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Abstract

Human-robot handover plays a central role in many human-robot collaboration
tasks. Choosing the proper velocity for the handover trajectory of a robot giver is
vital for the handover’s performance. The trajectory could be slow and bore or even
hinder the performance of its partner. Executing a too fast trajectory could lead
to a less fluent handover. This thesis studied the effect of the Cartesian velocity of
the handover trajectory of the robot giver.

Zusammenfassung

Human-robot handover ist ein zentraler Bestandteil von Mensch-Roboter-Kollab-
oration. Es ist wichtig die richtige Geschwindigkeit der Übergabetrajektorie des
Übergebers zu wählen. Eine zu langsame Trajektorie könnte den Partner langweilen
oder sogar die Gesamtleistung behindern. Eine zu schnelle Trajektorie könnte die
Übergabe weniger fließend ablaufen lassen. Diese Arbeit beschäftigt sich mit dem
Effekt der Kartesischen Geschwindigkeit der Übergabetrajektorie des Roboters.
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1. Introduction

1.1. Motivation

Human-robot collaboration has become an important research area with growing
interest in shared workspaces and industry 4.0. Other applications include nursing,
general service robots, and eldercare. Human-robot handover is a crucial capability
in human-robot collaboration, handing over tools or materials to complete a task
or deliver an ordered food or beverage.

Making this process more fluent, comfortable, and safe is necessary to be accepted
by humans in the previously mentioned applications. We are not aware of any
research considering the Cartesian velocity of the robot’s hand during the handover.
Slow handover trajectories could make the handover less efficient and could lead to
boredom of the receiver. Overly fast trajectories, on the other hand, could lead to
less fluent handover. This thesis studies the effect of different Cartesian velocities
and tries to determine if there is an optimal velocity.

1.2. Related Work

Human-robot handover has been of interest for studies for many years. The following
is a selection of relevant papers concerning human-robot handover. These include
human-robot interaction studies and also proposed methods for implementing sub-
tasks of human-robot handover.
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1. Introduction

Edsinger et al. [Edsinger and Kemp, 2007] studied whether humans adjust their
behaviour to the robots in a human to robot handover scenario. In their study, they
instructed the human participants to place a box into the robot’s hands once the
robot performs a reaching motion towards the participant. Among other things,
Edsinger et al. measured the grasp alignment of the box to the robot’s hand. They
found that all human participants matched the alignment of the box to the hand.

Huber et al. [Huber et al., 2009] proposed a trajectory generation method for
handover tasks, based on their findings that velocity profiles observed during human
to human handovers do not follow minimum jerk profiles and are dependent on
the task. Their method decouples the z-component from the xy-components and
combines the minimum jerk fits for both of those.

Mainprice et al. [Mainprice et al., 2010] proposed that including the human as
a separate agent instead of an obstruction would improve the handover. They
suggested three constraints for motion planning in handover tasks to make the
interaction safer and more legible. The constraints are distance, visibility, and
comfort. They describe how these can be integrated with standard motion planning
algorithms.

Cakmak et al. [Cakmak et al., 2011] studied human preferences for handover
configurations. They discovered that there is a common understanding of good han-
dover configurations. Good configurations had in common that they were reachable,
and the objects were in their default orientation. Likewise, participants preferred
a natural configuration of the robot, which means that the robot’s joints are in a
configuration, which is likely for a human to perform.

Bohren et al. [Bohren et al., 2011] implemented an autonomous robotic butler
on the Willow Garage PR2, the same robot used in this thesis. To implement the
behaviour Bohren et al. introduced a new task-level architecture SMACH, based
on hierarchical state machines. The implemented task included a handover of a
beverage from the PR2 to a human.

2



1.2. Related Work

Chan et al. [Chan et al., 2012] investigated the grip and load forces of the giver
and receiver on the object during the physical handover in a human-to-human
handover study. They found that the giver is responsible for the safety of the object.
Additionally, the physical handover ends with an upward pulling force experienced
by the giver.

Hendrich et al. [Hendrich et al., 2014, Hendrich et al., 2016] implemented a han-
dover controller based on force measurements for physical handover detection and
explored the force threshold’s relation to the object weight. They discovered that
participants preferred very low interaction forces but also tolerated higher forces for
heavier objects.

Dragan et al. [Dragan et al., 2015] studied the effect of different trajectory types
of the robot in human-robot collaboration tasks. They considered functional, pre-
dictable, and legible movements. Legible movements performed best in terms of
coordination time and in terms of fluency.

Eguiluz et al. [Eguiluz et al., 2017] implemented a handover controller for the
Shadow Dexterous Hand, which can differentiate between pulling forces initiating
the physical handover and perturbation forces. If a perturbation is falsely identified
as a handover, the robot could drop the object and potentially damage the object
or itself.

Vannucci et al. [Vannucci et al., 2018] studied the effect of gentle and aggressive
vital forms during human-robot handover. Their experiment tested aggressive and
gentle reaching motions and aggressive and gentle voice commands and measured
the effect on the peak velocity and peak acceleration of the human hand. Aggres-
sive vital forms made the participants accelerate their hand faster than the gentle
counterpart, but using voice commands instead of the reaching motion had a more
significant effect on the human participant’s peak acceleration and peak velocity.

Nemlekar et al. [Nemlekar et al., 2019] proposed an object transfer point (OTP)
estimation method. Their method was based on an initial static OTP estimation
based on a handover study, where they found that the OTP is in the middle between

3



1. Introduction

both agents. The second part dynamically refines the initial estimation with a
Probabilistic Movement Primitive (ProMP) based approach, where they modeled
the robot state together with the human hand position and the OTP in a single
model.

Most of these cited works cover the topic of human-robot handover. For ex-
ample, [Huber et al., 2009, Mainprice et al., 2010, Dragan et al., 2015] focused on
trajectories for handover tasks, but they did not consider the effect of different
velocities of the trajectory. [Vannucci et al., 2018] showed that vital forms affect
the human partner. As how aggressive or gentle a robot will be perceived could,
in part, be influenced by the velocity of the executed trajectory. However, they
did not explicitly study different velocities. Instead, they asked an actor to per-
form aggressive and gentle handover movements and mapped them onto the robot.
Other works inspired the implementation of the study. Even though we did not
dynamically adapt the OTP to the human partner’s actions, we used the result
from [Nemlekar et al., 2019] for our static OTP position. [Hendrich et al., 2016]
informed the decision to minimize the interaction forces during the physical han-
dover.

1.3. Thesis Goal

This thesis aims to investigate the effect of different Cartesian velocities of the
robot’s hand during the trajectory towards the human receiver for robot-to-human
handovers. We postulate that there might be an optimal Cartesian velocity above
which the overall performance or perception of the handover worsens. In order to
research this, a human-robot interaction study is implemented and executed.

4



1.4. Thesis Outline

1.4. Thesis Outline

Chapter 2 will present the fundamentals of handover. It will first go over the basic
principles of human-robot handover. After that, a brief introduction to inverse
kinematics is given. It follows an explanation of the topic of motion planning.
It will then present the theory behind Probabilistic Movement Primitives, which
are used to generate the robot’s handover trajectory. Finally, fluency evaluation in
human-robot collaboration will be explained. This is a central part of the evaluation
of the study’s results.

