1024 three-dimensional points. However,
depending on the application, the number of points and their dimensionality can be adapted.
The authors state, that both the space and time complexity scale linearly to the input size.
While the dimensionality of the input is fixed in the architecture, the number of input points
is not. This is because the points are processed independently from each other until the
max-pooling stage. The max-pooling itself is only dependent on a number of points n ≥ 1.
The shape of its output is independent of the number of input points. This allows for more
flexibility in the input size both during training and testing.

PointNet is available implemented in Python using Tensorflow on GitHub [8]. The reposi-
tory is maintained by the authors of the original paper. Since 2019, Xu Yang is implementing
and refining a version of the network in PyTorch [10]. The latter is preferred in this work
because PyTorch allows easier debugging and is more established in the research community
(see Section 2.3).
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2.4.1. Point Order Invariance

Figure 2.4.: Overview of approaches to achieve point order invariance. [QSKG17] (modified)

As mentioned in Section 2.2, point cloud measurements are an unordered set of points mean-
ing that a classification approach has to achieve a point order invariance. The authors describe
three approaches to achieve the invariance. Figure 2.4 sketches the methods and the classi-
fication performance of the approaches is compared in Table 2.1. The unsorted set of points
is directly piped into a multi-layer perceptron (MLP) as a baseline resulting in an accuracy of
24.2%. While the accuracy is increased to 45% by sorting the set of points (see Figure 2.4
bottom left), there is no stable ordering for points in high dimensional space with respect to
point perturbations.

The second approach is piping the points sequentially into a sequential model in form of
a recurrent neural network such as an LSTM [HS97] (see Figure 2.4 top). However, while
using this approach increases the accuracy to 78.5%, it is still not optimal, as the order of
data fed into recurrent neural networks matters (shown by Vinyals et al. in [VBK16]).

The authors propose to solve the problem with the third method, using a symmetric function
(see Figure 2.4 bottom right). A symmetric function has the property that its value stays the

Table 2.1.: Performance comparison of approaches to achieve point order invariance on the
ModelNet datase. [QSKG17]

Approach Accuracy (%)
MLP (unsorted input) 24.2
MLP (sorted input) 45.0
LSTM 78.5
Attention sum 83.0
Average pooling 83.8
Max pooling 87.1
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same for every order of the input variables. Using features extracted from the individually
processed points as input of the symmetric function yields an output that is not only robust
to different input orders but truly invariant. Three symmetric functions were tested and
max-pooling performed best with an accuracy of 87%. Thus, it was used in PointNet.

However, processing the points completely independently from each other until their fea-
tures are combined in a single stage, results in the network capturing mainly global features.
This means that the network is not able to preprocess features in a local context.

2.4.2. Input and Feature Transformations

As mentioned, ambiguities due to geometric movements of the observed objects (translation
and rotation) need to be taken into account. This is implemented in PointNet by applying
a 3x3 transform matrix on the 3D input and a 64x64 matrix on the 64-dimensional features
extracted from each point individually. The transformation matrices are generated by T-
Nets, a structure that learns to generate a transformation matrix based on a single point (see
Figure 2.3). To evaluate the effect of the transformation step, their classification performance
is compared to the vanilla version of PointNet without any transform layers in Table 2.2.
Introducing the input transformation to canonicalize the input data increased the classification
performance from 87.1% to 87.9%. However, the accuracy drops to 86.9% when the feature
transformation is applied. It was suspected that the reason for this might be that learning
to produce a valid transformation matrix with such a high dimensionality was too complex.
Therefore, the loss defined by equation 2.1 is introduced to approach the high complexity of
generating the 64x64 transformation matrix by constraining it to be as close as possible to an
orthogonal matrix. A matrix A is an orthogonal matrix if AAT = I with I being the identity
matrix.

Lreg = ||I −AAT ||2F (2.1)

Thus, Lreg penalizes a diversion from an orthogonal matrix. Using this loss, the classification
performance was increased to 87.4%. The best result (89.2%) was achieved by combining
the input transform with the feature transform including the regularization loss Lreg. Thus
they are included in the PointNet architecture (see Figure 2.3).

Table 2.2.: Performance comparison of input and feature transforms. [QSKG17]
Transform Accuracy (%)
none 87.1
input (3x3) 87.9
feature (64x64) 86.9
feature (64x64) + reg. 87.4
both 89.2
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2.4.3. Classification Performance

Especially as the PointNet architecture was one of the first approaches to make use of raw
point cloud data, the authors compare the classification performance to existing approaches.
The results of the analysis are listed in Table 2.3. Results of PointNet++, which is discussed
in more detail in Section 3.2, are also included in the table. It was shown that PointNet
performs better or competitively when compared to conventional approaches. The other
approaches in the table use a mesh, volumes, or multiple images from various views as input.
Considering robotic applications in which measurements of a depth camera are used so that
using multiple views of the same object is often not possible especially with non-rigid objects,
PointNet becomes the only viable option for shape-based classification.

Table 2.3.: Classification performance of PointNet and related methods on Model-
Net40 [WSK+15]. Compiled from [QSKG17] and [QYSG17].

Year Input # Views
Accuracy

Avg. Class
Accuracy
Overall

SPH [KFR03] 2003 mesh - 68.2 -
3D ShapeNets [WSK+15] 2015

volume
1 77.3 84.7

VoxNet [MS15] 2015 12 83.0 85.9
Subvolume [QSN+16] 2016 20 86.0 89.2
LFD [CTSO03] 2003

image
10 75.5 -

MVCNN [SMKLM15] 2015 80 90.1 -
PointNet (vanilla) [QSKG17]

2017
point
cloud

1

- 87.2
PointNet [QSKG17] 86.2 89.2
PointNet++ [QYSG17] - 90.7
PointNet++ (with normals) [QYSG17] - 91.9

Another advantage of PointNet is runtime performance because the architecture is process-
ing the dense information more efficiently compared to conventional approaches. Table 2.4
gives an overview of the approaches competing with PointNet. The number of parameters
of the model and required floating point operations (FLOPs) per sample are compared. It is
evident that PointNet is significantly smaller and more efficient than its competitors. The low
number of parameters is achieved with the MLP layers using shared weights. In comparison,
convolutional layers slightly increase the number of parameters and significantly increase the
FLOPs per sample.

These capabilities of competitively high classification precision and high runtime efficiency
are essential for a live classifier approach. During live classification, the delay between data
acquisition and the classification result should be as small as possible. This is especially
crucial on a robotic system as many software components share the same hardware.
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Table 2.4.: Time and space complexity of PointNet compared to competing approaches at
the time it was released. [QSKG17]

# Params FLOPs/Sample
PointNet (vanilla) [QSKG17] 0.8M 148M
PointNet [QSKG17] 3.5M 440M
Subvolume [QSN+16] 16.6M 3633M
MVCNN [SMKLM15] 60.0M 62057M

2.4.4. Classification Robustness

The authors performed robustness tests on the classification performance. PointNet was
evaluated in three scenarios: missing data, adding outliers, and perturbation noise (see Fig-
ure 2.5). In the first scenario, a certain ratio of points is removed from the input data. The
performance of furthest and random input sampling are compared. The second scenario tests
resilience against outlier points by adding random points to the input data. An input of nor-
malized X-, Y-, and Z-coordinates with and without the point density is tested. In the third
scenario, the effect of perturbation noise is evaluated. The noise is simulated by applying
offset sampled from a normal distribution to the original data. The X-axis of the plot defines
the standard deviation of the noise added to the input data. It is not entirely clear, whether
all three tests were performed with the architecture trained on the altered data, or if this just
applies to the scenario of adding outliers. However, the results shown in the PointNet++
paper (see Figure 3.2) indicate that the latter applies.

2.5. Microsoft Kinect Camera

Recording depth information requires camera systems with more capabilities compared to
RGB image information. Passive depth camera setups such as stereo cameras usually require
extensive post-processing or complicated setups and are susceptible to the correspondence
problem. When a low measurement delay and high precision are required from a compact
setup, active camera systems are preferable. While passive cameras only perceive their en-
vironment using their sensors, active sensors send out a signal which is then received back

Figure 2.5.: Results of robustness tests on PointNet. [QSKG17]
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by the sensor. Depending on the altering of the signal emitted by the sensor, measurements
about the environment are inferred. Despite its advantages, the measurement quality of ac-
tive systems decreases significantly when the emitted signal is obstructed. In the case of most
active depth cameras, this means that the cameras are sensitive to direct sunlight. However,
at least in a laboratory setup, this can be prevented reliably. Often, depth cameras record
both depth and image information simultaneously.

The point clouds recorded in this work were recorded using a Microsoft Kinect v2. It
captures both depth and image data. Due to its widely usable driver support, precise mea-
surements, and relatively low price, the Microsoft Kinect cameras are very popular in robotic
research applications. In this work, the Kinect v2 was used because the newer and more
capable Azure Kinect was sold out. Figure 2.6 shows a Kinect v2 camera mounted on a
tripod. The sensors featured by the camera are labeled.

In their work, Tölgyessy et al. compared the Azure Kinect to its predecessors Kinect v1 and
Kinect v2 [TDCH21]. They compiled the technical data of the cameras (see Table 2.5). While
the Kinect v2 is sufficient in most regards for the task of clothes classification, its specified
measuring distance is not optimal for classifying objects held close to the camera. There,
the wide FOV depth recording capabilities of the Azure Kinect are a significant advantage.
The Azure Kinect was originally developed as a component of the HoloLens 2. In the head-
mounted display for augmented reality, the narrow FOV camera is used for navigation in space
and to gain a general measurement of the environment of the user. The wide FOV is used to
track the user’s hands in a close range of the device. When the technology was packaged as a
single camera unit, the two-FOV setup was kept. It might also be usable in the classification
of objects held close (less than 0.5m) to the camera. However, while the system is generally
designed for robotic setups, the train- and test data is recorded in a setup without a robot.
Thus, the shortcomings of the Kinect v2 are not relevant to the result of this work.

The Kinect v2 measures depth data with the active ToF method. Depth information
is inferred from measurements of the time it takes light to travel from an emitter in the

Figure 2.6.: Detail view of the Kinect v2 sensor. [JYT+17]
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Table 2.5.: Comparison of Microsoft Kinect camera versions. [TDCH21]
Kinect v1 Kinect v2 Azure Kinect

Color
camera

resolution

1280× 720 px @ 12 fps
640× 480 px @ 30 fps 1920× 1080 px @ 30 fps 3840× 2160 px @ 30 fps

Depth
camera

resolution
320× 240 px @ 30 fps 512× 424 px @ 30 fps

NFOV unbinned:
640× 576 px @ 30 fps

NFOV binned:
320× 288 px @ 30 fps

WFOV unbinned:
1024× 1024 px @ 15 fps

WFOV binned:
512× 512 px @ 30 fps

Depth
camera
field of
view

57° × 42°
alt. 58.5° × 46.6°

70° × 60°
alt. 70.6° × 60°

NFOV: 75° × 65°
WFOV: 120° × 120°

Specified
measuring
distance

0.4− 4m 0.5− 4.5m

NFOV unbinned:
0.5− 3.86m

NFOV binned:
0.5− 5.46m

WFOV unbinned:
0.25− 2.21m
WFOV binned:
0.25− 2.88m

Depth
sensing
method

Structured light
pattern projection ToF ToF

measurement device to the object and back to the device. By measuring the time t in
seconds between emitting and receiving the light, the distance d in meters can be inferred
with the formula d = ct

2 with c being defined as the speed of light in meters per second.
[BOL+05]

The camera was integrated into the ROS environment using the iai_kinect2-package [11]
which is based on the libfreenect2 driver [12]. The package includes a calibration tool, a
library for depth registration, a bridge between the libfreenect driver and the ROS environment,
and a viewer for images and point clouds. In this work, mainly the kinect_bridge is used
to publish recorded point clouds and images in the ROS environment.

When calibrating the camera, three steps are conducted using a predefined grid and the
calibration tool provided by the camera driver package. First, the depth image is calibrated.
Second, the RGB image is calibrated. In the final calibration step, matching between the
RGB image and the depth information is established. In this work, the third step was not
necessary, as point clouds and RGB images are not processed in conjunction.
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3. Related Work

In the following sections, approaches related to the work conducted in this thesis are pre-
sented. The works are separated into three groups: classification datasets similar to the one
created in this work, methods for shape-based object classification, and approaches to clothes
classification and manipulation.

3.1. Classification Datasets

At the time of writing, no dataset for point cloud based clothes classification is publicly
available as part of a publication or on popular platforms such as Kaggle [13]. Therefore,
this section focuses on datasets designed for image-based clothes classification as well as
general object classification on point clouds. A new dataset for point cloud based clothes
classification will be created in this work and presented in Section 4.1.

