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Abstract

The Reality Gap describes the difference of motion behavior of objects, e.g., robots,
between simulation and reality. In this thesis, an approach to minimize it is presented.
The minimization of the Reality Gap is important to be able to use the simulation mean-
ingful. Different approaches to minimize it were studied in the literature. It was decided
to improve the simulation model of the robot in this thesis. The different improvements
on the model are presented and evaluated regarding their success in minimizing the
Reality Gap. The used methods were successful in minimizing the Reality Gap of the
joints simulated position and torque. Furthermore, more in-depth knowledge of the
robots motors behavior is gained, which can be helpful in the future to improve the ve-
locity simulation accuracy and to further improve the position and torque accuracy. This
method can be applied to other robots as well to minimize but not close the Reality Gap.

Zusammenfassung

In dieser Bachelorarbeit wird ein Ansatz zur Minimierung der Reality Gap untersucht.
Bei der Reality Gap handelt es sich um den Unterschied im Bewegungsverhalten von
Objekten, wie Robotern, zwischen Simulation und Realität. Dies zu untersuchen ist
wichtig, um Simulation sinnvoll nutzen zu können. In dieser Arbeit werden verschiedene
Ansätze zur Minimierung der Reality Gap untersucht. Umgesetzt wurden Verbesserun-
gen am Simulationsmodel des Roboters, welche danach evaluiert wurden. Die umge-
setzten Verbesserungen konnten im Bezug auf die Simulation der Position und des
Drehmomentes der Gelenke des Roboters die Reality Gap erfolgreich minimieren. Außer-
dem ist ein tieferes Verständnis der in dem Roboter in den Gelenken verbauten Motoren
erlangt worden. Dies ist nützlich für zukünftige Verbesserungen der Simulation der
Geschwindigkeit der Robotergelenke, sowie der Position und des Drehmomentes. Die
in dieser Arbeit verwendete Methode ist auf andere Roboter anwendbar, um die Reality
Gap zu minimieren, jedoch nicht um sie zu schließen.
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1. Introduction

In robotics, simulation is used as a tool for various applications because it protects the
hardware when, e.g., the software is tested, or a robot’s motion is learned. It also can
be used outside of the lab, and it saves time if the software or new hardware designs
are tested. All these applications have to deal with the so-called Reality Gap, which
describes the phenomena that in simulation produced results do not work completely
equal when used in reality. The Reality Gap is the difference between a robot’s motion
behavior in simulation and reality. Therefore a direct transfer from results developed
in simulation to a real robot is often not possible. This difference is mainly based on
the problem that simulators are not able to replicate the physics of the environment
precisely. Another problem constitutes of robot description files, which often contain
not the precise parameters to describe the robot. Hence it is currently not possible to
model the robots actions and its interaction with the environment realistically. Despite
these problems, simulation has the advantage of protecting the, in most cases, expen-
sive hardware, especially when machine learning is used for which multiple possibly
damaging training runs have to be conducted. For machine learning, this is also faster
because the learning can be distributed over multiple systems. The importance of min-
imizing the Reality Gap is illustrated in Section 1.1. The goal of this thesis is described
in Section 1.2, and in Section 1.3, the outline of the thesis is presented.

1.1. Motivation

Closing the Reality Gap is essential for many research problems according to a user
study [18] in the robotics community. In that study, it was figured out, that the most
important criterion for choosing a simulator is that it is as close as possible to reality.
Another significant criterion mentioned is that the same code can be used for the real
and the simulated robot.

Particularly in RoboCup Soccer closing the Reality Gap is of great interest. RoboCup
[O26] is a competition in robotics to support research in this area. It is structured in
several leagues, e.g., the RoboCup soccer leagues. The soccer leagues are divided
into the ones working with a humanoid robot, leagues using wheel driven robots and
simulation leagues. The soccer leagues aim to win against the FIFA human soccer
world champion in 2050 [O25]. For achieving this goal, it will be necessary to join the
different leagues in the future. Therefore, the achievements of the simulation leagues
have to be transferred to the real humanoid robots, which would work more smoothly
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1. Introduction

with realistic simulation [26].

An example where a more accurate simulation would be helpful is a humanoid robot,
who learned in simulation to kick a ball over a certain distance [1]. The thereby learned
kick works in simulation, but the execution of the kick, in reality, is not possible because
the final position is the robot standing on its tiptoes. In an accurate simulation, this kick
would not work as well and the algorithm would create results usable on a real robot.

Another example is described in [46]. The RoboCup humanoid soccer team NUbots op-
timized their walking and kicking movement in simulation with genetic algorithms. While
achieving working results in simulation with their approach, they encountered several
problems when they tried using the movements on the real robot. So the optimized
movements were not usable quickly. They explain it with an imprecise simulation. The
main effects are the servos and the friction between the robot’s feet and the ground.
With a more accurate simulation, these problems could be overcome, and the optimiza-
tion method could be used for the real robot.

An improvement of the simulation accuracy for the robot used in this thesis is helpful for
the RoboCup humanoid soccer team Hamburg Bit-Bots, who uses this robot. For exam-
ple, tuning the parameters of the kick or the walking with machine learning approaches
in the simulation would save lots of time, which is needed to tune the parameters by
hand. Furthermore, testing in the simulation could then be used more efficiently. It
would be possible to perform continuous integration testing of the full software stack
of the Hamburg Bit-Bots. So it could be recognized fast if a bug was introduced in the
software, which keeps the robot from executing the basic soccer functionality, e.g., scor-
ing a goal on an empty field. Furthermore, it is interesting to know how accurate the
simulation of the used robot is to be able to decide how simulation can be purposefully
used. Thus it is necessary to evaluate and minimize the Reality Gap to be able to use
simulation efficiently without having troubles using the results on real robots.

1.2. Thesis Goal

As it is crucial to be able to use the simulation more efficiently, the simulation has to get
more accurate. A first step is achieved in this thesis by improving the description model
of Wolfgang robot platform. The Wolfgang robot platform is used as a humanoid robot
playing soccer autonomously in the RoboCup Humanoid Soccer League. Therefore im-
proving the description of the robot will help to be able to use results from the simulation
soccer leagues and using simulation as a more powerful tool for further developments.
The improvements will lead to a more realistic simulation as then the physics engine
can work with parameters describing the robot correctly. Even if the physics engine
would be perfect, it can not work correctly if the model of the robot is not describing the
robot as it is constructed in reality. Furthermore, it will be evaluated how big the Reality
Gap of the used robot is, to be able to decide if it is useful to use the simulation under

2



1.3. Thesis Outline

the existing conditions, or if more work has to be done.

1.3. Thesis Outline

After an overview of approaches to minimize the Reality Gap is given in Chapter 2, the
basics necessary to understand this thesis are explained in Chapter 3. This chapter
consists of an introduction of the used software and hardware. Additionally, an expla-
nation of the physical background, this thesis is based on, is given. The next chapter
(4) introduces the approach taken to minimize the Reality Gap. The improvements are
evaluated in Chapter 5. In Chapter 6, the results are discussed, and the state of the
simulation of the used robot is assessed. In the end, in Chapter 7, a conclusion is
drawn, and areas of future work are illustrated.
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2. Related Work

This chapter gives an insight on work by other researchers, which was conducted to
minimize or evaluate the Reality Gap. First, some examples are given for which kinds
of robots and purposes this work is done. Second, not yet mentioned approaches are
explained divided by what is studied to achieve the goal of bridging the Reality Gap. At
the end of the chapter, a summary is given.

The Reality Gap is studied due to problems while transferring control algorithms ac-
quired in simulation to the real system. This phenomenon is studied for different robots.
For example, in the Deep Mimic Project [31], a neural network was trained to mimic
motions. Among other motions, the network learned with reinforcement learning how a
simulated humanoid model could realistically run in simulation. For learning the running
movement, a reference motion from a real human was used. By adding the reference
motion to the training, a realistic running movement was achieved for the model. Before
that, without the usage of a reference motion, the training produced an odd behavior.
That training resulted in the model running with its arms up and an unnatural leg move-
ment. So the developed training method can be employed to make the simulation more
realistic and can, therefore, be used to close the Reality Gap further.

Another example is the simulation of unmanned aerial vehicles (UAVs) to protect the
hardware. Meyer et al. describe how a simulation setup in ROS and Gazebo (see
Sections 3.2.1 and 3.2.2 for more information about the software tools) was built for the
UAVs [29]. For a realization of realistic behavior of the UAVs, two plugins were written
for Gazebo to create a dynamic model which takes the flight and motor dynamics into
account while being affected by aerodynamic effects, e.g., the wind. For the sensor
simulation, available Gazebo plugins were used. For validating the dynamic simulation
model, a test trajectory had to be performed by a UAV in simulation and reality. With
the development of the plugins, the Reality Gap was reduced as for this robot type, the
simulation is now more realistically.

For industrial robots, closing the Reality Gap is also researched. Golemo et al. im-
proved the simulation of a robot arm [17]. For this, a recurrent neural network was
trained on the differences of the arm’s trajectories of the real and simulated robot. With
this neural network, the simulation then was improved, so that policies learned in the
simulation are now more easily transferable to the real robot, which represents a mini-
mization of the Reality Gap.

A further example can be found in the domain of space robotics. As described by Yang
et al., it is necessary to test robots in simulation before they are launched to space [43].

5



2. Related Work

So a simulation method to validate the robots dynamic characteristics of a free-floating
manipulator gripping a satellite was developed. The validation of motion planning is
composed of a real hardware experiment to get the joint torques as input for the simula-
tion, which is afterward used to reproduce the forward dynamic characteristics in space.
So with this hybrid simulation setup, the reality can be modeled more precisely.

Overall the Reality Gap can be studied for every simulation setup, which is influenced
by dynamics. An example is the investigation of a modified version of a children’s game
[3]. The game consists of a labyrinth, in which a marble has to be navigated to a goal by
balancing the game board. Additionally, as difficulty, the game board contains holes in
which the marble must not fall. In this study, the game board was controlled by two servo
motors. The whole system was modeled in the simulator MARS [O18]. For closing the
Reality Gap in this scenario, the noise of the potentiometer for measuring the game
boards’ deflection, the positioning accuracy of the servo motors, and the measurement
uncertainty of the marble detection by a camera were studied. Furthermore, the motor’s
parameters of the simulation were optimized to get a more accurate model.

As shown above, there exist multiple approaches to close the Reality Gap. Generally,
the approaches can be grouped into several categories. One category is the improve-
ment of the actuator simulation, which for example covers the development of equations
to describe the motor’s properties more accurately, or to implement a motor model for a
simulator. Another category involves the improvement of the dynamic simulation model
used to describe the robot’s kinematics for the simulator. A further category considers
the simulation of sensors and the noise acting on them. The next category is the en-
hancement of the used physics engine by, for example, adding a new feature to make
the simulation more accurate or testing which engine is the most appropriate for the
considered application. Furthermore, one category is the usage of machine learning or
other AI techniques. These are, for example, applied to learn differences between the
reality and the simulation to improve the latter, or to combine training data from simu-
lation and reality in a particular procedure to bridge the Reality Gap. Each category is
presented in the following, and at the end, a summary is given.

Actuator Model

In the area of improving the actuator simulation, one approach is to use actuator models
provided by the simulator and parameterize them correctly. For example, Nguyenová et
al. built a dynamic model in the V-REP simulator [O35] for a hexapod robot [30]. For
modeling the servo motor, a revolute actuator model provided by V-REP was used. The
authors state that the model parameters having the highest effect on the robot’s motion
are the motion controller parameters and friction parameters. Therefore a PID controller
module from V-REP was parameterized with the values used by the real robot and for
the friction the related material properties were set. The other parameters affecting the
motor in reality, e.g., the gear ratio, were neglected. The evaluation of the built model
conducted by comparing the motor positions from a movement executed on the real

6



robot and in simulation.