Chapter 3 will present the design of the study. The postulated hypotheses and
the setup of the experiment are introduced.

In Chapter 4 explains how the experiment was implemented. Firstly, it describes
how the object-picking was achieved. It will then go over the trajectory generation
for the handover motion towards the receiver. And finally, how the physical handover
is detected.

Chapter 5 presents the results of the experiment. Firstly, it examines how accu-
rately the robot could reach and hold the desired Cartesian velocity. It will then
take a look at one major mistake, which was made. And finally, it discusses the
relevant data for each hypothesis, and the implications of said data.

And finally Chapter 6 summarizes this thesis’s results and will give an outlook on
possible future work and improvements to the study design.
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2. Fundamentals

2.1. Object Handover

As described by Ortenzi et al. [Ortenzi et al., 2020], Object Handover is a joint
action between two agents with the goal of passing an object from the giver to the
receiver. In this thesis, only robot-to-human handover is considered. This means
the giver is always a robot and the receiver is a human. The giver’s goal is to offer
the object to the receiver in a suitable manner and maintain a stable grasp during
the transport until the receiver grasps the object. The receiver’s goal is to grasp
the object and perform the task for which the object is needed.

Ortenzi et al. split the handover process into two phases: The pre-handover
and the physical handover. The pre-handover phase includes communication of the
giver and receiver, the grasping of the object by the giver and the transfer of the
object towards the receiver. Common ways of communication during handovers are
oral cues, gaze, gestures, movements, and object grasps. These can help establish
the what, when, and where of the handover.

The pre-handover phase either starts with a request for an object or with a request
to perform a task. When an agent asks for an object, he then becomes the receiver
and the other becomes the giver. When an agent asks for the task to be done with
an object, he becomes the giver while the other becomes the receiver. The handover
can either be direct, which means that the receiver grasps the object directly from
the giver’s hand, or it can be indirect. In that case, the giver places the object on
an intermediary surface and the receiver grasps the object from the surface.

7



2. Fundamentals

Figure 2.1.: The difference in activity for giver and receiver during the different
phases of handover. [Ortenzi et al., 2020]

8



2.1. Object Handover

Figure 2.2.: The phases of a typical handover according to Strabala et al.
[Strabala et al., 2013]

The pre-handover phase ends when the receiver touches the object. During the
physical handover, the receiver obtains a stable grasp of the object. Once the
object’s load is transferred, the giver retracts its arm, and the receiver performs its
task.

During the handover phases, both agents’ activity is very different, as can be
seen in figure 2.1. During the pre-handover phase most of the activity is done by
the giver, while only some of the receiver’s activity can be seen. In the physical
handover phase, the giver’s responsibility gets transferred to the receiver, and the
activity goes to zero while the activity of the receiver increases.

Other ways of splitting the handover process exist. For example, Strabala et
al. [Strabala et al., 2013] used three phases: The Approach, the Reach, and the
Transfer. During the approach phase, information about the object, like weight
and fragility, can be inferred by how the giver holds the object. The reach phase
influences where and when the object is being transferred. In the transfer phase,
the load of the object is transferred from the giver to the receiver. Both giver and
receiver ensure that that object remains stable. Once the receiver holds the whole
object load, the giver retracts its arm, ending the handover. These phases can be
seen in Figure 2.2.

9



2. Fundamentals

This thesis follows the definition of Ortenzi et al. Because the main focus of
this thesis is the handover trajectory during the pre-handover phase, some of the
communication between giver and receiver is simplified. We did not use any oral
cues or gaze in this study to communicate where the physical handover will happen.
The only information of where the physical handover will happen from the robot is
its orientation and the reaching motion.

2.2. Inverse Kinematics

In robotics, it is very useful to specify points in Cartesian space, as it is the natural
space we live in. To plan a trajectory, which ends up with, for example, the end-
effector at that point, it is necessary to transform the point from Cartesian space to
the joint space of the robot. The joint space represents all possible configurations
of the robot with the robot’s joint angles as the coordinates. This is not a one-
to-one mapping. For robots with many degrees of freedom, multiple joint space
positions for one Cartesian space position may exits. This is illustrated in Figure
2.3. The figure shows two possible solutions for a simple robot arm given a goal
position. The problem of inverse kinematics is to find a joint space position for a
given Cartesian space one.

Figure 2.3.: An illustration of multiple possible inverse kinematics solutions given a
goal.
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2.3. Motion Planning

For some robots, it is possible to solve this problem analytically. The standard
approach is to use a numerical solver, which iteratively gets closer to the solution
until the desired precision is reached.

One solver, which computes the inverse kinematics of a pose, is bio_ik
[Ruppel et al., 2018]. It is a solver based on a memetic optimization algorithm. It
allows one to compose a cost function from many different goal types. The genome
of the evolutionary part is the robot joint positions. Each generation is mutated
and the best individuals are selected. After some evolution steps, gradient-based
optimization is used to improve the best solutions before resuming the evolutionary
part.

The goal types include, among others, Pose Goals, which try to minimize the
error to a position and orientation of an end effector, Minimal Displacement Goals,
which penalize robot poses, which are far away from the last robot pose, and Look
At Goals, which try to align the axis of a link towards a specified position.

2.3. Motion Planning

Motion planning is the problem of generating a collision-free trajectory between two
states, based on the robot’s shape, dynamics and the environment. The goal is to
find a continuous path through the configuration space without colliding with any
obstacle or itself.

In this thesis, motion planning was used for most of the robot’s trajectories, which
were not relevant to the main focus of this study. For example, it was used for some
of the trajectories during the pick-up of the objects or when the robot retracts its
arm.

One commonly used algorithm to solve the motion planning problem is RRT-
Connect [Kuffner and LaValle, 2000] based on the rapidly-exploring random trees
(RRT) algorithm [Lavalle, 1998]. RRT-Connect is a sampling-based algorithm. It

11



2. Fundamentals

Algorithm 1: The RRT-Connect algorithm
treea = initTree(start_state);
treeb = initTree(goal_state);
for i=0..n do

random = SampleSpace();
closest = FindClosestNode(treea, random);
new = CreateNewNodeInDirection(closest, random);
if CollisionFree(closest, new) then

treea.addNode(new);
treea.addEdge((closest,new));
newb = connect(treeb, new);
if new == newb then

return path(treea, treeb);
swap(treea, treeb);

works by iteratively building two tree structures. Each node represents a robot state
and each edge a collision-free trajectory between those states. The root of the first
tree is initialized as the start state and the root of the second tree is initialized as the
goal state. The idea is that one tree will grow randomly, exploring the configuration
space, while the other tries to grow towards the other tree.

