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Abstract

Nowadays mobile robots operate reliably in clean static environments like industry se-

tups, but rather fail in complex dynamic environments, like e.g. airports or shopping

centers. Those environments are more crowded and narrow than industry-like environ-

ments and contain moving objects — mainly humans. Traditional navigation approaches

treat all objects as static objects, resulting in a non-reasonable behavior. Mobile robots

should be able to cope with dynamic objects as well as dynamic crowds.

In this thesis, local planning is realized with the state-of-the-art Deep Reinforcement

Learning (DRL) approach Proximal Policy Optimization (PPO). The RL-agent is trained

in a 2D-simulation environment, where it collects experiences to update the Deep Neural

Network, that serves as a function approximator. First, several RL-agents are trained

in a static industry-like task setup and compared to traditional navigation approaches.

Second, profiting from the knowledge of the static training, agents were trained in a

dynamic environment with simulated humans, behaving according to Helbing’s Social

Force Model. Two different behaviors worth mentioning have been evolved. One agent

learned a policy, that avoids individual humans, but stops and waits if the robot faces

unsolvable situations like crowds or blocked passages. The other agent learned a more

aggressive policy. It can push pedestrians by driving very slowly towards them until

they give way.
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Zusammenfassung

Mobile Roboter werden heutzutage stabil und erfolgreich in statischen und übersicht-

lichen industrielle Umgebungen eingesetzt. Sobald diese Roboter in komplexeren Umge-

bungen mit dynamischen Hindernissen wie z.B. Flughäfen oder Einkaufszentren agieren,

ist ihr Verhalten unzureichend, da traditionelle Navigationsansätze dynamische und sta-

tische Objekte gleich behandeln. Die Navigation der Roboter müsste dahin optimiert

werden, dass ein adaptiveres Verhalten gegenüber dynamischen Hindernissen erreicht

wird. Desweiteren ist der Roboter Situationen mit Menschenmengen ausgesetzt, die

wenig Raum zum Navigieren bieten.

In dieser Masterarbeit wird das lokale Navigieren mit dem state-of-the-art Deep Re-

inforcement Learning (DRL) Ansatz Proximal Policy Optimization (PPO) realisiert. Der

RL-Agent wird in einer 2D-Simulationsumgebung trainiert, wo dieser Erfahrungen sam-

melt, um das Deep Neural Network nach und nach zu optimieren. Im ersten Schritt

werden verschiedene RL-Agenten in einer einfachen statischen Umgebung trainiert und

mit den traditionellen Ansätzen verglichen. Aufbauend auf den Erkenntnissen vom sta-

tischen Training, werden weitere RL-Agenten in einer dynamischen Umgebung mit Men-

schen, die sich entsprechend Helbing’s Social Force Model bewegen, trainiert. Dabei

kristallisieren sich zwei relevante Verhalten heraus. Ein Agent weicht einzelnen Men-

schen und kleinen Gruppen aus, hält aber an und wartet, wenn es keinen Ausweg gibt

wie z.B. in Menschenmengen oder bei engen Passagen, die von Menschen blockiert wer-

den. Ein zweiter Agent hat ein aggressiveres Fahrverhalten und fährt in unlösbaren Si-

tuationen sehr langsam auf Personen zu um sie dazu zu bringen, dem Roboter Platz zu

machen.
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1. Introduction

This chapter provides a general introduction to the topic of the thesis. In chapter 1.1,

a motivation for the use of intelligent learning algorithms during navigation of mobile

robots is given. In chapter 1.2, the most relevant related work for Deep Reinforcement

Learning in general and Deep Reinforcement Learning in robotic applications – espe-

cially mobile robotics – are covered. In chapter 1.3 the MiR100 robot is presented with its

sensors, actors, and today’s traditional navigation approach.

1.1. Motivation

The use of robots in the industry has grown drastically in the last decades and has in-

creased efficiency and accuracy in predefined task sequences. Mobile robots in industry

operate in clean static environments. They shuttle between fixed goals and avoid path

blocking static obstacles, such as pallets and containers. In addition, a high demand for

mobile robots in dynamic, more complex environments, like e.g. hospitals, airports, and

shopping centers, is expected. Those environments contain moving objects like humans

and other robots – thus a more intelligent behavior of the robot is necessary. It is ex-

pected that the robot is able to cope with dynamic obstacles and that it adapts its driving

behavior to it.

Nowadays, mobile robots operate in a very satisfactory manner in industry-like static

environments. Their driving behavior is very smoothly and considers new unknown

objects, that are not registered by the global map. Still, there is room for improvement,

especially in dynamic environments. The navigation is often not designed for dynamic

environments, resulting in non-reasonable behavior regarding dynamic objects. As an

example, the MiR100 robot is given, that tries to avoid the obstacles as if they are static

objects, abandons and re-plans globally after failing to avoid the object. An adaptable

behavior regarding moving objects is therefore heavily demanded.

Deep Reinforcement Learning (DRL) is a machine learning discipline and showed great

success in controlling tasks within the last years. The DRL-agents are trained in appro-

priate environments and learn complex behavior by interacting with the environment on

a trial-and-error basis. Deep Reinforcement Learning is heavily applied in the fields of

video games and trained agents are able to play games on human-level and higher. The

promising results are motivating to apply DRL in controlling tasks of robotics, although

the field has more challenges due to real world constraints. Depending on the problem’s
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complexity and the available resources, the RL-training can last up to several days and is

for that reason infeasible in the real world.

The objective of this thesis is to investigate the use of Deep Reinforcement Learning

as path planning method at the MiR100 robot. The outcome provides a proof-of-concept

and evaluates to what extent further investments should be made in this field.

1.2. Related Work

The popularity of Deep Reinforcement Learning (DRL) increased immensely in the past

four years. It started with two success stories in 2016, that combined Deep Neural Net-

works with Reinforcement Learning (RL) and achieved impressive and promising results.

First, the DeepMind group developed a single RL-agent, that was able to play several

Atari 2600 video games on human level [3]. Based on raw input images of the game, an

action is chosen among a number of discrete actions, while the score of the game serves

as the reward. The applied approach is well known as Deep Q-Network (DQN). It uses

a Deep Neural Network as function approximator in Q-learning and addresses the in-

stability problem, that has been previously experienced by combining RL with function

approximators [4]. AlphaGo [5] was the second success story in 2016. They developed a

hybrid DRL agent, that was able to beat the world champion in the Chinese board game

Go. Go provides a large search space so that it is difficult to solve artificially. In the

first stage, the AlphaGo-agent was trained supervised by learning from recorded ama-

teur games. In the second stage, the agent played against itself applying Reinforcement

Learning.

The published approaches of the past four years can be categorized in Value-Based and

Policy-Based methods. DQN is a Value-Based method: It approximates a value function,

that determines the value for each action a in state s. On top of that sits a policy, that

chooses the finally taken action based on the appropriate action values. DQN has been

investigated intensely, resulting in many improvement proposals [6], [7], [8], [9] and [10].

Those improvements are compared in [11] and combined to a Rainbow DQN, that outper-

forms the classical DQN and their improvements. DQN and a selection of improvements

are discussed in more detail in chapter 2.3.1.

In Policy-Based methods, the policy is learned directly, resulting in a more stable and

smooth convergence versus a maximum. Still, they often make use of the value func-

tion to learn the policy by applying a so called Actor-Critic Architecture. The foundation

of Policy-Based methods provides the REINFORCE algorithm [12] from 1992. It learns

stochastic policies by applying gradient ascent during the update step. Today’s state-of-

the-art Policy-Based approaches are Trust Region Optimisation (TRPO) [13], Generalized

Advantage Estimation (GAE) [14] Proximal Policy Optimization (PPO) [15], Deep Deter-

ministic Policy Gradient (DDPG)[16] and Asynchronous Advantage Actor-Critic (A3C)
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[17]. A selection of these approaches is further discussed in chapter 2.3.2.

Deep Reinforcement Learning is especially interesting for Robotics because it allows

learning control policies from raw input data. In the last years, it has been applied

to all the different robotic domains like robotic manipulation [18] [19] [20], locomotion

[21] [22], self-driving cars [23] [24] and autonomous navigation. Classical navigation

of autonomous robots works well in static environments. The classical approaches rely

strongly on the global planner that determines a plan, leading through previously known

global objects. Unseen new obstacles that are not considered by the global planner are

handled by the local planner. The local planner gets — especially in environments with

moving objects like other robots or humans — easily stuck and fails frequently. Applying

learned policies to those situations seems promising. It is desired, that the robot learns

to behave more dynamically and even adapts social behavior. Today’s Reinforcement

Learning approaches are very time consuming and millions of experiences need to be

collected to learn complex tasks properly. As a consequence, most of the successfully

robotic RL-agents are trained in a simulation environment. The training process can be

automated easily and dangerous situations, caused by trial-and-error, are withheld from

the real world. One common approach is to only consider 2D laser scan sensor data,

because their simulation is easy and gets closest to the real world sensor data. The fol-

lowing paragraphs address RL solutions in the navigation of autonomous robots, that

have been trained in a simulation environment.

The publications of [25] and [26] show that it is sufficient to train RL-agents in static

environments with spatial laser sensors with seven to twelve data points.

Long and Fan [27] address a decentralized multi-robot scenario. The task of the robots

is to drive vs. a certain goal and meanwhile avoid the other robots. The robots do not

communicate directly. Instead, they decide only based on their current observation that

includes the past three raw laser scans, the relative goal position and their current veloc-

ity. The action space includes continuous velocity commands that are determined by a 4-

hidden-layer Neural Network. The network is trained with an extended PPO-algorithm

that is adapted to parallel agents. Each agent acts according to a centralized policy and

generates new experiences. The PPO-algorithm uses all samples from all robots to up-

date the centralized policy. Furthermore, it has been trained in two stages to speed up

training. Stage one includes a simple environment that has 20 robots and no static obsta-

cles. In the second training stage, the number of robots is increased and a more complex

static scenario is used. The trained agent has a remarkable success rate and its behavior

is very convincing, as demonstrated in the provided video.

Coping with humans or dynamic objects, that do not behave according to the same

policy, is more challenging. The encountering agents behave differently and it is not

guaranteed, that they avoid in the same manner. Those dynamic environments are ad-



4 1. Introduction

dressed in [28] and [29]. But also a second publication [30] builds on top of the previously

explained approach dealing with multi-robot scenarios and applies it to an environment,

crowded with humans. The planner developed in [27] is used as the local planner, i.e. it is

supposed to follow a global plan and to react and to navigate among the crowd. Further-

more, crowded environments often cause problems in classical lidar-based localization.

It fails especially if there is no distinct match between global map and lidar scan. They

apply an Actor-Critic based recovery method that should navigate the robot to a close

recovery point, that provides rich landmark features. By reaching one of those points,

the classical localization can overtake again and re-localize.

Xie et. al. [31] proposed one of the few approaches that trains an RL-agent with raw

RGB-images as input data. As the agent is trained in a simulation environment, the

images are corrupted with noise and blur to be able to generalize better over real world

data. Particularly, they use a Convolutional Neural Network to estimate depth data from

a single RGB image. Compared to 3D sensors, the depth estimation is rather inaccurate.

A DQN approach combined with two improvement strategies dueling DQN and double
DQN – named D3QN – is supposed to handle those inaccurate depth informations. The

network in the D3QN approach gets a stack of four depth images as input and provides

velocity commands as output.

The related field of self-driving cars is also researching the usage Deep Reinforcement

Learning in the controlling of cars. Most of the publications are only based on simulation

environments [32], [33], while Folkers even applies the trained RL-agent to a real vehicle

[34]. The RL-agent is trained with the state-of-the-art PPO-algorithm and is supposed to

maneuver through a parking lot, avoiding simple static objects.

Although simulated laser scan data gets close to the real world data, the performance

of an agent in the real world is mostly worse than in the simulation. It is difficult to con-

struct realistic situations that the agent can learn from. Especially human behaviors, like

movement patterns and reactions regarding the robot, are difficult to imitate. Addition-

ally, it is desirable to use RGB- and depth-images as sensory data, because they provide

more relevant information. Imitation Learning (IL) approaches like e.g. DAGGER [35]

or GAIL [36] make the agent learn from expert demonstrations. IL is much more sample

efficient, but it is still time-intensive if humans are supposed to generate those demon-

strations. Additionally, IL is likely to overfit demonstrations during training time. Com-

bining Reinforcement Learning and Imitation Learning could reduce the gap between

real world and simulation. Besides, the advantages of both approaches can contribute:

IL speeds up the training process, while RL generalizes better over all different kind of

data.

Inverse Reinforcement Learning (IRL) [37] uses expert demonstration to find a reward

function that explains the expert’s behavior. It is assumed that the expert behaves opti-

mally, i.e. always picks the best possible action. IRL prevents researchers from designing
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and tweaking reward functions until the desired behavior is reached. In [38] and [39] IRL

is applied in the context of navigation at autonomous driving.

DDPG from demonstration [40] builds on the DDPG algorithm, that stores collected

experiences in a so called replay buffer and samples data from that during learning. It in-

tegrates demonstration data, by adding them to the replay buffer, so that the agent learns

from both, demonstrations and self-generated experiences. They provide experiments in

simulation and real world. Inserting demonstration data speeds up learning, especially

when space rewards are provided. Another way to combine both techniques – IL and RL

– is to pre-train the Neural Network with Imitation Learning in the first stage. In the sec-

ond stage, the Reinforcement Learning takes places, building on the pre-trained network

[41], [42].

1.3. The MiR100 Mobile Robot

The mobile robot MiR100 of the company Mobile Industrial Robots ApS is shown in

figure 1.1. It has a rectangular footprint and a differential drive, consisting of two inde-

pendently powered wheels that are positioned around the center point of the robot. For

stability, another four passive wheels are positioned in the corners. It is equipped with

two Sick safety Laser Scanners S300 in the front left and back right corner, a 3D-camera In-

tel RealSense in the front as well as multiple Ultrasonic sensors. The laser scanners cover

270 ◦ each, with an increment of 0.5 ◦, so that the whole 360 ◦ -field around the robot is

covered (see figure 1.2). They are connected to an independent safety system that is trig-

gered if the sensors detect an obstacle in a minimum distance, depending on the speed

of the robot. Besides, it has internal sensors such as a gyroscope, an accelerometer, and

motor as well as wheel encoders.

Figure 1.1.: MiR100 robot of the company Mobile Industrial Robots ApS 1.

1accessed 2019-01-27: http://www.mobile-industrial-robots.com/de/products/mir100/

http://www.mobile-industrial-robots.com/de/products/mir100/
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Figure 1.2.: Sensor setup of the mobile MiR100 robot. In the front left and back right
corner a Sick safety Laser Scanner S300 is positioned. Together they cover
the whole 360◦-field of the robot (orange). In the front of the MiR100 sits a
3D-camera Intel RealSense (pink). 2

In the following, a short introduction to the navigation software, that is applied to the

MiR100, will be given. It will be referred to as traditional navigation software from here

on.

1.3.1. Localization

Localization is resolved with Adaptive Monte Carlo Localization (AMCL) [43], that is

based on the Particle Filter: Each particle represents a possible solution for the position

of the robot. The Particle Filter iterates over the following steps.

Do

1. Sample a particle from the previous particle distribution and move it according to

the physical system.

2. Place the particle in the binned state space and increase the number of non-empty

bins k, if the particle was placed in an empty bin.

3. Weigh the particle according to the recent sensor data. Particles that accord strongly

with the sensor data are weighted higher than particles that accord less strong.

4. Adapt the sample size bound Mx to the number of non-empty bins k. The smaller

k, the more the particles agree and the smaller the final sample size n.

while n < Mx

After a few iterations, the particles converge towards the most probable position of the

2accessed 2019-01-27: MiR100 User Guide

http://www.mobile-industrial-robots.com/media/4709/mir100-user-guide_robot-interface-20-en-v12.pdf
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robot. To estimate the correspondence in step 3, the sensor data will be compared to the

environment of the particle, that can be retrieved from the global map. Therefore it is

likely, that AMCL fails in crowded, dynamic areas. People cover significant features in

the environment so that no distinct correspondence can be found.