A similar example is presented by Denisov et al., which illustrates the creation of a hu-
manoid robot’s simulation model with Simulink [13, O36]. First, the model itself was built
while taking into account the inertial characteristics of the masses. Second, the actua-
tors were connected to these model by adding the model of a servo motor provided by
Simulink. As there was no module for interactions between the robot and the ground, a
model to simulate the contact forces was built by connecting provided Simulink blocks.
Because some used blocks are approximations, the authors declare that improvements
have to be conducted to bridge the Reality Gap. However, that simulation it is already
useful for the design and engineering of humanoid robots.

Zhang et al. pursued the approach to use the provided motion controller to simulate a
hexapod robot in the Virtools simulator and dynamically parameterize the torque factor
of the motion controller [47]. The authors state that the torque factor depends on the
distance the motor has to cover and the turning direction of the motor. They worked out
a formula for both turning directions of the servo motor which describes the influence
of the covered distance to the torque factor. This was then used to dynamically set the
torque factor of the motion controller while the robot is moving in simulation.

If the used simulator does not already provide the actuator model, it has to be imple-
mented. An actuator model for a humanoid robot is, for example, missing in the SimTwo
simulator [10], for which a servo motor model was developed [24]. This development
was focused on modeling the DC motor. The parameters needed for this model were
measured at the motor in reality. Furthermore, a simple friction model consisting of a
parameter for the static and one for the dynamic friction was implemented. The two
friction parameters were found by minimizing the difference of the joint angles when
a simple designated task is performed in reality and simulation. Later on, this servo
model was improved by adding a gearbox model, which takes the rotor inertia and gear
ratio into account [23].

An analysis of a DC Motor and a model implementation for simulation were also con-
ducted by Mensink [28]. Therefore a motor was reverse engineered and the internal
friction, as well as the torque constant, was measured. For the simulation model, a
setpoint generator was developed to handle the motor’s inputs correctly. Additionally, a
PID controller was implemented, and a model of the motor’s electronics was developed
using the results from the experiments with the real motor. For evaluating the built motor
model, the position, velocity, and torque from the simulated motor were compared with
a real one.

A further study [21] deals with the friction and gearbox deformation in servo motors and
models these physical aspects in simulation. For modeling the friction, the LuGre fric-
tion model [25] was applied and for the deformation, a generalized Maxwell model [O9].
In reality, measurable parameters for these models were measured at a motor. The
remaining parameters were identified with an evolutionary approach based on multiple
test scenarios. With these results, a servo motor model in the simulation environment
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2. Related Work

Breve [O2] was developed. The author states that the model is physically still incom-
plete but already shows a realistic behavior.

Another approach to improve the simulation’s actuator model is the development of
equations regarding effects acting on a real motor, which were neglected so far in the
simulation models. For example, the friction model of the robot’s joints was extended
[5]. The effect of joint angles, load torque, and temperature on static friction was in-
vestigated at the example of an industrial robot’s arm. It was figured out that the joint
angle and perpendicular torque do not have a high effect on the static friction, while
temperature and manipulation torque affect the static friction. With theses results, the
static friction can be described as a function of the motors angular velocity, the joint
angle, the perpendicular torque, the manipulation torque, and temperature.

Also, the internal effects of the motor itself have been studied. An example is the study
of the effects of gear reduction and the integration of that in the equations describing
a robot model with joints [7]. Especially the effects of the motor’s rotor inertia and
gear ratio were studied. In the paper, an instruction is given how one can adapt the
motion equations of a robot by adapting the inertia matrix to calculate the active forces
regarding these effects as well. A different approach to this topic is the integration of
the motor’s inertias and interactions between the links and motors in a dynamic model
[36]. The developed, dynamic model realizes a linear parametrization.

Robot Model

Besides tuning the parameters of the actuator, the robot’s model parameters also can
be improved. This improvement is a step, which has to be taken for using a robot in
the simulation. How the model is created regarding its mass and inertial link param-
eters is for example, shortly described by Denisov [13]. In the context of ROS usage,
it is described by Jie et al., how a robot description file can be created [39]. More
information about the description file type can be found in Section 3.2.3. For deter-
mining the needed parameters for the robot description file, the considered robot was
disassembled. Then the links were measured, weighed, and the center of mass was
determined. Moreover, the inertia was estimated regarding the shape and mass of the
links. Thereby the density distribution was not taken into account. For simplifying the
determination of the inertia parameters, the project ROSdyn [O31] by ROS industrial
was started to create a ROS package which can autonomously calibrate the dynamic
model of a robot.

Validation of a built robot’s model in simulation is important, which is shown by Claes
[9]. In that study, the simulation of the modeled robot got unstable due to the small
size of the robot, which led to numerical instabilities. For achieving a numerically stable
simulation, all parameters were proportionally upscaled. The validation was done by
comparing a walking motion from reality and simulation.
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Sensor Model

For simulating a robot’s behavior completely, the sensors have to be included in the
simulation. A sensor model has to be defined, which simulates the real sensor, to
achieve this. The simulation of an IMU is described by McAnanama and Marsden [27].
As the simulated IMU is developed for UAVs the input consists of position, velocity, and
flight altitude. Out of this, the IMU’s output is calculated. The sensor’s model thereby
takes the noise occurring on a real IMU into account by adding an error model to the
calculation. This error model is composed of deterministic noise, which is, for example,
arising due to temperature impacts and stochastic noise for changing influences.

Yang et al. tested the sensor model of an IMU and observed that the impact of the vi-
bration of the used UAV leads to significant differences in the output from the simulated
and the real sensor [44]. So issues still have to be solved to get an accurate sensor
simulation for IMUs and other sensors used in robots, e.g., foot-pressure sensors.

Physic Engines

Besides improving the simulation parameters or adapting or extending the simulation
software, it is also possible to work with the physics engine itself. One approach for
this is to evaluate the physics engine used by the simulator [41]. For accomplishment,
a robot had to perform an easy task, which focuses on various physical properties. In
this case, the robot pushed an object over a table. The evaluation is done by comparing
the final position of the object. Furthermore, a way to optimize the physical parameters
of the engine is shown. With this, it can be evaluated which physical engine models
the dynamics of the considered robot best, and the usage of the engine can be tuned
through correct parametrization.

Another approach for evaluating a physics engine is presented by Drumwright et al.
[14]. In this study, problems of the physics engine ODE were identified, while working on
mobile robot locomotion and a grasping task of a manipulator. So they reimplemented
the parts where they identified problems, to reduce the difference between simulation
and reality. The improvements are shown through comparison in multiple robotics-
related scenarios.

AI Usability

Direct transferability of learned policies is not possible due to the Reality Gap. Therefore
existing approaches to transfer in simulation learned motions are explained further.
Besides the one mentioned at the beginning of this chapter, in which a neural network
was trained on the differences between an executed motion in simulation and reality to
improve the simulation with that, one approach consists of developing a realistic robot
and actuator model as a basis [39]. With this, a robust controller should be learned
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which can deal with small model errors. The development of this robust controller is
achieved by using randomizing dynamic parameters, adding random perturbations, and
using a compact observation space.

A further approach focuses on calibrating the simulation parameters, so the robot can
learn a trajectory along a reference trajectory, which then is executable on the real robot
[38]. For this, it was focused on adapting the actuator parameters and the center of
mass positions. While these parameters are essential to simulate the robot’s dynamics
more accurately, in this approach, the learned parameters do not imitate the real ones.
They just fit for this one trajectory, for which they have been calibrated.

It was also tried to optimize the simulation parameters with real-world data [32]. The
studied parameters were friction, damping, speed, torque, and other motor-related val-
ues. Furthermore, noise is added to the simulator’s predictions. The authors state that
it is necessary for transferability of the controller to have accurate simulation parame-
ters, while the addition of noise is just helpful to bridge the Reality Gap. Further, they
declare that more parameters need to be studied to make the simulation more realistic.

Another approach consists of training on a distribution of simulated scenarios [6]. For
this, simulation randomization with the usage of real-world data is conducted to find
several parameter distributions for learning in simulation. The goal is to obtain some
parameter distributions, which altogether produce a learned policy usable on the real
robot.

RoboCup

In the context of RoboCup, the Nao Team Humboldt tried to use the same code for
the Standard Platform League and 3D Simulation League [42]. Both leagues use the
same robot model. For achieving this, they restructured their code architecture. A
core part was developed, which can be used in both leagues, with the goal of hav-
ing as much code as possible in this core part. For the league specific requirements
and parametrizations, another code part was built, which was used beside the core.
Because of the restructuring, it was then possible to compare the robot’s behavior in
simulation and reality. So it was observed that the actuators and sensors, as well as
the physics acting on the robot, differ profoundly. Through analyzing these differences,
the simulator can be optimized to close the Reality Gap.

The RoboCup standard platform league team B-Human pursued an approach to achieve
a more realistic simulation [22]. They tried to learn the parameters needed to more
accurately simulate the actuators and their interaction with the environment by using
genetic algorithms. The goal of this was to get an as realistic as possible simulation
model. The learning has been done in different steps. First, the PID values and the
maximum velocity were learned. A second step was performed to find the torque val-
ues of the motors. The final step was conducted to optimize the already found values
and to obtain the parameters needed by the physics engine ODE to simulate friction and
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contacts realistically. For the learning, the robot had to perform different motions, which
were compared to the same motion execution on the real robot. In contrast to other
approaches, in this one, the PID values were learned to match the real robot’s behavior
more accurately instead of using the same PID values in simulation and reality.

The RoboCup humanoid league team MRL-HSL modeled and simulated their robot
based on Simulink [O36] to achieve a realistic motion behavior of the robot in simulation
[15]. The main work was done by investigating the correct simulation parameters to
model their robot. Due to this work, a simulation of their robot was achieved, which is
similar to the real robot. Nevertheless, it is not mimicking the real robot exactly.

Summary

The Reality Gap is a problem influencing lots of different areas in robotics. For several
reasons, e.g., using AI methods or studying a robot’s behavior, an accurate dynamic
simulation is needed. Several approaches to minimize or bridge the existing difference
between simulation and reality have been presented. For most researchers, the first
step to an accurate dynamic robot simulation is to acquire the correct simulation pa-
rameters for the used robot. After this is done the variety of what still can be improved
is enormous, from improving the physics engine to creating a more realistic simulation
with the usage of AI techniques. The validation of the presented approaches is mostly
conducted by comparing the joint angles and sometimes joint velocities and torques of
an in simulation and reality executed motion.
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3. Fundamentals

In this chapter, an overview of the fundamental aspects of this work, as well as the used
software and hardware, is given. At first, the hardware (Section 3.1) is explained by pre-
senting the Wolfgang robot platform and taking a closer look at the, in this thesis, rele-
vant components of the robot. The force/torque sensor used for measurements is also
described. The Wolfgang robot platform is currently used by the RoboCup teams Ham-
burg Bit-Bots and WF Wolves for competing in the RoboCup soccer leagues humanoid
kid size and humanoid teen size, where the robot is playing soccer autonomously. The
software of the Wolfgang robot platform is based on the ROS framework. Therefore
ROS is explained in Section 3.2. Within this framework, lots of software has been de-
veloped by the Hamburg Bit-Bots to control their robot. The for this thesis relevant parts
are also introduced in Section 3.2, as well as the other used software. In the next Sec-
tion (3.3) the physical properties of the robot’s links are described. The meaning of the
properties, relevant for this thesis, is explained, and it is shown how they can be calcu-
lated. The last Section (3.4) deals with the functionality and the physical characteristics
of DC motors as they are used for the actuation of the Wolfgang robot platform and
have been studied as part of this thesis.