At each iteration, the first step is to sample a random point from the configuration
space. For that sampled point, the nearest node of the first tree is then found. Then
a point is calculated, which is in the direction from the previously found close node
to the sampled point, but only a tiny step away from the found nearest node. If
there is a collision-free trajectory between the new point and the found nearest
node, the new point gets added as a node to the tree connected by an edge to
the found nearest node. After that, the second tree tries to connect to the created
node of the first tree by using the same method as the first tree. But this time,
RRT-Connect tries to repeat this step until either the new node of the first tree is
reached, or an obstacle is in the way. If this step has successfully connected both

12



2.3. Motion Planning

trees, the algorithm is done and the path can be returned, otherwise, the trees are
swapped and the process repeats for a fixed number of iterations. Figure 2.4 shows
some examples of the RRT-Connect algorithm exploring different setups.

Figure 2.4.: Examples off the RRT-Connect algorithm. [Kuffner and LaValle, 2000]
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2. Fundamentals

2.4. Probabilistic Movement Primitives

For modeling the robot arm motion during the handover, Probabilistic Movement
Primitives (ProMPs) were chosen. This ensures that the resulting trajectories
are kinematically similar and gives one the ability to introduce some variation to
counter the participants’ learning effect. ProMPs were introduced by Paraschos
et al. [Paraschos et al., 2013] as an alternative to other Movement Primitives ap-
proaches. In their paper, they first introduce some desirable properties of any
Movement Primitives(MPs) framework. The first property is the ability to com-
bine and blend multiple MPs to create complex motions. Smoothly blending from
one MP into the other either in parallel or sequentially. The following important
property is the ability to specify start, end, and via points. It is often necessary to
ensure certain positions or velocities, which the trajectory has to run through. It
is also helpful to change the execution speed and timing of the whole movement.
Finally, the framework should support both stroke-based movements and periodic
movements and should be able to be learned from demonstrations.

2.4.1. Representation

The goal of ProMPs is to create a compact probabilistic model for a movement
execution τ = (y0, y1, . . . , yn) from multiple trajectory demonstrations. This allows
one to have multiple trajectories for the same overall movement. A single demon-
stration is modeled as a weighted linear basis model with basis functions φj(z) and
weight vector ω plus zero-mean Gaussian white noise ε. Let Φt be the basis function
matrix and yt a joint position and velocity at time t.

yt = Φtω + εy (2.1)

Then the probability of a trajectory τ is:

14



2.4. Probabilistic Movement Primitives

p(τ |ω) =
∏
t

N (yt|Φtω,Σy) (2.2)

The weight vector ω can then be modeled by a Gaussian distribution with mean
µω and variance Σω: p(ω; θ) with θ = {µω,Σω}. By then marginalizing out the
weight vector ω, the resulting distribution only depends on θ, giving us a Hierarchical
Bayesian Model of the movement.

p(τ ; θ) =
∫
p(τ |ω)p(ω; θ)dω (2.3)

To model more degrees of freedom, yt is expanded to the positions and velocities
of all joints. The weight vector is expanded as well. The basis matrix gets extended
to a block diagonal matrix Ψt.

Ψt =


Φt . . . 0
... . . . ...
0 . . . Φt

 (2.4)

Typically Gaussian basis functions bj(z) with the center cj and width h are used
for stroke based movements. They are spaced uniformly in the interval [−2h, 1+2h].

bj(z) = exp
(
−(z − cj)2

2h

)

The basis functions for the model are normalized for a better regression performance.

φj(z) = bj(z)∑
k bk(z) (2.5)

The first step to learn the Hierarchical Bayesian Model is to use linear regression
to estimate the weight vector ωi for each demonstration of the movement.

15



2. Fundamentals

ωi = (ΨT
t Ψt + λI)−1ΨtYi (2.6)

Yi are all the joint positions of the demonstrations and λ is the ridge factor.
Paraschos et al. [Paraschos et al., 2013] suggest a small value arount 10−12.

To then get θ the maximum likelihood method can be used to estimate the mean
and variance of the weight vector.

µω = 1
N

N∑
i=1

ωi (2.7)

Σω = 1
N

(ωi − µω)(ωi − µω)T (2.8)

The resulting Probabilistic Movement Primitives used in this thesis and the
demonstrations they are based on can be seen in Figure 4.4 and Figure 4.3.

2.4.2. Viapoints

It is essential to have the ability to specify start, end, and via-points to apply a
movement primitive in practice. There are many situations where it is required to
be in a specific pose or move with a specific velocity. Because of the probabilistic
model of ProMPs this can be achieved by adding the desired via-point as a new
observation x∗

t = {y∗
t ,Σ∗

y}. Where y∗
t is the desired state and Σ∗

y is the accuracy
of the observation.

To get the updated model, Bayes theorem needs to be applied.

p(ω|x∗
t ) ∝ N (y∗

t |Ψtω,Σ∗
y)p(ω) (2.9)
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If the distribution p(ω|x∗
t ) is Gaussian, then the mean and variance are:

µ∗
ω = µω + ΣωΨt(Σ∗

y + ΨT
t ΣωΨt)−1(y∗

t −ΨT
t µω) (2.10)

Σ∗
ω = Σω − ΣωΨt(Σ∗

y + ΨT
t ΣωΨt)−1ΨT

t Σω (2.11)

The effect of specifying an endpoint can be seen in Figure 4.6.

2.5. Fluency Evaluation

To evaluate the effect of changing the velocity of the handover trajectory between
different trials of the study, meaningful measures need to be chosen. One possible
measure is fluency. The paper [Hoffman, 2019] by Hoffman collected different com-
monly used metrics for evaluating fluency in robotics, both objective and subjective.
They then proceeded to study the correlation between the subjective and objective
measures in an online study.

The subjective measures were grouped into seven different categories, which ei-
ther were directly or indirectly associated with fluency of human-robot collaboration.
The categories are as follows:

• Human-Robot Fluency

• Robot Relative Contribution

• Trust in Robot

• Positive Teammate Traits

• Improvement

• Working Alliance for H-R Teams

• Individual Measures
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They also provide a list of questions associated with each of the categories from
previous studies. The four objective measures, which were correlated with the
subjective measures, are:

• Human Idle Time (H-IDLE)

• Robot Idle Time (R-IDLE)

• Concurrent activity (C-ACT)

• Functional Delay (F-DEL)

All of the above objective measures are ratios of the total time of the task or
interaction. The Human Idle Time is the percentage of the time the human is not
active. The idea behind this measure is that humans, in general, are still faster and
more competent at the task and are consequently waiting for the robot to finish,
which could be dull or seen as under utilization of the robot.

The Robot Idle Time measures exactly the same from the perspective of the robot.
The percentage of time the robot is idle. Robots in human-robot collaboration are
supposed to help humans. If a robot is not doing anything, it can be seen as not
sufficiently using the robot’s ability to help the human. Although this is only the
case if the robot is not currently waiting for the human.

The concurrent activity (C-ACT) measures the percentage of time both the hu-
man and the robot are active at the same time. A high C-ACT could indicate that
the human and the robot are working seamlessly together.

And lastly, the functional delay. F-DEL measures the percentage of time both
agents are inactive and the total time. The higher the F-DEL, the longer both
agents do nothing, which could, in turn, be perceived as not very efficient.