The most prominent example of a cloth classification dataset is Fashion-MNIST [XRV17].
However, it is rather designed to replace the MNIST dataset [Den12] as a generally simple
and small image classification benchmark than as a benchmark for cloth detection specific
systems. Therefore, it features a lot of similarities to the original MNIST such as greyscale
images with a resolution of 28 by 28 pixels and 10 object categories. Additionally, it has the
same size as MNIST (60.000 training images and 10.000 test images).

A popular dataset that is specifically designed to benchmark systems for the classification
of clothes is Deepfashion [LLQ+16]. Their images were collected on the online shopping
websites Forever21 and Mogujie as well as entering clothing descriptions from online retailers
as queries into the Google Image search. The authors note that their dataset includes both
professional product photos as well as pictures uploaded by customers wearing the clothes in
various situations. The resulting 1,320,078 images from the shopping websites and 1,273,150
images gathered from Google Images were filtered using AlexNet [KSH17] and the input of
human annotators. This process resulted in a set of 800,000 images. Additionally to their
class, images are each assigned a subset from 1000 attributes. The attributes are grouped
into the five categories “texture”, “fabric”, “shape”, “part”, and “style”.

To evaluate their work in “3D ShapeNets: A Deep Representation for Volumetric Shapes”,
Wu et al. created the ModelNet dataset [WSK+15]. It contains 151,128 3D CAD models of
660 unique object categories. For benchmarks of shape recognition systems, smaller subsets
are selected. ModelNet40 consists of 48,000 CAD models (38,400 for training, 9,600 for
testing) belonging to 40 classes. ModelNet10 is a subset of ModelNet40 consisting of 4899
CAD models (3991 for training, 908 for testing) which are designated to 10 classes [CCG+18].
In recent years, ModelNet became the de facto standard benchmark for evaluating 3D clas-
sification methods.
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The Computer Science Department of the University of Utrecht organizes a yearly 3D
Shape Retrieval Contest (SHREC) [14]. In multiple tracks, various challenges are posed. Most
notable in the context of this work is the track “Canonical Forms for Non-Rigid 3D Shape
Retrieval” from SHREC’15 [PSR+15] [15]. For their challenge, Pickup et al. created a new
dataset by selectively combining existing datasets from previous challenges. Specifically, the
datasets from “Shape Retrieval of Non-Rigid 3D Human Models” from SHREC’14 [PSR+16]
and “Shape Retrieval on Non-Rigid 3D Watertight Meshes” from SHREC’11 [LGB+11].

3.2. Shape based Object Classification

In this section, work covering object classification based on shapes is presented. As noted in
the paper presenting PointNet [QSKG17], one of the major tasks of deep learning on point
cloud data is to gain a point order invariance. Before the method of applying a symmetric
function, this was approached in various ways such as using an occupancy grid or feeding
multiple 2D views of the object into a convolutional neural network.

Maturana and Scherer approach the task of object classification based on point clouds
with their VoxNet architecture in 2015 [MS15]. They generate a three-dimensional (32 ×
32 × 32) occupancy grid from the input point clouds. These grids are used as input for
3D convolutional layers. Via multiple convolutional layers and pooling, the data is further
compressed. These are followed by a fully-connected layer with 128 neurons. The size of the
succeeding output layer is determined by the number of classes required for the task. On the
ModelNet benchmark sets, the method outperforms ShapeNet [WSK+15]. While ShapeNet
achieves an accuracy of 0.77 on ModelNet40, VoxNet achieves an accuracy of 0.83 (0.84 and
0.92 on ModelNet10 respectively).

When PointNet was developed, the state-of-the-art method for 3D shape classification was
image-based and used multiple 2D views of a single shape which were fed into a series of
CNNs [SMKLM15]. While this method does not directly process shapes, it was trained on the
shapes from the ModelNet dataset. The shapes are rendered from multiple viewpoints into 2D
images. The resulting images are fed in parallel into CNN layers with shared weights resulting
in multiple descriptors. To aggregate the descriptors, a view-pooling layer is used, which
performs an element-wise max-operation over all views. The output of the view-pooling layer
is processed by further convolutional layers and then fed into a fully connected layer. Similar
to other deep learning classification approaches, the output layer is sized to accommodate
the number of classes supported. With pre-training on ImageNet [DDS+09] and fine-tuning
on ModelNet40, a classification test accuracy of 88.6% using 12 views and 90.1% using 80
views was reached. However, the requirement of rendering the 3D shapes into 2D images
makes this method unsuitable for processing point clouds recorded from a single view. It
might be possible to reconstruct the surface of an object scanned from multiple angles, but
this is impractical for live classification.

Since the presentation of PointNet, most approaches follow a similar structure or use
PointNet itself as a part of a greater structure. The main reason for this trend is the run-
time efficiency and realization of point order invariance (see Section 2.4.1). It was shown,
that a symmetric function, (especially the max function) greatly improves the classification

20



3.2. Shape based Object Classification

Figure 3.1.: Overview of the PointNet++ architecture. [QYSG17]

performance on raw point cloud data (see Table 2.1). As already mentioned in Section 2.4,
PointNet++ improves upon the results of PointNet. This is done by using the original Point-
Net structure as a component in a greater system. Figure 3.1 gives an overview of the
PointNet++ architecture. In multiple stages, points are sampled and grouped. These groups
are processed separately by PointNet-like structures. Thereby, local features (features ex-
tracted at the beginning of the pipeline) are considered in a global context at the end of the
pipeline. While the classification precision is improved compared to PointNet (see Table 2.3),
the runtime efficiency is decreased significantly.

The resilience of PointNet++ to missing points was tested in various configurations (see
Figure 3.2). The results were also compared to the vanilla version of PointNet. In the figure,
DP indicates that a random input dropout was applied during training. The four figures in the
left part of Figure 3.2 show examples of a chair represented by 1024, 512, 256, and 128 points.
The graph shows a steady performance of both PointNet and PointNet++, as long as the
input consists of at least 256 points when the input dropout was present during training. Also,
the gap in performance between the two architectures is apparent. Without input dropout
during training, both architectures perform significantly worse. Notably, PointNet performs
considerably better in this scenario. When comparing the input dropout performance between
Figure 2.5 and Figure 3.2, note the difference in their scale.

Further, especially relevant for this work, its performance in non-rigid shape classification
was evaluated on the SHREC15 benchmark set [PSR+15]. The results of this analysis are

Figure 3.2.: Result of the point dropout test on PointNet++. [QYSG17]
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Table 3.1.: Pointnet++ non-rigid shape classification performance on SHREC15 benchmark
set. [QYSG17]

Metric space Input feature Accuracy (%)
DeepGM [LBH18] - Intrinsic features 93.03

PointNet++ [QYSG17]
Euclidean XYZ 60.18
Euclidean Intrinsic features 94.49

Non-Euclidean Intrinsic features 96.09

shown in Table 3.1. DeepGM [LBH18] was used as a baseline. However, the non-rigid objects
in the dataset are mainly humans and animals. They do not change their shape as radically
as clothes when moved. Therefore, the test is an indication of the performance, but the
challenge posed in this work is different from the SHREC15 benchmark.

In “Frustum PointNets for 3D Object Detection from RGB-D Data” [QLW+18], Qi et al.
make use of RGB-D data, by using image data to select a segment of the point cloud which is
then classified. The RGB-D input is split into an RGB image and the depth information. Based
on the depth information, a point cloud is generated. Thus, an input of a high-resolution
RGB image can be used in combination with a point cloud of lower resolution as this is a very
common camera configuration. However, the system requires a camera projection matrix to
be able to map pixels from the image to points in the point cloud. It is composed of three
components: a frustum proposal generator, a 3D instance segmentation, and an amodal 3D
box estimation. The frustum proposal generator selects a relevant frustum in the input point
cloud. A convolutional neural network (CNN) detects an object in a region of the RGB
image. Based on that region, the camera transformation matrix, and the depth information,
a frustum in the input point cloud is defined. Then, the points inside the frustum are fed into
the 3D instance segmentation component together with the class of the object detected by
the CNN encoded as a one-hot vector. In this unit, the points in the frustum which do not
belong to the object are removed using a PointNet++-like network. Afterward, the filtered
points are fed into another PointNet++-like architecture to estimate box parameters for the
3D amodal bounding box enclosing the whole object and not only the directly visible parts of
it.

Many approaches which improved upon PointNet and PointNet++ mainly focus on the
selection of the points considered for further classification and the detection of bounding
boxes in point clouds. These advantages are not utilizable with the task at hand, as the
clothes are the only object in the point cloud (for details see Section 4.1.1) and their position
is not relevant. Therefore, these advanced architectures are not used for the experiments in
this work.

Qi et al. extend their PointNet++ in “Deep Hough Voting for 3D Object Detection in Point
Clouds” [QLHG19] to output 3D bounding boxes. They demonstrated a simpler approach for
the raw processing on point clouds with a PointNet-like architecture which is at least partially
superior to conventional methods on benchmark datasets.
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Figure 3.3.: Classification pipeline of DGCNN. The architecture makes extensive use of edge
convolution layers. While this representation uses three-dimensional points, other
configurations are possible. [WSL+19]

Similar to PointNet++, the dynamic graph CNN (DGCNN) developed by Wang et al.
improves upon PointNet to capture local features [WSL+19]. Instead of applying MLPs
with shared weights on each point individually, a new operation called “Edge Convolution”
(EdgeConv) is used. Figure 3.3 shows its classification pipeline. The features extracted in all
layers of the EdgeConv layers are concatenated at the end. Then, a max-pooling operation
is applied and the features are processed further by MLPs.

In an EdgeConv layer with an input of n points (X = x1, ..., xn ⊆ RF ) with F being the
dimensionality of the points), a directed graph G = (V, E) is computed to represent local
point cloud structures. V are the vertices 1, ..., n and E ⊆ V ×V the edges of the graph. For
example, the graph could be constructed as a k-nearest neighbor graph with self-loop meaning
that each node also points on itself. The features of an edge are defined as ei,j = hΘ(xi, xj).
h : RF ×RF → RF ′

is a nonlinear function and Θ are its learnable parameters. A symmetric
aggregation operation (□) such as sum, max or mean is channel-wise applied on the edge
features of all outgoing edges of a vertex. Thus, the output of the EdgeConv layer for a
specific vertex is given by

x′i = □
j:(i,j)∈E

hΘ(xi, xj).

Therefore, an input of n F -dimensional points yields a point cloud with n F ′-dimensional
points. The authors discuss multiple possible configurations for h and □. They implemented
□ as the max function. The h-function is implemented by MLPs with shared weights. Both,
the MLP implementation (left) as well as the calculation of edge features (right) are visualized
in Figure 3.4.

Figure 3.4.: Schematic representation of the edge convolution layers. In this example points
are three dimensional. Left: MLP implementation of edge-feature extraction
between xi and xj . Right: Visualization of edge feature computation. [WSL+19]
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As the graph is constructed new in each EdgeConv layer based on its input, it can be
considered a dynamic graph. Contrary to a graph that is created at the beginning of the
network and used throughout the processing pipeline, the neighbor relations in a dynamic
graph change depending on the features extracted in later stages. This allows a single point
at the end of a network a receptive field that is sparse and includes all points in the original
point cloud.

After a spatial transform layer, similar to PointNet (see Section 2.4.2), points are fed into
a series of EdgeConv layers. After four such stages, the features extracted at each stage are
accumulated using a max pooling and MLPs. The output layer is sized depending on the
number of classes to distinguish between. Similar to PointNet, the method also supports
point cloud segmentation tasks. On ModelNet40, a higher classification accuracy of 92.9%
was achieved with the trade-off of an increased processing time compared to PointNet. At
the moment, the DGCNN is favored less than PointNet measured in the number of citations
on the paper and stars on GitHub [16]. Considering this and the increased runtime which is
crucial for a live classifier, this work will focus on the evaluation of PointNet.