3.1. Hardware

This section begins with the introduction of the Wolfgang robot platform [O38]. It is
described how the robot is constructed and what its general features are. After that,
a closer look is taken on the motors integrated into the robot. For this, it is explained
how the motor is constructed, and the motor’s specifications are stated. During the
thesis, the motors were studied further with the help of a force/torque sensor, which is
introduced at the end of the section.

3.1.1. Wolfgang Robot Platform

The Wolfgang robot platform is depict in Figure 3.1. It is a humanoid robot, which was
developed by the RoboCup humanoid league team WF Wolves based on the NimbRo-
OP robot platform [35]. Some further adaptions were made to this robot platform by
the Hamburg Bit-Bots. The primary computing unit is an Intel NUC. For the image
processing on the robot, an Nvidia Jetson TX2 is integrated. Furthermore, an Odroid
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Figure 3.1.: A front view of the Wolfgang robot platform is shown.

XU4 is incorporated as an additional computing unit. Few sensors are integrated into
the robot as these are limited to sensors mimicking humanoid senses to be allowed
to participate in the RoboCup humanoid league. A camera, an IMU and foot pressure
sensors are integrated as external sensors in the robot. The robot uses an accumulator
as the supply of power during a soccer game.

The robot is composed of 21 links made out of aluminum, carbon, and polylactic acid
(PLA). The links are connected with joints consisting of the electrical actuators. There-
fore the robot has 20 degrees of freedom (DoF), which are divided into six DoF in each
leg, three DoF in each arm and two DoF in the head. This division represents the
five kinematic chains of the robot, which are connected through the robot’s torso. This
is illustrated in Figure 3.2. The actuators integrated into the legs are Dynamixel MX
106 motor because they can produce higher torques than the Dynamixel MX 64 mo-
tors, which are mounted in the arms and the head. The motors are connected over an
RS-485 bus and are parallel-connected with cables. The communication between the
computing unit and the motors themselves is realized with a Rhoban DXL Board [O4],
which is a communication board designed for humanoid robots using Dynamixel motors
by the RoboCup team Rhoban Football Club.
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Figure 3.2.: This figure shows the kinematic structure of the Wolfgang robot. All joints
integrated into the robot are labeled with their names and number. The
figure is a modified version of [O10].

3.1.2. Dynamixel Motors

The motors integrated into the robot are Dynamixel MX 64 [O17] and MX 106 [O16]
motors manufactured by Robotis [O28]. An MX 106 motor is shown in Figure 3.3. Both
motor types are servo motors, which are composed of a brushed DC motor, a gearbox,
a position encoder, and several other electronic components for measurements, control,
and communication over the bus system. Therefore both motors work with the same
mechanism. The motors distinguish in some specifications, which are shown in Table
3.1. The main difference is that the MX 106 motors can produce higher torques due to a
higher gear ratio and a stronger DC motor. This leads to the MX 106 motor being slightly
bigger. The gear ratio of the gearbox influences the transmission of the by the DC motor
provided input torque and velocity to the output torque and velocity at the motor horn.
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Figure 3.3.: A Dynamixel MX 106 motor is shown. At the front, the motor horn is on
view. On each side, a plug for the cable is located. A bearing is located at
the back.

MX 64 MX 106
Backlash 0.33◦ 0.33◦

Gear Ratio 200 : 1 225 : 1
Stall Torque (14.8V) 7.3 Nm 10.0 Nm

No Load Speed (14.8V) 78 rev/min 55 rev/min

Table 3.1.: A comparison of the for this thesis relevant specifications, as the data-sheet
claims, of the two servo motors integrated into the Wolfgang robot, is shown.
On the left, the values of the Dynamixel MX 64 [O17] are presented, while
the ones from the Dynamixel MX 106 [O16] are presented on the right.

For example, the gear ratio 200:1 of the MX 64 means, that the DC motor turns 200
times faster than the motor horn, which in return can apply more torque. Due to the
usage of gears, it is not possible for the motor to exactly move to the defined position
because of the backlash. That is an effect which occurs because of imprecise meshing
of the gears [O21]. Furthermore, the usage of a gearbox can increase friction, inertia,
and torque ripple [25]. The DC motor and its influences are further explained in Section
3.4. The servo motors are internally controlled by a PID controller. For the motor
control the position control mode is used by the Hamburg Bit-Bots. Other operation
modes, e.g., the velocity control mode are also available. The deployed communication
protocol is the Dynamixel Protocol 2.0 [O6].
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3.1.3. Force Torque Sensor

Figure 3.4.: The used multi-axis ATI force/torque sensor Mini 45 [O37] is shown. On the
top, a tool can be mounted and on the bottom is the mounting side. In the
middle, the sensor itself is located, connected to a Netbox with the cable
on the left.

In this thesis, the ATI force/torque sensor Mini 45 [O37] was used, which is shown in
Figure 3.4. It is a multi-axis sensor, which measures force and torque in the three
dimensions. As transducer multiple silicon strain gauges are used to detect forces in
the six axes. Biasing is a convenient way to exclude the sensor bias and the tool weight
from the measurement results by introducing an offset to measured values. Software
Tools for the biasing are provided. Furthermore, this sensor is ROS integrated with the
help of an interface provided in the ROS package netft_utils [O29].

The sensor uses transducers to convert energy for transforming a signal from one type
to another, here to an electrical signal. As mentioned the transducers in the sensor are
strain gauges. A strain gauge consists of an elastic wire attached to the substrate [16].
If a force is applied to the substrate, this leads to an elongation of the wire because
of the strain from the substrate. As a consequence, the resistance of the wire ascents
because its cross-sectional area decreases due to the elongation. The difference in
the elongation is small to protect the wire, which is why the resistance change is also
small. Hence a Wheatstone-Bridge [11] is used to track the resistance. As the strain
is proportional to the applied force in the usage range of the sensor, the resistance
change is a measure for the applied force.
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3.2. Software

This section introduces the software used in this thesis. At first, ROS is presented
as the framework influences further software. After that, the simulator Gazebo is pre-
sented. For the simulation purpose, it is necessary to model the robot through a robot
description file. Therefore the in the ROS environment commonly used description file
syntax is introduced afterward. Next, the CAD Design Program Autodesk Inventor is
presented, which was used to improve the above mentioned description file. Finally, the
relevant parts of the codebase from the Hamburg Bit-Bots are described.

3.2.1. Robot Operating System (ROS)

ROS [O27] is a framework for robot programming. It was designed to realize the fol-
lowing goals: handling multiprocessing, handling multiple hosts, supporting various pro-
gramming languages, providing lots of different tools, having modularity as well as being
free and open-source [34]. Using ROS has the advantage of creating a hardware ab-
straction, providing low-level device control, and that the package management is dealt
with, as well as the message-passing between processes [O14]. The user also benefits
from a huge community providing software packages in various robotics tasks, which
can easily be integrated into their software because of the hardware abstraction.

The core of ROS is the ROS Master. It manages the communication between all soft-
ware packages. Each package runs in a so-called node. The nodes are independent
of each other and can be executed parallel on one or multiple machines. They com-
municate with defined messages over so-called topics. Every topic handles just one
message type. The nodes can send messages to the topic, or can get messages from
other nodes on this topic. Furthermore, ROS provides actions, which realize telling an-
other node to start running a process and being able to get feedback or to cancel the
started process during the execution of it. It is possible in ROS to start one node or to
start multiple nodes with one command with the help of a launch file. Further, it is also
possible to record the traffic on the topics with rosbags. This can be used to test with
this data or to get an insight into what happened on the robot by looking at the recorded
data. Other concepts are supported by ROS as well but are not mentioned because
they are not relevant for this thesis.

3.2.2. Gazebo

Gazebo [O34] is a robot simulation software, which allows simulating multiple robots
and a matching environment within one three dimensional scenario [20]. It is an open-
source project mainly developed by the Open Source Robotics Foundation [O23]. Dif-
ferent open-source physics engines are supported for the simulation of dynamics. By
default ODE [O22] is used as a physics engine, but the usage of Bullet [O3], Simbody
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3.2. Software

Figure 3.5.: Actuator Control through ros_control in simulation and reality is shown. It
illustrates clearly that the same control loop is used for movement execution
in reality and simulation except for the actual motor control and the needed
Plugin for the usage of the software in Gazebo. The figure is a taken from
[O24].

[O32] and DART [O5] is also possible. The worlds and models of robots and objects
have to be described in the Simulation Description Format (SDF) [O33].

ROS is integrated into Gazebo through ROS packages which provide a wrapper for
Gazebo itself by specifying the necessary interfaces to use the features of ROS directly
in Gazebo [O30]. So it is possible to launch Gazebo like every other node in the ROS
environment through a launch file. Moreover, it is possible to use the URDF (see Section
3.2.3) as the specification for the robot model description instead of creating an SDF
just for the simulation purpose. This can be done with small adaptions to the URDF
[33], which do not interfere with the usage of the URDF on the real robot. Furthermore,
ros_control (see Section 3.2.5) can easily be used in the simulation in the same way as
it is used in the real robot for controlling the actuators. This is shown in Figure 3.5.
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Because of the ROS integration, it is possible to use the software used to control the
robot in reality, also in simulation. Therefore the robot’s behavior in reality and simula-
tion can easily be compared. A disadvantage of Gazebo is that it does not include an
accurate simulation of the actuator dynamics. An actuator model should, for example,
include modeling motor characteristics like rotor inertia or gear ratio [40]. Still, Gazebo
was chosen as a simulation environment because it has this ROS interface, and the sim-
ulation software is open-source. Furthermore, this simulator is used by other RoboCup
teams as well. For example, a setup in Gazebo for the RoboCup Middle Size League
was created [45], and for the 3D simulation league, a Gazebo plugin also exists [O15].

3.2.3. Unified Robot Description Format (URDF)

The URDF [4] defines how a robot model has to be described for usage within ROS.
URDF is based on the XML format. It is usable for robots with rigid links, which are
connected through joints in a tree structure. In general, the URDF consists of two
main parts. The first part contains the description of the robot’s links. Each link has
to have a name. Additionally, there is the possibility to specify the inertial model for
the physical parameters, the visual model for proper visualization of the robot, and a
collision model for the collision characteristics of the link. Secondly, the joints have
to be defined with a name and type, as well as the parent and child link the joint is
connecting. Additionally, for joints of the type revolute or prismatic a limits tag, which
has to contain a maximum effort and a maximum velocity for the joints movement has
to be defined. Moreover, there exist optional parameters like the dynamics parameters
where physical properties can be described. Besides the essential link tags and
joint tags, it is possible to define further tags to extend the informative content of the
URDF or gain the possibility of using the URDF in the simulator Gazebo (see Section
3.2.2).

As the focus of this thesis is on the dynamic parameters of the simulation model, just
these parameters are described further. For simulation, the links have to have an
inertial tag, as shown in Figure 3.6, because Gazebo requires it. It involves an
origin tag, a tag for the mass value and one for inertia. The origin tag states
the position of the center of mass concerning the origin of the link itself. The mass
value defines the mass of the link. Inertia describes the inertia tensor relative to the
center of mass. The characteristics of a center of mass and inertia tensor are further
explained in Section 3.3. The description of the joints, shown in Figure 3.7, can include
tags for physical constraints of them. The dynamics tag can be used to specify the
damping and friction of the joint. The limits tag, which is described above, can also
be used for joints of the other types. With the not required parameters lower and upper,
describing the minimal respectively maximal position, which can be accessed, is also
possible.