Hoffman used an online study to investigate the correlation between the here
described objective and subjective measures. The results were that only H-IDLE
and F-DEL were significantly correlated with subjective fluency. In contrast to the
previous hypothesis, H-IDLE correlates positively with subjective fluency, meaning
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2.5. Fluency Evaluation

Figure 2.5.: Four examples of human robot colaboration. Subfigure (a) has no over-
lap between human and robot activity, but also no delay. In Subfigure
(b) there is functional delay between the actions. Subfigure (c) and
(d) both show examples with concurrent activity and functional delay.
[Hoffman, 2019]

that handover is perceived as more fluent when the human is more inactive. F-DEL
is reversely correlated with subjective fluency. The bigger the delay between one
agent finishing an action and the other starting its action, the less fluent the task is
perceived. It was also found out that R-IDLE did reversely correlated consistently
with subjective fluency, but the results were not significant. C-ACT did not correlate
with subjective fluency.
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3. Study Design

3.1. Hypotheses

This thesis’s primary goal is to investigate the influence of the Cartesian tool center
point (TCP) velocity of the robot giver during the handover trajectory towards the
human receiver. We chose to measure the Cartesian TCP velocity over the joint
velocities because it is more universal between different robots. Additionally, the
influence of a joint on the perceived motion can vary dramatically. For example,
a joint, which rotates a link of the robot around the axis along the link, produces
very little perceivable motion, while a joint far up the kinematic chain moving the
whole robot arm can produce vastly more movement of the TCP.

We hypothesize that the trajectories can be executed too fast, which would lead
the human to react negatively, resulting in overall less fluent and less efficient
handovers. This effect will be studied with a human-robot interaction experiment.
For this experiment, we postulated four hypotheses.

3.1.1. H1: Fast robot trajectories lead to shorter overall
handover time.

The first hypothesis is reasonably obvious. If the robot executes its trajectory with a
higher velocity, the trajectory is executed in a shorter amount of time, thus reducing
the overall handover time.
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3. Study Design

3.1.2. H2: Object type affects the overall handover time.

The object type should have an influence on the overall handover time. Objects
can differ, for example, in size and weight, making it more difficult for the robot
to accelerate. However, they can also differ in ways, which could affect the human
receiver. Heavier or fragile objects need to be handled more carefully to ensure
they will not be dropped. Objects can be harder to grasp, making the handover
slower. Some objects could also be more dangerous. A scissor, a knife or a pointy
screwdriver need to be handled more carefully than other objects.

3.1.3. H3: Fast robot trajectories make humans act slower.

The idea behind this hypothesis is that if a robot executes the handover trajectory
with a very high velocity, the human receiver might be intimidated or uncomfortable.
Especially because the PR2’s arms still look rigid and hard. The human might act
more slowly, trying to avoid being hit. This should influence the overall time the
human is active, making it longer for fast trajectories because of the more careful
behaviour.

3.1.4. H4: Fast robot trajectories reduce fluency.

Fluency is a very subjective concept, but the idea behind this is very similar to the
previous hypothesis H3. If the robot executes its trajectory too fast, the human
might wait until the trajectory is executed and the arm is not moving anymore.
He also might feel less safe and more uncomfortable. All this might lead to the
handover being perceived as less fluent.
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3.2. Experimental Setup

Figure 3.1.: A trial consists of the robot picking up one of the three objects from
the table on the left and executing the trajectory with the specified
Cartesian velocity. Once the human receiver grasps the object from the
robot, the object will be placed in the area on the right. The camera on
the right will record this process for labeling when the human receiver
is active.

3.2. Experimental Setup

The setup consists of the PR2 robot as the giver, a table next to the giver with
three objects, a table between giver and receiver, the human receiver and a camera
pointed at the receiver and the place location for the objects. An overview of the
setup can be seen in Figure 3.1.

Two of the three objects are chosen from the YCB Object and Model Set
[Calli et al., 2015]. The Chips Can and the Flat Screwdriver. The last object is
a juggling ball. The objects were chosen because of their different properties. The
juggling ball is an easy to grasp and easy to place object. The chips can is also
easily graspable, but due to its light weight and small bottom surface compared
to its height, it is harder to place it down in a stable manner. The screwdriver is
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3. Study Design

Figure 3.2.: The objects used for the experiment. A Chips Can and a Flat Screw-
driver and a juggling ball.

the hardest to grasp. Only one of the agents can grasp the handle; the other is
presented with the shaft. The sharp tip of the shaft is making it more dangerous
for fast trajectories. Figure 3.2 shows a photo of the used objects on the table next
to the PR2.

The camera records the experiment. This is needed to annotate the start of
human activity and the end of the handover. The annotations are done manually
after the experiment is done. The camera is not used for any of the robot’s actions.
The table between giver and receiver acts as a convenient spacer to ensure that
the participants are at the same distance from the PR2 and additionally to have a
distinct endpoint to the handover, as the humans place the object onto the table.

The participant will be asked to stand directly in front of the table and receive
the three objects from the PR2 one after another and place them in the dedicated
area on the table. The robot giver will then start to pick the first object and lift it
up. After that, it will execute the trajectory towards the human receiver, with the
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3.2. Experimental Setup

Human-Robot Fluency
The human-robot team worked fluently together.
The robot contributed to the fluency of the interaction.
Robot Relative Contribution
I had to carry the weight to make the human-robot team better. (R)
The robot contributed equally to the team performance.
I was the most important team member on the team. (R)
Trust in Robot
I trusted the robot to do the right thing at the right time.
The robot was trustworthy.
Safety/Comfort
I feel uncomfortable with the robot. (R)
I feel safe working next to the robot.
I am confident the robot will not hit me as it is moving.
Individual Measures
The robot was committed to the success of the team.
The robot was uncooperative.

Table 3.1.: The statements used in the questionnaire. (R) means the scale is in-
verted. Participants were able to choose between five options ranging
from Strongly Disagree to Strongly Agree

end pose being roughly between the receiver and the PR2. The trajectory velocity
will be the same for all three objects and is chosen from a randomized list of desired
Cartesian velocities. The velocities are in the range between [0.4, 1.2]m/s with
steps of 0.2. The robot will then wait for the participant to grasp the object. Once
the object is grasped, the robot will retract its arm. The participant will then place
the object in the dedicated area on the table.

This process will repeat another two times until each object was handed over.
Once this is done, the participant is asked to fill out a questionnaire about the
fluency of the handover while the setup is arranged again for the subsequent trial.
The statements are picked from [Dragan et al., 2015] and [Hoffman, 2019] and are
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listed in Table 3.1. There are five options available ranging from Strongly Disagree
to Strongly Agree. The statements cover the topics of fluency, robot contribution,
trust in the robot, safety and comfort. The complete questionnaire can be seen in
Figure A.1.

Each participant will do five trials which make it 15 handovers in total. The
whole experiment is designed to not take longer than 25 minutes.