Besides object classification, PointNet is also used in other contexts. In the work of Gao et
al. [GLZF18], the usability of a modified version of the vanilla PointNet to regress an object’s
orientation from point cloud segments is investigated. The input of the PointNet consists
of 256 points. Each point is defined by three dimensions of spatial coordinates and three
dimensions for color information. Points are randomly selected from a point cloud segment
of the object, the orientation of which is to be estimated. The spatial coordinates of the
input points are normalized based on the estimated position of the object. The network is
trained to provide a three-dimensional output which is interpreted as an axis-angle orientation.
They built upon that work in 2020 [GLW+20] and regress both orientation and translation
given a point cloud segment and a one-hot vector indicating the object class. In this case,
points have 3 + k dimensions with k being the number of supported classes, as each point
is defined as its coordinates in 3D space and the one-hot vector defining its class. The
input points are fed into two “base nets” the architecture of which is very similar to a vanilla
PointNet. One base net is tasked with estimating the orientation of the object, while the
other estimates the translation. In contrast to their previous work, the input point coordinates
of the orientation estimation base net are not normalized. The input point coordinates of
the position estimation base net are normalized with the mean of all points. To still achieve
an accurate position estimation, the mean is added to the results of the network. Thus, the
output of the architecture is a pose estimation of the object in form of the coordinates in 3D
space and the orientation in axis-angle representation given the input points and their class.
Their most recent work [GLH+21] accomplishes a similar result following a different route.
The architecture is based on an augmented autoencoder. A structure employing EdgeConv
layers is used as an encoder with an average-pooling layer as its latest stage. The code in
form of 1024 features is decoded with multiple MLP layers. The autoencoder is trained to
generate a noise and occlusion free point cloud from a noisy input point cloud with occlusions
and the class label. Based on the code generated by the encoder, the translation, as well as
the rotation of the object, is estimated. Thus, additionally to the translation and rotation of
the object, this approach removes noise and occlusions from the input point cloud.
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3.3. Clothes Classification and Manipulation

As this work evaluates the usability of PointNet for clothes classification to allow clothes
manipulation by robots, approaches to clothes classification and manipulation are presented
in this section. However, as Fashion-MNIST (see Section 3.1) is generally designed to evaluate
vision systems without a focus on clothes classification, approaches which do not especially
consider clothes besides using that dataset such as the work of Bhatnagar et al. [BGK17],
Duan et al. [DYZL19], Meshkini et al. [MPG20], or Kayed et al. [KAM20] are not regarded
in detail.

Because clothes do not have a distinct shape to be identified by, methods leveraging their
wrinkle characteristics are a logical consequence. In 2009, Yamazaki and Inaba presented a
method to detect wrinkled objects in images and use it to direct daily assistive robots towards
clothes [YI09]. Besides others, they use features extracted by Gabor filters as input of a
Support Vector Machine (SVM). Their system was integrated into the software stack of an
assistive robot and enables it to find and collect clothes dispersed in a room to put them in
a washing machine. The authors follow up on this work with “Clothing Classification Using
Image Features Derived from Clothing Fabrics, Wrinkles and Cloth Overlaps” in 2013 [YI13].
They evaluate how the usage of diverse features affects the cloth classification accuracy of a
multi-class SVM. By combining features extracted about clothing fabric and wrinkle density,
the existence of cloth-overlaps, and scale-space extrema, they achieved an accuracy of 99.07%
using 10-fold cross-validation.

Maitin-Shepard et al. use a Willow Garage PR2 robot to fold towels [MSCTLA10]. The
borders of the cloth are detected and then, corners are fitted into the detections. The detected
corners of the towels are used as grasp points for the robot. When the robot has grasped the
towel in a predefined manner at its corners, it folds them on a table. In 28 out of 50 trial
runs, the robot succeeded in its task without complications. The robot could recover from
all errors which occurred in the remaining 22 runs. Videos in the additional material of the
paper [17] show the process of the robot folding towels. It takes roughly 20 minutes for each
cloth.

Bersch et al. also present a method to fold cloth with the PR2 robot platform [BPK11].
However, as they fold a t-shirt, the complexity of the task is much higher. Solely relying on
corners is not applicable in this scenario. The authors approach this task with fiducial markers
printed all over the t-shirt. While this significantly eases the perception of the current state,
they focus on the internal representation of the state and selecting useful manipulation actions.

In his work, Pablo Jiménez Schlegl gave an overview on the field of visual grasp point local-
ization, classification, and state recognition in robotic manipulation of cloth in 2017 [JS17].
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In this thesis, the task of developing a live classifier for clothes based on point cloud data is
approached. To achieve a system capable of the task, a dataset of depth and RGB image
recordings of various types of clothes was created and a processing pipeline, which classifies
clothes based on point clouds was set up. The overall approach is schematically outlined in
Figure 4.1. The presentation of this work is split into two parts. First, the dataset generation
is explained in Section 4.1 including the tools developed and its object types. Second, the
implementation, training, and testing of the clothes classifier is detailed in Section 4.2.

4.1. Dataset Creation

To be able to classify clothes held at a single point based on depth information, a dataset
encompassing measurements of such samples is needed. As shown in Section 3.1, there is
currently no dataset available that fits the requirements of this work. The classification task
posed in this work is very hard, as it requires the network to tolerate the changing shapes
of the non-rigid clothes and to focus on the small features which distinct classes from each
other. Deep learning methods focus on features extracted from the input data. Often these
features are not intuitively understandable for humans. When approaching such a task, great
attention has to be paid to preventing overfitting of the deep learning approach.

Figure 4.1.: Schematic representation of the approach of this work. First, data is recorded.
Second, it is inspected and filtered if needed. Afterward, the recorded data is
preprocessed. The preprocessed data is used for model training and testing. A
model is trained on the training data. Based on the validation data, the end of
training is determined. Later on, the model can be tested on test data and used
in the live- or file classifier.
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As mentioned when discussing simulation in Section 2.1, it is possible to generate many
types of data in a simulator. Doing this would allow a very efficient generation of data
in various scenarios. However, in this work, data generation in simulation is deliberately
avoided. The main reason for this is fear of overfitting on simulation artifacts. When modeling
clothes for simulation, they are commonly represented by a loosely connected mesh. The way
the clothes behave is therefore highly dependent on how they are modeled. This includes
characteristics such as resolution, stiffness, and shape of the segments of the mesh. While the
modeling is sufficiently close to real clothes behavior such as, for example, simple manipulation
tasks in reinforcement learning, this does not warrant an authentic replication of the behavior
of real clothes in every detail. Thus, it is likely that the classifier focuses on differences in the
modeling of the clothes which are not observable in real applications. This would distort the
results of the work significantly. Consequently, the data was collected manually by holding
clothes in front of the Kinect v2 camera presented in Section 2.5 to eliminate this overfitting
possibility. As one of the main goals of this work is to achieve a well generalizing classifier,
this generalization capability is tested with the relatively unconventional constraint of using
only a single piece of clothes to represent each class in the training data. Usually, various
examples of the same object type are utilized to achieve a good generalization. In this case,
however, due to the type of information regarded and measures were taken against overfitting
at every step of the processing pipeline, the system is designed to be able to extract the
defining features of the classes in learning from a single piece. In the following sections, the
creation of the dataset is detailed.

4.1.1. Technical Aspects

As the creation of such a domain-specific and multimodal dataset and the management and
inspection of its samples also requires specialized tools, these were developed as part of this
work. The point cloud data needs to be recorded in a data format that is both widely usable
and efficiently readable.

The data processing pipeline created in this work consists of a data recording component,
which produces point cloud data files and corresponding images, a data prepare script, which
preprocesses the data for the neural network and splits the data in a train and a validation
set. Additionally, a data inspection tool was created which can visualize both the raw as well
as the prepared data.

Data Format

Point clouds used in this work are processed and saved by two libraries: NumPy [HMvdW+20]
and Open3D [ZPK18]. To accommodate this, they are stored in two separate file formats.
NumPy offers to save arrays in a compressed manner as .npz-files. In that case, point clouds
consisting of n points are processed in the form of n× 3 matrices stored as two-dimensional
NumPy arrays. Each point of the point cloud is a row in the matrix with x, y, and z defined
in the columns. When point normals are available, they are included in the form of three
additional columns in the matrix. The NumPy format was used as it contains less overhead
information and is easier to handle, because NumPy is the only dependency required to process
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them. The input of PointNet consists of a matrix as defined in the NumPy format which is
easily converted to a PyTorch Tensor. Therefore, the arrays can be directly fed into the neural
network. Additionally, the format allows to save sequences of point clouds in a single file by
adding another dimension to the matrix. This might be useful for future work exploring the
usage of temporal features.

Open3D relies on the point cloud data format (.pcd-files) which is also used by the Point
Cloud Library (PCL) [RC11]. Point cloud data files can be directly imported as Open3D
PointCloud objects. These objects can be used to reconstruct the object surface and calculate
the point normals. Also, they are natively supported by the Open3D visualization which is
used for data inspection. The format was chosen for the recorded point clouds, as it is widely
used for various point cloud applications.

Data Recording

While approaches of simulating ToF camera readings in artificial environments exist [GKUP11],
it was decided to take the measurements in the real world with real clothes to generate more
meaningful results. As the neural network has to focus on small details to solve the tasks
posed in the experiments (see Section 5), it was expected that the network might overfit
on artifacts induced in the simulation of non-rigid objects (see Section 2.1 “Simulation”).
To record the point cloud data, a tool was developed specifically for the ROS environment.
The point_cloud_recorder is a script written in Python which offers a console based
user interface for data collection. It subscribes to the point cloud and image topics of the
kinect_bridge presented in Section 2.5. Via command line parameters, the directory of
the created dataset is defined. Additional options include whether images are recorded along
with the point clouds, whether single point clouds or sequences are recorded, and the length
of sequences recorded. On startup, it asks the user to enter a class name. Recorded point
clouds and image will be stored in a directory named after the class in the dataset directory.
Then, the user can trigger a recording by pressing Enter. In normal mode, a single point
cloud is recorded (with an image if the option is set). When the sequence mode is activated,
multiple sequences are recorded in series. The frequency of recorded point clouds is defined
by setting the max_frames-option of the kinect_bridge. The user can change the current
class by entering c triggering the recorder to ask for the new class name. The names of the
stored files are composed of the class name, a time stamp and their number in the sequence
they are recorded in, if sequence mode is activated. Additional commands are available to
switch between sequence and normal mode and visualize the last captured point cloud by
entering v.

During tests, it was found that the pc2.read_points method induces a major delay. Its
task is to unpack the PointCloud2-message (see Section 2.2.1) generating a NumPy array
consisting of the point coordinates. This caused issues when recording sequences, as the
recording frequency became unstable. The goal of the recording of sequences is to allow future
work on the dataset to use the movement of clothes over time as a feature for classification.
This would be complicated by inconsistent time intervals between recordings. Caching the
sequence in the form of PointCloud2-messages in the RAM and converting them to NumPy
arrays after a whole sequence is recorded solves the issue.
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Figure 4.2.: Exemplary image of the data collection process and setup. The user holds the
piece grasped at a single position in front of the Kinect camera. A distance of
0.6m to 1m between the camera and the piece is maintained with the help of
markers on the floor.

The data collection setup shown in Figure 4.2 is composed of a Microsoft Kinect v2 camera
on a tripod and markers on the floor. The camera is connected to a computer, which handles
the data recording and gives the user direct feedback on the data recorded. The user can
see the output of the data recording script, an overview of the files collected (including their
sum), and a live view of both the RGB and depth images recorded by the Kinect camera.
The data recording script informs the user whether it is currently recording data, processing
a sequence, or ready for the next recording. To further improve the recording efficiency, the
user may activate a “speak”-option as a command line parameter which causes the script to
announce the states recording, processing, and ready via a text to speech engine. This is
intended to prompt the user to record more data as effectively as possible. The file overview
is necessary to keep track of how many samples are collected so the user can monitor their
progress. In this work, the hand of the user is not included in the point cloud because the
type of grasp for example could cause overfitting. This is achieved by holding the clothes
with the hand always being held as low as possible but above the cameras FOV. Based on the
live view of the camera images, the user gets immediate feedback about the holding position
(see Figure 4.3). The holding position is further restricted by the distance to the camera. As
mentioned in Section 2.5, the Kinect v2 camera only supports a minimal distance of 0.5 m.
With a safety margin, a minimal distance to the camera of 0.6 m was chosen. To be able to
separate the object from its background reliably (see Section 4.1.1), a maximal distance of
1m was decided upon.
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Figure 4.3.: Screenshot of the RQT recording setup. Using the live view of the RGB image
and depth image, the user can assess whether the holding position fits the re-
quirements. The depth image was used as a representation instead of a point
cloud because it provides a better reflection of the cameras FOV.

Data Inspection

Data inspection is vital for the management of a dataset. A user can check whether errors in
the data collection occurred and qualitatively assess the quality of the recordings. Visualized
samples help in explaining the challenge posed to the neural network classifier by the task. It

Figure 4.4.: Screenshot of the point cloud viewer showing a sample recorded of a jersey. The
color correlates to the distance to the viewer. Red indicates points in the back
and blue signals a point close to the camera.
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Table 4.1.: Excerpt of the key commands of the point cloud data visualization script. When
not noted otherwise, the key commands are natively supported by the Open3D
viewer.