Useful extensions of the URDF for the simulation are the gazebo tag and the trans-
mission tag. With the gazebo tag, it is possible to specify the information needed for
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1 < l i n k name=" r_lower_arm ">
2 < i n e r t i a l >
3 < o r i g i n xyz =" 0.0018497 −0.00091671 −0.059095 "
4 rpy ="0 0 0 " / >
5 <mass value =" 0.23502 " / >
6 < i n e r t i a i x x =" 0.0011613 " i x y ="−5.8221E−07"
7 i x z ="−7.4224E−05" i y y =" 0.0011747 "
8 i y z =" 2.0082E−05" i z z =" 0.00010273 " / >
9 </ i n e r t i a l >

10 </ l i n k >

Figure 3.6.: An example of a link description in a URDF is shown containing the relevant
part for this thesis. The example is composed of the relevant link name and
the inertial tag for the specification of the links physical parameters.

1 < j o i n t name="RElbow " type =" revo lu te ">
2 <parent l i n k =" r_upper_arm " / >
3 < c h i l d l i n k =" r_lower_arm " / >
4 < l i m i t e f f o r t =" 2.5 " v e l o c i t y =" 5.6548668 " lower ="−1.635 "
5 upper =" 1.5707963267910001 " / >
6 <dynamics damping=" 1.0 " f r i c t i o n =" 1.0 " / >
7 </ j o i n t >

Figure 3.7.: An example of a joint description in a URDF is shown containing the rele-
vant part for this thesis. The example is composed of the mandatory joint
name, parent link, child link, and the effort and velocity limit as well
as the lower and the upper limit and the dynamics parameters.

an accurate simulation like adding sensors or cameras. Furthermore, the dynamics of
links and joints can be described more precisely. This can be done by specifying further
physical parameters which are used by the physics engine. The possible parameters
are defined for SDF and can be set in an URDF in the gazebo tag. The transmission
tag can specify how the actuator in a joint is controlled, and the mechanical reduction
of a motor can be defined.

3.2.4. Autodesk Inventor

Autodesk Inventor [O1] is a 3D CAD software, which can be used for CAD Design and
analysis of CAD designed parts. It is possible to assemble several designed compo-
nents into one file and then analyze the whole construction. In this thesis, it was used
to create an experimental setup for the analysis of the motors (see Section 4.3) and to

21



3. Fundamentals

analyze the physical properties of the modeled robot’s links.

The program can calculate the center of gravity and the inertia tensor relative to the
center of gravity for every part saved in a file format from Autodesk Inventor. Because
the used robot was already created and assembled in this program, it was not consid-
ered to use another CAD Design program. As a commercial software was used, the
source code is not available. Therefore it is just known that the implementation of the
calculation follows the formula developed from theory (see Section 3.3), while the exact
implementation of the formula including the integration procedure is unknown [O7].

The parts and assemblies are modeled in Autodesk Inventor regarding the coordinate
system they were designed in. Therefore to transfer the calculated physical properties
to the URDF, the output has to be transformed into the robot’s coordinate system in the
ROS environment.

3.2.5. Hamburg Bit-Bots Codebase

The codebase of the Hamburg Bit-Bots is open-source and is published on Github
[O11]. Out of all the packages implemented by the Hamburg Bit-Bots for their soccer-
playing robots, only some have been used in this thesis. Therefore just these relevant
packages are explained here. One of the used packages is the one for playing keyframe
animations named bitbots_animation_server. For proper usage of this package, addi-
tionally the wolfgang_animations package is needed, which contains keyframe anima-
tions working on the Wolfgang robot platform. Furthermore, the packages for motor
control were used.

The bitbots_animation_server parses json files containing keyframe animations and
interpolates them, so the motor control software can execute the motion. Thereby one
keyframe of an animation is played after the previous one is finished. The package
provides a ROS action to play an animation. Examples for animations which can be
parsed by the software package can be found in the wolfgang_animations package. It
contains the keyframe animations of the Wolfgang robot platform which are used for
playing soccer and some further animations. In general, the structure of an animation
file is that it lists one keyframe after the other. For each frame, the position of all motors
has to be defined, as well as the duration of the frame and the pause after the frame
was executed.

The motor control is realized by several packages. In the ROS environment the ros_con-
trol package [8] is used for controlling the motors and sensors. Furthermore, the
package contains controllers which represent the interface between software and hard-
ware. The Dynamixel packages are responsible for translating the commands from
ros_control to the motor protocol. Overall it is possible to read information from the
motors regarding, for example, their position, velocity, torque, temperature, and input
voltage. As the motors are used in position control mode, a new position for a mo-
tor stated by ros_control will be written to the motor through the mentioned lower-level
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software and hardware. The Hamburg Bit-Bots use these packages combined with a
self-implemented hardware interface and controller.

3.3. Physical Properties of Robot’s Links

Besides stating the mass, the rigid links of the robots have to be physically characterized
through its center of mass and inertia tensor. The center of mass is the point of a link
where an applied force creates a linear acceleration and not also a rotational one, and
it is the point on which the link is balanced [19]. The calculation of the center of mass
is in general done with the following formula:

R =

∫
V

r
1

M
ρ(r)dV (3.1)

The in the formula used parameters are representing:

R coordinate vector of the center of mass

r position vector

M total mass of the object, in this case, the link’s mass

ρ density

dV volume element

Due to the integration the weighted sum over the position vectors is calculated, which
results in the center of mass. The position vectors are weighted with the amount of the
total mass of the corresponding infinitesimal volume element.

The origin of the reference coordinate system of the inertia tensor is the center of mass
[O20]. The inertia tensor describes the mass distribution in the link. It represents the
analogon to mass in a linear movement. It is used to calculate the necessary torque for
rotation by multiplying the inertia tensor with the angular velocity. In general, the inertia
tensor is calculated with the following formula [O8]:

I =

∫
V
ρ(r)r2

⊥dV (3.2)

The in the formula used parameters are representing:

I inertia tensor

r position vector

ρ density

r⊥ perpendicular distance from the axis of rotation

dV volume element
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Figure 3.8.: A schematic structure of a DC motor is shown. The three main compo-
nents, stator, rotor, and commutator, are labeled. This graphic is a modified
version from a figure in [12].

3.4. Functionality of a DC Motor

A DC motor is the actuator of a servo motor by producing torque, which is passed to
the motor horn of the servo motor through the gears. The functionality of the motor is
explained in Section 3.4.1. As the DC motor has a strong influence on the actuation of
the robot, the physical impacts of a DC motor are considered in Section 3.4.2.

3.4.1. Functional Principle

A DC motor turns electrical energy into rotational mechanic energy [12]. The motor
consists of a magnetic stator, a rotating coil, and commutators. A schematic structure
is shown in Figure 3.8. Current flows in the coil, which leads to a magnetization of the
rotor. Because the rotor is located in a magnetic field, it starts to turn due to repulsion.
For getting a continuous rotation, the commutator is needed to reverse the polarity of
the coil [37]. Otherwise, the coil would perform a half rotation cycle because it then
has reached its position of equilibrium. The coil turns a little further than the position of
equilibrium because of inertia. If the polarity is then reversed, a torque is acting on the
coil to send the coil into the new position of equilibrium, which is a half rotation cycle
away. Because of Faraday’s Law of induction, the rotation of the coils induces a voltage
[2]. This voltage works against the applied potential due to Lenz’s law. Therefore the
armature current is affected. As a consequence, the power consumption depends on
the mechanical load. If the motor has a higher load attached, it turns more slowly and
therefore the from the amount of the from the power supply taken current increases.
Usually, multiple coils are included in a DC motor to smooth the voltage.
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Figure 3.9.: This graph shows the connection between the torque and angular velocity
of a DC motor. It is shown that the torque behaves negative linear to the
speed. Furthermore, the characteristic stall torque and no-load speed are
shown. This graphic was created according to the model shown in [O19].

3.4.2. Physical Influences

The torque and velocity produced by a motor are connected [O19]. The torque is neg-
ative linear to the rotational speed, which is shown in Figure 3.9. Stall torque is the
highest torque a motor can produce and occurs when the motor is not turning anymore
due to a high load. If no load is attached to the motor, the highest rotational speed
occurs, which is named no-load speed. Therefore with attaching a load to a motor, it is
possible to influence the torque and speed of a motor as load drains energy from the
motor leading to a slower rotation. The maximal mechanical power is reached at half of
the no-load speed [O19].

The number of revolutions of the motor has to produce a voltage balance between the
applied and induced voltage in no-load running [37]. With that the following equation
can be derived for the number of revolutions of the engine:

n =
U − I ·R
c · Φ

=
U

c · Φ
− I ·R
c · Φ

(3.3)

The in the formula used parameters are representing:

n number of revolutions of the motor

U voltage

I armature current

R armature resistance
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3. Fundamentals

c machine constant

Φ total flux of the electric circuit

As during no-load running the armature current is zero, it can be inferred that the num-
ber of revolutions is about ∆n = I·R

c·Φ smaller than the no-load speed when the load or
current is increased. This shows that the speed is linear decreasing with increasing
current. Furthermore, it can be followed that the no-load speed is higher when the input
voltage is higher.

The torque is dependent on the armature current, the total flux, and a machine constant
[37]:

M = I · Φ · c (3.4)

The in the formula used parameters are representing:

M torque

I current

Φ total flux of the electric circuit

c machine constant

As the DC motor is separately excited, the total flux is unaffected by load changes.
Therefore is the torque proportional to the armature current, while as shown above the
speed is negative linear to the armature current. The current depends on the voltage
provided by the power supply. This leads to the fact that a higher torque can be pro-
duced when the input voltage is higher.

The influence of input voltage was also mentioned by Kubisch [21]. It was observed that
the voltage supply decreases under a load of operating an actuator with high torque
slightly. When a humanoid robot is getting up from the ground this effect adds up from
several motors using high torques because they all use the same power supply, which
resulted in an about 25% decreased voltage in the study. This can lead to the effect
that the motor’s torques are not high enough anymore for the robot to get up.

Furthermore, the inertia effects of the rotor or friction during the rotation are influencing
the performance of the motor. Another option is to change the windings of the coil,
which increases the repulsion. Moreover, due to the power conversion, torque fluctua-
tions can happen [25].
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4. Improvements for the Dynamic
Simulation Model

In Chapter 2 the inference was drawn, that the first step to close the Reality Gap should
be the improvement of the simulation parameters of the robot. Therefore the improve-
ment of the dynamic simulation model of the Wolfgang robot platform is presented in
this chapter. In Section 4.1 a first step for minimizing the Reality Gap is taken with the
enhancements of the physical characterization of the robot’s links in the robot descrip-
tion file. Besides the links, the joints take a significant part in the robot’s model. The
joints consist of motors, thus it is necessary to analysis the actuating motors. To do so,
the input voltage of them had to be examined as the power supply influences the actua-
tor, which is explained in Section 3.4.2. So in Section 4.2, the input voltage of the in the
robot integrated motors is studied under different load conditions. After that, the motors
itself are investigated with the previous results. Thus the analysis of a motor’s behavior
under different load conditions is described in Section 4.3. At the end, in Section 4.4,
the improvements made are summarized.

4.1. Inertial Link Parameters

In this section, the revision of the inertial parameters, mass, origin, and inertia, which
are stated in the URDF (see Section 3.2.3), is described. For the Wolfgang robot plat-
form, a URDF already existed, which had updated visual and collision parameters for
the links. The status of the physical inertial parameters was unknown. Therefore the
quality of the given parameters was evaluated.