3.3. Pre-study

Due to the current Covid-19 pandemic, it was not clear if it was possible to conduct
this study with an appropriate number of participants or at all. For that reason, a
very similar pre-study was conducted. In this pre-study, only the author of this thesis
participated, performing the experiment multiple times. The only major difference
between the planned study and the pre-study is the range and resolution of the
tested Cartesian velocities of the robot’s handover trajectory. They are in in the
range between [0.2, 1.3]m/s in steps of 0.1. It was possible to increase the number
of tested velocities because there was no set time limit for the experiment anymore.
A too long experiment was viewed as not acceptable for random participants.

In total, there are 36 handovers per experiment. A questionnaire for only one
participant, repeating the experiment repeatedly, does not reflect on the general
population and is only one subjective view, which can not be compared to other
views. For that reason, it was omitted from the pre-study.
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4. Setup and Implementation

4.1. PR2 Robot Platform

For this study, the Willow Garage PR2 [Garage, 2021, Garage, 2012] robot platform
was used. It is a mobile research robot with two arms. This particular one is
equipped with the standard PR2 gripper on the left arm and a Shadow Dexterous
Hand on the right. Only the standard gripper was used for this thesis. Figure 4.1
shows the exact PR2.

Figure 4.1.: The Willow Garage PR2 with the Shadow Dexterous Hand attached to
the right arm and the standard PR2 gripper on the left arm.
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4.2. Object picking

The first step for the PR2 is to pick up one of the objects. The objects are placed
on a fixed and predefined position on the table next to the robot, so that there is
no need for object detection and pose estimation.

The MoveIt task constructor [Görner et al., 2019] was used to implement the pick
sequence. The MoveIt task constructor is a MoveIt [Coleman David, 2014] based
framework, which allows one to build up complex tasks from simpler stages. These
stages can be solved separately and the solution can be passed to the neighbouring
stages if they depend on it. There are three basic stage types, which are classified
by their interface.

Figure 4.2.: The MoveIt Task Constructor panel in RVIZ showing the pick sequence.
The arrows show the direction in which a solution is passed. Propagator
stages only have one arrow. Generator stages have two arrows pointing
outwards. The knot-like symbol indicates connectors.
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Generator stages do not depend on any input from other stages and push their
solution to both adjacent stages. Propagators take only one solution either from
the previous stage or from the next stage and produce a new solution to push to the
opposite site. Connector stages take the solutions from both neighbouring stages
and find one or more valid trajectories between them.

The pick sequence is very typical. Firstly, the robot plans a trajectory to a pre
grasp pose. Then executes a Cartesian approach trajectory and closes the gripper
with an effort that is hardcoded per object. After that, a Cartesian lift-up motion is
executed. Finally, the robot plans a trajectory to a hardcoded pose to later ensure
handover trajectories of equal length. A visualization of the sequence in RVIZ can
be seen in Figure 4.2. As one can see, the most often used basic stage is the
propagator. Only the start stage, which is just the current robot state, and the
grasp pose generation are generator stages. The grasp pose generation needs to be
a generator because almost all previous and further motions depend on where the
object is being grasped. If the object is in a different position, a different approach
trajectory and lift trajectory are needed. This pick sequence has only one connecting
stage. This is needed to plan a trajectory from the current robot state after opening
the gripper to the state before the approach trajectory.

4.3. Trajectory Generation

For the generation of the handover trajectory ProMPs were used. They were im-
plemented in C++ using the linear algebra library Eigen [Guennebaud et al., 2021].

The necessary demonstration trajectories were recorded beforehand. To record a
demonstration, the robot first planned and executed a trajectory to the aforemen-
tioned hardcoded pose. This is the pose from which the later generated trajectories
will always start. The robot was then set into mannequin mode. The mannequin
mode allows an operator to move the joints of the robot freely. The robot will
only try to resist the force of gravitation. Any other external force will move the
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Figure 4.3.: This figure shows the recorded joint state of the relevant joints for
each demonstration. Each line is a new demonstration. The y-axis is
in radians and on the x-axis are the sample points.

robot joints. A human then guided the arm in a realistic handover motion towards
another human receiver. The mannequin mode was then disabled again. This was
repeated multiple times and recorded into a rosbag. In total, 29 demonstrations
were recorded.

Later the demonstrations from the rosbag were hand-annotated using a visual-
ization and annotation tool by Philipp Ruppel [Ruppel, 2021] determine the exact
start and end of each demonstration. These demonstrations, which can be seen in
Figure 4.3, were then used to generate the ProMP, which is shown in Figure 4.4.
The ProMP used in this thesis only modeled the joint positions because the velocity
at each timestep of the trajectory was later generated, with the goal of reaching
and holding a specific velocity.

Many of the joints of the PR2 can rotate more than one complete revolution.
Because of that, it was essential to normalize the joint values to a fixed range. This
could not be done by simply mapping each joint position value in the range of −π to
π, because if the trajectory crossed the boundary of one revolution, it would create
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Figure 4.4.: A plot of the ProMp. The red line is the mean and the shaded area
represents two times the standard deviation.

Algorithm 2: Generate ProMP from trajectory demonstrationss
N = number_of_demonstrations;
foreach demonstration Yi do

enforcePositionBounds();
resample(steps);
Ψt = generateBasisMatrix(number_basis, width);
A = ΨT

t Ψt + λI;
b = ΨT

t Yi;
ωi = solve(A, b);
ωµ += ωi;

ωµ /= N;
Σµ = 1

N

∑N
i=1(ωi − µω)(ωi − µω)T ;

a discontinuity. Because of this, the whole trajectory is shifted by the same value.
After that, the next step to generate the ProMP is to resample all demonstrations
to be the same number of sample points. In the case of this thesis, 1000 sample
points were chosen. If the new sample point was in between two points, linear
interpolation was used.
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4. Setup and Implementation

(a) Basis function width of 0.004

(b) Basis function width of 0.016

(c) Basis function width of 0.05

Figure 4.5.: The resulting ProMP with different basis function widths for the joints
l_elbow_flex_joint, l_forearm_roll_joint, l_shoulder_lift_joint

Once the demonstrations are prepared, the block diagonal basis matrix is gener-
ated for the specified number of basis functions and their width. Then the weight
vector is computed for each trajectory demonstration using ridge regression. Finally,
a Gaussian is fit over all weight vectors. The resulting mean and covariance matrix
is the generated ProMP. The ProMP is then saved with the relevant metadata like
the number of basis functions and the basis width and can be loaded to generate
trajectories.

After some experimentation, it was found out that five basis functions with a
width of 0.016 produced the best result for this specific setup. The resulting ProMP
is smooth while still fitting close to the demonstrations. Figure 4.5 shows the
ProMP for some of the joints with different widths for the basis functions. If the
width is too low, the resulting ProMP has steps instead of being smooth. If the
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Figure 4.6.: A plot of the ProMp with an endpoint applied to it. The red line is
the mean and the blue shaded area represents two times the standard
deviation of the original ProMP and the green shaded area is two times
the standard deviation after the endpoint is applied.

width is too large, the ProMP becomes too smooth and starts to lose detail. This is
especially apparent at the beginning, where the variance should be very low because
all demonstrations should start in the same state.