Key Function
S View alphabetically last file in directory (added in this work)
D View alphabetically next file in directory (added in this work)
N Change number of visualized points (added in this work)
H Print help information
Q, Esc Exit window
Alt + Enter Toggle fullscreen view
L Toggle lightning in renderer
N Toggle point normal rendering
R Reset view point

also helps new users to get an overview of the data collected in the set. Thus, a tool similar
to an image viewer is required. It should be capable of displaying the point cloud files created
in this work and feature a customizable viewpoint as well as convenient navigation between
files. As mentioned, the point_cloud_recorder provides the option to visualize the last
point cloud recorded. But as in that case, only the point cloud recorded most recently is
shown, an additional visualization program was written to allow users to inspect a specific
point cloud from a dataset. A screenshot of the tool is shown in Figure 4.4. Compressed
NumPy arrays (.npz files), as well as point cloud data (.pcd) files, are supported. The Open3D
library [ZPK18] is used to visualize the point clouds. While Open3D natively offers a method
to load .pcd files, the .npz files are loaded using NumPy and the values are loaded into an
Open3D point cloud object later on. When available, point normals are also visualized. The
mouse can be used to move, rotate and zoom the viewpoint. Table 4.1 lists an excerpt of the
key commands available in the visualization script. Most notably, the tool offers commands
to print help (all available key commands explained), toggle point normal rendering, activate
color coding, and exit the tool. In this work, the option to iterate through the supported
files in the directory was added to allow an easier overview of multiple files. While iterating
through files, the viewpoint is kept. Thus, multiple point clouds can be compared without
changing the perspective. Also, the number of points visualized can be changed. This can
also be done using a command-line parameter. When the number of points available is below
the limit, points are selected by random sampling.

Data Preprocessing

It would not be optimal to use the recorded data directly for training as it might contain too
many points some of which do not belong to the object to be classified, does not include
estimated point normals, and is in the wrong format. A data preprocessing script was writ-
ten to prepare the datasets for training and testing of PointNet by addressing these issues.
Additionally, it is tasked with separating the datasets into a train and a test set. Generating
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separate train and test sets allows a fair comparison of multiple approaches on the same chal-
lenge with the same train and test samples. Also, other performance aspects can be assessed
later on using the dataset without the need to redo the whole experiment including training.
The ratio of training to test data can be defined as required using a command-line parameter
with the default being a test fraction of 0.2. In this work, the test set generated in this way
was used as a validation set while the test set was generated based on a dataset recorded
completely independently and only for testing. Thus, especially with the sequence-wise data
collection, the validation set is very similar to the training set. To use all data in a set as
test data, another command line parameter was introduced. When it is set, all data in the
input set is processed as test data. This option is used to generate the test data for the
experiments.

Not all points in the samples necessarily belong to the piece to be classified. Other objects
in the background (for example a wall) might be included in the sample. To approach this
issue, the fact that the distance between camera and object is known can be leveraged. By
defining a maximal distance from the camera, the recorded points can be filtered. Thereby,
measures of objects in the background are reliably removed if their distance to the sensor
is greater than the threshold. Also, it was observed that the Kinect camera produced some
erroneous point measurements at the edge of the FOV. However, these points were always
more than ten meters away from the camera. Thus, also these erroneous measurements are
removed from the samples. To give the user control over the threshold, it is also definable as
a command-line parameter.

Another essential function of the prepare script is the estimation of point normals. The
estimation of point normals explained in detail in Section 2.2.2 is computationally expensive
but necessary for a wide range of experiments. It cannot be integrated into the data recording
or in the train- and testing process because it would cause a significant delay while computing.
Therefore it is performed in the preprocessing step because it is usually only performed once
for a dataset and does not have time-sensitive requirements. To optimize the efficiency
during point normal estimation, the CPU usage of both the normal estimation and alignment
processes provided by Open3D [ZPK18] were analyzed and it was found that they only run
on a single processing core. In an effort to still make use of all processing cores available, the
Python library joblib [18], which simplifies the usability of the multiprocessing library was used
to distribute multiple point normal estimation and alignment operations across all processing
cores.

After the estimation of point normals, the point cloud size is reduced by randomly sampling
a subset of the points. The number of sampled points is set by a command-line parameter
with a default of 1024. When performing the sampling after the point normal estimation, the
point normals can contain meaningful information about the shape described by the point
cloud which would be lost when estimating the normals on sampled data.

As explained in Section 4.1.1 “Data Format”, the preprocessed point clouds are stored as
compressed NumPy arrays (.npz-files) to increase the time and space efficiency during training
and testing. When unpacking the NumPy array, the data is already available in a format that
can be fed into the neural network as no unpacking of the points and possibly point normals
from the point cloud data structure is necessary.
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4.1.2. Object Classes

The dataset created features 8 object classes, which were used in various configurations (see
Section 4.1.3). Depending on the experiments, the clothes were chosen because of their
shape, their material, or the fact that they are very similar to other clothes evaluated. The
object classes were Jeans, T-Shirt, Sweatpants, Sweater, Underpants, Sock, Shortpants, and
Jersey.

In Table 4.2, exemplary images and point clouds of each object class are shown to give an
overview of the general classification challenge posed by the set used in the evaluation (see
Section 5). Note, that the point clouds shown in the table are not the full point clouds of the
recorded clothes but the more sparse sampled point clouds preprocessed for PointNet. The
point of view of the point cloud renderings is the same they are recorded in. Lines in the
visualized point clouds represent the point normals estimated in the data preprocessing. The
classes were selected to represent the subset of most commonly worn clothes in a domestic
environment. The Jersey was added for experiments evaluating the classification performance
of similar shapes (when compared to the T-Shirt). Samples used during recording are used
clothes that were washed but not ironed since they were last worn.

4.1.3. Recorded Sets

A dataset of point clouds and RGB images was created for the experiments presented in
Section 5. Based on this large dataset, various small datasets were created as required in
a specific experiment. In the overall dataset, for all clothes except Underpants and Sock
presented in Table 4.2, samples are collected in each of the three grasp areas shown in
Figure 4.5. The T-Shirt in the Figure is only an example. the pattern was applied to the
other clothes classes as well. The top part is defined for the T-Shirt, Sweater, and Jersey as
the area between and above the shoulders. For all kinds of trousers, it is the waistband. The
edge is everything but the top which is at the border of the piece when viewed directly from
the front or back. The Inside collection encompasses all other grasp positions. Openings in
the pieces such as the collar or waistband were held shut in the Top and Edge collections but
left open in the Inside collection. Later on, these collections can be combined as necessary.

A training and a test dataset were recorded independently from each other. Most impor-
tantly, different clothes of the same types were used. When possible, a different color, cut,
and print were chosen. Additionally, the sets differ in the background, the pitch of the cam-
era angle was changed slightly and a different person held and rotated the clothes to avoid a
similar grasp or holding position. Thus, test results reflect the performance of the classifier
on unknown clothes given they can be assigned to one of the classes learned by the classifier.

The composition and sample counts for each class in the training and test data are listed
in Table 4.3. Note that all sample counts in the table (except total) are per-class values. In
this work, the preprocessing step splits the training data in a train and a validation portion
(see Section 4.1.1).
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4.1. Dataset Creation

Table 4.2.: Overview of the object classes used in the dataset. For each class, an image
depicting the piece as well as an exemplary RGB image and point cloud are shown.
The point clouds are depicted after performing a random sampling of 1024 points.
Additionally, estimated point normals are visualized.

Jeans T-Shirt Sweatpants Sweater

Underpants Sock Shortpants Jersey
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Top Edge Inside

Figure 4.5.: Exemplary representation of grasp areas used for data recording. During data
collection, clothes were grasped at a single point inside the areas marked. The
grasp areas are applied to the other types of clothes in a similar manner.

Table 4.3.: Composition and size of the dataset developed in this work. For the training and
test set, the number of samples per class is given. The total numbers sum up all
classes and all grasping positions.

Class Training Set Test Set
Jeans

Top 1500
Edge 1500
Inside 1500

 4500
Top 300
Edge 300
Inside 300

 900

T-Shirt
Sweatpants
Sweater
Shortpants
Jersey
Underpants

1500 300
Sock
Total 30000 6000

4.2. Classifier

The classifier used in this work is the PointNet in the classification configuration. The number
of classes is adapted to the specific dataset and experiment. As mentioned in Section 2.4,
a PyTorch based PointNet implementation is available [10]. This implementation was used
as the groundwork of the framework used in this work. While the architecture of the original
PointNet remains original, a new data loader for network training and testing was developed
and the training and testing scripts were extended.

4.2.1. Data Loader

A data loader is an essential part of the PyTorch test- and training pipeline [PGM+19]. It
acts as an interface that makes the prepared datasets accessible to the DataLoader class of
PyTorch. The new data loader called KinectDataLoader reads a text file generated by the
data prepare script. The file contains multiple lines of file names and class IDs. As an iterable
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object, it offers the option to load a specific compressed NumPy array from the file together
with its class ID. To allow using the same dataset for multiple different experiments, the
constructor of the KinectDataLoader offers to limit the number of points loaded from the
files and to select whether point normals are loaded if available. To prevent overfitting during
training, additional parameters are offered to move the coordinate system of the object into
the middle of the point cloud and to apply a random scaling factor in the range of ±10%.

4.2.2. Training

The training script already available in the PointNet implementation was extended for the
needs of this work. It features a train and a test component. The test component is designed
to test the trained model on a validation dataset. After the first epoch, the model is saved
and tested using the validation set. The classification accuracy is saved. When a later
model trained in further epochs achieves a better result, the stored model and classification
accuracy are overwritten. Thus, the model performing best on validation data is selected
after the predefined amount of training epochs was carried out. In this work, models were
trained for 50 epochs, after tests with 100 epochs did not yield improved results. Additional
to the point cloud centering in the data loader, a random point dropout, scale, and shift are
applied on each sample to prevent overfitting. Also, the random point dropout is supposed to
improve training in general and make the resulting model more robust against point dropout
when classifying real-world samples. Similar effects were shown in the robustness test by Qi
et al. [QYSG17] shown in Figure 3.2.

For training, the Adam optimizer [KB15] was used in a default configuration with a learning
rate of 0.001, β1 = 0.9, and β2 = 0.999, and a smaller than usual ϵ = 10−8. Usually, a
batch size of 24 was used. Via command-line options, various additional settings such as
CPU mode, a specific GPU to be used, the number of points, and whether or not to use
point normals can be set.

4.2.3. Testing

The testing script is in many aspects similar to the training script and its testing component.
During training, point clouds are still centered around the zero-point of the coordinate system
because this step is mandatory for successful classification as the models are trained with it.
The other measures against overfitting, however, are dropped as they do not affect learning
or the evaluation results in a meaningful manner. The main difference is that the original
testing script was extended in this work to produce detailed classification metrics. During the
evaluation, the result and the label for each sample are saved. Afterward, several class-specific
and overall metrics, as well as confusion matrices, are calculated using scikit-learn [PVG+11]
functions. The metrics used are defined and explained in greater detail in Section 5.1. Results
of the metrics are printed into the console and saved to a .txt-file. Optionally, a .tex file with
tables presenting the results can be rendered. To generate these files, the class names have
to be provided as a command-line parameter of the script. This work makes heavy use
of the LATEX-file generation capability as nearly all tables for the classification performance
experiments (see Section 5.6) and in the appendix (see Section B) were generated this way.

37



4. Approach

4.2.4. Live Classifier

Figure 4.6.: Schematic presentation of the live classifier integrated in the ROS environment.
The Kinect bridge publishes images and point clouds taken by the Kinect camera
into the ROS environment. They are processed in the live classifier using the
trained model. Classification results are made available via a message to all
subscribers or as response to an action request from a client.

To integrate the clothes classifier into the ROS environment, the live classifier node was
written. An exemplary classification pipeline using the live classifier node is sketched in
Figure 4.6. As outlined in Section 2.5, the Kinect Bridge [11] is used as an interface between
the Kinect v2 camera and the ROS environment. Thus, all measurements of the camera can be
inspected using common ROS tools such as RQT or RViz. The live classifier node subscribes
to a topic, on which a PointCloud2-message is published. It can be started using a launch
file, which loads the configuration file (see Listing D.3) and optionally also launches the Kinect
Bridge. The node acts as a wrapper around a trained PyTorch classifier model. On startup,
a model is loaded similar to the testing script (see Section 4.2.3). During preprocessing, the
points are filtered by their depth (distance to the camera), a predefined number of points is
sampled randomly and finally, the points are transformed such that the coordinate system is
in the center of the point cloud. As the point clouds are just captured by the camera, no
point normals are already available. They are not estimated in the live classifier, because it
would introduce a significant delay in the processing pipeline. The classifier can be run in a
live mode or a request mode. In live mode, the node enters a loop of classifying the most
recent PointCloud2 message and publishing the result as ClassificationResult message
(see Listing 4.1). When processing, the most recent incoming message is queued. Afterward,
the loop is reiterated. The ClassificationResult message is composed of a header, lists
specifying the class names, IDs, and ratings as well as the name, ID, and rating of the class
with the highest rating. Whereas including the information for the highest-rated class twice
is redundant, it improves the readability of the raw data.
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1 # Message describing a classification result
2 std_msgs/Header header
3
4 string [] class_names # names of all classes
5 uint8[] class_ids # IDs of all classes
6 float32 [] class_ratings # ratings of all classes
7 string max_class_name # name of the class with the maximal rating
8 uint8 max_class_id # ID of the class with the maximal rating
9 float32 max_class_rating # maximal rating of any class

Listing 4.1: The definition of the ClassificationResult message.