In Figure 4.1 on the top the inertial parameters origin and inertia of the links from the
previous URDF are visualized, which were inaccurate. For example, this is shown in
Figure 4.1a where the inertia tensor of the head link, whose position can be abstracted
from Figure 4.2, is too large. Furthermore, the center of mass of the head is located
too far down, as the heavy part of the head is the camera. Another confirmation is
shown in Figure 4.1b where the center of mass and the inertia tensor of the lower leg
link are wrongly located in the coordinate system because of an orientation change
of the visual. Furthermore, in Figure 4.1c, it is shown that center of mass and the
inertia tensor of the lower arm link do not fit the link itself as they are located in another
direction in comparison with the link.
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4. Improvements for the Dynamic Simulation Model

(a) front view, old parame-
ters

(b) side view, old parame-
ters

(c) back view, old parame-
ters

(d) front view, new parame-
ters

(e) side view, new parame-
ters

(f) back view, new parame-
ters

Figure 4.1.: A visualization of the center of mass (black and white sphere) and the in-
ertia tensor (purple box) of the links from the Wolfgang robot is shown. In
the top row, the values stated in the old URDF are visualized and in the
bottom row, the ones stated in the URDF after the adaption of the inertia
link parameters.
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4.1. Inertial Link Parameters

Figure 4.2.: This figure shows the link structure of the Wolfgang robot. All links inte-
grated into the robot are labeled with their names. The figure is a modified
version of [O10].

29



4. Improvements for the Dynamic Simulation Model

Figure 4.3.: This figure shows the already existing robot model in Autodesk Inventor.

As a consequence of these results, the origin and inertia parameters of the URDF had
to be reevaluated. For this, the inertia tensor and center of mass was determined with
the help of Autodesk Inventor (see Section 3.2.4). To be able to confirm these results,
the center of mass was measured in an experimental setup by hand as well. As the
structure of the Wolfgang robot is quite complicated, the Autodesk Inventor results for
the inertia tensor were not reviewed. For a complete check of the inertial parameters,
the mass of the links was measured after the update of the two other parameters.

The determination of the inertia tensor and the center of mass by use of Autodesk In-
ventor needs the links designed in CAD format. In general, this already existed for the
Wolfgang robot, but there were some components missing which are relevant for iden-
tifying the physical parameters. A picture of the existing model is presented in Figure
4.3, revealing the missing parts in the robot model when this is compared to the picture
of the real robot in Figure 3.1. For example, the computation units in the torso, as well
as the leg spacers, are missing. The models of the links were adjusted to get a more
accurate model by adding the missing parts as well as screws and nuts. For all parts
of the robot, the density value had to be assigned to achieve the correct calculations
in Autodesk Inventor. Therefore the density for the different materials integrated into
the Wolfgang robot had to be determined. One part from each material was weighed,
and the density was calculated. After that, the materials just had to be assigned to the
robots parts in Autodesk Inventor, and the inertia tensor and the center of mass could
be calculated.

To be able to evaluate the obtained values, the center of mass was measured in reality.
The measurement was done with a compensator, illustrated in Figure 4.4. It was de-
signed and 3D-printed for the thesis. Due to the symmetric structure of the Wolfgang
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4.1. Inertial Link Parameters

average difference [m]
x direction 0.005
y direction 0.002
z direction 0.007

Table 4.1.: The average difference of the position of the center of mass between the
value calculated by Autodesk Inventor and the one measured by hand is
shown for the three dimensions.

Figure 4.4.: This picture shows the experimental setup for the center of mass measure-
ments in reality, at the example of the lower arm. Each link was balanced
out on the compensator in three dimensions.

robot, just one arm and leg had to be considered besides the head and torso. The
results of these measurements can be found in Appendix A.1. The average differences
of the position of the center of mass between the measured values and the ones cal-
culated from Autodesk Inventor are presented in Table 4.1. As the average differences
are small and manual measuring is slightly imprecise, these measurements confirm the
usability of the values from the program.

As it is shown now that the by Autodesk Inventor calculated values are accurate, they
just had to be added to the URDF. Thereby it is necessary to regard the rotations of
links when the visual is rotated. So in case of a rotation, the new values had to be
rotated with the same angle. The result of the calculation can be seen in Figure 4.1 in
the bottom row. In the visualization, it is visible that the center of mass of each link is
now located at a reasonable place, and that the inertia tensor fits the links relative to the
related center of mass as well. That the hands of the robot are not integrated into the
visualized inertia tensor of the lower arm link originates from the structure of the link.
The part with the highest mass and therefore the one most affecting the inertia modeling
is located in the elbow in the form of the motor. The in comparison, to the motor, small
weight of the hand does not have a high effect and is therefore not integrated in the
visualization. This is also visible at the upper arm link, head link, and the upper leg link,
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4. Improvements for the Dynamic Simulation Model

MX 64 MX 106
maximum input voltage 16.0 V 15.8 V
minimum input voltage 12.8 V 12.7 V

Table 4.2.: The table shows the occurred minimal and maximal input voltages at the
servo motors MX 64 and MX 106, which are integrated into the Wolfgang
robot platform. The observation was done while the robot was connected to
an accumulator, which is also used in games as a power supply. The results
consist of values the motors gave as output about their input voltage.

.

where the mass distribution is also not uniformly distributed due to their structure. The
other links of the robot are all mostly covered by the inertia tensor visualization because
their mass distribution is almost uniformly distributed.

For a complete review of the inertial tag in the URDF just the mass values still have
to be checked. The weighted values and the one stated in the given URDF can be
found in Appendix A.2, as well as the relative error from the new values compared to
the stated ones. The table shows that out of twelve different links, three of them were
stated almost accurate with a difference of less than three percent. It is also shown that
the shoulder link and the foot link were given wrong mass values as the relative error
is over a hundred percent. Therefore also checking the mass values was important as
the inertial tag is now a lot more accurate than it was before.

4.2. Input Voltage Study

This section deals with the analysis of the input voltage of the servo motors integrated
into the Wolfgang robot platform. As explained in Section 3.4.2, the input voltage influ-
ences the maximal torque and velocity, which can be produced by the motor. As the
behavior of this motor is later on analyzed, it is necessary to study which input voltages
are applied to the motors to execute meaningful experiments with them. Therefore the
maximal and minimal input voltage occurring at the two motor types, when the robot is
using an accumulator as power supply, was observed over the discharging of an accu-
mulator. For this, the output from the motors, what they state as their input voltage, was
taken into account. The results can be found in Table 4.2. It is noticeable that the two
maximum values are slightly different, although the motors are all connected in parallel.
It is known that the voltages drop a little to the end of the longer chains. Still, interest-
ingly, there is already a difference between the first motors in the leg chains and the
ones in the arms and head chain. Therefore it was decided to study the input voltage
of the motors further. In the following, it is described how the accuracy of the output
values from the motors under different load conditions was examined.

For checking the output values from the in the robot integrated motors, the voltage of
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4.2. Input Voltage Study

mean difference maximum difference
low load 0.14 V 0.31 V

medium load 0.09 V 0.24 V
high load 0.24 V 0.6V

Table 4.3.: The table shows the results from the analysis of the accuracy of the from the
motors measured input voltage values in comparison to the hand-measured
voltages parallel to the motors. The mean and maximum difference of the
values is shown for the three load conditions the experiment was performed
with. The low load condition is realized by a hanging robot, in the medium
load condition the robot is standing, and in the high load one, it is walking.
The values of the walking experiment are conducted with fewer data points.

the motors was measured by hand. This was done with a voltmeter which was parallel-
connected to the regarded motor. Then the measured voltages were compared with
the output from the motors. As the available voltage depends on the load of the robot,
the measurements were done for three load conditions. The first represents a low load,
as the robot was hanging. Secondly, the robot was standing as it is shown in Figure
3.1. For these two conditions, the voltage was measured for each motor. Finally, the
input voltage was evaluated under high load, while the robot was walking. Thereby
the voltage was just measured at the end of the five kinematic chains, because it is
technically hard to measure in between the chains, while the robot is walking and the
added value is not that big as the voltage drop at the end of the chains is the most
interesting.

Overall the experiments showed that the leg chains experience a higher voltage drop
than the other chains. Furthermore, it was confirmed that under high load, the voltage
decreases. Table 4.3 compares the values measured by hand, and the output values
from the motors. It shows that the motors give out the most accurate values under
medium load. Still, there is a significant difference between the measured data and
some motors output of the input voltage. The symmetrically arranged motors can also
give out significantly different data while being in a similar situation. For instance, during
the measurement under medium load condition, the LElbow joint stated a 0.24V too
high value, while the RElbow joint was stating a value 0.08V too low. Under small load
condition, both values were wrong about the same amount of 0.2V.

Each motor has its measurement error sources. Therefore it is not merely possible to
state the error relationship of the values of the motor to the real values. Still, the values
outputted from the motors are overall usable to get an overview of the applied voltage to
the robot. Due to the not completely precise values, the maximum and minimum voltage
under accumulator usage from the MX 64 motors will be used for both motors as the
difference is small and through using the same voltage values, a better comparison of
the two motors is possible.
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4. Improvements for the Dynamic Simulation Model

4.3. Physically Influenced Joint Parameters

For improving the joint parameters of the URDF, which depend on physics, these values
first had to be measured at the motors. Therefore it is described in this section how
the torque, velocity, and static friction parameters were measured. The experiments
were done under different applied voltages. The minimum and maximum measured
voltage in the robot under accumulator usage was used, as described in Section 4.2.
Furthermore to be able to compare the values with the from Dynamixel provided data-
sheet also 14.8V was used as voltage. The analysis was performed for the MX 64 and
MX 106 motors. It was planned to use three motors each, whereby two of them were
already used, and one was completely new. However, the results from the new MX
106 were different from the old ones, while for the new MX 64 motor this could not be
observed. Therefore a fourth MX 106 motor, which is also new, was additionally tested
to confirm the results of the third motor. With that, it can be evaluated if a difference is
present between the different aged motors.

The experimental setup is shown in Figure 4.5. The motor is clamped to the table. At-
tached to the motor is a lever for hanging different load onto it. At the end of the lever,
an IMU is attached for measuring the angular velocity. The measurement is realized
with the gyroscope included in the IMU. The angular velocity of the motor can be mea-
sured at the end of the lever because it is located on the same axes of rotation and
the angular velocity is independent of the distance to the center of rotation. The other
measured variable is the torque of the motor. This is realized with the force/torque sen-
sor presented in Section 3.4, which is directly connected to the motor horn. For every
motor, the occurring torques and velocities are measured for different loads until stall
torque is reached, which is noticeable through overload errors of the motor. Overload
Errors are thrown to protect the motor when the load is too high for the motor to move.
This test execution is done with the three mentioned voltage values set at the voltage
supply.

The identification of static friction is realized based on the experiment presented by
Mensink [28]. The static friction can be determined by measuring the torque when the
motor starts to turn due to a force acting on it. Different from the related experiment,
the torque was directly measured with a force/torque sensor, and the force was applied
with a load instead of a spring scale. As an experimental setup, the same one as in the
previous experiments was used.

The experiments regarding the torque and speed of the motors confirm the connection
between these two values stated in 3.4.2. The results are shown in Figure 4.6. For
the no-load speed, the torque value is negative because the torque acts in the opposite
direction when no load is attached to the lever. The analysis of the measured values for
each motor type and each voltage value was done by applying linear regression. With
that, it was possible to determine the stall torque and no-load speed. The values for
the graphs are the maximum angular velocities and the corresponding torque values
per load. Interestingly, the resulted stall torque is on average about 1 Nm smaller than
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Figure 4.5.: This figure shows the experimental setup used for the analysis of the mo-
tors. The motor on the right side is clamped to the table. Attached to the
motor horn on the front is a force/torque sensor. Connected to the sensor
and the bearing is a lever about a bridge. At the top of the lever is an IMU
on a motor control board located for velocity measurements. For applying
different load to the motor, a load can be added to the front of the lever. The
motor is connected to a voltage supply and controlled by the motor control
board.

the maximum measured torque, which is shown in Table 4.4. Moreover, the maximum
measured speed is about 1.5 rad/s higher than the determined no-load speed, which is
shown in Table 4.5. In Figure 4.6c and 4.6d a comparison between the measured values
and the manufactures data is shown. A significant difference between the values from
the data-sheet and the measured ones is observable. The stall and maximum torques
are also stated in Table 4.6, which also shows the deviation of the values. The no-load
speed values are almost accurate, while the stall torque differs for the MX 64 about 45%
and the MX 106 about 32%.