One of the advantages of ProMPs is that they allow one to use Bayesian inference
to specify via points. This was used to specify the object transfer point (OTP),
which was slightly randomized around a fixed point. This point was in the middle
between the giver and receiver above the table. Because the ProMP is in joint space
and the OTP is in Cartesian space, the inverse kinematics of the OTP needed to
be calculated. The problem is, for one pose in Cartesian space, there may be many
different poses in joint space, some of which may not lie inside the ProMP.
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Joint Name Max Velocity Max Acceleration
l_elbow_flex_joint 7.0 6.5
l_forearm_roll_joint 7.0 6.5
l_shoulder_lift_joint 6.0 6.0
l_shoulder_pan_joint 6.0 6.0
l_upper_arm_roll_joint 6.3 6.3
l_wrist_flex_joint 6.0 6.0
l_wrist_roll_joint 7.0 6.0

Table 4.1.: Max velocity and max acceleration values for MoveIt

Therefore, the inverse kinematics solver needs to find a solution, which is
close to the end poses of all possibly generated trajectories. For this, bio_ik
[Ruppel et al., 2018] was used to get closer to the desired pose using a Regulariza-
tionGoal iteratively. Bio_ik was instantiated with the start state of the end pose of
the mean trajectory of the ProMP. Once the solution is close enough, it is checked
if the solution is too far outside of the ProMP. If it is too far, the OTP is rejected,
and a new OTP is sampled. If not, the solution is used to update the ProMP using
bayesian inference. Figure 4.6 shows how the ProMP changes after the viapoint is
applied.

The next step is to use the ProMP to get the handover trajectory. For this,
the distribution of the weight vector is sampled and the basis matrix it generated.
Multiplying these produces the handover trajectory. To specify the Cartesian velocity
of the TCP, the pull request to MoveIt by Scholz[Scholz, 2021] was used.

During testing, it was noticed that with the default joint velocity and acceleration
limits, the desired velocities were not reached. Thus, these values needed to be
adjusted in such a manner, that the arm reaches the specified Cartesian velocity
and performs it in a stable way. Tuning these values too high resulted in shaky
and stuttery trajectories. Surprisingly, higher values also sometimes led to slower
trajectories. These joint limits can be seen in Table 4.1.
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Finally, before executing the trajectory, it is checked for collisions with the envi-
ronment and the robot itself. If it is not a valid trajectory, it is rejected and the
ProMP is sampled again. If this is not the case, the trajectory is executed.

4.4. Physical Handover Detection

The physical handover detection starts once the handover trajectory is finished
executing the generated trajectory. The tactile sensors of the PR2 gripper are used
to detect the physical handover. If the sensors report a value higher than a specific
threshold, the PR2 will open the gripper and release the object. The threshold was
experimentally fine-tuned in such a way that the object is not dropped without any
interaction with the receiver. It was also considered that the robot should not cause
too much resistance once the receiver starts pulling on the object. One shortcoming
of this approach is that any force acting on the object will lead to the robot releasing
it even if it was hit by accident. The object could not be dropped by accident during
the reaching motion because only after the PR2 finished the trajectory execution
the data from the tactile sensors were considered. This also means that it is not
possible to take the object out of the gripper before the trajectory is finished being
executed by the robot.

4.5. Gaze

It is already known that gaze plays a vital role in human-robot collaboration. Al-
though it is not a crucial part of this experiment, we wanted the robot to feel
more interactive for the participants, especially in between the handovers, where
the participants could quickly get bored. For this, we used the gazr package
[Lemaignan et al., 2016] to let the PR2 look at the head of the participants and
follow its movements.
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An alternative idea was briefly considered. The idea was that the PR2 additionally
looks at the object before grasping it and looking at the object transfer point when
executing the handover trajectory. Moon et al. [Moon et al., 2014] showed that
such a shared attention is highly effective at communicating the object transfer
pose. Some of these motions took too long to execute. Because this was not a
central part of the study, the idea was dropped.
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Due to the current Covid-19 pandemic, it was not possible to conduct this study
in a scope where statistical analysis might yield significant results. Only three
participants, which all had prior experience in robotics and the robot used, could
participate in the experiment. Nevertheless, the results will be presented because
they may still provide some anecdotal evidence that could influence further studies.

The experiment took each participant on average 19:30 minutes for 15 handovers.
Combining all handovers of all participants, there were 45 handovers in total. The
pre-study was repeated four times, resulting in a total of 144 handovers. Each run
of the pre-study took, on average, 32:30 minutes.

5.1. TCP velocity measurement

Because this thesis aims to investigate the influence of the Cartesian TCP velocity of
the robot’s handover trajectory, it is important to get a precise value. Unfortunately,
the specified desired TCP velocity can not be used for this for multiple reasons. First
of all, the robot may not be able to reach the desired velocity because of the physical
limitations of the motors. And secondly, the robot can overshoot or undershoot the
desired velocity. The finite-difference of the TCP position was used, to measure
the velocity at each timestep of the trajectory. A ROS-node was written, which
published the measured Cartesian velocity at 10hz.
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Figure 5.1.: Plots of the TCP velocities grouped by the desired velocity. The black
horizontal line marks the desired Cartesian TCP velocity.

The measured velocity profiles can be seen in Figure 5.1. Each time step can
potentially have a different measured velocity value. The trajectories need to be
categorized to be able to compare them meaningfully. For this, we chose the peak
Cartesian velocity as the category.

In Figure 5.1 it can be seen that the desired Cartesian TCP velocity matches
the actual peak velocity very precisely for slow trajectories. Although there is some
small overshoot at the end of some trajectories with the desired velocity of 0.2m/s.
At around 1.0m/s, the trajectories start to vary more. Some overshoot and some
undershoot the goal velocity. And for 1.2m/s 1.3m/s most trajectories do not even
reach the desired velocity. This confirms that the peak Cartesian velocity needed to
be taken from the measured velocities instead of simply using the specified desired
velocity.

Simply taking the maximum would be too susceptible to noise, oscillations, or
over-corrections of the robot. Therefore, the measured velocities were filtered using
a median filter with a window of size five. Each time step represents an interval
of 100ms. This window size was chosen to filter as much of the noise as possible
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(a) Slow Trajectory (b) Fast Trajectory (c) Slow Trajectory

Figure 5.2.: Three examples of the measured peak TCP velocity using the median
filter. Subfigure 5.2a and 5.2b show examples, where it gives a good
solution. 5.2c gives an example where the result is not as desirable.

without flattening peaks of fast trajectories. Figure 5.2 shows a two good and one
bad example of the resulting peak velocities. 5.2a and 5.2b show examples were the
result coincides with the intuitive notion of the peak velocity. 5.2c shows an example
for which the method failed. In 5.2c, there was a short oscillation at the end of a
relatively slow trajectory. In this case, the desired result is not the actual peak of
the measured velocities but the sustained peak velocity. For this, the window size
is too small. A larger filter window is needed to filter this out, but a larger window
would reduce the measured peak velocity for fast trajectories like 5.2b.