A visualization node was written to give a better impression of the classification re-
sults to the user. It subscribes to a configurable topic on which messages of the type
ClassificationResult are published. Then, a visualization that uses a bar chart to display
the ratings of each class is rendered and displayed. When a new message is received, the visu-
alization is updated. The visualization is implemented in Python using the matplotlib [Hun07]
library. This provides future users with various well-documented customization options. These
are convenient when using screen captures of the result visualization for demonstration pur-
poses. However, due to the design of the ClassificationResult message, it is not necessary
to adapt the visualization node for a certain domain. The number of classes and their names
are inferred from the message. The result of the live classifier to an exemplary sample is
shown in Figure 4.7. An RGB image and a depth image are shown to give an understanding

(a)

(b) (c)

Figure 4.7.: Screenshot of the result visualization tool given an exemplary sample of a jersey.
The sample is shown both as an RGB image (a) and depth image (b). In (c),
the corresponding classification result is visualized in the tool. Similar to all other
classifications, the RGB image data was not used for the classification.
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of the sample. Still, a point cloud without color information is used as input of the classifier.
The classification result is displayed by the live visualization tool.

While the live mode is intended for demonstrations to give users an impression of the sys-
tem’s performance especially in combination with the visualization node, the request mode
is supposed to be used in an integrated robot system. In request mode, the live classifier
offers an action interface with which a classification can be requested. On receiving a re-
quest, the node waits for the next PointCloud2 message. When the message is received, the
preprocessing is applied and the data is fed into the neural network. Finally, the classification
result is returned. The node also returns information about the process in between steps.
The definition of the action is listed in Listing 4.2. Its request is empty because the classifi-
cation parameters are defined in the configuration file of the live classifier. On returning the
classification result, a boolean is added to signal a successful classification. When an error
occurs in the process, for example when no point cloud was received, the success field is set
to false and the result is left undefined. To provide users with information about the progress
and ease the analysis of possible errors, the node returns feedback on the current state by
publishing whether it is currently waiting for the data or processing it in the neural network.

1 # Action triggering a point cloud recording and classification
2
3 # Empty request
4 ---
5 # Result
6 bool success
7 ClassificationResult result
8 ---
9 # Feedback

10 uint8 NONE = 0
11 uint8 WAIT_FOR_DATA = 1
12 uint8 PROCESS_DATA = 2
13 uint8 state

Listing 4.2: The definition of the Classify action.

In a robotic scenario, the robot could grasp the clothes, position them in front of the camera
and then, request a classification. When the classification ended successfully, its result can
be used for further processing of the clothes. The configuration file of the live classifier is
shown in the appendix (see Listing D.3).

4.2.5. File Classifier

The live classifier approaches the task posed in this work directly. However, it is not used to
analyze the inner workings of the learned model. In live classifier applications, the most recent
message is processed continuously. This aggravates a detailed analysis of a classification
result and comparisons between specific samples. While it is not directly relevant for the
live classification task, such functionality is for example required to analyze the processing
results of the classifier for specifically selected samples. Thus, it is vital when analyzing and
improving the model used in the live classifier.
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The file classifier extends the point cloud visualization tool used for data inspection (see
Section 4.1.1) with the capability of classifying the currently visualized point cloud. This
was implemented as a separate script to avoid requirements such as PyTorch and a trained
model to run the general visualization tool. Therefore, it also implements the features and
key commands presented in Section 4.1.1 “Data Inspection”.

Similar to other functions, the added file classification capability is also accessible via a key
command. When c is entered, preprocessing is applied on the point cloud and it is fed into
the loaded model. Various parameters of the preprocessing and the model path can be defined
as command line parameters. Notably, the number of points used for the classification is the
same number as visualized points. After the classification, the points are colored in blue and
red, with red signaling that the points were significant points during the classification process
(for more information on significant points see Section 5.5).

Thus, this tool allows the user to inspect point clouds and the network’s reaction to specific
situations. The focus and errors of the network can be analyzed using various examples.
When using the file navigation features, the network’s reactions to different samples can be
compared conveniently, especially because the view parameters (camera position, orientation,
and zoom) are kept between files and during classification. Exemplary samples classified and
visualized with highlighted significant points using the file classifier are shown in Figure 5.3
in the Experiment section.
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During this work, multiple experiments were conducted to evaluate the performance of Point-
Net on clothes. The results of the experiments mostly consist of a series of metrics represent-
ing the classification performance in a numerical manner. Section 5.1 explains and defines
the metrics used in this work. Table 5.1 gives an overview of the experiments conducted
in this work. First, the effect of the number of points on the classification performance was
evaluated. Due to the structure of the PointNet architecture, the computation effort of a sam-
ple scales linearly with its size. With computation time being a premium in live classification
tasks, a middle ground between accuracy and performance has to be determined. Second, the
grasp point used for holding the clothes was evaluated to evaluate whether clothes grasped at
a specific point can be classified significantly better. To analyze the impact of the material,
two classes of clothes with a generally similar shape (T-Shirt and Jersey) were used to train
a binary classifier. With the material, the way the clothes hang changes. The experiment
is set up to determine whether the network can make sufficient use of these changes. An
understanding of what the neural network is focusing on is gained in the following experiment.
It investigates which points in a sample were significant in the classification process. Finally,
the performance of the classifier is evaluated to assess the general capability of the system
when applied to a task. As shape measurements in the form of point clouds were chosen to
achieve a good generalization over the clothes types, this is also investigated in detail.

Table 5.1.: Overview of the experiments performed in this work.
Experiment Classes Evaluation Set

5.2 Number of Points
T-Shirt

Validation Set
Jeans

5.3 Grasp Positions
Sweatpants

Sweater

5.4 Similar Shape
T-Shirt
Jersey

Validation Set
Test Set

5.5 Significant Points
T-Shirt

Validation SetJeans
Sweatpants

5.6 Classification Performance and Generalization

Sweater
Validation Set

Test Set
Underpants

Sock
Shortpants
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When not stated otherwise, the models trained for the experiments are PointNets with the
input transform layer, but without the feature transform layer as explained in Section 4.2.2.
By default, an input of 1024 points is used. For training, the Adam optimizer [KB15] was
used with a learning rate of 0.001 and a batch size of 24 over 50 epochs. Over the 50 epochs,
the model with the best performance on the validation data is selected. For testing, the script
presented in Section 4.2.3 was used.

5.1. Metrics

In the following sections, multiple classification experiments are presented. The evaluation
of the experiment results is mainly done by discussing classification metrics and confusion
matrices. As mentioned in Section 4.2.3, the test script generates an evaluation of the
trained model using the scikit-learn Python library [PVG+11]. Therefore, similar definitions
of the metrics are used. Additionally to the overall accuracy, class specific metrics such as
precision, recall and the f1-score are used. As only one class is considered at once, measures
of binary classifiers such as the number of true positive (TP ), false positive (FP ), true
negative (TN), and false negative (FN) detections of the class can be used. The overall
accuracy of a test run is ascertained by dividing the number of correct classifications by the
number of overall classified samples as shown in equation 5.1.

Accuracy =
TP + TN

TP + FP + TN + FN
(5.1)

The precision is defined in equation 5.2.

Precision =
TP

TP + FP
(5.2)

To calculate the precision, the number of true positive detections is divided by the overall
number of positive detections. Thus, the precision is the measure of when a class is detected,
it actually is correct. In contrast, the recall defined in equation 5.3 measures the proportion
at which the class is detected when it is present in the sample as it divides the number of
true positive detections of a class by the number of its occurrences.

Recall =
TP

TP + FN
(5.3)

The f1-score is the harmonic mean of the precision and recall metrics. It is calculated as
shown in equation 5.4.

F1− Score = 2 ∗ Precision ∗Recall

Precision+Recall
=

TP

TP + 1
2(FP + FN)

(5.4)

In confusion matrices, the ground truth is represented by the row of the table and the
matrices are normalized by the ground truth. Thus, a value in the table reflects the portion
of all samples of the class denoted by the row, which were identified as the class denoted by
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Figure 5.1.: Visualization of classification accuracy with various numbers of input points. The
number of input points was used for both training and testing. The validation
set, which is very similar to the training set, was used for evaluation. In the plot,
results for both experiments, without (blue) and with (red) point normals are
shown. A dashed, gray line marks the classification accuracy expected from a
random classifier (25% on four classes).

the column. Note, that the order of the axis used by scikit-learn may be different than in
other works. This is caused by a general confusion about the default. For example, at the
time of writing, the German and the English article in the Wikipedia are not consistent in
this regard [19, 20]. To increase the readability, the matrix cells are colored with a saturation
reflecting their value.

All values are rounded to three digits behind the comma, as more precise values are not
reproducible due to the random initialization of the neural networks and reduce the readability
of the results.

5.2. Number of Points

Contrary to most common neural networks such as YOLOv4 [BWL20], where the size of the
input image is fixed by the architecture, PointNet is capable of handling various sizes of point
clouds. As both the sample classification runtime as well as training duration increase linearly
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with the number of points taken as input, an evaluation of the number of points required
for a reliable classification performance needs to be conducted. While it is possible to train
and test a PointNet with different numbers of input points, in this experiment, the same
number of points was used for training as well as testing. For the experiment, a subset of
the dataset presented in Section 4.1 which includes the classes T-Shirt, Jeans, Sweatpants,
and Sweater was used. The evaluation set is the validation data which is very similar to the
training data. Contrary to other evaluation sets, in the preprocessing stage, 8192 points were
sampled from each original point cloud instead of the 1024 points, which are used in the other
experiments. The availability of 8192 points in each sample allows the user to make use of
the point sampling functionality of the train- and test scripts. Utilizing this option, 13 models
trained with different amounts of points as sample size for both, training and evaluation were
evaluated. Each was trained and tested with and without the usage of point normals.

Figure 5.1 depicts the results of the experiment runs performed. The experiment results
are visualized for the configuration with and without the usage of point normals. A numerical
listing of the classifier performance is available in the appendix (see Table B.29). In a dataset
with four classes, a classification accuracy of 25% is equally precise as a random class as-
signment and means that the network did not learn successfully. In the experiment, an input
size of two points already surpasses that mark. While the inclusion of point normals generally
increases the accuracy, this effect becomes more pronounced with 8 or more input points.

5.3. Grasp Positions

In a robotic setup, it might not be possible to grasp clothes reliably at a specific position such
as the collar or the waistband. Therefore, the effect of the grasp position on the classification
performance of PointNet is investigated in this experiment. Three grasp areas were evaluated
with a dataset for each area. In each sample, the clothes were held at a single point in
a specified area. A dataset consisting of 1500 point clouds for each of four object classes
grasped in each of the three grasp areas was used. The separate datasets (see Figure 4.5) were
combined resulting in collections of point clouds recorded in the grasp positions presented
in Figure 5.2. Grasp areas shown in Figure 5.2 are exemplary and carried over to the other
clothes types, too. They are explained in detail in Section 4.1.1. The chosen object classes
are T-Shirt, Jeans, Sweatpants, and Sweater. A train/validation split of 80:20 was used. The
validation set which is relatively similar to the training data was used as evaluation data in
this experiment. 1024 points per sample were used as input of PointNet. As before, each
experiment run was conducted separately with and without point normals. Table 5.2 gives
an overview of the accuracies measured in the experiments. Detailed experiment results are
listed in the appendix in Section B.1.
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Top Edge Anywhere

Figure 5.2.: Exemplary representation of grasp areas used for evaluation. The grasp areas
are achieved by combining smaller sample collections recorded with disjoint areas
(see Figure 4.5).

Table 5.2.: Comparison of classification accuracies with four classes and different grasp posi-
tions.

Grasp Position
Top Edge Anywhere

Without
Point Normals

91.4% 83.9% 81.8%

With
Point Normals

95.8% 91.7% 91.3%

Table 5.3.: Comparison of classification accuracies with four classes and different grasp posi-
tions.

Grasp Position
Top Edge Anywhere

Accuracy
on validation data

91.4% 83.9% 81.8%

With
Point Normals

95.8% 91.7% 91.3%
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Grasp Position
Top Edge Everywhere

Accuracy
on validation data

91.4% 83.9% 81.8%

5.4. Similar Shape

To investigate the significance of the clothes’ material, a classifier was trained to differentiate
between a t-shirt and a jersey. For comparison, another model which distinguishes between
a t-shirt and a jeans was trained. All three classes (only two of which are used at once in
both cases) classified in the experiment are shown in Table 5.4, an excerpt from Table 4.2.
Again, the first row shows the pieces used in the experiment, and additionally, exemplary RGB
images and point clouds with estimated point normals are shown. While the general shape of
the classes T-Shirt and Jersey is very similar, they mainly differ in color and material. In the
training data, the t-shirt consists of dark blue cotton which is not very reflective. In contrast,
the jersey in the train and validation sets is made from synthetic material and colored red.
Also, the synthetic material glares slightly. In the test dataset, different pieces in different
colors of the same type were used. Because the color is not included in the input information
of the network, it will not be regarded.