As a result of this experiments, the maximal occurred angular speed, and torque were
written into the URDF because that is what is expected in the URDF. The other possibil-
ity would have been to take the by linear regression determined no-load speed and stall
torque. However, the determined stall torque does not represent what maximum torque
the motor can produce because higher torque values were measured. It seems that the
linear relation between torque and angular velocity is only a good approximation. The
values were taken from the 14.8V experiments as this present almost the middle of the
battery operation range.

An interesting observation was made during the torque and speed experiments. While
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(a) MX 64 with 12.8 V (b) MX 106 with 12.8 V

(c) MX 64 with 14.8 V (d) MX 106 with 14.8 V

(e) MX 64 with 16.0 V (f) MX 106 with 16.0 V

Figure 4.6.: The results from the motor experiments regarding torque and speed are
shown in the graphs. The speed in rad/s on the x-axis is plotted against the
torque in Newton-meter on the y-axis. The blue dots show the maximum
velocity and the corresponding torque value for a particular load attached
to the motor. With the blue dots, a linear regression was performed, which
resulted in the green line. For the measurement with 14.8 V, manufacturer’s
data is available for comparison, shown through the black line. Three MX
64 motors and four MX 106 motors were used to obtain these results.
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maximum torque [Nm] stall torque [Nm]
MX 64 12.8 V 4.85 3.78

14.8 V 5.43 4.00
16.0 V 5.762 4.111

MX 106 12.8 V 7.06 6.15
14.8 V 7.57 6.80
16.0 V 7.88 7.06

Table 4.4.: The table shows the maximum occurred torque per motor type and voltage
value for all used motors and the out of these values with linear regression
determined stall torque.

maximum speed [rad/s] no-load speed [rad/s]
MX 64 12.8 V 8.64 7.42

14.8 V 10.33 8.49
16.0 V 10.86 8.74

MX 106 12.8 V 7.15 6.16
14.8 V 8.22 6.82
16.0 V 8.82 7.47

Table 4.5.: The table shows the maximum occurred angular speed per motor type, and
voltage value for all used motors and the out of these values with linear
regression determined no-load speed.

experiment data-sheet
stall torque [Nm] no-load speed [rad/s] stall torque [Nm] no-load speed [rad/s]

MX 64 4.00 8.49 7.3 8.17
MX 106 6.80 6.82 10.0 5.76

Table 4.6.: The table shows a comparison between the determined stall torque and no-
load speed and the values stated in the data sheets [O17, O16].

mean static friction [Nm]
motor 1 0.14
motor 2 0.09
motor 3 0.04

all 0.09

Table 4.7.: The mean static friction values measured for the MX 64 motor are shown.
For three motors, the static friction was measured at 12.8V, 14.8V, and 16.0V.
The last column shows the mean value for all three motors together.
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Figure 4.7.: The graph on the left shows the measurements of an old MX 106 motor
with the blue dots representing the velocity values and their corresponding
torque values per attached load. The green line is the regression line out
of these dots, and the black line shows what is stated in the data-sheet.
On the right the results from the experiments with a new MX 106 motor are
shown the same way. Both measurements were done with 14.8 V as the
input voltage.

mean static friction [Nm]
motor 1 0.06
motor 2 0.06
motor 3 0.17
motor 4 0.01

all 0.10

Table 4.8.: The mean static friction values measured for the MX 106 motor are shown.
For three motors, the static friction was measured at 12.8V, 14.8V, and 16.0V.
The last column shows the mean value for all four motors together.
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the MX 64 motors behaved quite similar independent of their age, there was a difference
between the used and new MX 106 motors observable, which is illustrated in Figure
4.7. The new motor produced almost 2 Nm less torque. During the experiments this
was also observable as the new motors could not lift a load of 2.5 kg anymore with all
regarded voltage values, while the old motors stopped working at 3 kg with 14.8 V and
16V input and at 2.75 kg with 12.8 V.

The results of the static friction measurements are shown in Table 4.7 and 4.8. Overall
the static friction is similar with 0.09 Nm for the MX 64 and 0.10 Nm for the MX 106.
In comparison to the occurring torques during a motor’s usage, it is small. With three
or four motors, it is not possible to state the exact static friction coefficient. In Table
4.8, this is, for example, observable as the static friction values for motor three and four
differ profoundly. Both motors have been used for the first time. Still, the results were
different. This difference is explainable due to a different tightening of the motor horns,
different gear mobility, and because of small offsets in the measurement, which occur
despite biasing being used, which affect value in this small regime. However, overall,
the mean values taken about all measurements of a motor type should be correct for
an average specification. Therefore these values taken have been added to the URDF.

4.4. Summary

The URDF has been updated regarding its links and joints. For the links, the correct
center of mass position and inertia tensor was determined. Furthermore, the correct
mass value was stated. The joints description was improved regarding its physical
parameters, too. The maximal speed and torque, as well as the static friction, were cor-
rected. Moreover, the input voltage of the motors was studied, which showed that this is
quite complex to model. It is known now that the input voltage value outputted from the
motors is most accurate under medium load condition. However, the different motors
vary quite a lot in their accurateness. Due to the torque and velocity experiments, an
inadequacy in the stall torque and no-load speed values from the data-sheet was de-
termined. Besides a difference between the new MX 106 motors and the already used
ones was noted.
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5. Evaluation

This chapter presents the evaluation of the improvements described in Chapter 4. It
was investigated if the changes to the URDF helped to close the Reality Gap. For
evaluation, different motions executed by the robot in simulation and reality were com-
pared in terms of the position, velocity, and torque curves of all joints. In general, the
evaluation is conducted with two animations the robot had to execute. The first is the
cheering animation, shown in Figure 5.1. It is used to compare the movements of the
arm joints and the behavior of the leg joints while they are staying at the same position.
The second animation is the kicking animation, presented in Figure 5.2. This anima-
tion is useful to compare the behavior between reality and simulation under a high load
condition in the right leg, as the robot is standing on this leg during the kick and also
under a low load condition represented in the kicking left leg. The comparison between
the simulation and reality is conducted with three recorded rosbags each. The three
rosbags from reality are averaged, and the same is done with the three rosbags from
the simulation. From the two resulting curves, the difference per time-step is taken for
analysis. At first, just the improvements for the links were evaluated, which is shown
in Section 5.1. After that, in Section 5.2, the new joint parameters were added to the
URDF, and evaluation involving all improvements is performed. Finally, in Section 5.3,
the results regarding the minimization of the Reality Gap are summarized.

5.1. Link Parameter Evaluation

The evaluation of the improvements of the links in the URDF is performed as described
above. Furthermore, a quick head movement animation, as shown in Figure 5.3, is
regarded to evaluate the inertia values from the URDF. This animation is used only for
the link evaluation because inertia is only interesting for the link update in the URDF.
The URDF contains for this evaluation the new parameters of the links. The joint values
in the URDF are taken out of the data-sheet from the motors [O17, O16]. Hence, eval-
uating the link improvements is possible without influence by the new joint parameters.

At first, the cheering animation is evaluated in the context of the link improvements. In
Figure 5.4b, the differences in the joints position curves, between the reality and the
simulation using the link improved URDF is shown for all joints in the robot. Overall
it stands out that the position curves of the head and arm joints have smaller differ-
ences than most of the leg joints. However, the differences in the arm joints are more
distributed regarding the mean 50% values. Interestingly, the HipYaw joints are behav-
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Figure 5.1.: The movement sequence of the cheering animation performed by a Wolf-
gang robot is shown. It is used to evaluate the Reality Gap regarding the
motion behavior of the robot in simulation and reality.

Figure 5.2.: The movement sequence of the kicking animation with the left foot per-
formed by a Wolfgang robot is shown. It is used to evaluate the Reality
Gap regarding the motion behavior of the robot in simulation and reality.

Figure 5.3.: The movement sequence of the head animation performed by a Wolfgang
robot is shown. The head link moved several times from the left to the right
side and back again. It is used to evaluate the Reality Gap regarding the
inertia properties of the simulation.
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ing differently. The difference can be explained by taking a look at the position curves
of these joints, as shown in Figure 5.7. The LHipYaw joints had an offset during the
animation execution because of the standing position of the robot. Therefore a higher
difference occurred compared to the simulation.

Looking at the related velocity curve differences, shown in Figure 5.5b, the not moving
leg and head joints are almost accurate simulated. Some outliers appear because of
the vibrations of the robot. The arm joints are slightly differing. Still, some outliers have
a significant difference. The differences in the torque curves are shown in Figure 5.6b,
which is more significant for not moving leg joints.

For evaluating if the link revision of the URDF improved the simulation of the robot, the
above-described results are compared to the differences in the joint’s movement curves
between reality and simulation using the old URDF. The position differences analysis
for both URDFs is visualized in Figure 5.4, the velocity differences analysis in Figure
5.5, and the analysis of the torque differences in Figure 5.6. These plots show that the
simulation of the moving arm joints was improved because, e.g., the medians improved
or kept a similar value. The position simulation of the not moving joints worsened a little,
which is, e.g., represented in the box-plots of the position differences through higher
median values and higher outlier ranges. The not moving joints simulation of the velocity
achieves similar results using the link revised URDF compared to the old one. Just a few
outliers range further. In the box-plots of the torque differences, it is shown for the not
moving joints that the simulation of a few joints, e.g., RHipRoll and LHipRoll, got more
accurate, while, for example, the joints RAnklePitch and LAnklePitch are simulated less
precise. Overall this leads to a similar accuracy in simulation between the two URDFs
regarding the torque simulation of the not moving joints. Table 5.1 confirms these results
by showing the mean differences between simulation and reality for all moving and not
moving joints. The mean position value of the moving arm joints improved about 0.17◦,
and the mean velocity improved slightly about 0.02◦/s. The torque difference improved
significantly about 1.5 Nm. The not moving leg joints got worse about 0.4◦ in the position
difference, while the velocity and the torque difference stayed similar. The less accurate
position simulation can be explained by stronger vibrations acting on the in simulation
more massive torso after the link revision. So the PID controller has to counteract
more to keep its position, which leads to a more imprecise simulation due to the not yet
updated joint parameters.

The next animation regarded for evaluation is the above presented kicking animation.
The position differences between reality and simulation using the link revised URDF are
shown in Figure 5.8b. The simulation of the arms and the head is almost accurate. The
leg joints position differ a little more. Interestingly, the distance of the quartiles of the
right leg joints is bigger than the one in the left leg. Overall the medians for the right
leg are also higher than the ones for the left leg. This is explainable due to the higher
torques acting on the right leg, which is the one the robot is standing on.