1.3.2. Navigation

The navigation is based on the Navigation Stack in ROS [44]. It contains a global planner

that determines long-distance and optimal paths from A to B based on a global costmap.

A costmap is an occupancy grid map, where each cell value gives a probability of how

unsafe it is to be at that position. The global costmap is mainly based on the provided

global map of the world, but also considers sensor data. That means new objects that are

not listed in the map of the world can be detected with sensors and integrated into the

global costmap.

For the global planner, a variant of the SBPL (search-based planner) lattice planner

provided by ROS is used. It applies graph-search methods to determine the global plan.

First, the state space is transformed into a discrete graph, where each node represents

one possible state (x, y, yaw) of the robot. In addition, the node is marked as valid, if

the costmap has a low probability at that state, else invalid. Discretizing the state space

makes the path-finding process more efficient, but can also lead to unusual looking paths.

For example, if the robot has to drive along a corridor, that has a certain angle to the

global coordinate system, the path can have a zick-zack pattern. As search-algorithm,

the ARA*-algorithm [45] is applied. It applies the A*-algorithm with weighted heuristic,

that produces a sub-optimal path. The parameter ε defines the extent of sub-optimality:

The length of the sub-optimal path is not larger than ε times the length of the optimal

path. ARA* executes A* several times while decreasing ε and reusing the information

from the previously produced path. Like this, it guarantees a sub-optimal path in a short

amount of time and if a certain time threshold is not yet exceeded, it can spend the re-

maining time to improve that path.

The local planner solves short-distance path planning and re-plans on an on-going

basis during the navigation along the global plan. The local planner follows the global

plan as well as avoids local obstacles, that are detected on the global path. Those objects

were not present in the global costmap and are therefore not considered in the global

plan. The local planner is supposed to avoid local obstacles and to find back to the global

plan afterward. The local planner takes a local costmap into consideration, that is low in

size and only represents the area around the robot. It is regularly updated according to

the input sensor data.

The local planner is realized as a mixture of the pure pursuit and the Vector Field

Histogram (VFH*) motion planning approach [46]. The pure pursuit takes care of basic

global path following while the VFH* avoids local objects on that path. The VFH* is
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Figure 1.3.: Two-step VFH*: The green fan is the first VFH* expansion, arising from the
robot (green rectangle). On each valid arc a second finer VFH* expansion
(dark blue) is added. The cyan lines are simple straight extensions of each
blue arc. Finally, the expansion that leads closest back to the path is chosen.

triggered, as soon as an obstacle is closer than a certain distance threshold and it uses

the local costmap to determine openings with the lowest cost that are passable for the

robot. VFH* allows the robot only to move on a number of discrete arcs. Local obstacles

block all arcs with trajectories that lead through the direction of the obstacle. Moreover, a

variant of the VFH* is applied in the MiR100 robot, that is further called two-step VFH*

and is illustrated in figure 1.3. In the first step, a discrete number of possible arcs (green)

is spread out, arising from the robot. Each valid arc (i.e. does not collide with an inflated

light blue obstacle) is extended with a second finer VFH* expansion (dark blue). Finally,

the expansion with the closest distance back to the path is chosen.

In the following two variants of the traditional navigation approach will be referred

to: 2S-VFH*-R and 2S-VFH*. 2S-VFH*-R is closest to the original software. It applies

the two-step VFH* and pure pursuit for the local planner and adds a recovery method

on top. The recovery method takes place if the robot gets stuck and is not able to solve

the situation with the normal local planner. Note that the recovery method uses global

re-planning, while new local objects are considered during re-planning. In this thesis, the

consideration of local objects is disabled to isolate the performance of the local planner.

2S-VFH* isolates the local planner even more strongly by disabling the recovery methods

completely. That means 2S-VFH* does not allow global re-planning at all.
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2. Fundamentals

This chapter summarizes the relevant fundamentals for further understanding of the

topic of the thesis. In chapter 2.1, basic concepts of Artificial Neural Networks are pre-

sented, while a special focus is set on Convolutional Neural Networks. Chapter 2.2 cov-

ers the fundamentals of traditional Reinforcement Learning. Basic algorithms like Monte

Carlo and Temporal Difference Methods are presented. Finally, the knowledge of 2.1 and

2.2 is combined in chapter 2.3 about Deep Reinforcement Learning. Three selected state-

of-the-art DRL-algorithms are discussed: Deep Q-Network(DQN), Deep Deterministic

Policy Gradient (DDPG) and Proximal Policy Optimization (PPO).

2.1. Artificial Neural Networks

The artificial neuron is inspired by the biological neuron from the animal brain. The hu-

man brain consists of approximately 100 billion neurons to process sensory information

like vision, touch, and acoustics. A single neuron has several inputs – called dendrites –

coming from other preceding neurons. The neuron processes the inputs and if a certain

action potential is reached, the neuron "fires" through its single output – called axon. The

output of the axon will be forwarded to all following connected neurons.

An artificial neuron (also called perceptron) models the biological neuron in a sim-

plified way. Each artificial neuron has n input connections. The neuron processes the

inputs by taking the weighted sum, adding a bias b and applying an activation function:

f (∑n θixi + b). Figure 2.1 illustrates the parallels of a biological and an artificial neuron.

Figure 2.1.: Biological neuron (left) vs. artificial neuron (right). The artificial neuron mod-
els the dendrites as weighted inputs and processes the sum through an acti-
vation function f (∑ θixi + b). [47]

Neural networks approximate a non-linear function f ∗(x) by composing multiple neu-
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rons in a chain. The parameter set θ that contains all weights θi of all neurons needs to

be adjusted in such a manner that the Neural Network results in the best possible func-

tion approximation. The process of finding a good parameter set θ is called learning.

A feedforward Neural Network organizes the artificial neurons in different layers. The

neurons in the layers are connected to each other in a forwarding manner. There are no

connections that are fed back to previous neurons. Each network has one input layer,

that processes the raw input data, and one output layer, that contains the approximated

result. In between those two layers can be one or more hidden layers where the relevant

computing is happening. Figure 2.2 shows a Fully-connected, feedforward Deep Neural

Network. It is fully-connected because all neurons of the outgoing layer are connected to

all neurons of the incoming layer. This is not absolutely necessary. [48]

Figure 2.2.: Fully-connected, feedforward, Deep Neural Network with one input, one
output and two hidden layers. [47]

2.1.1. Learning Process

The goal of the learning process is to find a parameter set θ that results in the best possible

function approximation. In supervised learning, the true output Y of a certain input X is

given and can be used to update the parameters θ. It is an iterative process, consisting of

the following steps.

1. Forward Pass. The input X is forwarded through the network and one gets the

predicted output Ypred = f (X, θ).

2. Loss. The predicted output Ypred is compared to the true output Y by computing

the loss L(θ). The choice of the loss function depends on the learning task. In the

following, relevant loss functions are listed.

– Mean-square-error [49]. It is widely used and computes the L2-distance be-

tween Ypred and Y.

L(θ) =
1
2

n

∑
i=1

(Yi −Ypred,i)
2 (2.1)

– Logistic Loss function [49]. The logistic loss function punishes points that are

classified correctly with a low confidence. Still wrongly classified samples are
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punished more strongly.

L(θ) =
n

∑
i=1

log(1 + exp(−Yi ·Ypred,i)) (2.2)

3. Back-propagation. The global gradient of loss∇L(θ) is computed and back-propa-

gated through the network. The back-propagation algorithm, introduced by [50],

provides local gradient of loss to all hidden neurons. The algorithms underlying

concept is the chain rule. The chain rule computes derivatives of composed func-

tion by multiplying local derivatives. Given the function y = g(x) and z = f (g(x)),
the derivative ∂z

∂x can be computed according to equation 2.3. [48]

∂z
∂x

=
∂z
∂y

∂y
∂x

(2.3)

The chain rule is used to propagate the global gradient loss ∂L(θ)
∂θ back through the

network. It flows in the opposite direction of the forward pass. Figure 2.3 shows a

neuron with the function z = f (x, y, θ). Its local derivatives are ∂z
∂x , ∂z

∂y and can be

determined during the forward pass. The local gradient of loss is computed during

back-propagation by multiplying the local derivative with the local gradient of loss

of the connected neuron of the next layer ∂L
∂z . As result, one gets a local gradient of

loss for each input of the neuron: ∂L
∂x , ∂L

∂y . They will be further back-propagated to

the other preceding neurons. In case a neuron is connected to several neurons in

the next layer, the gradients are simply added up.[47]

Figure 2.3.: The local gradient of loss for the input x and y can be computed by applying
the chain rule. The local gradient of loss of the next neuron ∂L

∂z is multiplied
with the local derivatives ∂z

∂x , ∂z
∂y . As result, one gets the local gradients of loss

∂L
∂x , ∂L

∂y .

4. Update. The weights of all neurons are updated. A common optimizer is stochastic

gradient descent (SGD). It combines Batch Learning from section 2.1.4 with gra-
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dient descent. Gradient descent changes the weights in the negative direction of

the gradient of loss so that the function approximation approaches closer to the

minimum in each iteration. It is expected that after a number of iterations, a local

minimum is reached. Equation 2.4 shows the corresponding update rule of gradi-

ent descent. α is the learning rate parameter that defines how quickly the minimum

should be approached. If the learning rate α is too high, there is a risk that the min-

imum cannot be reached, because the taken steps are too big and will be overshot.

θi ← θi + α∇θ L(θ) (2.4)

2.1.2. Regularization

The final goal of learning is that the function approximation generalizes over the pre-

sented data, i.e., it shows similar performance on new, unseen data. A good compromise

between under- and overfitting needs to be found. Underfitting occurs when the approx-

imated function is too simple. It generalizes on the data, but the prediction error is too

high for all data points. Underfitting often results from insufficient, small training data

sets with a lack of diversity. Overfitting describes the contrary: the approximated func-

tion is too complex. It represents the training points really well, but unseen points are

predicted poorly.

Regularization is an approach to prevent overfitting. The loss function will be extended

with a regularization term Ω(θ), that tries to keep the approximated function as simple

as possible. Equation 2.5 shows the extended regularized objective loss function L̃. λ is

the regularization factor, that weighs the regularization term Ω(θ) against the original

loss function. If λ = 0, there is no regularization. [51] [48]

L̃(θ) = L(θ, Y, Ypred) + λΩ(θ) (2.5)

Equation 2.6 shows the L2-regularization. It adds up the squared sum of the weights θ

to the objective loss function. The regularization method aims to keep the weights small.

[48]

L̃(θ) = L(θ, Y, Ypred) + λ
1
2
||θ||2 (2.6)

Equation 2.7 shows the L1-regularization. In contrary to the L2-regularization, the weights

are only punished linearly. Large weights are not punished stronger, so that it is possible

to have large weights if at the same time several small weights get zero. The regulariza-

tion method leads to a sparser solution. [48]

L̃(θ) = L(θ, Y, Ypred) + λ
1
2
||θ|| (2.7)
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2.1.3. Activation Functions

There are three different commonly used activation functions: sigmoid, tanh and ReLU,

that will be discussed in this chapter.

The sigmoid function is shown in equation 2.8. It maps the input value x between the

range of 0 and 1. Large negative values become 0 and large positive values become 1.

sigm(x) =
1

1 + e−x (2.8)

The sigmoid function is less used because it has some crucial disadvantages. If the neu-

ron’s output saturates at 0 or 1, the local gradient gets almost zero. At back-propagation,

the global gradient will be multiplied with the local gradients, so that the product ends

up zero as well. Eventually, the weights will not change, and the network is not capa-

ble of learning effectively. It is especially problematic if the network is initialized with

weights that directly end up in saturating outputs. Another disadvantage is that the out-

put of the sigmoid function is not zero-centered. [47]

The tanh function is shown in equation 2.9. It zero-centers the sigmoid function. Still

the disadvantage of saturation remains.

tanh(x) = 2 · sigm(2x)− 1 (2.9)

The ReLU function is the most popular function and shown in equation 2.10. It does

not allow the output to get smaller than zero. It has a non-saturating form and allows

the gradient to converge faster during training. Another advantage is that it is a simple

function with a small computational cost. [47]

ReLU(x) = max(0, x) (2.10)

2.1.4. Batch Learning and Normalization

The idea of Batch Learning is to process a set of m training samples (mini-batches) in-

stead of just a single training example. The gradient is averaged over all m processed

training examples. This can lead to a more accurate gradient with less variance, resulting

in reduced training time. Besides, Batch Learning speeds up the training when using a

graphics processing unit (GPU). All training samples can be processed independently,

i.e., in parallel. [47]

Batch normalization [52] applies normalization over the whole batch by zero-centering

and rescaling the data. It is expected that the mean of the normalized data is close to

zero and the variance is close to one. In a batch H with m samples, each value hi is
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normalized over the whole batch according to equation 2.12. The mean µ (equation 2.13)

and variance σ (equation 2.14) is computed element-wise for each spatial position across

the whole batch. δ > 0 is a small value to avoid division by zero. The normalized value

y
′
i will be further processed by equation 2.11. γbn and αbn are parameters of the batch

normalization (bn) layer and are learned along with the original parameter set θ of the

Neural Network. The additional learning dynamics increase the network’s expressive

power. [48]

yi = γbny
′
i + βbn (2.11)

y
′
i =

hi − µ

σ
(2.12)

with µ =
1
m

m

∑
i=1

hi (2.13)

with σ =

√
1
m

m

∑
i=1

(hi − µ)2 + δ (2.14)

Applying the batch normalization to the input data as well as the output of any hidden

layers leads to a regularizing effect during learning and prevents overfitting. Another

advantage is that it speeds up the training time. It has to be noted that batch normal-

ization is only applicable, if the exact position of the features is not relevant, but rather

whether the feature exists in the input.

2.1.5. Convolutional Neural Networks

Convolutional Neural Networks are inspired by the receptive field in the brain, that pro-

cesses sensor input data and is sensitive to certain stimuli, e.g., edges in the visual system.

They handle large input data efficiently and are consequently widely used in state-of-the-

art approaches in the fields of Computer Vision, like e.g. object detection [53] [54] [55] or

image segmentation [56] [57].

Figure 2.4 shows the LeNet-5 [1] that recognizes digits in images. It provides a typi-

cal architecture of Convolutional Neural Networks, consisting of stacks of Convolutional

Layers, followed by a subsampling Pooling Layer. The final hidden layers of the net-

work are normally fully-connected to compute the final low-dimensional output of the

network. It can be assumed, that in the early stages of the network low-level features

like edges and corners are learned, while in later layers those features are combined to

high-level features.

Convolutional Layer

The Convolutional Layer builds on the discrete convolution operation, that applies a

square filter f of the size [m×m] with m = 2k + 1 to an input matrix g at position [x, y]
by computing the dot product. The discrete convolution operation is shown in equation
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Figure 2.4.: To illustrate a typical architecture for Convolutional Neural Network, the
LeNet-5 [1] is presented. It recognizes digits on images. The input image
is processed by two stacks of Convolutional Layers, each followed by a sub-
sampling Pooling Layer. The last three layers are fully-connected to map the
high-level features to the final digit classification.

2.15. [48]

h[x, y] = f ∗ g[x, y] =
k

∑
u=−k

k

∑
v=−k

f [u, v]g[x− u, y− v] (2.15)

One neuron in a Convolutional Layer is represented by a filter of the size [m × m × d].
The weights of the neuron are the filter values as well as a bias b. The filter will be shifted

over the input matrix g with depth d and produces an output h[x, y] for each position

[x, y]. Note that the input matrix g and the filter f have the same depth d. To produce an

output h that has the same size as the input g, zero padding can be applied. Zero padding

extends the input matrix g by (m− 1)/2 rows or columns with zero-values on each side.