Similar to other experiments, results are collected with and without calculating point nor-
mals beforehand. Again, the experiment was conducted sequentially for the three grasping
areas as the grasp positions experiment. As this is not the focus of this evaluation, only the
results for all grasp positions are discussed.

Table 5.5 provides an overview of the results measured. The similar shape classifier per-
formed relatively well on the validation data (78.8% accuracy without and 89.6% with point
normals). On independent test data, however, it performs worse than a pure guess which
would achieve an accuracy of about 50% when distinguishing two classes. This pronounced
decline in classification accuracy indicates severe overfitting on the training and validation
data. In contrast, for the classifier applied to diverse shapes, no such effect can be reported.
More detailed results are listed in the appendix (see Section B.2).
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Table 5.4.: Overview of the object classes used in the similar shape experiment. Excerpt from
Table 4.2. The classes Jeans and T-Shirt are used as diverse shapes and T-Shirt
and Jersey are used as similar shapes. For each class, an image depicting the piece
as well as an exemplary RGB image and point cloud are shown. The point clouds
are depicted after performing a random sampling of 1024 points. Additionally,
estimated point normals are visualized.

Jeans T-Shirt Jersey

5.5. Significant Points

When the max-pooling is applied in the PointNet, the maximal activation for each of the
1024 features is selected. While for some of the points multiple features gain a maximum
activation, others have none. Because the PointNet classification pipeline does not take any
information besides the resulting global feature vector into account, the points without any
feature with a maximal activation are not regarded in further processing. Thus, features of
a subset of the input points are processed further and the basis for the class rating. In this
work, the subset of points regarded further is called significant points. In other work such
as [Gao21], it is also referenced as active points. To understand what kind of features the
network is focusing on, analyzing the significant points provides valuable insight.

The seven-class classification models which are evaluated in detail in Section 5.6 were used
for the experiments. The input point clouds consist of 1024 points. Again, similar to the other
experiments, it was performed with and without considering point normals. The difference is
especially interesting as point normals add local information to the extracted features. As can
be seen in the classification performance results in the other experiments, these additional
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Table 5.5.: Comparison of classification accuracies with two similar or diverse classes. The
experiments were conducted without and with point normals in the input samples.
Both, validation and independent test data were used as evaluation set.

Similar
Shape

Diverse
Shape

Validation
Data

Test
Data

Validation
Data

Test
Data

Without
Point Normals

78.8% 24.3% 97% 97.7%

With
Point Normals

89.6% 30.1% 99.7% 96.1%

features are useful for the classification process. Thus, the possible difference in the selection
of significant points needs to be examined.

Exemplary visualizations of input point clouds with significant points marked in red are
shown in Figure 5.3. The experiments were performed with the T-Shirt, Jeans, and Sock
classes. Examples selected are subjectively representational of the overall results. In the
images, the perspective is oriented along the z-axis. This means that the viewing angle is
similar to that of the camera. For the experiment without point normals, it is evident that
most of the significant points are arranged along the edge of the clothes. Most of the points
which are located closer to the center of the point cloud are close to the edge of the cloud
on the z-axis. Also, consistently, a large portion of the points are at the bottom of the point
cloud for all classes. In the case with point normals, the result is similar with the exception
of a higher rate of points distributed seemingly randomly throughout the point cloud.
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T-Shirt Jeans Sock

Without
Point Normals

With
Point Normals

Figure 5.3.: Significant points (marked in red) in point clouds of various classes with and
without point normals. The samples depicted are exemplary and reflect a qual-
itative review of the results. Some points in the examples with point normals
are depicted in a darker tone as the visualization applies a shading on the points
when point normals are available.

5.6. Classification Performance and Generalization

As the overall goal of this work is to design a system that can classify a live stream of point
clouds, a PointNet model is required. This model was trained with and without using point
normals and is evaluated in detail. Because in the design of the pipeline, an emphasis was
put on preventing overfitting and achieving a generalizing classifier using relatively monotone
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5. Experiment

training data, this experiment was conducted both with validation data and independently
recorded test data used as evaluation set. Similar to all other experiments, this analysis is
performed without and with point normals in the input point cloud. Thus, each of the two
models was trained once but tested and evaluated twice.

Table 5.6 gives an overview of the experiments performed based on the classification ac-
curacy achieved on the evaluation sets. Most notable is the difference in the impact of the
point normal based classification between the two evaluation methods. While the model using
point normal information achieves an accuracy of 92.2% on validation data, which is a 10.1
percentage points improvement over the model without point normals, with an accuracy of
72.5% on test data, it performs 1.9 percentage points worse than the model without point
normals.

Table 5.6.: Comparison of classification accuracies of the seven-class classifier without and
with point normals using validation and independent test data.

Validation
Data

Test
Data

Without
Point Normals

82.3% 74.4%

With
Point Normals

92.2% 72.5%

The following tables present the detailed results of the four experiments. For each exper-
iment, various metrics are listed on a class-specific scale and overall values are calculated.
The weighted average is required because the support (number of samples in the evaluation
set) varies between the classes. This is regarded by the weighted average value by weighting
the individual scores based on the support of the class. Additionally to the confusion matrices
of the models are provided. Their structure follows the definition given in Section 5.1.
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5.6. Classification Performance and Generalization

First, the model trained without point normals is evaluated using the validation set. As
shown in Table 5.7, an accuracy of 82.3% was reached. The classes Underpants, Sock, and
Shortpants are detected best. In the confusion matrix (see Table 5.8), the most inter-class
confusion is observable between the classes Sweater and Sweatpants. Also notable is the
relatively high rate at which Sweatpants are mistaken for Jeans. This does not occur as
commonly the other way around.

Table 5.7.: Classification performance of the seven-class classifier without point normals on
validation data.

Precision Recall F1-score Support
Jeans 0.782 0.813 0.797 870
T-Shirt 0.890 0.888 0.889 872
Sweatpants 0.685 0.706 0.696 895
Sweater 0.761 0.713 0.736 963
Underpants 0.885 0.936 0.910 312
Sock 0.986 0.976 0.981 288
Shortpants 0.928 0.913 0.920 900
Accuracy 0.823 5100
Average 0.845 0.849 0.847 5100
Weighted Average 0.823 0.823 0.823 5100

Table 5.8.: Confusion matrix of the seven-class classifier without point normals on validation
data.
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Jeans 0.813 0.006 0.06 0.084 0.0 0.0 0.038

T-Shirt 0.01 0.888 0.06 0.017 0.013 0.0 0.013

Sweatpants 0.118 0.038 0.706 0.135 0.0 0.0 0.002

Sweater 0.061 0.028 0.186 0.713 0.0 0.0 0.011

Underpants 0.0 0.022 0.003 0.003 0.936 0.013 0.022

Sock 0.01 0.0 0.0 0.0 0.014 0.976 0.0

Shortpants 0.022 0.026 0.007 0.007 0.026 0.0 0.913
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5. Experiment

Second, the network was trained with point normals. As already mentioned, it outperforms
the model trained in the first experiment by a significant margin as can be seen in Table 5.9. It
is also evident, that it performs better in every aspect over all classes. Class-specific strengths
and weaknesses are also apparent in this model. In the confusion matrix shown in Table 5.10,
the improvements over the model without point normals are visible. The inter-class confusions
are relatively low throughout the whole table, with the comparably high misclassification rate
of Sweatpants as Sweaters being an exception. While the confusion between the two classes
is bidirectional in the first experiment, it is unidirectional in this run.

Table 5.9.: Classification performance of the seven-class classifier with point normals on val-
idation data.

Precision Recall F1-score Support
Jeans 0.905 0.957 0.931 870
T-Shirt 0.971 0.956 0.964 872
Sweatpants 0.917 0.775 0.840 895
Sweater 0.829 0.918 0.871 963
Underpants 0.962 0.965 0.963 312
Sock 0.993 0.990 0.991 288
Shortpants 0.969 0.967 0.968 900
Accuracy 0.922 5100
Average 0.935 0.933 0.933 5100
Weighted Average 0.924 0.922 0.921 5100

Table 5.10.: Confusion matrix of the seven-class classifier with point normals on validation
data.
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Jeans 0.957 0.003 0.006 0.022 0.0 0.0 0.011

T-Shirt 0.011 0.956 0.009 0.01 0.006 0.0 0.007

Sweatpants 0.037 0.015 0.775 0.169 0.0 0.0 0.004

Sweater 0.021 0.006 0.052 0.918 0.001 0.0 0.002

Underpants 0.0 0.01 0.0 0.0 0.965 0.006 0.019

Sock 0.0 0.0 0.0 0.0 0.01 0.99 0.0

Shortpants 0.027 0.0 0.0 0.003 0.003 0.0 0.967
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5.6. Classification Performance and Generalization

Following the evaluations on validation data, both models are evaluated using the indepen-
dent test data. In doing this, the generalization capabilities of the network are tested as the
test data was recorded independently from the training and validation data. This test is the
closest representation of real-world performance, as the live classifier does not estimate the
point normals and has to handle clothes different from those in the training data. Table 5.11
presents the test results of the test run without point normals. In contrast to the results on
validation data, the differences between the class scores are more pronounced. In Table 5.12
generally more inter class confusion is evident. Most notably, Sweatpants and Sweaters are
often mistaken for Jeans and Socks, a recall of 1.0 is achieved.

Table 5.11.: Classification performance of the seven-class classifier without point normals on
independent test data.

Precision Recall F1-score Support
Jeans 0.569 0.693 0.625 900
T-Shirt 0.809 0.868 0.838 900
Sweatpants 0.702 0.528 0.602 900
Sweater 0.731 0.571 0.641 900
Underpants 0.761 0.880 0.816 300
Sock 0.926 1.000 0.962 300
Shortpants 0.846 0.929 0.886 900
Accuracy 0.744 5100
Average 0.763 0.781 0.767 5100
Weighted Average 0.745 0.744 0.738 5100

Table 5.12.: Confusion matrix of the seven-class classifier without point normals on indepen-
dent test data.
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Jeans 0.693 0.006 0.106 0.12 0.0 0.0 0.076

T-Shirt 0.013 0.868 0.007 0.004 0.087 0.009 0.012

Sweatpants 0.22 0.171 0.528 0.079 0.0 0.0 0.002

Sweater 0.232 0.008 0.112 0.571 0.0 0.0 0.077

Underpants 0.003 0.057 0.0 0.0 0.88 0.053 0.007

Sock 0.0 0.0 0.0 0.0 0.0 1.0 0.0

Shortpants 0.058 0.001 0.0 0.007 0.006 0.0 0.929
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5. Experiment

In the final experiment of this series, the model trained with point normals was evaluated
on the independent test set. As already mentioned, it performed inferior compared to the
model trained without point normals. Tables 5.13 and 5.14 indicate that the lower accuracy
is caused by a slightly worse performance on most classes. The confusion pattern is generally
comparable to the previous experiment run with minor differences.

Table 5.13.: Classification performance of the seven-class classifier with point normals on
independent test data.

Precision Recall F1-score Support
Jeans 0.556 0.616 0.584 900
T-Shirt 0.809 0.688 0.744 900
Sweatpants 0.739 0.611 0.669 900
Sweater 0.694 0.622 0.656 900
Underpants 0.709 0.903 0.795 300
Sock 0.905 0.950 0.927 300
Shortpants 0.790 0.957 0.865 900
Accuracy 0.725 5100
Average 0.743 0.764 0.749 5100
Weighted Average 0.728 0.725 0.722 5100

Table 5.14.: Confusion matrix of the seven-class classifier with point normals on independent
test data.
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Jeans 0.616 0.004 0.129 0.179 0.0 0.0 0.072

T-Shirt 0.086 0.688 0.0 0.002 0.106 0.012 0.107

Sweatpants 0.141 0.15 0.611 0.093 0.0 0.0 0.004

Sweater 0.223 0.004 0.087 0.622 0.0 0.0 0.063

Underpants 0.0 0.01 0.0 0.0 0.903 0.063 0.023

Sock 0.0 0.0 0.0 0.0 0.05 0.95 0.0

Shortpants 0.042 0.0 0.0 0.0 0.001 0.0 0.957
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6. Discussion

In the following sections, the work and experiment results are discussed. First, Section 6.1
discusses the results of the experiments conducted to evaluate the PointNet clothes classifier
developed in this work. Second, the validity of the work conducted is debated in Section 6.2.
Finally, Section 6.3 discusses the applicability of the developed system in a robot setup.

6.1. Performance in Experiments

The experiments conducted in Chapter 5 provide various measurements about and insights
into the PointNet classifier when applied to non-rigid objects. As shown in the overview of
the experiments (see Table 5.1), multiple aspects of the classifier are inspected independently.