Figure 5.9b shows the differences between the velocities. The velocity in the simulation
is accurate except for lots of outliers in the curves from the leg joints. Because the
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5. Evaluation

(a) old URDF

(b) link revised URDF

Figure 5.4.: These box-plots show the position differences of the cheering animation
from the real robot and the simulated one using the old URDF on the top
and the link revised URDF on the bottom. On the x-axis are the joints listed
and on the y-axis is the difference in degrees plotted.
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5.1. Link Parameter Evaluation

(a) old URDF

(b) link revised URDF

Figure 5.5.: These box-plots show the velocity differences of the cheering animation
from the real robot and the simulated one using the old URDF on the top
and the link revised URDF on the bottom. On the x-axis are the joints listed
and on the y-axis is the difference in degrees per second plotted.
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5. Evaluation

(a) old URDF

(b) link revised URDF

Figure 5.6.: These box-plots show the torque differences of the cheering animation from
the real robot and the simulated one using the old URDF on the top and the
link revised URDF on the bottom. On the x-axis are the joints listed and on
the y-axis is the difference in Newton-meter plotted.
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5.1. Link Parameter Evaluation

Figure 5.7.: This figure shows the position curves of the Hip Yaw joints during the cheer-
ing animation. On the top is the RHipYaw joint shown and on the bottom the
LHipYaw joint. The green and blue graph display the joint position curves
from the robot in reality. The two others show the curves recorded from
simulation executed using the URDF after the link revision. On the x-axis
the time is displayed in seconds. The y-axis shows the joint position in
radians.

position [◦] velocity [◦/s] torque [Nm]
moving, old URDF 0.6062 0.7271 1.9947
moving, link revised URDF 0.4305 0.7071 0.4445
unmoving, old URDF 1.0869 0.0643 0.9330
unmoving, link revised URDF 1.4582 0.0643 0.9331

Table 5.1.: The table shows the mean differences in position, velocity, and torque be-
tween the reality and the simulation using the old resp. link revised URDF
during the cheering animation. The mean value is taken out of the mean
differences from the single joints.
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5. Evaluation

(a) old URDF

(b) link revised URDF

Figure 5.8.: These box-plots show the position differences of the kicking animation from
the real robot and the simulated one using the old URDF on the top and the
link revised URDF on the bottom. On the x-axis are the joints listed and on
the y-axis is the difference in degrees plotted.
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5.1. Link Parameter Evaluation

(a) old URDF

(b) link revised URDF

Figure 5.9.: These box-plots show the velocity differences of the kicking animation from
the real robot and the simulated one using the old URDF on the top and the
link revised URDF on the bottom. On the x-axis are the joints listed and on
the y-axis is the difference in degrees per second plotted.
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5. Evaluation

(a) old URDF

(b) link revised URDF

Figure 5.10.: These box-plots show the torque differences of the kicking animation from
the real robot and the simulated one using the old URDF on the top and
the link revised URDF on the bottom. On the x-axis are the joints listed
and on the y-axis is the difference in Newton-meter plotted.
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5.1. Link Parameter Evaluation

position [◦] velocity [◦/s] torque [Nm]
moving, old URDF 0.6917 0.7325 0.5710
moving, link revised URDF 1.1325 0.9631 0.9993
unmoving, old URDF 0.5446 0.3859 0.4841
unmoving, link revised URDF 0.5064 0.0665 0.3949

Table 5.2.: The table shows the mean differences in position, velocity, and torque be-
tween the reality and the simulation using the old resp. link revised URDF
during the kick animation. The mean value is taken out of the mean differ-
ences from the single joints.

left leg is the moving one in the regarded animation, the outlier range is higher in that
leg. The difference in the torque values is shown in Figure 5.10b. The simulation of
the joints torque is imprecise for most of the leg joints, while again the right leg is less
accurate.

Comparing the above-shown results from the kicking animation with the differences
between reality and the old URDF a similar result as with the cheering comparison
is observable. Figure 5.8 shows that the differences in position in the arm and head
joints again improved, which means that the simulation got closer to reality. However,
the leg joints differences again mostly decreased a little. The difference in the velocity
curves improved for the arm and head joints. This improvement is shown in Figure 5.9,
where, e.g., the HeadPan joint has a smaller median. For the leg joints, the box-plots
show significantly higher outliers in the plot with the link revised URDF. The torque
differences are compared in Figure 5.10. Again an improvement is represented for
the unmoving arm and head joints. For example, the median torque difference of the
RShoulderPitch and HeadPan joints decreased. The leg joints difference worsened,
which is, e.g., presented in the higher median of the LAnklePitch joint. In Table 5.2 are
the mean difference values for position, velocity, and torque stated from the comparison
from reality to the old URDF, as well as reality to the link revised URDF. The arm joints
simulation of position improved in average about 0.04◦, which is a smaller improvement
than for the cheering animation. The mean velocity difference improved for the arm
joints again about 0.3◦/s. The torque of the arm and head joints also improved. The
worsening of the leg joints values is also shown in the table. A possible reason for
that is the influence of incorrect joint values on the corrected link parameters. This
influence consists of the PID controller and outside forces affecting the more massive
robot stronger because the simulation of the leg joints which are moving or under high
load is more imprecise while the simulation of the arm joints is not.

As inertia has a higher effect on fast motions, a fast head movement is evaluated too.
The animation is executed so fast that the robot could not reach the goal position in
the limited time per keyframe. The position accuracy, shown for the old and link revised
URDF in Figure 5.11, improved for the moving HeadPan joint as the median in the
difference decreased. Furthermore, some not moving joints were more accurate after
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5. Evaluation

(a) old URDF

(b) link revised URDF

Figure 5.11.: These box-plots show the position differences of the head movement ani-
mation from the real robot and the simulated one using the old URDF on
the top and the link revised URDF on the bottom. On the x-axis are the
joints listed and on the y-axis is the difference in degrees plotted.52



5.1. Link Parameter Evaluation

(a) old URDF

(b) link revised URDF

Figure 5.12.: These box-plots show the velocity differences of the head movement an-
imation from the real robot and the simulated one using the old URDF
on the top and the link revised URDF on the bottom. On the x-axis are
the joints listed and on the y-axis is the difference in degrees per second
plotted. 53



5. Evaluation

(a) old URDF

(b) link revised URDF

Figure 5.13.: These box-plots show the torque differences of the head movement ani-
mation from the real robot and the simulated one using the old URDF on
the top and the link revised URDF on the bottom. On the x-axis are the
joints listed and on the y-axis is the difference in Newton-meter plotted.
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5.2. Complete Evaluation

position [◦] velocity [◦/s] torque [Nm]
moving, old URDF 1.1258 39.5268 0.8825
moving, link revised URDF 1.2376 44.4872 0.7342

Table 5.3.: The table shows the mean differences in position, velocity, and torque be-
tween the reality and the simulation using the old resp. link revised URDF
during the head movement animation. Just the moving HeadPan joint is
shown as this is the interesting one when analyzing inertia. The mean value
is taken out of the mean differences from the single joints.

the link revision. An example of this are the HipRoll joints. The plots for velocity (Figure
5.12) show an improvement in the moving joint as the upper quartile improve about
50%. However, overall, there are more outliers in the velocity difference analysis box-
plot visualizing the link revised data. The torque difference (Figure 5.13) improved,
which can be noticed at the moving joint whose median for example got smaller. While
some not moving joints like the AnklePitch joints also improved, there exist more high
outliers after the link revision in the torque difference box-plot.

The inertia update was helpful for a more accurate torque simulation, which can be seen
in Table 5.3. The position and velocity accuracy decreased a little, possibly, because
of wrong motor speeds, due to imprecise values for the PID controller, which lead to a
wrong simulation of the inertia.

5.2. Complete Evaluation

In this section, it is evaluated how effective the joint parameter improvement was to
minimize the Reality Gap of the Wolfgang robot. For evaluation, the, at the beginning of
the chapter explained, cheering and kicking animations are used. The URDF contains
now the new velocity, torque, and friction parameters for the joints, as well as the new
inertial link parameters. The evaluation is conducted by a comparison of the results
achieved with the new URDF to the results from the evaluation using only the new
inertial link parameters in the URDF and the joint values from the data-sheet.

Again the cheering animation is analyzed at first. In Figure 5.14b, the position differ-
ences from the simulation using the new URDF and reality are presented. The position
is almost accurate simulated as the worst difference is approximately 1.43◦. Overall the
difference between simulation and reality of the arm and head joints is smaller than the
difference of the leg joints. The median velocity difference, displayed in Figure 5.15b, is
also near zero, which symbolizes an accurate simulation. Just some outliers, especially
in the arm joints, still differ a lot from the in reality executed motion curve. The difference
in the torque curves, which is presented in Figure 5.16b, is still differing. Especially the
leg joints have on average a difference of 1 Nm to the real curve.

55



5. Evaluation

position [◦] velocity [◦/s] torque [Nm]
moving, old URDF 0.6062 0.7271 1.9947
moving, link revised URDF 0.43048 0.7071 0.4445
moving, new URDF 0.3138 1.6838 0.2798
unmoving, old URDF 1.0869 0.0643 0.9330
unmoving, link revised URDF 1.4582 0.0643 0.9331
unmoving, new URDF 0.6918 0.2330 0.5792

Table 5.4.: This table states the mean differences between the simulation using the
named URDF and the measurements of the real cheering motion execu-
tion. Thereby the mean difference for position, velocity, and torque of the
mean differences of each joint is shown.

position [◦] velocity [◦/s] torque [Nm]
moving, old URDF 0.6917 0.7325 0.5710
moving, link revised URDF 1.1325 0.9631 0.9993
moving, new URDF 0.5606 1.0626 0.4622
unmoving, old URDF 0.5446 0.3859 0.4841
unmoving, link revised URDF 0.5064 0.0665 0.3949
unmoving, new URDF 0.3625 0.0651 0.1702

Table 5.5.: This table states the mean differences between the simulation using the
named URDF and the reality of the kicking motion execution. Thereby the
mean difference for position, velocity, and torque of the mean differences of
each joint is shown.

In comparison to the differences between the link revised URDF and reality, shown in
Figure 5.14, the simulation of the joint positions improved. For example, the LAnklePitch
joint got approximately 8.6◦ closer to the real position curve. The comparison of the
velocity differences (Figure 5.15) shows that while the median values are still equal,
there are more values, using the new joint parameters, deviating from the real motion
velocity. Therefore the velocity simulation accuracy decreased a little. After the joint
parameters update, the torque values are more accurate for all motors now. Merely
some arm joints have some higher outliers than it was the case before the joint update.
The analysis is confirmed by the mean difference taken over all joints mean differences
shown in Table 5.4. Position and torque are, using the new URDF, more accurately
simulated, while the velocity simulation of the moving arm joints got significantly worse
because of all the outliers. The decrease of the velocity simulation accuracy of the other
joints is also represented.

Next, the kicking animation is evaluated with the new URDF. The position, shown in
Figure 5.17b, is almost accurately simulated because the highest medians are slightly
bigger than 1◦. The medians in the velocity box-plot (Figure 5.18b) are near zero.
However, there are lots of high outliers, especially for the leg joints. The torque medians

56



5.2. Complete Evaluation

(a) link revised URDF

(b) new URDF

Figure 5.14.: These box-plots show the position differences of the cheering animation
from the real robot and the simulated one using the link revised URDF on
the top and the new URDF on the bottom. On the x-axis are the joints
listed and on the y-axis is the difference in degrees plotted.
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5. Evaluation

(a) link revised URDF

(b) new URDF

Figure 5.15.: These box-plots show the velocity differences of the cheering animation
from the real robot and the simulated one using the link revised URDF on
the top and the new URDF on the bottom. On the x-axis are the joints
listed and on the y-axis is the difference in degrees per second plotted.
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5.2. Complete Evaluation

(a) link revised URDF

(b) new URDF

Figure 5.16.: These box-plots show the torque differences of the cheering animation
from the real robot and the simulated one using the link revised URDF on
the top and the new URDF on the bottom. On the x-axis are the joints
listed and on the y-axis is the difference in Newton-meter plotted.
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5. Evaluation

(a) link revised URDF

(b) new URDF

Figure 5.17.: These box-plots show the position differences of the kicking animation
from the real robot and the simulated one using the link revised URDF on
the top and the new URDF on the bottom. On the x-axis are the joints
listed and on the y-axis is the difference in degrees plotted.
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5.2. Complete Evaluation

(a) link revised URDF

(b) new URDF

Figure 5.18.: These box-plots show the velocity differences of the kicking animation
from the real robot and the simulated one using the link revised URDF
on the top and the new URDF on the bottom. On the x-axis are the joints
listed and on the y-axis is the difference in degrees per second plotted.
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5. Evaluation

(a) link revised URDF

(b) new URDF

Figure 5.19.: These box-plots show the torque differences of the kicking animation from
the real robot and the simulated one using the link revised URDF on the
top and the new URDF on the bottom. On the x-axis are the joints listed
and on the y-axis is the difference in Newton-meter plotted.
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5.3. Summary

differ in maximum about 1 Nm, which is presented in Figure 5.19b. It symbolizes an
almost accurate simulation for the torque.