A set of different filters (= neurons) forms the Convolutional Layer. All filters have the

same size, but different filter values, and are all applied to the same input g, producing a

so called activation map. The final output of the layer is a stack of all activation maps.

It is common to shift the filter with a constant stride S over the input so that every Sth

position of the input will be convolved. It results in a reduction of the data size in the

next layer.

Compared to a Fully-connected Layer, the number of weights in a Convolutional Layer

is kept small and the computation in the layer is more efficient. Generally, the filter

size is kept much smaller than the input data, leading to the detection of small, low-

level features. Small filters require fewer parameters as well as fewer operations in the

convolution operation. In addition, the filter is applied to the different locations of the

input due to filter shifting. The intuition behind this is that the same features can appear

at different locations of the input and can be detected by the same neuron. For this reason,

feature detection with Convolutional Layers is invariant in translation.[48]

Pooling Layer

The Pooling Layer has a subsampling function in the spatial dimensions width and height

by applying a downsampling filter to the input. Common pooling filters are max- and
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average-pooling. At max-pooling, a filter of size [m×m] slides over the input and only

the maximum value remains in the output. Figure 2.5 provides an example: A [2× 2]-

filter is shifted over the 2-dimensional input with a stride of 2. The resulting output size

is a quarter of the input size. In average-pooling the average of each position [x, y] and

its neighbors is computed by the filter.

Figure 2.5.: A max-pooling filter of size [2 × 2] with a stride of 2 is applied to a 2-
dimensional input with the size [4× 4]. The maximum value remains in the
output and the output size is reduced by 4. [47]

Pooling reduces the data size, leading to an improvement of the network efficiency. It

is useful if the exact feature position is not relevant but rather whether a certain feature

exists in the input at all. [48]

2.2. Reinforcement Learning (RL)

In Reinforcement Learning, an agent is supposed to learn a specific behavior by trial-and-

error. The agent interacts with its environment to collect experiences. Figure 2.6 illus-

trates the basic concept behind Reinforcement Learning. At each time step t = 1, 2, 3, ...

the agent is in a certain state st ∈ S and takes one of the possible available actions

at ∈ A(s). The action changes the environment and the agent ends up in a new state

st+1. Furthermore, it receives a reward Rt+1 from the environment that serves as a feed-

back about how good it was to take action at in state st.
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Figure 2.6.: General idea of Reinforcement Learning: The agent interacts with the envi-
ronment to learn from experiences. At each time step t the agent is in a certain
state st ∈ S and takes action at ∈ A(s). As result, it switches to a new state
st+1 and receives a reward Rt+1. [58]

This chapter gives an introduction to the basic concepts of classical Reinforcement

Learning and serves as the foundation for the advanced Deep Reinforcement Learning

approaches, discussed in chapter 2.3. The whole chapter is based on the well-known

book Reinforcement Learning - An Introduction from Sutton and Barto [58].

2.2.1. Markov Decision Process

The Markov Assumption assumes an independence of past and future states, meaning

that the state and the behavior of the environment at time step t are not ninfluenced by

the past agent-environment interactions a1, ..., at−1. If the RL-task can fulfill the Markov
Assumption, it can be formulated as five-tuple Markov Decision Process (S ,A, Pa

s,s′ , Ra
s,s′ , γ).

• Set of states S

• Set of actions A. A(s) is the set of available actions in state s.

• Transition probabilities Pa
s,s′ : (S × A × S) → [0, 1]. It is the probability of the

transition from s to s′ when taking action a in state s at time step t.

• Reward probabilities Ra
s,s′ : (S × A × S) → IR. It defines the immediate reward

the agent receives after the transition from s to s′.

• Discount factor γ ∈ [0, 1] for computing the discounted expected return.

The Markov Decision Process (MDP) is finite if the set of states S and actions A is finite.

2.2.2. Discounted Expected Reward

To train an effective agent, its goal should be to maximize the reward in the long run

instead of just caring about the immediate return. Consider the environment of figure 2.7

with six different rooms. The agent starts in room one and the goal is to end up in room

five. The immediate reward is the negative distance of the agent to room five. If the agent

just cares about maximizing the immediate reward, it changes to room three because the

immediate reward is higher than in room one or two. Unfortunately, it is not able to reach
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room five from there and it remains in room three. It will never reach the final goal. On

the contrary, if the agent’s effort is to maximize the expected return, it accepts to receive

a lower immediate reward in room two, followed by higher immediate rewards in room

four, six and five. The sum of immediate rewards is maximized.

Figure 2.7.: Immediate reward vs. expected return. Suppose the agents start in room
one, its goal is to end up in room five and its reward is the negative distance
between the agent and room five. If the agent only cares about the immediate
reward, it would switch directly to room three and never reach room five. If
the goal of the agent is to maximize the expected return, it will first accept a
lower immediate reward in room two, followed by higher rewards in room
four, six and five.

The discounted expected return is the cumulative sum of possible future rewards and can

be found in equation 2.16. The discount factor γ ∈ [0, 1] rates the future rewards and

defines how far in the future rewards are considered. If γ = 1 all rewards of the future

are considered with the same weight. If γ = 0 just the immediate reward is taken into

account.

Gt = Rt+1 + γRt+2 + γ2Rt+2 + ... =
∞

∑
k=0

γkRt+k+1 (2.16)

It can be differentiated between episodic and continuous tasks.

• Episodic: The training procedure can be divided into episodes. When the agent

reaches a terminal state, the episode is over, the scene will be reset and the agent

will restart in the next episode. The terminal state has an immediate reward of 0

and can be reached in T finite time steps.

• Continuous: The problem cannot be formulated in episodes and is a continuous

ongoing problem so that T = ∞.

2.2.3. Policy and Value Functions

A policy π tells the agent how to behave. It models a probability distribution π(a|s) over

the number of available actions a ∈ A(s) for each state s, i.e. π(At|St) is the probability
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of taking action At in state St. The agent samples its next action from that probability

distribution π(a|s).
The value function vπ(s) is an estimate of how good it is for the agent to be in state s.

vπ(s) is the expected discounted return of state s, if the agent behaves according to policy

π (see equation 2.17).

vπ(s) = Eπ[Gt|St = s] = Eπ[
∞

∑
k=0

γkRt+k+1|St = s], for all s ∈ S (2.17)

Above all, equation 2.17 can be formulated recursively. The recursive form is called Bell-

man Equation for vπ and is shown in equation 2.18. In the Bellman equation, the value

of state s is only dependent on the next possible states s′ while each state is weighted by

the transition probability Pa
s,s′ . Many Reinforcement Learning solutions approximate the

optimal Bellman equation by approximating the value of the next states.

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

= ∑
a

π(a|s)∑
s′

Pa
s,s′ [R

a
s,s′ + γEπ[Gt+1|St+1 = s′]]

= ∑
a

π(a|s)∑
s′

Pa
s,s′ [R

a
s,s′ + γvπ(s′)] (2.18)

The action-value function qπ(s, a) is an estimate of how good it is to take action a in

state s. qπ(s, a) is the expected return of taking action a in state s and thereafter behaving

according to policy π.

qπ(s, a) = Eπ[Gt|St = s, At = a]

= Eπ[
∞

∑
k=0

γkRt+k+1|St = s, At = a] (2.19)

for all s ∈ S and a ∈ A

Reinforcement Learning aims to find an optimal policy π∗. A policy is better than

another policy π ≥ π′ if the value function of the new policy is better vπ(s) ≥ vπ′(s)
for all s ∈ S . If the state-value function is optimal, an optimal policy was used by the

agent. It is possible that there are multiple optimal policies, that lead to the same optimal

state-value function. The optimal state-value function v∗ can be defined as followed:

v∗(s) = max
π

vπ(s) for all s ∈ S (2.20)
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Furthermore, optimal policies result in the optimal action-value function q∗.

q∗(s, a) = max
π

qπ(s, a) for all s ∈ S and a ∈ A(s) (2.21)

= E[Rt+1 + γv∗(s′)|St = s, At = a] (2.22)

Finally, the Bellman optimality equation in equation 2.23 can be derived from the previously

introduced equations.

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

E[Rt+1 + γv∗(s′)|St = s, At = a]

= max
a ∑

s′
Pa

s,s′ [R
a
s,s′ + γv∗(s′)]

= max
a ∑

s′
Pa

s,s′ [R
a
s,s′ + γmax

a′
qπ∗(s

′, a′)] (2.23)

2.2.4. Monte Carlo Method

The Monte Carlo method is an approach that aims to solve reinforcement problems with

episodic tasks, where no model of the environment exists. It is an iterative approach and

converges with the increasing number of episodes towards the optimal policy.

There is a Q-table that holds the action-value for each possible state-action pair. The

value is the average over all returns, that has been collected in all episodes. An entry of

the table is updated each time a state-action pair is met by the agent. The update equation

is shown in equation 2.24, where N(St, At) is the number of visits of the state-action pair

(St, At).

Q(St, At) = Q(St, At) +
1

N(St, At)
(Gt −Q(St, At)) (2.24)

The different returns can be weighted by α. Instead of taking the true average, recent

returns can be weighted more or less strongly (see equation 2.25).

Q(St, At) = Q(St, At) + α(Gt −Q(St, At))

= (1− α)Q(St, At) + αGt (2.25)

The Monte Carlo method iterates over episodes. During the Evaluation step, the agent acts

according to policy π for one episode. When the episode is finished, the agent collected

a sequence of experiences S1, A1, R2, S2, ..., ST and can update the Q-table according to it.

For each state-action pair (St, At) in the sequence, the expected return Gt is retrieved and

the corresponding entry in the Q-table is updated according to equation 2.25. During

the Improvement step, the policy π will be updated according to the recent Q-table. In the

next iteration, the Evaluation step is performed with the new, updated policy. Figure 2.8
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illustrates the concept of the Monte Carlo method.

Figure 2.8.: Concept of the Monte Carlo method. Evaluation: The agent experiences one
episode and updates all visited state-action pairs (St, At) in the Q-table with
the expected return Gt according to equation 2.25. Improvement: The policy
π is updated according to the new Q-table. [58]

The most conservative policy update is the so called greedy policy. The agent always

chooses the action with the maximum action-value. Greedy actions exploit the current

knowledge; the agent can get stuck and end up in a non-optimal policy. To avoid that

situation, explorative actions should be taken from time to time. A policy is called ε-
greedy policy, if the greedy action is taken with a probability of (1 − ε) and a random

action is taken with a probability of ε to explore the action space. The equation of the

ε-greedy policy is shown in equation 2.26.

π(a|s)←


1− ε + ε

|A(s)| if a = argmax
a∈A(s)

Q(s, a)

ε
|A(s)| otherwise

(2.26)

ε is a value between 0 and 1 and weighs the relation between exploitation and explo-

ration. It stands to reason to explore the action space stronger in the beginning because

the agent does not have reliable knowledge yet. The more experiences the agent gains,

the more learned knowledge should be exploit. An ε that decreases over time to a mini-

mum value of εmin models that behavior.

2.2.5. Temporal Difference Methods

The advantage of Temporal Difference (TD) methods is that they are applicable to online

learning and continuous RL-tasks. The policy is updated in each time step t so that there

is no need of completed episodes. Moreover, no model of the environment is required.

Experiments showed that TD methods tend to converge more quickly than the Monte

Carlo method.

In TD-methods, the true expected return Gt is not available and is approximated with

the TD-target. The TD-target can also be seen as an approximation of the Bellman equa-

tion 2.23. The TD-target is determined by taking the sum of the immediate return and

the discounted expected value of the next state: Rt+1 + γV(St+1). The pseudo-code of
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Data: policy π, α ∈ (0, 1]
Initialize V(s), for all s ∈ S arbitrarily, except V(terminal) = 0;
for each episode do

Initialize St do
At ← action given by π for St;
Take action At, observe Rt+1 and St+1;
V(St)← V(St) + α [Rt+1 + γV(St+1)︸ ︷︷ ︸

TD-target

−V(St)]

︸ ︷︷ ︸
TD-error

;

St ← St+1
while S is not terminal;

end
Algorithm 1: General algorithm of TD methods: The expected return Gt is approxi-
mated with the sum of the immediate return and the discounted expected value of the
next state (TD-target): Rt+1 + γV(St+1). [58]

the general concept of TD-methods can be found in algorithm 1. In each iteration of each

episode, an action At is retrieved from policy π for a given State St. The action At is exe-

cuted and the agent is rewarded with Rt+1 and transitioned to the next state St+1. Finally,

the value-table V is updated with the TD-error, which is the difference of the TD-target

and V(St).

Sarsa

Sarsa is an on-policy TD control method and stands for St, At, Rt+1, St+1, At+1. Those pa-

rameters are needed in each iteration to update the action-value Q(s, a) of the state-action

(St, At) in the Q-table. The agent takes action a in state s and receives the immediate re-

ward Rt+1. Afterwards policy π is used to determine action At+1, that will be taken in the

next state. The sum of the immediate return Rt+1 and the Q-value of the next state-action

pair St+1, At+1 represents the TD-target and approximates the true expected return Gt.

The action-value update rule is shown in equation 2.27.

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)] (2.27)

Q-Learning

Q-Learning is a popular off-policy TD control method, i.e. the policy π is not used for

updating the Q-table. The main difference to Sarsa is, that instead of using the action-

value of the next state-action pair Q(St+1, At+1), only the maximum Q-value of the next

state St+1 is taken. The action-value update rule of Q-learning is shown in equation 2.28.

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)−Q(St, At)] (2.28)
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2.3. Deep Reinforcement Learning (DRL)

In the classical Reinforcement Learning, discussed in chapter 2.2, all approaches have a

tabular setting, leading to essential disadvantages. On the one hand, the usage of a table

limits the classical approaches to tasks with a low number of states and actions. In real

world problems, the state space can quickly get large. It is not feasible to visit all possible

states to retrieve the value for all action-state pairs. Furthermore, the size of the table is

limited due to memory constraints in hardware. On the other hand, knowledge about

similar states is not shared. This could lead to better representation and lower training

times.

To overcome the mentioned restrictions, a common approach is to replace the value ta-

ble with a Deep Neural Network as function approximator. Their ability to approximate

non-linear functions and to extract relevant features from raw inputs makes it possible to

generalize over unseen states.

2.3.1. Value-Based Methods

Value-Based Methods build on Temporal Difference Methods from classical Reinforce-

ment Learning discussed in chapter 2.2.5. The idea is to replace the value table one-to-

one and to approximate it with a Deep Neural Network. The network’s output provides

probabilities for each possible action. A traditional policy lays on top of the network

output to choose the final action (e.g., ε-greedy policy).

Deep Q-Network (DQN)

Combining Q-Learning with non-linear function approximation has been investigated

in the past decades and did not lead to great success because of unstable learning. In

2015, the DeepMind group [3] presented an approach – called deep Q-Network (DQN) –

that showed a great success. They combined the model-free, off-policy Q-Learning with

Deep Neural Networks. As input data, high-dimensional raw sensory input with no pre-

viously hand-crafted features are used. This end-to-end architecture allows the network

to extract relevant features by itself. The output of the Q-network provides a probabil-

ity distribution over all possible discrete actions. This allows one to determine the best

action for a given state with a single forward pass. Particularly, the problem of unstable

learning has been improved with two additional mechanisms, called experienced replay
and frozen target network, that will be further explained in the following.

The idea of experienced replay is to store the agent’s experiences St, At, Rt+1, St+1 in a buffer

that can hold nbu f experiences in total. In each training step, a batch of experiences is uni-

formly sampled from the buffer and fed to the network. Experienced replay removes the

correlations in the data sequences and feeds the network with independent data. It also
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ensures that old experiences are repeated from time to time. It has a smoothing effect

over changes in the data distribution.

In DQN the network is updated according to the loss function from equation 2.29. The

loss function is computed by taking the squared TD-error.