Figure 5.3 compares the desired Cartesian velocity against the measured Cartesian
peak velocity. Until around 0.5m/s, the desired velocity matches the measured
velocity, although the measured velocity is slightly higher. This could be because
the filter is not big enough for trajectories this slow. From 0.6m/s to a velocity of
0.8m/s, the measured velocities start to overshoot noticeably. This is consistent
with the visual findings from Figure 5.1. After 0.8m/s, the variance of the measured
velocity increases rapidly and for trajectories faster than 1.1m/s, more often than
not, it is below the desired velocity. This is consistent with Figure 5.1 as well.

39



5. Evaluation

Figure 5.3.: This figure shows the desired velocity of the TCP against the measured
peak TCP velocity.

5.2. Annotation

Due to how the experiment was set up, it was not possible to automatically detect
the exact start and end of the human receiver’s activity. Because of that, the
recordings needed to be annotated manually. For this purpose, a visualization
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Figure 5.4.: The annotation tool used for labelling the start and end of human
receiver activity.

and annotation tool by Philipp Ruppel [Ruppel, 2021] was used. It allows one to
visualize many of the standard ROS messages, like JointStates or Image messages
and navigate through them by using a timeline, place markers, and annotations.

Figure 5.4 shows a screenshot of this application visualizing the image topic of
the side camera, of which the setup can be seen in Figure 3.1. Below the camera
image, there is the annotation track with the annotated region of human activity.
For this experiment, a human is considered active once the receiver starts to reach
for the object in the giver’s hand. This can overlap with the robot giver’s reaching
motion, although some participants waited until the robot finished executing its
trajectory. It was not too difficult to differentiate between the idle movements of
the participants and the reaching motion. Most participants either led their arms
hang down or had their arms crossed while waiting for the robot.

The human was considered inactive again once the object had been placed on the
table. For this, the object needed to stand stably on the table and not be grasped
by the participant anymore. However, the hand did not need to be retracted. The
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camera recorded at a framerate of 27hz. This means that if the data is annotated
frame-perfectly, an error of up to 37ms could be introduced to the total handover
length and an error up to 74ms to the time the human is considered active. These
annotations were then exported as a csv file for further evaluation.

5.3. Training Effect

Figure 5.5.: Difference of the first three handovers vs the remaining handovers

One unfortunate shortcoming of the study was not including a training phase, in
which each participant could practice the handover with some objects with different
velocities to get used to the setup. It was clear while conducting the experiment
that the first few handovers were very different from the later ones. For example,
some participants had trouble knowing how hard to pull on the object in the gripper
for the first handover. This is also clearly visible in the data. Figure 5.5 shows the
total handover time for each run. The blue dots are the first three handovers, while
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Figure 5.6.: Difference between prestudy results and study results.

the orange dots are the remaining ones. The first handovers clearly take longer to
complete than the remaining ones. For that reason, they are removed from the later
evaluation. This reduces the already small amount of data from 45 total handovers
to 36 handovers.

5.4. Study Results

5.4.1. Comparing the pre-study to the study

Figure 5.6 compares the results of the pre-study with the result of this study. The
blue dots represent the data from the pre-study and the orange ones the data from
the study. The data follows a very similar curve, but in general, the handovers take
longer to be completed. This is very likely due to the difference in experience with
this specific setup. The study participants were completely unfamiliar with this
experiment, while the author practiced the experiment many times before finally
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conducting the pre-study. Additionally, there is a greater variance in the data with
more outliers, especially in the region of 1.0m/s to 1.2m/s, where there are some
very slow handovers compared to the pre-study.

To fill out the questionnaire multiple times occupied more time than expected
for the participants of the study. This time could have been used to increase the
range of tested values to be closer to the pre-study ones.

5.4.2. H1: Fast robot trajectories lead to shorter overall
handover time.

For this experiment, the total handover time started as soon as the robot starts to
execute its trajectory towards the human receiver and ends once the receiver places
the object in the marked area on the table.

Figure 5.7.: The effect of Cartesian TCP velocity on total task time from the
prestudy.
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Figure 5.8.: The effect of Cartesian TCP velocity on total task time from the study.

Figure 5.7 shows the results from the pre-study. The measured total handover
times were grouped by the measured velocities. The measured peak Cartesian TCP
velocity is on the x-axis and the y-axis shows the total handover time.

Here its is clearly visible that the overall handover time gets shorter with higher
Cartesian TCP velocities. One interesting observation is that the variance is lowest
for trajectories around 0.6m/s and increases for both slower and faster trajectories.

The result of the study is not as clear as those of the pre-study. These can be
seen in Figure 5.8. The longest handover times are still the slowest trajectories, but
the large variances of especially the fastest trajectories, make it hard to make any
significant conclusions. The small variance of the 0.6m/s bucket comes from the
previously mentioned removal of the first three handovers. Nevertheless, the overall
handover time goes down with faster trajectories.

The effect is more pronounced when going from slow trajectories to medium-
fast trajectories compared to when going from medium-fast trajectories to fast
trajectories. Both the study and the pre-study results are supporting the hypothesis.
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5.4.3. H2: Object type affects the overall handover time.

Figure 5.10 shows the total handover time for each object grouped by the Cartesian
TCP velocity. In this plot, it is visible that the flat screwdriver was the object,
which led to the longest handover times for most of the velocities and the juggling
ball consistently led to the shortest overall handover times. The reason for the
flat screwdriver taking the longest time could be that the PR2 grasped it at the
handle leading to a much more difficult grasp for the human receiver. Also, the
screwdriver was the only pointy object, which was tested. It could be perceived to
be more dangerous and thus handled more carefully, which would also lead to longer
handover times.

Figure 5.9.: The effect of Cartesian TCP velocity on total task time for each object
from the study.

Both the chips can and the juggling ball were easy to grasp and lightweight. But
still, the juggling ball consistently led to shorter handover times. The cause of that
could be that the juggling ball is easier to place down. It does not matter how the
ball is orientated and it is somewhat soft; that way, it does not roll away. The chips
can, on the other hand, is quite tall. The receiver needs to place it down more
carefully to prevent it from tipping over.
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Figure 5.9 shows the same plot for the study results. Again, the pattern is very
similar but not as pronounced. The juggling ball led to the shortest handover times
and the flat screwdriver led to the longest handovers most of the time. This supports
the hypothesis that the object influences the total handover time.

5.4.4. H3: Fast robot trajectories make humans act slower.

To see if the human acts overall slower, we measured the overall time the human
receiver is active during the handover. The participant is considered active once he
starts reaching for the object in the PR2 gripper and is considered inactive again
once the object is placed on the table. Figure 5.11 shows the human active time
grouped by the Cartesian peak TCP velocity of the robot giver. It shows, similar
to the total handover time, the human active time gets lower with faster robot
trajectories. This disproves this hypothesis and instead shows the opposite effect.