In the experiments evaluating the optimal number of points required for the task of clothes
classification, the general expectation that an increase in the number of input points used
leads to an improved classification accuracy was confirmed. The increase of the classification
accuracy in relation to the number of points used can be approximated by a logarithmic
function while the computational effort grows linearly in relation to the number of points.

Possibly, the performance using a very low number of points could be improved by using a
distance-based sampling method instead of random sampling. Using random sampling, points
close to each other might be selected leading to a poor representation of the clothes. In case
of larger numbers of points, random sampling is faster and sufficient as the probability of
selecting a sub-optimal set of input points decreases significantly.

Especially for applications in which a robot grasps a sample and classifies it afterward,
the effect of the grasp positions is relevant. When the classification accuracy achieved while
grasping the clothes anywhere in the pieces is not sufficient, the results in Table 5.2, indicate
that implementing a system that grasps the pieces at the edge is not worth the effort. To
achieve a significant improvement in classification performance, a method to reliably grasp the
samples at the top is required. Based on the results, the classification performance reached by
the model handling grasps anywhere was deemed sufficient and the grasp position is used for
all other models trained. Also, the training data generated by grasping the clothes anywhere
includes a larger variety in the data, which could generally yield a more robust model. For the
experiments, the datasets with samples grasped from the top edge and inside the clothes (see
Figure 4.5) were combined resulting in the datasets used in the experiments (see Figure 5.2).
Thereby, a larger dataset in the evaluation for more diverse grasping positions is caused. This
might have lessened the effect of the diverse grasp positions. But as the disparity in dataset
size between the grasp positions Top and Edge is similar to the difference between Edge and
Anywhere, the difference in classification accuracy is still comparable.
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6. Discussion

To investigate whether the classifier is able to capture the characteristics of the clothes
material, the similar shapes experiment was conducted (see Section 5.4). As the clothes types
classified did not differ significantly in their shape but in their material (T-Shirt: cotton,
Jersey: polyester). It was assumed that the different materials lead to different shapes when
the clothes are grasped at a single point. The results achieved on validation data indicate
that there are indeed differences between the types significant enough to differentiate between
the classes. On the independent test data, however, the classifier drastically failed as the
accuracy achieved was significantly worse than a random guess. This is a strong indication
for overfitting. It means that the model focused on differences between the pieces in the
training set which are specific to the individual pieces or the data collected and do not
apply to the type of clothing in general. These results indicate that either the assumption
made about the change of the shapes due to the material is wrong in general or that the
PointNet is not able to capture the features. Possibly, a method capable of processing local
features such as PointNet++ [QYSG17] or DGCNN [WSL+19] is able to learn to differentiate
between similar shapes. Also, on the diverse shapes used as a baseline in the experiments, a
significantly less pronounced overfitting effect can be observed for the experiment run with
point normals.

A deeper insight into the inner workings of the PointNet classifier was gained in the sig-
nificant points experiment in Section 5.5. For exemplary samples, the points selected for the
classification are highlighted in the input point cloud. The experiment showed, that the model
trained without point normals in the input mainly focuses on points on the outer border of the
pieces on the x-y-plane. Some apparently randomly selected points in the center of the pieces
are in fact on the outer border in the z-direction. The model trained with point normals shows
a relatively similar pattern to the one without point normals. The main difference between
the two is that the samples with point normals show a slightly larger portion of seemingly
randomly selected significant points. It can be assumed that some of these points are selected
because their point normals include especially large parameters. These observations could be
caused by the PointNet property of only regarding global features. This would mean that the
network is unable to focus on smaller parts of the samples individually and only considers the
sample as a whole. This hypothesis would also explain the inability of the network to gener-
alize on similar shapes made from different materials evident in the similar shape experiment.
When only regarding the sample as a whole, smaller details such as wrinkle patterns of the
clothes cannot be considered in the classification process.

The results are especially interesting when compared to the significant points identified in
other applications of PointNet. A similar experiment was conducted in the original PointNet
paper [QSKG17] and in the dissertation of Gao [Gao21]. Exemplary samples of both experi-
ments shown in the publications are also available in the appendix of this work (see Figures
C.1 and C.2). The PointNet paper focuses on the classification of rigid objects. It is observed
that the significant points form a skeleton of the objects. While Gao still utilizes rigid objects,
the objects are not classified, but their orientation in space is estimated. In contrast to the
PointNet paper, no such skeleton-like structures were observable in the selection of signifi-
cant points. The significant points are spread out evenly across the sample point cloud. The
reason for the higher density of significant points is that the same point selection process as
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6.2. Threats to Validity

used in this work and the original PointNet is applied on only 256 points, which is a quarter
of the 1024 points used in the other approaches.

The seven-class classifier designed to be used in the live-classifier is evaluated in detail in
Section 5.6. Analogical to the similar shape experiment, the classification performance is
regarded both on the validation set and the independent test set. This was done again to in-
vestigate whether the accuracy achieved on test data is transferable to real-world applications.
While the performance achieved on the independent test data is significantly worse than on
validation data, it cannot be considered a total failure as in the similar shape experiment.
Also, no fatal failures of any per-class score can be reported. Most notably, whereas the model
trained with point normals outperformed the model without point normals on validation data,
it performed inferior on test data. This reinforces the impression that point normals can lead
to overfitting of a model which was already apparent in the baseline tests of the similar shapes
experiment.

In general, the classification performance is significantly worse than the performance achieved
by PointNet and other approaches achieved on benchmark data such as ModelNet40 (see Ta-
ble 2.3). However, as in this work, the network is applied to classify non-rigid objects instead
of rigid objects, the task is much harder and a decrease in classification accuracy was ex-
pected despite using fewer classes. The classifier outperforms PointNet++ without intrinsic
features which achieved a classification performance of 60.18% on the SHREC15 benchmark
(see Table 3.1). Due to less challenging shapes the SHREC15 benchmark, a different number
of classes, and significantly more restrictions for the recording of train and test data, the
results are not directly comparable. Probably, the restrictions on the object position, size,
and distance to the camera (in conjunction with the preprocessing steps) compensate for the
higher flexibility of classified objects.

The results achieved with the seven-class classifier (see Table 5.6) can be considered to be
sufficient for simple tasks. Note, that only the classification accuracy of the model trained
without point normals measured on test data (74.4%) is transferable to a real-world scenario.
To further improve the results, regarding clothes from multiple viewing angles might help.
Even sequences of point clouds could be processed in a classification pipeline with a recurrent
component such as an LSTM [HS97]. This would allow capturing temporal features and
multiple viewing angles when the samples are rotated during sequence recording. Also, using
a classification pipeline capable of capturing local features might help with the classification
of similar shapes and possibly also with the other classes.

6.2. Threats to Validity

In the following, threats to the validity of the results gathered in the experiments are discussed.
The results gathered in one experiment were assumed to apply in other experiments while
changing other variables. For example, the optimal number of points was evaluated using
four classes, but that does not imply that it is still optimal in a case with seven classes or
for similar shapes. However, the experiments in this work are supposed to provide a general
impression of the effect and order of magnitude of the variables investigated and not to
yield the best results possible. Also, the number of different clothes is very restricted. The
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selection of clothes types was a compromise. The clothes commonly worn by males in western
societies were selected because they were available and are relatively uniform. In contrast, in
women’s clothing, more variation in styles is common. There, the types of clothes merge into
each other. Also, the general shape is not always sufficient for classification, as for example
sweatpants, a pair of leggings, or tights are comparatively similar to the clothes used in the
similar shape experiment in Section 5.4. Situations in a real-world application, especially
when sorting laundry, clothes might be dirty, wet, and partially or completely inside-out. This
was not tested in this work, but as this technology is still in the early stages of development,
general usability in a laboratory with constraints on the clothes such as being clean and dry is
still given. Additional to the concerns detailed in this section, when applied to a robot, more
problems could surface. These are listed in the following section.

6.3. Applicability in Robotic Systems

When the live classifier is deployed on a robot, several implications of the new setup need
to be considered. A depth camera with a wide field of view and the capability of taking
measurements in a field relatively near to the sensor is required. The recording setup used in
this work (see Section 4.1.1) allows to select the position of the person holding the clothes
without a connection to the camera as can be seen in Figure 4.2. When using a robot such
as the PR2 service robot , the maximal distance between camera and clothes is constrained
by the length of the robot’s arms. This constraint causes the requirement for a low minimal
measurement distance. The larger field of view is required to capture as much information
about the clothes as possible even if they are held close to the sensor. Another influence of
the fixed relation between camera and robot arms might be that the position of the robot’s
camera is not optimal to observe objects hanging below the robot’s grippers. This is the case
when the robot’s arms can not be lifted above the camera. As mentioned, the Microsoft
Azure Kinect presented in Section 2.5 offers both, a wide FOV as well as capabilities for
measuring objects relatively close to the sensor. However, it is not absolutely certain how the
results might be affected by using a different camera. The changes could be positive, as a
better camera with less noise in the measurements can improve the classification accuracy.

Also, the position at which the clothes are grasped might differ from the current state.
While this might improve the results, as the clothes are held at a more consistent position,
the robot arm might be included in the depth information. Nonetheless, there are pitfalls of
using a robotic arm, as it could be captured in the point cloud measurements. In such cases,
a system removing the robot’s links from the point cloud based on its forward kinematic such
as the robot_self_filter [21] can address the issue.

To achieve an actually autonomous process, the task of locating and grasping clothes needs
to be solved. Otherwise, a person is required to hand the clothes to the robotic gripper. The
challenge of grasping clothes is especially demanding considering that only a single piece can
be classified at a time. So the robot needs a procedure that results in a single piece of clothing
grasped and ready for classification. One could achieve this by including information on the
grippers opening angle and tactile sensor measurements.
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6.3. Applicability in Robotic Systems

In the future, many robotic systems will be upgraded to the ROS2 middleware. Still, most
of this work such as the train and testing pipeline, the file classifier, and data inspection
do not depend on ROS and do not need to be changed. Only the package definition, live
classifier, and result visualization have to be adapted to the new ecosystem. As only standard
components and capabilities are used for which drop-in replacements are available in ROS2,
this can be considered to be an easily solvable issue.

Altogether, a good integration of the live classifier in a robotic system can be expected.
The live classifier is already well integrated into the ROS environment. Potential issues as
outlined can be approached with relatively low effort. The greatest adaption possibly re-
quired would be re-recording the training dataset when the set created in this work can not
be adapted to the viewing angle of the robot. But even in that case, the general structure of
the deep learning model, the train and test pipeline, and the live classifier itself do not require
adaptions. Especially when considering the classification performance and generalization ca-
pabilities demonstrated in the experiments (see Section 5.6), the results of this work can be
considered to be promising.
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7. Conclusion

In this work, the applicability of point cloud data based classification of non-rigid objects was
assessed on the example of the classification of clothes grasped at a single point. A dataset of
images and point clouds was collected to allow testing and training of a deep learning based
model approaching the task. An existing pipeline for training and testing was extended to
the needs of the approach and experiments presented in this work. Various experiments were
conducted to evaluate diverse aspects of the classification performance of the trained PointNet
models on clothes. Finally, the trained models were integrated into the ROS environment
to be usable as a software component in a robotic setup. Throughout the whole system, a
strong emphasis was placed on generalization by taking several measures against overfitting
and performing analyses with independent test data. This goal of a generalizing model was
achieved as it was shown in the experiments. In the similar shapes experiment, the limitations
of the approach were demonstrated. Also, the analyses of the experiment results concluded,
that while the inclusion of point normals in the input data yielded significant improvements on
data similar to the training set, it seemingly caused the model to overfit as the performance
on independent test data was inferior to models trained without point normals.

As outlined in the introduction, this work can be utilized as the basis of several greater
robotic applications in the field of handling, perceiving, and manipulating clothes. Also,
the dataset produced is usable to train and evaluate future approaches to non-rigid object
classification.

Possible future work could evaluate the usage of a runtime efficient network architecture
that captures local features such as the DGCNN for the task. Also, recurrent model ar-
chitectures could process sample sequences to make use of the temporal dimension as well
as multiple viewing angles. While this work approaches the issue of overfitting mainly by
solely relying on point cloud input data, methods of multimodal object classification could be
evaluated for this task. For example, RGB image information could be used. But also less
conventional approaches such as tactile sensors in the fingers grasping the clothes or a force
sensor that measures the weight of the grasped object would be possible.
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A. Acronyms

A. Acronyms

ToF time-of-flight

MLP multi-layer perceptron

CNN convolutional neural network

FLOP floating point operation

GIL global interpreter lock

FOV field of view
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B. Experiment Results

Additional results of experiments, which were not discussed further in Section 5 and 6 are
presented in this section.

B.1. Grasp Positions

Top

Table B.1.: Classification performance for four classes grasped at the top without point nor-
mals on validation data.