Li(θi) = Êt[(Rt+1 + γmax
a

Q(St+1, a, θ−i )−Q(St, At, θi))
2] (2.29)

In equation 2.29, the second mechanism frozen target network is introduced as well. Two

networks with the same structure, but different weights are used: θ for the Q-network

and θ− for the target network. The Q-network is regularly updated according to the loss

function from equation 2.29, while the target network is updated by copying the parame-

ters of the Q-network to the target network θ− = θ every C time steps. Thus, the weights

of the target network θ− are held frozen for C time steps. It smooths oscillating policies

and leads to more stabilized learning.

Improvements of DQN

After the publication of the successful DQN approach, it has been investigated widely

and several publications with improvements followed. Rainbow [11] compares all rel-

evant improvements with the original DQN approach and even applies a combination

of all improvements called Rainbow DQN. In the following paragraphs, three major im-

provements are shortly and intuitively introduced.

Double DQN. Double DQN [7] tries to handle the overestimation of Q-values. Especially

in early stages of the learning process, it is likely that wrong actions have the highest Q-

value. Using two different Q-networks θ and θ− for estimating the TD-target results in

more robust learning. As DQN already holds two different networks, Double DQN can

easily make usage of them by modifying the loss function from equation 2.29 to equation

2.30.

Li(θi) = Êt[(Rt+1 + γQ(St+1, argmax
a

Q(St+1, a, θi), θ−i )−Q(St, At, θi))
2] (2.30)

Prioritized Experienced Replay. The idea of Prioritized Experienced Replay [8] is to

prioritize experiences, that contain more important information than others. Each expe-

rience is stored with an additional priority value, so that experiences with higher priority

have a higher sampling probability and have the chance to remain longer in the buffer

than others. As importance measure, the TD-error can be used. It is expected that if the
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TD-error is high, the agent can learn more from the corresponding experience, because

the agent behaved better or worse than expected. Prioritized Experienced Replay was

able to speed up the learning process by a factor of two.

Dueling DQN. Dueling DQN [6] proposes a new network architecture shown in figure

2.9. They decouple the Q-value estimation in two streams: One stream estimates how

good it is to be in state V(s) and the other stream estimates the advantage of taking ac-

tion an in that state Adv(s, a). Both streams build on the same convolutional basis and are

finally fused together to represent the final Q-value. The outcome of that architecture is

that the state value can be learned separately, without getting confused by the influence

of the action advantage. This leads especially to the identification of state information

where actions have no effect on.

Figure 2.9.: Original DQN network architecture (top) vs. dueling network architecture
(bottom). On top of the Convolutional Layers two streams are added, that
estimate the state value V(s) and the action advantage Adv(s, a) separately.
The final output is the aggregation of both streams and represents the Q-
value. [6]

2.3.2. Policy Gradient Methods

Policy Gradient Methods optimize the policy π(a|s, θ) directly instead of learning a value

function and choosing the actions based on it (e.g ε-greedy policy). The quality of each

policy can be measured by the policy’s performance measure J(θ). The objective function

of Policy Gradient Methods in equation 2.31 maximizes the scalar value J(θ).

θ∗ = argmax
θ

J(θ) (2.31)

The policy’s parameter θ are updated via gradient ascent. Gradient ascent is the inverse

of gradient descent and updates the parameters θt in the positive direction of the gra-

dient of the policy’s performance measure ∇θ J(θ) (see equation 2.32). Furthermore, the

learning rate α defines, how strongly one steps in the gradients direction.

θt+1 = θt + α∇θ J(θt) (2.32)
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One advantage of Policy Gradient Methods is their stable convergence property because

the policy is updated directly and thus improves smoothly at each time step. Value-

based methods update the value function at each time step. A small change in the value

function can lead to a drastic change in the policy output. Hence, value-based methods

often deal with big oscillations during training. Especially, Policy Gradient Methods can

deal with infinite and continuous action spaces. Instead of determining a Q-value for

each possible discrete action, the action can be estimated directly, e.g. the speed of the

mobile robot is estimated directly by the agent. The third advantage of Policy Gradient

Methods is their ability to learn stochastic policies, i.e., actions are chosen with a certain

probability. It is especially necessary for uncertain, partially observable environments.

The big disadvantage of Policy Gradient Methods is that they rather converge to a local

maximum than to the global optimum. [58]

Actor-Critic Architecture

A Policy Gradient Method that makes use of the value function v(s) to learn the policy

parameters θ is called Actor-Critic Architecture. Figure 2.10 illustrates the basic idea of

the architecture: The Actor represents the current policy and generates an action a for

a given input state s. The Critic represents the value function v(s) and computes the

expected value for a given input state. A common practice is to update both networks

with the TD-Error, discussed in chapter 2.2.5. The expected values of the current and the

next state that contribute to the TD-Error are estimated with the Critic. Thus the Critic’s

output contributes to the Actor’s update essentially.

Figure 2.10.: Actor-Critic Architecture: The Actor represents the policy and maps the in-
put state to an output action. The Critic represents the value function. Both
networks can be updated with, e.g. the TD-error, in which the Critics out-
put contributes. Thus the Actor makes use of the Critic during the learning
process. [58]
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REINFORCE algorithm

The REINFORCE algorithm is one of the first and simplest Policy Gradient Method in-

troduced by [12] in 1992. In the following, a variant of the original algorithm will be

presented to demonstrate the key procedure of a Policy Gradient Method.

A trajectory τ is defined as a state-action sequence with the length T:

S0, A0, S1, A1, ...ST, AT, ST+1. The difference between a trajectory and an episode is that

the last state of a trajectory does not need to be final. The policy performance measure

J(θ) in equation 2.33 is defined by the expected return of all trajectories τ. The contribu-

tion of each trajectory τ to the expected return is the product of the cumulative reward

R(τ) and the probability of its occurrence πθ(τ) under policy πθ .

J(θ) = E[∑
τ

R(τ)πθ(τ)] (2.33)

The derivative of J(θ) can be determined by applying the Policy Gradient Theorem

that has been derived in [58]. This results in equation 2.34 .

∇J(θ) = E[∑
τ

R(τ)∇θ log πθ(τ)] (2.34)

The REINFORCE algorithm approximates ∇J(θ) with equation 2.35. Only one trajec-

tory τ(i) is used per iteration i to approximate the gradient of the objective function. In-

stead of using the raw cumulative, discounted reward R(τ), the advantage Advπθ (St, At)

is used. It compares the true, cumulative, discounted reward ∑T−t
k=0 γkRt+k to the expected

return Vπ(St), that is estimated by a Critic network. If the true return is higher than the

expected return, the advantage is positive, and the Actor will be updated in such a man-

ner, that it is more likely to choose action At in state St. If the true return is smaller than

the expected reward, the probability of taking action At in state St will be decreased.

∇θ J(θ) ≈ ĝ =
T

∑
t=0

Advπθ (St, At)∇θ log πθ(At|St) (2.35)

with Advπθ (St, At) =
T−t

∑
k=0

γkRt+k −Vπ(St) (2.36)

Finally, the approximated gradient ĝ is used to apply gradient ascent to update the

policy parameters θ.

θ ← θ + αĝ (2.37)

The REINFORCE algorithm is summarized with pseudo code in algorithm 2.
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for n_iter do
1. Collect trajectory S0, A0, S1, A1, ...ST, AT, ST+1 with length T.
2. Compute the approximated gradient ĝ:
∇θ J(θ) ≈ ĝ = ∑T

t=0 Advπθ (St, At)∇θ log πθ(At|St)
wit Advπθ (St, At) = ∑T−t

k=0 γkRt+k −Vπ(St)
3. Update the policy’s weights with gradient ascent.

θ ← θ + αĝ
end

Algorithm 2: Pseudo Code for REINFORCE algorithm

Proximal Policy Optimization (PPO)

PPO [15] is a popular state-of-the-art Policy Gradient Method. It is supposed to learn

relatively quickly and stable while being much simpler to tune, compared to other state-

of-the-art approaches like TRPO [13], DDPG [16] or A3C [59] . This makes PPO often the

first choice when it comes to solving a problem for the first time.

PPO strongly builds on Trust Region Policy Optimization (TRPO) [13]. It applies the

key concepts of TRPO like Importance Sampling, that provides better data efficiency as

well as an extended version of TRPO’s KL penalty, that controls the update size in the

optimization step. Moreover, PPO presents an alternative, simpler method called Clipped
Surrogate Objective for controlling the optimization step size.

Importance Sampling. In the REINFORCE algorithm, at each time step a new trajec-

tory is generated, the policy learns from it and the trajectory is thrown away. To achieve

better data efficiency, importance sampling is applied in PPO. Trajectories that has been

collected with older policies are reused in newer updated policies. Importance Sampling

estimates the expected value of f(x) for distribution p (new policy) by sampling from q

(old policy), i.e. Xi has been sampled from the data distribution q (see equation 2.38).

Ep[ f (x)] ≈ 1
n

n

∑
i=1

f (Xi)p(Xi)

q(Xi)
, Xi ∼ q (2.38)

Applying Importance Sampling leads to a new objective function in equation 2.39 – called

surrogate function L(θ).

L(θ) = Êt[
πθ(St, At)

πθold(St, At)
Advπθ (St, At)] (2.39)

Adaptive KL Penalty. To ensure stable updates, the step size in the optimization step

can be controlled with Trust Region from [13]. It prevents the optimization from taking
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too big steps and from overshooting the maximum. In each step, the difference between

the updated πθ and the old policy πθold is measured through the KL Divergence in equa-

tion 2.40.

DKL(πθ ||πθold)[s] = ∑
a∈A

πθ(a|s) log
πθ(a|s)

πθold(a|s) (2.40)

In equation 2.41, the KL Divergence is added to the surrogate function L(θ) as penalty,

multiplied by a factor β. If the difference between the old and new policy is big, the

objective function is punished strongly.

LKLPEN(θ) = Êt[
πθ(St, At)

πθold(St, At)
Advπθold (St, At)]− βDKL(πθ ||πθold)[St] (2.41)

Difficulties have been experienced with finding a good constant β, that performs well

over the whole training process. That is why an adaptive β is applied in PPO according

to equation 2.42. If the KL divergence d is very small, β gets smaller as well and if it is

high, β gets bigger. Still the initial β and the target distance dtarg have to be set.

β←

β/2 if d < dtarg/1.5

β · 2 if d > 1.5dtarg

(2.42)

Clipped Surrogate Objective. PPO presents a second method to control stable updates

by restricting the update size from one policy to another. Instead of adaptive KL penalty, it

applies a much simpler and more effective way to realize the restriction by introducing

the clipped surrogate function. It clips the probability ratio rt(θ) = πθ(St,At)
πθold

(St,At)
between the

range of [1− ε, 1 + ε] (see equation 2.43).

Lclip(θ) = Êt[min(rt(θ)Advπθold (St, At) , clip(rt(θ), 1− ε, 1 + ε)Advπθold (St, At))] (2.43)

Deep Deterministic Policy Gradient (DDPG)

Deep Deterministic Policy Gradient (DDPG) [16] is based on the Deterministic Policy

Gradient Algorithms from [60] and uses an Actor-Critic Architecture. Furthermore, it

adapts concepts from DQN [3] to stabilize learning, but addresses continuous action

space at the same time and is, therefore, more applicable for controlling tasks.

It makes use of an experienced replay buffer to provide independent and uncorrelated

data to the Deep Neural Networks. In addition, a variant of the frozen target network mech-

anism has been integrated, called soft target update. Instead of copying the weights to the

target, the target networks (both Actor and Critic) are updated continuously according to

equation 2.44 and slowly approach the original parameters. τs defines the tracking speed,



30 2. Fundamentals

i.e., the smaller τ, the slower the target weights approach the original weights.

θ− ← τsθ + (1− τs)θ
− (2.44)

DDPG is built on an Actor-Critic architecture with Deep Neural Networks. The Actor

µ(s|θµ), as well as the Critic Q(s, a|θQ), have both a duplicate target network with older

weights to stabilize learning. They are denoted with a hyphen: µ−(s|θµ) and Q−(s, a|θQ).

Both networks are trained by forwarding uniformally sampled experiences from the re-

play buffer (St, At, Rt+1, St+1). The Critic is updated by back-propagating the gradient of

the squared TD-error from Q-learning (see equation 2.45 and 2.46).

Li(θ
Q
i ) = Êt[(Rt+1 + γQ−(St+1, µ−(St+1|θ

µ
i
−)|θQ

i
−)−Q(St, At|θQ

i ))
2] (2.45)

θQ
i+1 = θQ

i + αc∇θQ Li(θ
Q
i ) (2.46)

The Actor is updated with the Deterministic Policy Gradient [60] by applying gradient

ascent to the output of the Critic with respect to the state s and the estimated action by

the actor µ(St|Θµ
i ) (see equation 2.47 and 2.48).

Li(θ
µ
i ) = Êt[Q(St, µ(St|θµ

i )|θ
Q
t )] (2.47)

θ
µ
i+1 = θ

µ
i + αa∇θQ Li(θ

µ
i ) (2.48)

In order to apply exploration to continuous action space, noise N is added to the ac-

tor’s output µ(s|Θµ). The noise is generated by the Ornstein-Uhlenbeck process [61].

µN (s) = µ(s|Θµ) +N (2.49)



31

3. Simulation Environment

This chapter introduces the used simulation environment, that fuses the two pre-existing

simulation environments Flatland [62] and Pedsim_ros [63]. The modeling of all static

and dynamic objects as well as the robot are presented in detail.

The training process has been restricted to a 2D world. Eventually, just 2D laser scan sen-

sors are considered. It is assumed that all relevant objects can be successfully detected in

the working plane of the laser scan sensors.

The main advantage of restricting the problem to two dimensions is that the simulated

world can approximate the real world better. Recent 3D simulators like Vrep [64] or

Gazebo [65] do not provide sufficiently accurate 3D worlds so that the resulting images

of camera sensors are too simplistic and not even close to real world images. Hence, a

transfer from simulation to real world is expected to be easier considering a 2D world

problem. Using 2D laser scanners as input source has two more relevant advantages:

The number of raw input points is smaller and the computational consumption of the

simulator is lower than in 3D simulators. Both advantages contribute to faster training.

As base 2D simulator, the Flatland simulator has been chosen. To create a dynamic en-

vironment of walking humans, the PedSim simulator has been integrated into Flatland.

All relevant elements of the final simulation will be explained in the following subsec-

tions.

3.1. Pedsim Crowd Simulator

PedSim 1 is a 2D-simulator that is specialized on pedestrian crowd simulation. The un-

derlying concept of the pedestrian movement patterns is the social force model from [66].

Different forces can influence the behavior of the pedestrians. The sum of all influencing

forces defines in which direction and with which acceleration the pedestrians move (see

equation 3.1).

Fsum = fdes + ∑
j

fij + ∑
W

fiW (3.1)

The social force model considers different summands that are further explained in the

following listing:

• Desired Force fdes: The desired force points in the direction of the current goal of

1accessed 2019-04-08: http://pedsim.silmaril.org/

http://pedsim.silmaril.org/
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the agent. Furthermore, the force is needed to reach the maximal velocity vi.

• Pedestrian Force fij: The force avoids collisions with other pedestrians. The force

is estimated from the minimal allowed distance to each pedestrian.

• Wall Force fiW : The force avoids collisions with obstacles like walls and is estimated

from the distance to each wall.

With the original social force model, an undesired behavior of pedestrians – frequently

walking into the robot footprint – is produced. To prevent this behavior, the exponential

repellent force coming from the walls is also implemented for the robot fr, named Robot
Force in the following. It is a circular repulsion arising from the robot center regardless

of the robot shape. The weight of the force needs to be adjusted in such a manner, that it

is guaranteed, that the pedestrians don’t walk through the footprint of the robot.

In the following paragraphs, example pedestrian-obstacle interactions are provided.