Figure 5.11.: The effect of Cartesian TCP velocity on the time the human receiver
is active from the pre-study.
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This could be due to a similar behaviour as described in [Vannucci et al., 2018]
by Vannucci et al., where the human receivers accelerated their hands faster when
the robot showed aggressive behaviour. The faster acceleration would mean that
the participant reaches their peak velocity faster and thus completing the movement
in a shorter time. It is also possible that movements were not fast enough to make
the human feel uncomfortable and thus led to a more cautious reaction. In addition
to that, the setup included a table between the robot and the human. This table
could give a sense of safety and security to the participants. The table was used
for two reasons. Firstly, to ensure that each participant is standing at the same
distance to the robot and secondly, to have a well defined end to the handover by
placing the object onto the table.

Figure 5.12.: The effect of Cartesian TCP velocity on the time the human receiver
is active from the study.

Figure 5.12 shows the same data for the study. Again there is a downward
trend instead of the hypothesized upwards trend giving more evidence against the
hypothesis.
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Figure 5.13.: The effect of Cartesian TCP velocity on H-IDLE, R-IDLE and C-ACT.

5.4.5. H4: Fast robot trajectories reduce fluency.

To evaluate the fluency, we mainly use the measures described in Section 2.5,
namely:

• H-IDLE

• R-IDLE

• C-ACT

• F-DEL

The human idle time (H-IDLE) measures the percentage of time the human is not
active during the handover, the robot idle time (R-IDLE) measures the percentage of
time the robot is inactive, the concurrent activity (C-ACT) measures the percentage
of time both agents are active at the same time and finally the functional delay (F-
DEL) measures the percentage of time no agent is acting.
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Figure 5.14.: The effect of Cartesian TCP velocity on H-IDLE, R-IDLE C-ACT and
F-DEL.

Additionally a short questionnaire was used for each run of the three objects in
the study. Although no statistically significant results can be expected for only three
participants.

Figure 5.13 shows the before mentioned measures with the exception of F-DEL.
F-DEL was omitted for the pre-study because there was no single handover with
functional delay. The human idle time decreases for higher Cartesian peak TCP
velocities until a velocity of 0.7m/s. After that, it stays at around 20%. H-IDLE is
positively correlated with subjective fluency. This indicates that fluency goes down
for higher Cartesian peak TCP velocities of the robot giver.

The robot idle time goes up for higher Cartesian peak TCP velocities. R-IDLE did
reversely correlate consistently with subjective fluency in [Hoffman, 2019]. Again
indicating that higher velocities of the robot giver lead to a less fluent handover.
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Figure 5.15.: The results of the questionnaire grouped by the Cartesian TCP veloc-
ity.

Although concurrent activity is not correlated with fluency, it is intuitively more
efficient if both agents act at the same time. Interestingly C-ACT peaked at 0.7m/s
and went down for slower and faster trajectories. Additionally, the variance is lowest
for 0.7m/s.

Figure 5.14 shows the H-IDLE, R-IDLE, C-ACT, and F-DEL results from the
study. The very low variance for the 0.6m/s bucket for H-IDLE and C-ACT is due
to the removal of the first handovers because of the training effect, as mentioned
before. Furthermore, the variance of the remaining buckets is considerable and no
clear trend is visible.

R-IDLE, on the other hand, shows a clear upward trend for faster robot trajec-
tories. Again supporting the hypothesis that faster robot trajectories reduce the
fluency of the handover.

Finally, F-DEL offers very interesting results. There are only a few handovers,
which had functional delay. They only occurred for trajectories in the range of
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0.8m/s to 1.2m/s. F-DEL is reversely correlated with perceived fluency, thus
indicating that fast trajectories make the handover less fluent.

The results of the questionnaire are shown in Figure 5.15. As mentioned before
the optioned ranged from Strongly Disagree to Strongly Agree. In Figure 5.15
Strongly Disagree is mapped to -2, Agree to 1, Neutral to 0, Agree to 1 and
Strongly Agree to 2.

Unfortunately, the variances are too large to make any significant conclusions and
should only be considered anecdotally. There seems to be a downwards trend for
faster trajectories in all categories except the fastest velocity bucket 1.2m/s. This
is most likely because the robot did not always reach the desired 1.2m/s and the
resulting slower handover trajectory then being grouped in the 1.0m/s bucket.
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6. Conclusion

In this thesis, a study to investigate the effect of the Cartesian velocity of the robot
giver’s handover trajectory was implemented and conducted. Due to the current
Covid-19 pandemic, the study could not take place in its originally planed form.
Because of that, the results need to be considered cautiously.

Overall we could show that if only the total handover time is considered, faster
trajectories result in shorter handover times in the tested range of Cartesian veloci-
ties. But when including the fluency of the handover, faster handover results in less
fluent handovers. Additionally, when only considering concurrent activity, there was
an optimal velocity. This indicates that the optimal velocity depends on the chosen
metric. If a fast and fluent handover is wanted, a compromise must be made.

It was found out that the object type affects the overall handover time and there
is some evidence that the human receiver adjusts the velocity of the hand to the
robot’s velocity.

6.1. Future Work

We believe that this topic is not yet fully explored. Repeating the study with a
much larger number of participants would greatly improve the significance of the
results. Also, a training period where the participants get used to the setup should
be included.
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As mentioned in Section 5.1 the PR2 had problems reaching the desired velocities.
Either further fine-tuning the joint’s velocity and acceleration limits to achieve faster
trajectories or moving to a faster robot, like the Universal Robots UR5, would make
the study more reliable. It would also be interesting to test higher velocities.

While observing the participants filling out the questionnaire it seemed, that there
are a few too many questions for the number of times the questionnaire is filled
out. For a future study, it should be considered shortening the questionnaire. It
might also be a good idea to remove the table between the robot and the receiver,
as it might act as a barrier making the participant feel safer. This would make it
harder to measure if the human feels intimidated by the faster robot motions. The
participant’s safety should still be guaranteed.

Additionally, more complex objects with more varying weight and difficulty to
grasp should be considered, maybe even including a task to be performed after
the handover. And finally, the grasp position could be varied. In the case of this
thesis, the screwdriver for example, was only grasped at the handle and the shaft
was presented to the participants. One could compare whether there is a difference
between presenting the handle or the shaft. Presenting the handle is less dangerous
as well as easier to grasp, which would maybe make the handover more fluent and
take less time overall.
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Questionnaire

Participant:

Run:

Strongly disagree Disagree Neutral Agree Strongly Agree

The human-robot team worked flu-
ently together.

� � � � �

The robot contributed to the fluency
of the interaction.

� � � � �

I had to carry the weight to make the
human-robot team better.

� � � � �

The robot contributed equally to the
team performance.

� � � � �

The robot was committed to the suc-
cess of the team.

� � � � �

I was the most important team mem-
ber on the team.

� � � � �

I trusted the robot to do the right
thing at the right time.

� � � � �

The robot was trustworthy. � � � � �

I feel uncomfortable with the robot. � � � � �

I feel safe working next to the robot. � � � � �

I am confident the robot will not hit
me as it is moving.

� � � � �

The robot was uncooperative. � � � � �

Figure A.1.: Questionnaire used in this study.
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