Precision Recall F1-score Support
Jeans 0.935 0.894 0.914 292
T-Shirt 0.957 0.970 0.963 296
Sweatpants 0.896 0.836 0.865 298
Sweater 0.875 0.955 0.913 314
Accuracy 0.914 1200
Average 0.916 0.914 0.914 1200
Weighted Average 0.915 0.914 0.914 1200

Table B.2.: Confusion matrix for four classes grasped at the top without point normals on
validation data.

Je
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ea

te
r

Jeans 0.894 0.014 0.038 0.055

T-Shirt 0.014 0.97 0.014 0.003

Sweatpants 0.047 0.03 0.836 0.087

Sweater 0.0 0.0 0.045 0.955
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B. Experiment Results

Table B.3.: Classification performance for four classes grasped at the top with point normals
on validation data.

Precision Recall F1-score Support
Jeans 0.997 0.986 0.991 292
T-Shirt 0.970 1.000 0.985 296
Sweatpants 0.915 0.936 0.925 298
Sweater 0.950 0.911 0.930 314
Accuracy 0.958 1200
Average 0.958 0.958 0.958 1200
Weighted Average 0.958 0.958 0.957 1200

Table B.4.: Confusion matrix for four classes grasped at the top with point normals on vali-
dation data.
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r

Jeans 0.986 0.007 0.003 0.003

T-Shirt 0.0 1.0 0.0 0.0

Sweatpants 0.0 0.017 0.936 0.047

Sweater 0.003 0.006 0.08 0.911

Edge

Table B.5.: Classification performance for four classes grasped at the edge without point
normals on validation data.

Precision Recall F1-score Support
Jeans 0.904 0.835 0.868 589
T-Shirt 0.840 0.955 0.894 584
Sweatpants 0.849 0.748 0.795 618
Sweater 0.775 0.824 0.799 609
Accuracy 0.839 2400
Average 0.842 0.841 0.839 2400
Weighted Average 0.842 0.839 0.838 2400
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Table B.6.: Confusion matrix for four classes grasped at the edge without point normals on
validation data.
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r

Jeans 0.835 0.032 0.044 0.088

T-Shirt 0.007 0.955 0.021 0.017

Sweatpants 0.026 0.091 0.748 0.136

Sweater 0.053 0.051 0.072 0.824

Table B.7.: Classification performance for four classes grasped at the edge with point normals
on validation data.

Precision Recall F1-score Support
Jeans 0.912 0.985 0.947 589
T-Shirt 0.977 0.947 0.962 584
Sweatpants 0.909 0.856 0.882 618
Sweater 0.877 0.887 0.882 609
Accuracy 0.917 2400
Average 0.919 0.919 0.918 2400
Weighted Average 0.918 0.917 0.917 2400

Table B.8.: Confusion matrix for four classes grasped at the edge with point normals on
validation data.
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r

Jeans 0.985 0.002 0.005 0.008

T-Shirt 0.014 0.947 0.026 0.014

Sweatpants 0.032 0.01 0.856 0.102

Sweater 0.046 0.01 0.057 0.887
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B. Experiment Results

Everywhere

Table B.9.: Classification performance for four classes grasped everywhere without point nor-
mals on validation data.

Precision Recall F1-score Support
Jeans 0.916 0.768 0.836 870
T-Shirt 0.905 0.961 0.932 872
Sweatpants 0.766 0.708 0.736 895
Sweater 0.722 0.837 0.775 963
Accuracy 0.818 3600
Average 0.827 0.819 0.82 3600
Weighted Average 0.824 0.818 0.818 3600

Table B.10.: Confusion matrix for four classes grasped everywhere without point normals on
validation data.
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Jeans 0.768 0.017 0.098 0.117

T-Shirt 0.01 0.961 0.009 0.019

Sweatpants 0.026 0.051 0.708 0.215

Sweater 0.03 0.028 0.105 0.837

Table B.11.: Classification performance for four classes grasped everywhere without point
normals on validation data.

Precision Recall F1-score Support
Jeans 0.923 0.964 0.943 870
T-Shirt 0.965 0.974 0.969 872
Sweatpants 0.886 0.845 0.865 895
Sweater 0.879 0.874 0.877 963
Accuracy 0.913 3600
Average 0.913 0.914 0.914 3600
Weighted Average 0.912 0.913 0.912 3600
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Table B.12.: Confusion matrix for four classes grasped everywhere without point normals on
validation data.
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r

Jeans 0.964 0.008 0.009 0.018

T-Shirt 0.008 0.974 0.01 0.008

Sweatpants 0.038 0.013 0.845 0.104

Sweater 0.03 0.012 0.083 0.874

B.2. Similar Shape

Similar Shapes Performance

Table B.13.: Classification performance for similar shapes grasped everywhere without point
normals on validation data.

Precision Recall F1-score Support
T-Shirt 0.782 0.792 0.787 890
Jersey 0.794 0.785 0.789 910
Accuracy 0.788 1800
Average 0.788 0.788 0.788 1800
Weighted Average 0.788 0.788 0.788 1800

Table B.14.: Confusion matrix for similar shapes grasped everywhere without point normals
on validation data.

T
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hi
rt
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rs

ey

T-Shirt 0.792 0.208

Jersey 0.215 0.785
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B. Experiment Results

Table B.15.: Classification performance for similar shapes grasped everywhere with point nor-
mals on validation data.

Precision Recall F1-score Support
T-Shirt 0.913 0.872 0.892 890
Jersey 0.880 0.919 0.899 910
Accuracy 0.896 1800
Average 0.896 0.895 0.895 1800
Weighted Average 0.896 0.896 0.895 1800

Table B.16.: Confusion matrix for similar shapes grasped everywhere with point normals on
validation data.

T
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rt
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ey

T-Shirt 0.872 0.128

Jersey 0.081 0.919

Table B.17.: Classification performance for similar shapes grasped everywhere without point
normals on test data.

Precision Recall F1-score Support
T-Shirt 0.266 0.293 0.279 900
Jersey 0.214 0.192 0.202 900
Accuracy 0.243 1800
Average 0.24 0.243 0.241 1800
Weighted Average 0.24 0.243 0.241 1800
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Table B.18.: Confusion matrix for similar shapes grasped everywhere without point normals
on test data.

T
-S

hi
rt
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rs

ey

T-Shirt 0.293 0.707

Jersey 0.808 0.192

Table B.19.: Classification performance for similar shapes grasped everywhere with point nor-
mals on test data.

Precision Recall F1-score Support
T-Shirt 0.346 0.447 0.390 900
Jersey 0.218 0.154 0.181 900
Accuracy 0.301 1800
Average 0.282 0.301 0.285 1800
Weighted Average 0.282 0.301 0.285 1800

Table B.20.: Confusion matrix for similar shapes grasped everywhere with point normals on
test data.

T
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rt
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ey

T-Shirt 0.447 0.553

Jersey 0.846 0.154
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B. Experiment Results

Diverse Shapes Baseline

Table B.21.: Classification performance for diverse shapes grasped everywhere without point
normals on validation data.

Precision Recall F1-score Support
Jeans 0.976 0.963 0.969 297
T-Shirt 0.964 0.977 0.970 303
Accuracy 0.97 600
Average 0.97 0.97 0.97 600
Weighted Average 0.97 0.97 0.97 600

Table B.22.: Confusion matrix for diverse shapes grasped everywhere without point normals
on validation data.

Je
an

s

T
-S

hi
rt

Jeans 0.963 0.037

T-Shirt 0.023 0.977

Table B.23.: Classification performance for diverse shapes grasped everywhere with point nor-
mals on validation data.

Precision Recall F1-score Support
Jeans 0.998 0.996 0.997 890
T-Shirt 0.996 0.998 0.997 910
Accuracy 0.997 1800
Average 0.997 0.997 0.997 1800
Weighted Average 0.997 0.997 0.997 1800
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Table B.24.: Confusion matrix for diverse shapes grasped everywhere with point normals on
validation data.

Je
an

s

T
-S

hi
rt

Jeans 0.996 0.004

T-Shirt 0.002 0.998

Table B.25.: Classification performance for diverse shapes grasped everywhere without point
normals on test data.

Precision Recall F1-score Support
Jeans 0.976 0.979 0.977 900
T-Shirt 0.979 0.976 0.977 900
Accuracy 0.977 1800
Average 0.977 0.977 0.977 1800
Weighted Average 0.977 0.977 0.977 1800

Table B.26.: Confusion matrix for diverse shapes grasped everywhere without point normals
on test data.

Je
an

s

T
-S

hi
rt

Jeans 0.979 0.021

T-Shirt 0.024 0.976

Table B.27.: Classification performance for diverse shapes grasped everywhere with point nor-
mals on test data.

Precision Recall F1-score Support
Jeans 0.949 0.974 0.962 900
T-Shirt 0.974 0.948 0.961 900
Accuracy 0.961 1800
Average 0.961 0.961 0.961 1800
Weighted Average 0.961 0.961 0.961 1800
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B. Experiment Results

Table B.28.: Confusion matrix for diverse shapes grasped everywhere with point normals on
test data.

Je
an

s

T
-S

hi
rt

Jeans 0.974 0.026

T-Shirt 0.052 0.948

B.3. Number of Points

Table B.29.: Classification accuracy over four classes with various numbers of input points
during training and testing. Validation data was used as evaluation set.

Number of Points
2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Without
Point Normals

0.3 0.36 0.42 0.51 0.57 0.64 0.71 0.75 0.76 0.78 0.78 0.80 0.79

With
Point Normals

0.33 0.39 0.52 0.61 0.71 0.77 0.8 0.86 0.88 0.89 0.9 0.9 0.91
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C. Figures

Figure C.1.: Significant points during rigid object classification identified in the original Point-
Net paper. [QSKG17]

Figure C.2.: Significant points during rigid object orientation estimation identified in the dis-
sertation of Gao. [Gao21]
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D. Listings

D. Listings

D.1. ROS Messages

1 # This message holds a collection of N-dimensional points , which may
2 # contain additional information such as normals , intensity , etc. The
3 # point data is stored as a binary blob , its layout described by the
4 # contents of the "fields" array.
5
6 # The point cloud data may be organized 2d (image -like) or 1d
7 # (unordered). Point clouds organized as 2d images may be produced by
8 # camera depth sensors such as stereo or time -of -flight.
9

10 # Time of sensor data acquisition , and the coordinate frame ID (for 3d
11 # points).
12 Header header
13
14 # 2D structure of the point cloud. If the cloud is unordered , height is
15 # 1 and width is the length of the point cloud.
16 uint32 height
17 uint32 width
18
19 # Describes the channels and their layout in the binary data blob.
20 PointField [] fields
21
22 bool is_bigendian # Is this data bigendian?
23 uint32 point_step # Length of a point in bytes
24 uint32 row_step # Length of a row in bytes
25 uint8[] data # Actual point data , size is (row_step*height)
26 bool is_dense # True if there are no invalid points

Listing D.1: The definition of the PointCloud2 message.

Source: [4]

1 # This message holds the description of one point entry in the
2 # PointCloud2 message format.
3 uint8 INT8 = 1
4 uint8 UINT8 = 2
5 uint8 INT16 = 3
6 uint8 UINT16 = 4
7 uint8 INT32 = 5
8 uint8 UINT32 = 6
9 uint8 FLOAT32 = 7

10 uint8 FLOAT64 = 8
11
12 string name # Name of field
13 uint32 offset # Offset from start of point struct
14 uint8 datatype # Datatype enumeration , see above
15 uint32 count # How many elements in the fields

Listing D.2: The definition of the PointField message.

Source: [5]
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D.2. Live Classifier Configuration

1 # topic the pointcloud is published on
2 pointcloud_topic: ’/kinect2/qhd/points ’
3
4 # name of the classification action
5 action_name: ’classify_action ’
6
7 # topic on which the classification result is published
8 result_pub_topic: ’classification_result ’
9

10 # whether the camera input is directly classified
11 live_mode: true
12
13 # whether to calculate point normals
14 use_normals: false
15
16 # number of points fed into the network
17 network_input_points: 1024
18
19 # max depth of a pointcloud in z-direction
20 max_depth: 1.0
21
22 # number of classes output by the neural network
23 class_number: 7
24
25 # the class names with their position in the list corresponding to the
26 class_mapping: [’Jeans ’, ’T-Shirt ’, ’Sweatpants ’, ’Sweater ’, ’Underpants

’, ’Sock ’, ’Shortpants ’]
27
28 # the model checkpoint used for classifications
29 model_checkpoint: ’2021-06-05_13 -37’
30
31 # whether to run PointNet in CPU mode
32 cpu_mode: true
33
34 # whether to visualize the classified pointcloud
35 visualization: false
36
37 # number of pointclouds dropped at beginning of each scanning sequence
38 drop_num: 3

Listing D.3: The configuration of the live classifier.
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