In PedSim, obstacles are defined with straight lines, i.e., round objects or splines can

only be approximated with a high number of small lines. Each line has a repellent in-

fluence on the agent. The strength of the Wall Force increases exponentially with the

decreasing distance between the wall and the agent. Figure 3.1a shows a 2D-agent ap-

proximated with two round red legs, that tries to reach the waypoint behind the obstacle

(red rectangle). It does not approach the wall closer than ∼ 0.3 m. The social force model

requires a careful definition of waypoints for the pedestrians. Especially in more com-

plex environments with many obstacles, it is very likely that pedestrians end up in a

local minimum. In figure 3.1a, it never reaches the waypoint behind the obstacles, be-

cause the repellent force coming from the obstacles and the attracting force coming from

the waypoint (star) point in the exact opposite directions and the pedestrian ends up in

a position, where the forces are evened out. To overcome this problem, a finer waypoint

definition, leading around the obstacle, would be necessary.

Figure 3.1b, 3.1c and 3.1d show different situations, where a pedestrian (two round

red circles) and the robot (gray rectangle) interact with the additional Robot Force. In

figure 3.1b the pedestrian walks between two waypoints forth and back while avoiding

the robot. The red dotted line shows the taken path. Thus it needs to be mentioned, that

the pedestrian does not behave as forward-looking as humans would do. In figure 3.1c,

the pedestrian again ends up in a local minimum, because the robot is positioned in such

a manner that the center of the robot, the pedestrian and the next waypoint are perfectly

aligned, resulting in having the Desired Force and the Robot Force point exactly in op-

posite directions. In Figure 3.1d, the robot is positioned on the waypoint. The pedestrian

walks around the robot and again ends up at a position where forces are evened out and

waits until the robot leaves that position.

For this thesis different pedestrian behaviors have been implemented, that are pre-

sented in the following:
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(a)
(b)

(c) (d)

Figure 3.1.: Example situations that illustrate the behavior between a pedestrian (two
red circles) and the robot (grey rectangle) in the PedSim-simulator. (a) The
pedestrian tries to reach the goal (star) behind the obstacle (black rectangle).
The Wall Force is strong enough to prevent that the agent walks against or
through the wall. (b) The pedestrian walks from waypoint 1 (yellow star) to
waypoint 2 (orange star) and back, while the robot stands in the direct way.
The red dotted line shows which path has been taken by the pedestrian in-
stead. (c) The pedestrian tries to reach the next waypoint. The robots center,
the agent and the waypoint are aligned. The agent is not able to walk around
the robot because the Robot Force and the Desired Force point in the exact
opposite direction. (d) The robot is positioned on a waypoint. The pedestrian
tries to reach the waypoint by walking around the robot and ends up waiting
at one position.
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• Polite Pedestrian. The Robot Force is applied, resulting in a reliable avoidance of

the robot.

• Impolite Pedestrian. No Robot Force is applied. The pedestrian walks into the

robot if it does not make room.

• Semi-polite Pedestrian. The Robot Force is only applied if the velocity of the robot

falls below a certain threshold vreaction,max for at least treaction seconds. This behav-

ior simulates a pedestrian that in general expects the robot to make room, but in

case the robot moves relatively slow, the pedestrian avoids the robot after a certain

reaction time.

The EU-funded SPENCER project integrated the original Pedsim library in ROS, called

Pedsim_ros [63]. The position and velocity of the robot is frequently updated according

to the published transform from the odometry frame to the robot_base frame. The state of

all pedestrians like position, velocity and operating forces are made available in ROS by

publishing them on a ROS-topic. Additionally, they extended the basic social force model

with group walking behavior by simulating several agents walking together. Each agent

has the desire to not be too far from its social group. If an agent gets lost, it aims to get

back to its group.

3.2. Flatland Simulator

Flatland is a 2,5D simulator, integrated into the ROS framework [44]. It is mainly built

on the Box2D physics engine 2, that was originally developed for game development.

The Box2D library is wrapped in Flatland, so that the basic ROS concepts like parameter

loading through yaml-files, dynamic loading of customized plugins with pluginlib and

publishing transforms on the tf topic can be applied. The simulator provides visualiza-

tion by publishing markers of all defined objects and displaying them in Rviz.

Flatland has been chosen over the widely used, in ROS integrated, player/stage 2D-

simulator [67] and the stdr_simulator [68], because it provides clean code with structured

documentation. It already offers relevant plugins like the laser-plugin and the diff_drive-

plugin. It is also possible to implement new, customized plugins and easily integrate

them in the Flatland simulator via ROS pluginlib. Another big advantage is the config-

urable simulation speed: real time factor = step size · update_rate. This allows one to

run the simulation faster than in real time and speeds up the training time.

3.2.1. Static Environment

The static environment can be created by loading a defined map via a yaml-file, contain-

ing all relevant information of the map like the floor plan, resolution and origin. This

2accessed 2019-02-18: https://box2d.org/about/

https://box2d.org/about/
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(a) (b) (c) (d)

Figure 3.2.: Static obstacles, that are spawned and removed dynamically in the world. (a)
represents a cylinder, (b) represents the MiR500 robot, (c) represents a wagon
or a small table with four legs and (d) represents an EPAL-palett.

makes it possible to load real 2D maps of high complexity. Besides, additional static

objects, composed of primitives, can be loaded and removed dynamically. Only four

different kinds of common objects are considered, displayed in figure 3.2. Object 3.2b

represents a non-moving MiR500 robot 3, while 3.2d represent an EPAL-palett. They

have different dimensions. Object 3.2c is supposed to be a representative for a 4-legged

wagon or a table.

3.2.2. Pedestrian

To get the pedestrians from PedSim into Flatland, a pedestrian-plugin has been imple-

mented, that synchronizes the pedestrian state of the PedSim-simulator with the Flatland

simulator. Each pedestrian gets attached a pedestrian-plugin. The plugin models each

pedestrian as a body, consisting of two circles of a variable radius and offset, modeling

the legs of the person (see figure 3.1 for examples). Moreover, it takes into account the

speed and position of the appropriate pedestrian and applies the same velocities and

pose transformations to the body in Flatland.

The pedestrians in Flatland have been further extended with a simple walking pattern.

One leg at a time swings according to a triangular velocity function. The leg accelerates to

a maximum velocity, that is four times faster than the global body velocity vi,leg,max = 4vi,

followed by a constant deceleration to 0 m/s. During that period of time, the other leg

remains in the same position. Figure 3.3 illustrates the explained walking model pattern.

3.2.3. Mobile Robot

The model of the robot consists of a single polygon body, that represents the footprint of

the real robot. It does not contain any physics like joints, motors, and friction properties,

because they are not assumed to be relevant for the defined task. Particularly, modeling

physics consumes a relevant portion of computation power.

The front and back laser scan sensors of the mobile robot are simulated with the pre-

existing laser-plugin in Flatland. They are attached to the polygon body and consider the

whole environment (static environment, pedestrians, other robots) in their data output.

3accessed 2019-04-10: https://www.mobile-industrial-robots.com/de/products/mir500/

https://www.mobile-industrial-robots.com/de/products/mir500/
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Figure 3.3.: Different phases of a simple leg movement model. One leg swings at a time
and follows a triangular velocity function, while the other leg remains on the
same position. [69]

The noise of the sensor data is modeled with Gaussian noise. Furthermore, two artificial

laser scans "ped_laser" and "static_laser" are added to the center of the robot. They either

represent static objects or pedestrians in their data. This makes it possible to distinguish

between both obstacle types and can be useful in the reward function.

Moreover, a modified diff_drive-plugin has been attached to the robot. It models the re-

sponse of the MiR100 robot to external velocity commands. Flatland’s original diff_drive-

plugin has been extended with the relevant dynamic behavior of the real mobile robot. A

discrete transfer function is applied to the input velocity commands and shows effects on

velocity changes, i.e., acceleration or deceleration. To obtain the transfer function, Matias

Vinsten (working at Mobile Industrial Robots ApS) performed experiments on the real

robot: He applied a step function to the robot, measured the output via the encoders and

retrieved the transfer function from the delay, settle time and system gain. The extended

diff_drive-plugin models a time delay and a slight overshoot during acceleration.
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4. Methods and Setup

The chapter presents the used methods and the concrete training setup. Section 4.2 covers

in detail how the tasks for each episode are generated, while a static and a dynamic

task setup is considered. Moreover, four different global maps of different complexities

are introduced. Section 4.3 presents the RL-agent specific setup that includes different

observation spaces, action spaces, reward functions and Neural Network Architectures.

Furthermore, the used library stable-baselines [2] is shortly introduced.

4.1. Navigation Stack Setup

The RL-agent will be plugged in the traditional navigation software, introduced in chap-

ter 1.3.2. In other words, the SBPL lattice planner still provides the global plan, serving

as a guideline for the RL-agent, that replaces the traditional local planner. The RL-agent

is supposed to provide velocity commands with a frequency of 10 Hz. Note that the

AMCL localization has been disabled and perfect localization is provided to isolate the

performance of the global planner from other possible error sources.

4.2. Task Setup

The task of the agent is to navigate successfully from a start to a goal position along a

given global plan. Furthermore, the agent is supposed to react on local objects, that have

not been considered by the global plan. As input the agent gets a representation of its

environment and interacts with the environment by controlling the robots translational

and rotational velocity (v, ω). It will be differentiated between three kinds of objects:

global static objects (black), local static objects (green) and pedestrians (red). Global static

objects are fixed objects that are listed in the global map and therefore, are considered by

the global plan and should not challenge the agent if it follows the global plan correctly.

Local static objects are non-moving objects that are not present in the global map. They

are detected by the laser scan sensors of the robot. Pedestrians are likewise detected

by the laser scan sensors and are the most challenging objects because they move and

require a forward-looking behavior of the agent. It is desired, that the agent takes into

consideration the walking speed and direction.

In this thesis, two different task setups are considered: a static setup and a dynamic

setup. Both setups are based on a global map as world (see figure 4.2) providing global
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static objects. For each episode a new random start and goal position is generated on free

space in the global map, resulting in a global plan computed by the global sbpl-planner.

Obstacles are spawned randomly on or near the path and the RL-agent is supposed to

avoid them during the navigation along the path. An episode is successfully fulfilled if

the robot reaches the final goal within 0.4 m. It is not expected to reach the goal exactly,

because it would increase the complexity of the learning problem and the traditional

navigation software already provides a well-functioning mode for approaching the goal

precisely. Furthermore, an episode will be stopped, if the RL-agent drives into an obsta-

cle, deviates from the path further than 4 m or exceeds the maximum time of 65 seconds

during task completion.

Static Setup

For each episode static objects are spawned along the current path. The spawning process

is randomized as follows.

• The number of static objects is determined randomly, but restricted by a maximum

quantity, that is dependent on the path length.

• The object type is selected randomly from all static objects in figure 3.2.

• The position of each static object pso,i is generated by selecting a random position

pgp,i on the global path in the first place and secondly choosing a random position

pso,i in a radius of 1 m around pgp,i.

Figure 4.1a shows example episodes of the static task setup with the global plan (blue),

global static objects (black) and local static objects (green). There are episodes with single

isolated static objects, but also episodes with object compositions, that lead to new object

shapes. Episodes with local static objects positioned close to global static objects provide

narrow sections. The agent should learn which of those are passable and if they are

not, to avoid the obstacle from the other side. Unfortunately, unsolvable episodes can be

generated like in the second top row. It happens rather rarely because the agent is trained

in open spaces.

Dynamic Setup

For each episode, pedestrians, that either cross the path, walk along the path or stand

around close to the path, are spawned. The spawning process is randomized, described

in more detail in the following:

• The number of pedestrians is determined randomly, but restricted by a maximum

quantity, that is dependent on the path length.

• ∼ 10 % of the total number of pedestrians are standing around. The position pp,i

is generated by selecting a random position pgp,i on the global path and finally

choosing a random position pp,i in a radius of 2 m around pgp,i



4.2. Task Setup 39

• ∼ 52 % of the total number of pedestrians are walking along the path. The pedes-

trian walks back and forth between two waypoints close to the path. The waypoints

have a minimum distance of 5 m and their positions are generated in the same man-

ner as explained in the previous bullet point.

• ∼ 38 % of the total number of pedestrians are crossing the path. The pedestrian

walks back and forth between two waypoints, that have a distance of ∼ 8 m and

are on different sides of the global path. If the static global objects do not allow a

distance of 8 m, the distance is decreased accordingly. Again, a random position

pgp,i on the global path is selected. The waypoints of the pedestrian pp,i are gener-

ated by randomly selecting two opposite position on the circle with a center at pgp,i

and a radius 4 m, that has an angle 45◦ < β1 < 135◦ and −145◦ < β2 < −45◦ to

pgp,i.

The number of spawned pedestrians is in general higher than the number of spawned

static objects, because it is not guaranteed, that the RL-agent encounters all pedestrians.

To break down the problem complexity, each pedestrian is modeled as a single circle

moving around with a random speed generated by a normal distribution. The mean of

the normal distribution is slightly lower than the maximum translational velocity vmax.

This allows the robot to overtake some people.

Figure 4.1b shows example episodes of the dynamic task setup with the global plan

(blue), global static objects (black) and pedestrians (red). The red circle represent the

pedestrians, the arrows show the walking direction and speed and the fine red lines rep-

resent their walking history.

Global World Setup

During this thesis, four different maps of different complexity shown in figure 4.2 are

considered. The map 4.2a is empty and provides enough room to the left as well the

right during obstacle avoidance. Map 4.2b and 4.2c have an average complexity. The

distribution of global static objects provides mostly enough room to at least one side.

Nevertheless, narrow situations, as well as unsolvable situations, can occur. Map 4.2d is

the most complex map because the map is in general smaller and provides more narrow

passages as well as one-way corridors.

Map 4.2b is used during training and provides an adequate complexity, while the num-

ber of unsolvable generated tasks is kept low. There is no need for map variation during

training. The RL-agent does not overfit to the provided map, because the additional

spawned objects provide enough variation. Map 4.2a, 4.2c and 4.2d are used during test-

ing. Each agent will be evaluated in environments of increasing complexity.
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(a) Static Setup (b) Dynamic Setup

Figure 4.1.: The agent is trained on two different task setups: static setup and dynamic
setup. (a) The static setup includes the global plan (blue), global static objects
(black) and local static objects (green), that are randomly spawned on the
global path. (b) The dynamic setup includes the global plan (blue), global
static objects (black) and pedestrians (red), that are randomly spawned on
the global path. The pedestrians are either walking along the path, crossing
the path or standing around. A single circle represents the pedestrians while
the arrow shows the walking direction and speed and the fine line shows the
walking history.
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(a) (b)

(c) (d)

Figure 4.2.: Maps of different complexities. (a) An empty map that provides enough
room to both sides for obstacle avoidance. (b) and (c) A map with an average
complexity. The randomly generated tasks mostly provide enough room for
avoidance to one side, but also can generate narrow or unsolvable tasks. (d)
A map of a high complexity with many narrow situations as well as a higher
probability unsolvable task in case of random task generation.
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4.3. RL-Agent Setup

As Reinforcement Learning approach, Proximal Policy Optimization (PPO), described in

chapter 2.3.2, is used. The implementation from the open source project stable-baselines

[2] are applied. Stable-baselines provides a set of improved RL-algorithms like PPO,

DQN, TRPO, DDPG and more. Details about the general PPO training parameter settings

can be found in the appendix in table A.3 and B.4. The deep learning part is realized in

the Tensorflow framework [70] and allows to define custom policy-networks.

Some algorithms in the stable-baselines library even support multiprocess training, i.e.,

training an RL-agent on n environments using n processes. All n agents in the different

environments act according to the same policy π and collect episodes to update and

improve the network policy. Moreover, it is possible to plug in a custom simulation

environment that needs to implement the OpenAI-Gym interface gym.Env. To integrate

the simulation environment with the existing move_base implementation as well as the

stable-baselines library, a wrapper has been created, that on one side communicates with

a local planner of move_base fulfilling the interface of nav_core::BaseLocalPlanner, and on

the other side provides the gym.Env-interface for the stable-baselines library.

4.3.1. Observation Space

The RL-agent needs to get all relevant information about the current state of the environ-

ment to be able to fulfill the task successfully. The following listing provides the raw data

that has been identified as relevant.

• Waypoints. The global plan is downsampled to a number of waypoints with a

distance of dlookahead to each other. A vector of nwp sequential waypoints is needed,

while the first waypoint is the closest to the robot. Each waypoint position is given

in Euclidean space with the (x, y)-coordinate in the robot frame.

• Laser scan data. The laser scan data provides information about obstacles and free

space. The back- and front-laser scan data is merged together, resulting in a merged

data vector of length llaser_vec, that covers 360 ◦ and provides a distance value for

each angle increment. The vector is discretized to a resolution res.

• Robot velocity. The current linear and angular velocity (v, ω) of the center of the

robot are considered to be relevant only in the dynamic setup.

The previously listed relevant information can be fed to a Neural Network in various

different representations. In this thesis I investigate four different data representations,

that will be presented in the following paragraphs.

Raw Data Representation. The most obvious is to feed the raw data directly. Specifically

the laser scan vector of normalized distance values and the normalized (x, y)-positions
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of the nwp waypoints is fed directly. Note that the laser scan vector provides an indirect

form of polar coordinates, while the waypoints are given in cartesian coordinates.

Polar Representation. It is assumed, that providing data in the same format should result

in better training performance. For that reason, the waypoints have been transformed

into a vector of the same length as the laser scan vector llaser_vec. For each waypoint, the

distance and the angle are computed with respect to the robot position. Each waypoint

distance is entered at the appropriate angle position in the vector, while all remaining

values are zero. E.g. if four waypoints are provided, the vector has maximal four non-

zero entries, while each entry represents the distance to a waypoint. If several waypoints

have the same angle, the shortest distance will be considered. Finally, the normalized

waypoint- as well as the normalized laser scan vector are fed to a Neural Network.

X-Image Representation. Convolutional Neural Networks have been particularly suc-

cessful with images in the past years. For that reason, the raw input data is transformed

into an image. The image has a size of [(width_ f ront+width_back)× height], a resolution

of res m/px and is generated from the laser scan vector and the waypoint positions. Fig-

ure 4.3a shows a sample scene with one global static object (black), two local static objects

(green), the global path and its next four waypoints (blue) as well as the robot (small grey

rectangle). Obviously, the scene is overlayed with the input image, that is again shown

solely in figure 4.3b. The input image represents the environment of the robot, while the

robot location is always at pixel [width_back, height/2] pointing to the front. A black line

is drawn from the robot location along the waypoint vector. Free space is marked with

grey pixels and occupied space as well as unknown space is marked with white pixels.

The white pixels are generated from the laser scan vector by drawing a line from each

scan point pointing in the appropriate direction using the Bresenham’s algorithm [71]. It

is also possible to feed a stack of X images to the Convolutional Neural Network, where

each image represents a different time stamp.

X-Image Speed Representation. This representation builds on the X-Image Represen-

tation, but further considers the robot velocity (v, ω). The data has again two different

formats: The waypoint- and laser scan-data are provided in the form of an image, while

the robot velocity is provided in its raw format. This representation is only used in the

dynamic setup because the robot’s own velocity is crucial for estimating the movement

of dynamic objects.

4.3.2. Action Space

Continuous as well as discrete action space have been investigated. For the continuous

action space, limits for the translational velocity [0, vmax] and angular velocity [−ωmax, ωmax]

are defined. The discrete action space allows six discrete actions, that are combinations
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(a) (b)

Figure 4.3.: Generation of the input image from the laser scan and waypoint vector. (a)
An example scene is given with a global static object (black), two local static
objects (green), the global plan and its next four waypoints (blue) as well as
the robot (small grey rectangle). The scene is overlayed with the generated
input image. (b) The input image of the scene (a) is shown solely and with
the true orientation. It includes a black line from the robot location along the
waypoint vector as well as a white line from each scan pointing away from
the robot in the direction of the appropriate scan angle.

of translational and angular velocity:[0.0,−ωmax], [vmax, 0.0], [0.0, ωmax], [vmax, ωmax/2],

[vmax,−ωmax/2] and [0.0, 0.0].

4.3.3. Reward Functions

Reward function shaping is challenging and critical for successful learning. Many differ-

ent reward functions have been investigated during this thesis and the relevant ones will

be presented in the following. Rewards are computed each time step t after taking action

at.

Reward function 1

This reward function is especially successful for the static training setup and is shown

in equation 4.1. It considers three summands regarding the closest waypoint (wp), the

obstacles (o) and the final goal (g).

rt = rt(wp) + rt(o) + rt(g) (4.1)

The reward rt(g) contributes with a positive constant Rg, if the robot reaches the final

goal within a radius of Dg. d(pr, pg) is the distance function, that computes the distance
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between the robot position pr,t at time step t and the goal point pg.

rt(g) =

Rg if d(pr,t, pg) < Dg

0 otherwise
(4.2)

The reward rt(o) contributes with a negative constant Ro, if the robot collides with any

kind of obstacle ∈ O.

rt(o) =

−Ro if collision with an obstacle ∈ O

0 otherwise
(4.3)

The RL-agent at position pr,t is awarded for getting closer to the next waypoint pwp,t in

equation 4.7, but it is punished for driving away from the next waypoint pwp,t in equa-

tion 4.8. Both phenomena can be weighted differently. The diff()-function in equation 4.6

determines the difference between the distance from the RL-agent to the next waypoint

of the previous time step d(pr,t−1, pwp,t−1) and the distance from the RL-agent to the next

waypoint of the most recent time step d(pr,t, pwp,t). Additionally it gets a slightly higher

positive reward Rwp for reaching a waypoint within Dwp in equation 4.9. Rwp is only

given once for each waypoint, because after reaching it the next waypoint is automati-

cally triggered. Furthermore rt(wp) is disabled, if the robot is close to an obstacle ∈ O
within Do. It motivates the RL-agent to privilege obstacle avoidance over path following.

Equations 4.4 to 4.9 formalize the reward rt(wp) completely.

rt(wp) =


0 if min

oi∈O
(d(poi ,t, pr,t)) < Do

r′t(wp) otherwise
(4.4)

r′t(wp) = r1t(wp) + r2t(wp) + r3t(wp) (4.5)

diff(pr,t, pwp,t) = d(pr,t−1, pwp,t−1)− d(pr,t, pwp,t) (4.6)

r1t(wp) =

w1 · diff(pr,t, pwp,t) if diff(pr,t, pwp,t) > 0

0 otherwise
(4.7)

r2t(wp) =

w2 · diff(pr,t, pwp,t) if diff(pr,t, pwp,t) < 0

0 otherwise
(4.8)
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r3t(wp) =

Rwp if d(pr,t, pwp,t) < Dwp

0 otherwise
(4.9)

Reward function 2

The reward function in equation 4.10 is applied during dynamic training. It builds on

function 4.1, but distinguishes between the static and dynamic object types. It considers

rewards regarding the closest waypoint (wp), the obstacles (o), the final goal (g) and the

velocity of the robot (vel).

rt,2 = rt(wp) + rt,2(o) + rt(g) + rt(vel) (4.10)

The reward for approaching the closest waypoint (see equation 4.4 to 4.9) and for reach-

ing the goal (see equation 4.2) is estimated in the same way like in reward function

4.1. The summand rt,2(o) distinguishes between static objects (so) and pedestrians (ped).

This enables the agent to approach static objects closer while moving objects should be

avoided with a higher safety distance. If the RL-agent collides with a static object ∈ SO,

it results in a negative constant Rso (see equation 4.12). To train the RL-agent to avoid

pedestrians with more space, the RL-agent is already rewarded negatively, if it ends up

in the circular area of radius Dped around any pedestrian. Since the pedestrians are mov-

ing as well, it is not always possible for the RL-agent to keep the demanded distance to

all pedestrians in, e.g. in crowded or narrow situations. For that reason, the RL-agent

does not get punished negatively for being too close to a pedestrian if it has been driving

slowly (< |vreaction,max|) in beforehand for a duration of treaction. This motivates the RL-

agent to foresee critical situations and wait for the pedestrians to pass them. Equation

4.13 summarizes the rewarding of interactions with pedestrians ∈ PED.

rt,2(o) = min(rt(so), rt(ped)) (4.11)

rt(so) =

−Rso if collision with a static obstacle ∈ SO

0 otherwise
(4.12)

rt(ped) =


0

if min
pedi∈PED

(d(ppedi ,t, pr,t)) > Dped

or v ≤ vreaction,max for a duration of treaction

−Rped otherwise

(4.13)
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Equation 4.14 shows the estimation of rt(vel) in more detail. It punishes the RL-agent for

not moving forward, while standing completely still is punished differently with −Rvel1

than turning in place with −Rvel2.

rt(vel) =


−Rvel1 if vt = 0 and ωt = 0

−Rvel2 if vt = 0

0 otherwise

(4.14)

4.3.4. Neural Network Architectures

The design of Neural Networks varies in the number of layers, the different layer sizes,

different activation functions, different layer types, etc.. To reduce the search space, the

focus is not set on network shaping in this thesis; instead, network architectures, that

have already shown success in similar learning tasks, are applied. Three different net-

work architectures are used and are applied for both, the Actor as well as the Critic Net-

work. The networks are initialized with orthogonal matrix initialization [72].

1D Convolutional Neural Network

Table 4.1 shows a 1D-Convolutional-Network, that is used in combination with the Raw

Data as well as the Polar Representation and is inspired by the work of Long and Fan

[27]. They trained a multi-robot scenario, where each robot had to drive to a certain

goal and avoid static and dynamic obstacles on their way. They provide a similar task

scenario, except that the robot is not supposed to follow a given global path to the final

goal. The first hidden layer is a Convolution Layer with 32 filters, a filter size of [5× 1]

and a stride of 2. The filters only consider data in one dimension along the 1D-input

vector and are therefore shifted only along the vector. Those Convolutional Layers are

called 1D-Convolution. The second layer is a 1D-Convolution with 32 filters, a filter size

of 3 and a stride of 2. The third layer is a fully-connected layer with 256 neurons and

the fourth layer is a fully connected layer with 512 neurons. To all hidden layers, a ReLU

activation function is applied. The fourth hidden layer finally is mapped to the output

size, that varies according to the action space size: The output size of the continuous

action space is 2 and the output size of the discrete action space is 6. The input layer

depends on the used input data representation. In the case of the Polar Representation,

the vector of the size [2, llaservec] is simply fed to the first layer. In case of the Raw Data

Representation, the laser scan vector is processed by layer 1 of the network, while the nwp

closest waypoints are concatenated with the output of layer three and then forwarded to

layer four.
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Layer Type Activation Size Filter Size Filter Stride
1 Convolution ReLu 32 Filter [5× 1] [2× 0]
2 Convolution ReLu 32 Filter [3× 1] [2× 0]
3 Fully-Connected ReLu 256 Neurons - -
4 Fully-Connected ReLu 128 Neurons - -
5 Fully-Connected Linear Output Size - -

Table 4.1.: Raw data network.

Layer Type Activation Size Filter Size Filter Stride
1 Convolution ReLu 32 Filter [8× 8] [4× 4]
2 Convolution ReLu 64 Filter [4× 4] [2× 2]
3 Convolution ReLu 64 Filter [3× 3] [1× 1]
4 Fully-Connected ReLu 512 Neurons - -
5 Fully-Connected Linear Output Size - -

Table 4.2.: 4-layered image network for the static setup.

2D Convolutional 4-layered Neural Network

Table 4.2 provides the network architecture for images as input and is the default 2D-

Convolutional Network of stable-baselines [2] and inspired by DQN [3]. It solved diverse

Atari games successfully and the complexity of our task scenario is comparable to some

of them. The first hidden layer is a 2D-Convolution with 32 filters with a filter size of

[2× 2] and a stride of 4. The second and third layer are as well 2D-Convolution with 64

filters, while the second layer has a filter size of [4× 4] and a stride of 2 and the third

layer has a filter size of [3 × 3] and a stride of 1. The fourth and last hidden layer is

a fully-connected layer with 512 neurons. All hidden layers apply the ReLu activation

function. The output size depends as well on the used action space size as mentioned

in the previous subchapter. The input depends again on the data representation. In the

case of the X-Image Representation a stack of nstack = X state images are processed by

the first layer. In the case of the X-Image Speed Representation, the velocity of the robot

is additionally provided by concatenating it with the flattened output of layer three.
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2D Convolutional 6-layered Neural Network

The 2D Convolutional Neural Network in table 4.3 is very similar to the network from ta-

ble 4.2, but provides one extra Convolutional Layer and one extra Fully-connected Layer.

The network is only used during the dynamic training setup to be able to learn more

complex time-dependent tasks from the used 4-Image Speed Representation.

Layer Type Activation Size Filter Size Filter Stride

1 Convolution ReLu 64 Filter [8× 8] [4× 4]

2 Convolution ReLu 64 Filter [4× 4] [2× 2]

3 Convolution ReLu 32 Filter [3× 3] [1× 1]

4 Convolution ReLu 32 Filter [2× 2] [1× 1]

5 Fully-Connected ReLu 512 Neurons - -

6 Fully-Connected ReLu 216 Neurons - -

7 Fully-Connected Linear Output Size - -

Table 4.3.: 6-layered image network for the dynamic setup.
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5. Evaluation

This chapter presents different training setups for a static and a dynamic scenario. Each

training setup will be evaluated in a quantitative as well as in a qualitative way. During

the quantitative evaluation, the training, as well as the test results, are presented and dis-

cussed. During the qualitative evaluation, the learned policy of the agents is discussed

qualitatively by investigating example episodes from the test sets. They show how the

agents behave in specific situations. Finally, a selection of relevant agents is applied to

the real world and a qualitative assessment is given.

Since Reinforcement Learning has not been applied to the MiR100 robot before, this the-

sis serves as a proof of concept for using RL during navigation. After the MiR100 soft-

ware has been successfully integrated with the simulation environment and the stable-

baselines library [2], the investigation of an optimal training setup started. During the

thesis, the defined goal has been approached slowly by increasing the problem complex-

ity step by step. The following stages of problem complexity have been identified.

1. Following path only in map 4.2b.

2. Navigating along the path with local static obstacles in map 4.2a.

3. Navigating along the path with local static obstacles in map 4.2b.

4. Navigating along the path with moving simple obstacles (single circles) in map.

4.2a.

5. Navigating along the path with moving simple obstacles (single circle) in map 4.2b.

6. Navigating along the path with moving complex obstacles (two walking legs) in

map 4.2b. (not solved)

7. Navigating along the path with moving complex obstacles (two walking legs) and

local static obstacles in map 4.2b. (not solved)

While solving one stage after another, different variations in the training setup have been

applied. Unfortunately, the number of possible variations is almost unmanageable. For

that reason, only the evaluation of the most relevant trained agents of stage three and

stage five are presented in this chapter.
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agent_1 agent_2 agent_3 agent_4
Action Space discrete

vmax = 0.5
ωmax = 0.5

continuous
vmax = 0.5
ωmax = 0.5

discrete
vmax = 0.5
ωmax = 0.5

discrete
vmax = 0.5
ωmax = 0.5

State Input 1-Image
Represen-
tation

1-Image
Represen-
tation

Raw Data
Represen-
tation

Polar Rep-
resentation

Network archi-
tecture

table 4.2 table 4.1

Reward function equation 4.1
Reward function
parameters

table A.2

Table 5.1.: Agents that are trained in map 4.2b with the static task setup.

5.1. Static Agents

The static agents are all trained in map 4.2b with a static task setup and reward function

4.1. In comparison to the dynamic agents, the static training setup is computational less

expensive because there is no time-dependent component. Providing the most current

state of the environment should be sufficient for learning the given static task, described

in chapter 4.2.

Table 5.1 gives an overview of the static agents that will be evaluated. Agent_1 uses

discrete action space and the 1-Image Representation as state input combined with the

Neural Network Architecture of table 4.2. Agent_2 uses the same input state and net-

work architecture as agent_1, but applies continuous action space instead. On the con-

trary, agent_3 and agent_4 both apply the same action space as agent_1, but use different

state inputs: the Raw Data Representation and the Polar Representation, that are both

combined with the Neural Network Architecture of table 4.1.

5.1.1. Quantitative Evaluation

All static agents have been trained with the PPO1-algorithm from the stable-baselines

library with the same hyperparameters, that can be found in the appendix in table A.1,

A.2 and A.3. Each agent has been trained for 10 million times steps on CPU only. Fur-

thermore, three agents per training setup have been trained to gain knowledge about the

variance of the training results. I am aware, that a higher number of agents per training

setup provides a more reliable statement about reproducability, but unfortunately the to-

tal training time per agent did not allow more training sessions. The total training time

for each agent is between 2 to 5 days, depending on the input state size. Table 5.2 gives

an overview of the average training time for each agent setup.
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agent ∼ training time
agent_1 4d 18h 49m
agent_2 5d 15h 38m
agent_3 2d 17h 13m
agent_4 3d 0h 31m

Table 5.2.: Average training time for each training setup.

Figure 5.1 summarizes the learning progress of all static agents in comparison. Instead

of presenting the reward over time, the success rate is shown to provide universal results.

Like this, they can be compared with other approaches, using different reward functions.

An episode is a success, if the agent reaches the goal while keeping a minimum distance

of 0.56 m to all obstacles. The success rate is averaged over all agents per agent setup

and finally, the moving average over 500 consecutive episodes is determined. The error

band of each curve shows the variance over all agents per agent setup. Agent_1 achieves

the highest success rate with ∼ 0.76. During the first 3M time steps, the success rate

increases drastically. Thereafter, it starts to settle with a slight remaining increase. Note

that the variance is low compared to the other agents so that a stable reproducibility can

be expected. Agent_2 reaches only a success rate of ∼ 0.58 within 10M time steps. The

learning curve does not have such a steep rise compared to the curve of agent_1. After

the first settle phase at time step 4M, the learning curve continues to increase slowly. The

reason for the slower learning of agent_2 is the higher problem complexity due to its

continuous action space. Agent_4 reaches a similar success rate like agent_2, but uses the

laser scan data directly with the Polar State Representation. Agent_3 provides the lowest

final success rate with ∼ 0.2 and a relatively high variance due to unstable training over

the different agents per agent setup. Considering agent_3 and agent_4, it can be assumed,

that providing the laser scan and waypoint data in the same format – like in the Polar

State Representation – is more effective than the Raw State Representation.
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Figure 5.1.: Training results of the four different static agent setups. For each training
setup, three agents are trained and the average success rate is taken. Finally,
the moving average over 500 consecutive episodes is plotted, while the error
band represents the variance over all three agents.

All trained agents have been tested in three worlds of different environment complex-

ities: map 4.2a (simple), map 4.2c (average) and map 4.2d (complex). Each trained agent

had to solve 300 static tasks per world. The tasks have been saved in an evaluation set

so that each agent had to solve the exact same tasks with the same local static objects.

Moreover, the test set only contains solvable episodes. Additionally, the two variants of

the traditional local planner approach 2S-VFH*-R and 2S-VFH*, introduced in chapter

1.3, solved the same tasks. During testing an episode is a success, if the robot reaches

the goal without colliding with any obstacles. The graph in figure 5.2 shows the average

success rate for all agents in the three different worlds, while the dark bars represent the

true success rate and the light bar represent the sum of the success and time-exceeded

rate. In the simple world agent_1, agent_2 and agent_4 achieve with a true success rate

over 0.95 a slightly better result than the traditional 2S-VFH*-R, that even uses global

re-planning for recovery. As expected, the performance of agent_3 is relatively low with

a true success rate of 0.52. The average-complex world provides more challenging tasks

— objects cannot always be avoided from both sides. All success rates decrease from the

simple to the world of average complexity, but the true success rate of agent_1 decreases

only by 0.02, outperforming the rest. Since the agents are trained in a world with simi-

lar complexity to the average-complex world, the performance of agent_1, agent_2 and

agent_3 drops stronger than the performance of 2S-VFH*-R from the average to the com-
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Figure 5.2.: Test results of the four different static agent setups as well as two variants
of the traditional local planner 2S-VFH*-R and 2S-VFH*. All trained agents
solved each 300 static tasks in three worlds of different complexities. For each
world and each agent the average success rate is shown.

plex world. The complex world provides more unseen situations, to those the agents did

not generalize. The main challenge are narrow passages that need to be passed to reach

the goal. On the contrary, the performance of 2S-VFH*-R and 2S-VFH* does not change

significantly, because the VFH* approach is able to handle narrow passages better. It is

also striking that the traditional approaches have a relative high time-exceeded rate. One

reason for such a low collision rate is an additional stopping mechanism on top of VFH*

that stops the robot if the distance to the obstacles falls below a certain threshold. This

stopping mechanism could easily be applied to the RL-agents and prevent a majority of

collisions, but eventually also reduces the success rate.

5.1.2. Qualitative Evaluation

To fully evaluate the results of the agents, it is not sufficient to only consider the quantita-

tive results. It is also interesting and necessary to look into the learned policy, i.e., driving

behavior. In the course of work, identifying situations, in that the agent fails frequently,

gave new ideas for an improved training setup. In the following, example tasks will be

presented for the different agent setups. Note that each task includes the global plan

(blue) and static objects (green and black).

Agent_1 vs. 2S-VFH*-R

Figure 5.3 provides example episodes of the driving behavior of agent_1 (orange) in com-

parison to the traditional planner with recovery 2S-VFH*-R (red). Episodes with isolated,
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(a)

(b)

(c)
(d)

(e) (f)

Figure 5.3.: A set of selected example episodes is presented to show the behavior of
agent_1. Each test episodes includes the global plan (blue), leading from the
left to the right, with global static and local static obstacles (black and green).
The driven path of agent_1 (orange) is presented in comparison to the driven
path of the traditional path planning approach 2S-VFH*-R (red).

single objects are resolved very robustly from both approaches. They both avoid the ob-

stacles with a similar reasonable avoidance radius. Figure 5.3b presents a task with two

single isolated objects with a rather high distance in between. After avoiding the first

object 2S-VFH*-R does not drive back to the path but rather continues parallel to the

original global path until it reaches the second obstacle. In contrary, agent_1 gets back to

the global path, if the distance between the local static objects allows that. Its behavior

can be explained with the applied reward function 4.1, because the agent gets a higher

reward for driving through the waypoints on the path. Figure 5.3c and 5.3f provide tasks

where the objects are only avoidable from one side. If 2S-VFH*-R chooses to avoid the

obstacle from the wrong side, it gets stuck on the blocked side of the object and can not

recover. Agent_1 is able to recognize if a passage is not passable and tries the other side

of the object. Nevertheless, in some situations, agent_1 should be able to recognize the

blocked side of the object in advance and directly choose the correct side for avoidance.

That is not always the case. The task in figure 5.3d expects the robot to pass a narrow

gap, that agent_1 is not capable of. Instead, it drives forth and back in front of the gap. In

figure 5.3e agent_1 gets lost in a one-way passage. This happens frequently in the com-

plex world (map 4.2d), because the complex world includes lots of one-way hallways,

the robot has not been trained on in the training map 4.2b.
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(a)

(b)

(c)

(d) (e)

(f)

Figure 5.4.: A set of selected example episodes is presented to show the behavior of
agent_2. Each test episodes includes the global plan (blue), leading from the
left to the right, with global static and local static obstacles (black and green).
The driven path of agent_2 (purple) is presented in comparison to the driven
path of agent_1 (orange).

Agent_2 vs. Agent_1

Figure 5.4 summarizes the similarities and differences between agent_1 (orange) and

agent_2 (purple) in their behavior of solving tasks. Figure 5.4a and 5.4b show, that

agent_2 overcomes single isolated objects also very stable and reasonable. Agent_2 os-

cillates stronger during simple driving maneuvers, compared to agent_1. Figure 5.4c,

5.4d and 5.4f show that the recovery behavior of agent_2 is not well learned. In figure

5.4c agent_2 avoids the whole global obstacle instead of recovering and trying it from

the other side of the local obstacle. This is especially problematic with non-closing global

obstacles like in map 4.2d. In 5.4d and 5.4f agent_2 decides to drive back and avoid the

obstacle from other sides, although it is not absolutely necessary. Note that agent_2 fails

in general more tasks than agent_1 like in figure 5.4e.
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(a)

(b)

(c)

Figure 5.5.: A set of selected example episodes is presented to show the behavior of
agent_3. Each test episodes includes the global plan (dark blue), leading from
the left to the right, with global static and local static obstacles (black and
green). Two trained agents from the same agent setup are presented, while
one is displayed with a thin light blue line and the other with a thick light
blue line.

Agent_3

The quantitative evaluation of agent_3 already showed that a low success rate is reached

compared to the other agent setups. Besides, it shows the highest variance. In figure

5.5, two trained agents of the agent_3 setup are compared: Agent_3_1 is represented

with a thin light blue line and agent_3_2 with a thick light blue line. While agent_3_2

has a reasonable driving behavior and overcomes simple tasks, agent_3_1 learned some

unnatural movements. It seems that agent_3_1 ends up in a local minima because the

agent does not improve for 6M time steps. Agent_3_1 has a stronger focus on "catching"

waypoints than avoiding obstacles or driving along the path as fast as possible. Figure

5.5a and 5.5c show, that agent_3_1 tends to drive back when it overshoots a waypoint to

catch it. In figure 5.5b it remains in front of the obstacle, because a waypoint is positioned

right before the obstacle. It tries over and over to catch it without colliding with the local

obstacle.
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(a) (b)

(c) (d)

(e)

(f) (g)

Figure 5.6.: A set of selected example episodes is presented to show the behavior of
agent_4. Each test episodes includes the global plan (blue), leading from the
left to the right, with global static and local static obstacles (black and green).
The driven path of agent_4 (dark green) is presented in comparison to the
driven path of agent_1 (orange).

Agent_4 vs. Agent_1

The main difference between agent_4 and agent_1 is that agent_4 is slightly better in

driving through narrow gaps. Figure 5.6a to 5.6c show example tasks, where agent_4

was able to pass the narrow gap, while agent_1 collides or finds an alternative route.

Agent_4 is more risky regarding narrow passages, leading to a higher collision rate. It

also tries to pass narrow passages that are not passable like in figure 5.6e to 5.6g. Agent_4

collides more frequently with objects of the type 4-legged wagon. It can be supposed, that

the object has a certain angle to the robot and agent_4 assumes that the gap is passable.

5.2. Dynamic Agents

The dynamic agent setup aims to learn how to drive along a path with walking and

standing pedestrians as obstacles. For that reason, the dynamic task setup of chapter 4.2

is applied.

The evaluation of the static training gives insights about the best possible action space

as well as the best possible state representation. Since agent_1 outperformed the other

static agent setups, all dynamic agents are trained with discrete actions and a 4-Image

Speed Representation as input state. By providing more than one image, a time compo-
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agent_5 agent_6 agent_7
Pedestrian be-
havior

Polite Semi-polite

Reward function equation 4.10
Reward function
parameters

table B.2 table B.3

Action Space
discrete

vmax = 0.5
ωmax = 0.7

discrete
vmax = 0.5
ωmax = 0.7
+ [0.09, 0]

State Input 4-Image Speed Representation
Network archi-
tecture

table 4.3

Table 5.3.: Dynamic agent setups trained in map 4.2a.

nent is integrated into the input data, and the agent should be able to cope with moving

pedestrians. A higher input size results in longer training periods. To counter the in-

creasing training time, the PPO2-algorithm from the stable-baselines library is applied.

The main difference between PPO2 and PPO1 is that PPO2 allows training in parallel

environments. Collecting episodes is accelerated and compensates the longer network

updates.

Table 5.3 gives an overview of the dynamic agent setups that will be evaluated in this

section. All agents have the same state input with the 4-Image Speed Representation

fed to the network architecture in table 4.3. Like in the static setup, the dynamic agents

are trained in the map 4.2b with average complexity. agent_5 is confronted with pedes-

trians that have a polite walking behavior, i.e., they always avoid the robot if it comes

too close. Additionally, reward function 4.10 with the parameter set from table B.2 is

applied. agent_6 applies the same parameter set like agent_5, but has to deal with semi-

polite pedestrians. agent_6 has to stop for at least 0.8 seconds in advance to motivate

the pedestrians to avoid the robot. Normally, reward function 4.10 with parameter set

B.2 punishes the RL-agent for being closer than 0.85 m to a pedestrian and the episode

is over. This punishment is disabled if the robot stops in time – 0.8 seconds before a

pedestrian enters the critical zone. agent_7 deals as well with semi-polite pedestrians,

but applies a different reward parameter set listed in table B.3, that is less strict and al-

lows agent_7 to drive slowly (≤ 0.1 m/s) while being close to pedestrians. Still, it is

expected that the robot drives slow for at least 0.8 sec in advance to not get punished.

Due to the expected slow robot velocity, an additional discrete action [0.09, 0.0] is made

available for agent_7.
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agent ∼ training time
agent_5 2d 1h 44m
agent_6 2d 4h 47m
agent_7 1d 23h 2m

Table 5.4.: Average training time for each dynamic training setup.

5.2.1. Quantitative Evaluation

Each dynamic agent has been trained between 8 to 10 million time steps on CPU only.

For each training setup three agents of the same agent setup have been trained to show

reproducability. The training time of the dynamic agents is shown in table 5.4 and re-

duced significantly to 1 to 2 days. The main reason for the speedup is the usage of five

simulation environments, that parallelizes the process of experience collection. Further-

more, I reduced the image size, while increasing its resolution (see table B.1). Note that

the input size is still higher than during the static setup because a stack of four images is

provided.

Figure 5.7 shows the training process of all three agent setups, while 5.11a shows the

success rate and 5.11b shows the time-exceeded rate over time. An episode counts as

success if the RL-agent navigates to the goal without violating any distance threshold

to the static or dynamic objects. The time-exceeded rate contains all episodes in which

the RL-agent did not finish in time, but also did not come to close to any obstacles. If

the RL-agent deviates to strongly from the path, the episode is over and counts also as

time-exceeded. The rates are averaged over all agents per agent setup and finally, the

moving average over 500 consecutive episodes is determined. The error band of each

curve shows the variance over all agents per agent setup. Agent_5 reaches a relatively

high success rate of ∼ 0.7 while agent_6 and agent_7 only reach a success rate between

∼ 0.3− 0.4. Nevertheless, the time-exceeded rate is high for all three agents, resulting in

a low collision rate in the later period of the training.

All dynamic agents as well as agent_1 from the static training and the traditional nav-

igation approach 2S-VFH*-R have been tested in a dynamic test setup in the worlds of

simple and average complexity (map 4.2a and map 4.2c). They all solve the same 300

episodes per world with a dynamic task setup with semi-polite agents. The success rate

during testing differs slightly to the one during training, because an episode counts as

success if the robot drives successfully to the goal without colliding with any objects.

That means no differentiation between dynamic or static objects is made during testing.

Furthermore, the time span for finishing a task is increased and depends on the path

length to enable the agents to finish episodes more often. Figure 5.8 shows the average

success rate of the dynamic test setup, while the dark bars represent the true success rate

and the light bars represent the sum of the success and the time-exceeded rate. Agent_5
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(a) Success rate

(b) Time-exceeded rate

Figure 5.7.: Training results of the different dynamic agent setups. For each setup three
agents are trained and the average success and time-exceeded rates are deter-
mined. Finally, the moving average over 500 consecutive episodes is plotted,
while the error band represents the variance over all three agents.
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Figure 5.8.: Test results of the three different dynamic agent setups as well as the tra-
ditional local planner 2S-VFH*-R and agent_1 of the static agent setup. All
approaches solved every 300 dynamic tasks in two worlds of different com-
plexities. For each world and each agent the average success rate is shown.

has the lowest success rate in both worlds. Since agent_5 is trained on polite pedestrians,

RL-agent simply drives along the path and expects the pedestrians to avoid the robot.

The pedestrians are semi-polite in the test setup, so that agent_5 happens to collide with

people more often. The success rates of the static agent_1 and 2S-VFH*-R are slightly bet-

ter than agent_5 with ≥ 0.5. Agent_6 reaches a success rate of 0.81 in the simple world

and 0.66 in the world with average complexity. Agent_7 reaches a higher score with a

success rate of 0.85 in the simple world and 0.77 in the world with average complexity.

The better results from agent_7 can be explained with the provided pushing mechanism.

In a blocked situation, agent_7 can free itself by pushing the pedestrians away. In con-

trary, agent_6 needs to wait for the situation to resolve on its own. The resolution of

critical situations is not always guaranteed or can be very slow, so that agent_6 can not

finish those episodes in time. It results in a relatively high time-exceeded rate in the

average-complex world of agent_6 with 0.14.

5.2.2. Qualitative Evaluation

Although the results of the qualitative evaluation already indicate which training setup

leads to good performance, it is essential to investigate the qualitative driving behavior.

In the following sections, the learned policy of each dynamic agent is presented quali-

tatively by showing a selection of solved tasks. Note that each task includes the global

plan (blue) leading among static objects (black). The state of the robot (grey rectangle)

and the pedestrians (red circle) is shown at a certain relevant time step. The red arrow
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indicates the moving direction of the pedestrians, while the length shows the speed of

the pedestrians. In addition, the red fine line indicates the pedestrian’s walking path of

the future.

Agent_5

The usage of polite pedestrians in the simulation environments influences the resulting

driving behavior of agent_5 significantly. When running agent_5 in a world with semi-

polite pedestrians, it is obvious that the agent did not learn to avoid humans confidently.

Most of the time, the agent drives along the global plan and expects the pedestrians to

give way to the robot. In clear situations agent_5 is able to avoid slow moving and non-

moving pedestrians.

Agent_6

Figure 5.9 shows example episodes, while the mint green path is the taken path of agent_6.

In figure 5.9a, agent_6 solves an episode with a high number of pedestrians, resulting in

a constant deviation from the planned path. In figure 5.9b, agent_6 shows a forward-

looking avoidance behavior, although it could be expected that the robot stays on the

path because the two pedestrians are walking away from the path and they will be gone

by the time the robot reaches there. The forth and back walking behavior of the simu-

lated pedestrians can be the reason for that behavior. To be able to react in time on a

change of direction, agent_6 keeps a certain safety distance. In figure 5.9c and 5.9d, the

RL-agent stops and waits for the pedestrians to pass and finally continues. This behavior

is essential in highly crowded situations with no safe way out. Figure 5.9e and 5.9f show

two reasonable driving maneuver.

Figure 5.9g to 5.9j show, that agent_6 does not behave confidently regarding pedes-

trians crossing the path. It is more likely to fail in those situations. The agent does not

seem to consider the walking direction of the pedestrian, because it tries to avoid the

pedestrian from the same side it walks to. In figure 5.9i agent_6 first tries to avoid the

pedestrian from the "wrong" side and after the pedestrian has crossed the path, it changes

its avoidance strategy to the other side. This behavior happens very frequently.
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(a)

(b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.9.: A set of selected example episodes is presented to show the behavior of
agent_6. Each test episodes includes the global plan (blue), leading from the
left to the right, with global static (black) and moving pedestrians (red circle).
The arrow indicates the moving direction, while the length shows the speed
of the pedestrian. In addition, the fine red line indicates the future walking
path for each pedestrian. The mint green line is the taken path of agent_6
(grey rectangle).
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Agent_7

Compared to agent_6, the behavior of agent_7 is more aggressive. Due to the different pa-

rameter set of the reward function 4.10 as well as the additional discrete action [0.09, 0.0],

the agent is able to push people away if it drives slowly towards them. The agent is

supposed to use this mechanism to free itself from crowded situations. Unfortunately,

agent_7 pushes pedestrians not only in critical situations but also in situations, where a

simple avoidance maneuver is more reasonable. Figure 5.10 shows sample episodes of

agent_7, while the purple path represents the taken path of agent_7. Figure 5.10a to 5.10d

show episodes, where agent_7 avoids the moving objects in a reasonable way and with

an appropriate safety distance to the pedestrians. Figure 5.10e and 5.10f show two scenes,

where the robot pushes pedestrians away. It is difficult to visualize but can be recognized

by the future path of the pedestrians (thin red line), that is not straightforward like usual.

In figure 5.10e, the pushing mechanism has been applied correctly because the passage

is fully blocked, while in figure 5.10f agent_7 could have simply avoided the crowd from

the left side.
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(a)

(b)

(c)

(d)

(e) (f)

(g)(h)

Figure 5.10.: A set of selected example episodes is presented to show the behavior of
agent_7 (purple). Each test episodes includes the global plan (blue), lead-
ing from the left to the right, with global static obstacles (black) and moving
pedestrians (red circle). The arrow indicates the moving direction, while the
length shows the speed of the pedestrians. In addition, the red fine line in-
dicates the future walking path for each pedestrian. The purple line is the
taken path of agent_7 (grey rectangle).

5.3. RL-Agent in the Real World

The transition from the simulation environment to the real world is a particular challenge

in the field of robotics, but absolutely necessary. Due to the heavy training times and
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safety issues, it is not possible to train robots in the real world. Alternative approaches

like Imitation Learning or a combination of Reinforcement Learning and Imitation Learn-

ing aim to speed up the training process.

In this thesis, pure Deep Reinforcement Learning is applied. To reduce the gap between

the simulation environment and the real world, the simulation has been restricted to a 2D

world. 2D laser scan sensors are used to perceive the environment because they get closer

to real world data than other sensors like stereo or depth cameras. Furthermore, Gaus-

sian noise is added to the simulated sensor data to approximate the real world sensors

more realistically. During the simulation, physical properties like e.g. robot mass, motor

friction, friction coefficients of the wheels have been ignored completely to simplify and

speed up the simulation. Training in simulation environments offers more advantages:

It is possible to distinguish between different obstacles in the scan data. The rewarding

made use of it by allowing the robot to get closer to static objects than to dynamic ob-

ject. Obviously, the distinction is not possible in the real world and consequently, it is

not possible to continue the training in the real world with the exact same reward func-

tion. Another challenge is to create realistic tasks during training. The static task setup

is very clean and spacious, while in industrial real world scenarios the environment is

more cluttered and narrow. While creating a realistic static task setup is still fairly easy

and solvable, constructing a real world dynamic setup is very challenging. Human be-

havior is not deterministic or physically describable. There are various scenarios that can

be considered. The following categories have been identified:

1. Humans that block intentionally the way of the robot to explore its limits

2. Humans that expect the robot to give way.

3. Humans that naturally avoid the robot.

4. Group of humans that stands around.

5. Group of humans that walks together around.

In the simulation environment, I modeled category two and three. To speed up the sim-

ulation, humans have only been spawned near the planned path, walking back and forth

between two waypoints to increase the chance of a clash between robot and pedestrian.

Hence, the RL-agent often faces changes of direction, that seem rather rare in the real

world. Also, the pedestrians are walking on a similar speed to the maximum robot speed

of 0.5 m/s, that is a fairly low speed. Another difference to the real world is that the

pedestrians are approximated with a single circle representing both legs instead of mod-

eling two reasonable moving legs.

The strict time frame of the master thesis did not allow to setup a proper evaluation

procedure for testing the different agent setups in the real world. Nevertheless, agent_1,

agent_6 and agent_7 are applied to the MiR100 robot and a qualitative proof-of-concept

of the behavior in the real world is provided in this chapter. Furthermore, a video is
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(a) Example static task.

(b) Example dynamic task.

Figure 5.11.: Real world setup.

submitted that shows the robot in action and provides a selection of episodes for all three

agents. The testing environment is a spacious room, that contains multiple robots and

some boxes and pallets, standing close to the walls. Static scenes similar to the trained

environments have been constructed by composing foam blocks. As dynamic object,

I walked with a low speed of ∼ 0.5 m/s along and across the planned path to force the

robot to avoid me. Situations with more than one pedestrian have not been tested. Figure

5.11 shows an example static as well as an example dynamic task in the real world.

The behavior of agent_1 on the MiR100 is very similar to the behavior in the simulation.

It avoids static objects reliably and is even able to overcome difficult situations. If objects

are positioned close to a wall and the object is only avoidable from one side, agent_1 is

able to identify the side with enough space. If the robot gets stuck on one side of an

obstacle, the RL-agent is able to recover and tries the other side of the obstacle.

Although pedestrians are only modeled with a single circle, agent_6 is able to deal with

pedestrians walking on low speed. When a pedestrian crosses the path, the robot either

stops and waits for the pedestrian to pass or tries to avoid the pedestrian from the side

the pedestrian walks to. At a certain point, it realizes to better avoid the pedestrian from

the other side. It is the same undesired behavior as in the simulation (see figure 5.9i). It

does not avoid pedestrians that walk along the path very comforting, because agent_6

tends to start the avoidance procedure too late. If a pedestrian is very close to the robot,

agent_6 stops and waits for the pedestrian to give room.

Agent_7 does not apply as many avoidance maneuvers but rather makes use of the

pushing mechanisms. At least it manages to slow down in time and continues its faster

navigation as soon as the pedestrian left.
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6. Conclusion and Future Work

In this thesis, Deep Reinforcement Learning (DRL) has been applied in the navigation

of a mobile robot. The idea was to keep the traditional global planner, but to replace

the traditional local planner with an RL-agent. Its objective is to react to local obstacles,

that have not been considered by the global planner. A special focus is set on moving

obstacles, that demand an adaptable driving behavior.

In this thesis, a learning infrastructure has been developed, that integrates the Navi-

gation Stack infrastructure of the ROS framework with the DRL-library stable-baselines

[2] and a simulation environment that fuses the two simulators Flatland and Pedsim.

The state-of-the-art DRL algorithm Proximal Policy Optimization (PPO) has been applied

during training.

In the first stage, different RL-agents are trained in an environment of lower complexity

with exclusively static objects. Different training setups have been investigated in that

stage to identify the optimal training setup. Continuous and discrete action spaces, as

well as different representations of the input state, were compared. One static agent

setup outperformed the others and applied a discrete action space as well as an image as

state input, that contains information about the laser scan data and the global path.

In the second stage, the complexity of the training setup has been increased by mod-

eling dynamically moving and standing pedestrians, behaving according to Helbing’s

Social Force Model. Moving objects imply time-dependent decisions; therefore the find-

ings of stage one have been extended to a dynamic training setup: A stack of four images

at different time steps as well as the robot velocity are provided as state input. Two agents

worth mentioning have been trained with different reward function parameters and both

achieved a success rate over 65 %, while the traditional local planner only achieves 50 %.

The different reward function parameters lead to different learned behaviors. One agent

is able to avoid individual humans, but stops and waits if the robot faces unsolvable sit-

uations like crowds and blocked passages. The other agent learned a more aggressive

policy. It pushes pedestrians by driving very slowly towards them until they give way.

Unfortunately, the agent applies the pushing mechanism not only in unsolvable situa-

tions but also when simple avoidance would be more reasonable.
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Although the obtained results seem very promising, further improvements are neces-

sary before a concrete deployment can be considered. A simplified dynamic task setup

has been applied during this thesis. In future work, a more realistic design of the dynamic

task setup should be developed. The following improvements have been identified:

• Especially when pedestrians are crossing the robot’s way, it seems that the agent

does not consider the walking direction of the robot. Further investigation should

be made in the proper learning of time-dependent input data.

• The pedestrians should walk on a realistic walking speed at about 0.8 - 1.5 m/s.

• More complex maps with more clutter and narrow corridors should be provided

during training. The RL-agent should be able to learn social-relevant behavior like

driving on the right side in narrow corridors.

• Only single pedestrians moving and standing around are considered. In further

work, various pedestrian behaviors should be modeled, especially socially relevant

behaviors like e.g. group walking and group gathering.

In conclusion, the obtained results are very convincing and the proof-of-concept for ap-

plying Deep Reinforcement Learning to the navigation of the MiR100 robot is confirmed.

A high potential for improvement can be expected if more work and further investments

are made in this field. Furthermore, hybrid variants – a combination of the traditional

local planner and an RL-agent – should be taken into consideration. As a consequence,

the RL-agent could specialize on tasks, that are unsolvable for the traditional planner but

does not need to take care of simple tasks, that are fulfilled very well by the traditional

local planner like pure path following and avoidance of static objects.
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A. Parameters of the static training

Parameter Name Parameter Value

look ahead distance dlookahead 1.5 m

image size [(80 + 40)× 100]

laser scan vector length llaser_vec 360

number of waypoints nwp 4

resolution res 0.05 m/px

max translational velocity vmax 0.5 m/s

max rotational velocity ωmax 0.5 1/s

Table A.1.: Parameters of the static training setup.

Parameter description Parameter Value

constant for reaching the goal Rg 10

constant for colliding with an obstacle Ro 15

distance threshold to the objects Do 0.96

weight for approaching a waypoint w1 2.5

weight for departing from a waypoint w2 3.5

constant for reaching a waypoint Rwp 1.0

distance threshold to the wayoints Dwp 0.2

Table A.2.: Parameter set for reward function 1.
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Parameter name Parameter Value

discount factor γ 0.99

optimal batchsize optimbatchsize 4096

clip parameter ε 0.2

entropy loss weight entcoeff 0.003

optimizer’s number of epochs optime pochs 4

optimimzer’s stepsize α 0.001

advandtage estimation λadv 0.95

epsilon of adam optmizer εadam 0.00005

Table A.3.: Used PPO1 parameters in the stable baselines library [2].
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B. Parameters of the dynamic training

Parameter Name Parameter Value

look ahead distance dlookahead 1.5 m

image size [(70 + 20)× 70]

number of waypoints nwp 8

resolution res 0.15 m/px

max translational velocity vmax 0.5 m/s

max rotational velocity ωmax 0.7 1/s

Table B.1.: Parameters of the dynamic training setup.

Parameter description Parameter Value

distance threshold to pedestrians Dped 0.85

distance threshold to static objects Do 0.66

distance threshold to waypoints Dwp 0.2

constant for reaching the goal Rg 10

constant for being to close to a pedestrian Rped 7

constant for colliding with static obstacles Rso 15

constant for turning only Rvel1 0.001

constant for standing still Rvel2 0.01

constant for reaching a waypoint Rwp 0.3

reaction time of pedestrians treaction 0.8

maximal allowed speed close to pedestrians vreaction,max 0.0

weight for approaching a waypoint w1 4.5

weight for departing from a waypoint w2 5.5

Table B.2.: Parameter set 1 for reward function 2.
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Parameter description Parameter Value

distance threshold to pedestrians Dped 0.85

distance threshold to static objects Do 0.66

distance threshold to waypoints Dwp 0.2

constant for reaching the goal Rg 10

constant for being to close to a pedestrian Rped 7

constant for colliding with static obstacles Rso 15

constant for turning only Rvel1 0

constant for standing still Rvel2 0

constant for reaching a waypoint Rwp 0.3

reaction time of pedestrians treaction 0.8

maximal allowed speed close to pedestrians vreaction,max 0.1

weight for approaching a waypoint w1 4.5

weight for departing from a waypoint w2 5.5

Table B.3.: Parameter set 2 for reward function 2.

Parameter Name Parameter Value

discount factor γ 0.99

number of steps per environment per update n_steps 840

entropy coefficient ent_coef 0.003

learning rate learning_rate 0.0001

value function coefficient for loss vf_coef 0.5

maximum gradient clipping value max_grad_norm 0.5

lam lam 0.95

number of minibatches nminibatches 5

clipping paramater cliprange 0.2

Table B.4.: Used PPO2 parameters in the stable baselines library [2].
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