Comparing these results to the results from using just the link revision, an improvement
in the position simulation is visible, which is shown in Figure 5.17. For example, the
highest median in the link revised box-plot is halved in the box-plot with the new URDF
due to the new joint parameters. The velocity differences, presented in Figure 5.18, are
similar. The differences in the torque values (Figure 5.19) overall got better because
the highest median after the link revision was around 1.75 Nm, while the highest one
after the joint revision is smaller than 1 Nm. The comparison of the mean differences
of all joints mean differences, presented in Table 5.5 confirms the improvements for the
position and torque too. While the velocity accuracy is similar or just a little worse in
comparison to the one using the link revised URDF, a bigger difference is visible to the
old URDF. An explanation could be the complexity of the simulation modeling as it is
affected by outside forces and the PID controller.

5.3. Summary

The result of the evaluation is presented in Table 5.6. The changes in the URDF, lead
to an improvement in the simulation of the joints position and torque. However, the sim-
ulation of the joints velocity got less accurate except for the unmoving joints during the
kicking animation. It was figured out that it is not helpful to only adapt the link param-
eters of the robot as this leads to a worsening of the simulation using the wrong joint
parameters. Together with the joint parameter update this then leads to the mentioned
changes. The position and the torque simulation do not map the reality exactly yet, but
significant improvements to the accuracy could be achieved. The velocity simulation
still needs to be improved. Adapting the parameters in the simulation is not enough as
this is, for example, profoundly affected by the PID control algorithm and outside forces
acting on the robot. These two aspects do not influence the unmoving joints in the kick-
ing animation a lot, which resulted in an improvement of their velocity accuracy, while
the simulation of the other joints, and during movement of these joints, decreased.
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5. Evaluation

position [◦] velocity [◦/s] torque [Nm]
cheering, moving joints 0.2924 -0.9567 1.7149
cheering, unmoving joints 0.3951 -0.1687 0.3538
kicking, moving joints 0.1311 -0.3301 0.1088
kicking, unmoving joints 0.1821 0.3208 0.3139

Table 5.6.: This table shows the result of the evaluation. The mean accuracy of the old
URDF is compared to the mean accuracy of the new URDF. Presented is
the result through the difference between the position, velocity, and torque
values. The difference illustrates the resulting changes due to the, in this
thesis, made improvements to the URDF. The difference being a positive
number symbolizes an increase in the simulation accuracy, while a negative
number symbolizes a decrease.
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6. Discussion

In Chapter 5, it was figured out that the simulation with the improved URDF led to a
more accurate simulation of the position and torque of the robot’s joints, while the ve-
locity accuracy decreased. With this result, the simulation usage for checking a motion
behavior of the robot is more efficient because the position curves are closer to reality.
To mimic the robot’s behavior, in reality, it is necessary to improve the simulation of the
joint velocities, especially. It is not possible to realize this through only updating the
parameters in the URDF, as the velocity depends highly on the PID control algorithm.
A difference in the PID control is indicated in simulation because the motors need a
long time to move the last degree before the goal position is reached, which does not
happen in reality under normal load conditions. Ideally, the PID parameters of the robot
should be used in the simulation. At the current state of the simulation, this is not pos-
sible as the robot is not able to stand in simulation with the PID parameters used on the
real robot. Further investigation is needed to explain this. The method of operation of
the PID controller in the real motor is shown in Figure 6.1, which visualizes the position
control mode of a Dynamixel MX series motor [O39]. The P, I and D part are summed
up, while being weighted with a coefficient and time. That represents the usual realiza-
tion of a PID controller. The position control of the used motors can be adapted with a
feed-forward controller, but this feature is not used in the motors, which were regarded
in this thesis. In the simulation the PID controller is implemented in the used ros_control
controller [O13]. The PID control is implemented in the usual way. Therefore this is sim-
ilar to the PID controller used in the real motors. The simulated controller regards the
time passed since the last update, so there cannot be a problem with too small update
rates of the simulation. Therefore it is not known why the simulation is not working with
the on the real robot used PID values. A further aspect influencing the simulation is the
not yet modeled dynamic friction, as modeling requires complex setups to measure the
different components of the dynamic friction. All the mentioned aspects have an impact
on the Reality Gap.

The robot’s behavior in simulation is influenced by lots of different factors which were not
studied in this thesis. One factor is that the ground the robot is standing on is simulated
flatly. In reality, the robot is standing on artificial grass. This effects, for example, how
stable the robot is standing, or collision forces with the ground. Therefore an analysis,
like in Chapter 5, was made between a cheering animation execution in simulation using
the new URDF and an execution in reality on flat ground. The results are presented
in Table 6.1. It is shown that the simulation is more accurately mimicking the robot’s
behavior on the grass and not on the flat ground. The position of the joints was 0.2◦ less
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6. Discussion

Figure 6.1.: The position controller of a Dynamixel MX series motors is visualized. It
is shown how the motors are actuated. Furthermore, the for this thesis
relevant calculation of the PID controller output is shown. This figure is
taken from the Robotis e-Manual for this motor type [O39].

position [◦] velocity [◦/s] torque [Nm]
moving, flat ground 0.3345 0.6742 1.6723
moving, grass 0.5606 1.0626 0.4622
unmoving, flat ground 0.5512 0.2366 0.4414
unmoving, grass 0.3625 0.0651 0.1702

Table 6.1.: The table shows the mean of the mean differences of the single motors in
position, velocity, and torque between the comparison of cheering animation
simulated using the new URDF and executed in reality on grass respectively
a flat ground. The mean value is taken out of the mean differences from the
single joints.

accurate on average. Furthermore, there is a large difference between the simulated
torque of the moving joints represented by a 1.2 Nm decrease. The other evaluated
parameters also decreased in their accuracy. So the execution of the animation on the
real robot on grass does not decrease the simulation accuracy. That could have been
an influence because of the comparison with the on a flat ground executed simulated
motion execution. One explanation for this is the vibrating of the robot in reality, which is
higher on flat ground than on damping grass. Because the simulation is not realistically
modeling this effect, the simulation is closer to the reality when the robot is standing on
grass.

Other influences are vibrations due to the robots motion, collision forces due to the
contact with the ground and influences due to the load acting on the robot. Whether
this is simulated correctly depends on the physics engine. In this thesis, ODE [O22]
was used, which does not support the robots kinematic of links and joints. Joints are
modeled as constraints between bodies, in this case, the links [40]. Because of this,
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the robot’s movements have to be calculated in the Cartesian space, and calculation in
the joint space is not possible. On the other hand ODE is strong in modeling collisions
[40]. Still, ODE or any other existing physics engine is not modeling the physics acting
in reality exactly correct [40]. Therefore with improving the robot description file, it is not
possible to achieve a simulation, which bridges the Reality Gap completely. Even if the
robot description file is stating the robots features correct, the simulation would not be
accurate, because of the inaccuracies of the physics engine.

Possibly another physics engine would simulate the regarded robot more accurately.
The used simulator Gazebo supports, besides ODE, the physics engines Bullet, Sim-
body, and DART. However, only ODE is fully integrated into the simulator. Furthermore,
the with ODE running setup of the simulator is not working combined with other physics
engines. The usage of Bullet instead of ODE caused the robot to hover slightly over
the ground and moving with a small impulse in one direction. Thereby the robot moved
its legs, without a command to do so. That resulted in a by the simulation not no-
ticed self-collision of the feet and lower legs. When using ODE, the robot is standing
in this situation. Starting the simulator with Simbody lead to a real-time factor of 0.0,
the clock in simulation did not run, and the world setup was completed with mistakes,
e.g., the goal net over the center circle. The physics engine DART requires Gazebo to
be installed from source. After the simulation is started with DART, the robot is shortly
standing, but it starts to crock. That generates an impulse leading to the robot rotating
about the front edge of its feet. Therefore the robot is falling. Presumably, this impulse
is occurring because of resulting collision forces due to the robot sinking a little in the
ground. Hence, at the current state, the only easily usable physics engine is ODE.

The limited computational power is also a reason for an inaccurate simulation as this
is limiting the possible update rate. A real-time factor, which symbolizes the running
speed of the simulation in comparison to the time passing in reality, should be not too
small, so a motion execution does not take a lot longer than in reality. For achieving
that, even if the simulation is slower than reality, the solver iterations and update rate
of the physics engine have to be limited. So a trade-off between accuracy and usability
has to be used. That leads to a not continuous simulation, which is only updated at
specific time steps to mimic the real world. In between the reality differs a little from the
simulated state causing inaccuracies in the simulation.

Furthermore, the reality is not wholly deterministic. For example, the motors are influ-
enced by the backlash phenomena, which leads to the fact that the motors do not reach
exactly the position stated in the control software. Also, the behavior of each motor is
not entirely the same. In a description file, only one value describes a characteristic,
e.g., the motor’s torque. The in the robot description file stated parameters are deter-
mined out of the values from some test motors which already differed in their strength.
With using more data to find the parameters for simulation describing the motor, they
could gain accuracy. However, overall, this would only lead to a better average simu-
lation, while the single motors included in the robot can still differ from these values.
Finding out the correct parameters for every motor alone would be an option, but this is
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6. Discussion

too much of a workload as sometimes motors break and get changed and the motors
are affected by wear which continually changes the parameters a little. Moreover, errors
occurring during a measurement have a higher impact on the results when the motors
are regarded individually.

A further impact on the motors is the input voltage, which influences the torque and
velocity of the motors. With just one parameter each in the simulation, it is not pos-
sible to model the different behavior of the robot under the influence of different input
voltages. Therefore, using the robot with an accumulator will always lead to changes
between simulation and reality. The simulation could be adapted to the voltage provided
by the external brick of the robots, but as this is not used during a soccer game, it is, in
case of the Wolfgang robot, not too valuable. Still, this can lead to differences between
simulation and reality. Because of the voltage drop occurring in the robots chains, the
maximum torque and velocity also change per motor. When a function to describe the
voltage drop would be known, this could be regarded in the affected parameters of the
robot description file. At the current state, this leads to a difference between simulation
and reality.

Overall it is not possible to state with certainty that the in this thesis found parameters
are describing the robot model accurately. For example, the mass and inertia tensor of
a link could be stated incorrectly, but due to an incorrect motion simulation, the param-
eters seem correct. Still, for the current state, an improvement was made to simulate
the robot’s motion. It is possible to use the simulator to check if a motion sequence
is correctly implemented or to check if different software components work integrated.
However, the robot is more stable in simulation, and the joints behavior is not yet mod-
eled as in reality. Therefore the real robot is still necessary to evaluate if a generated
motion sequence can be executed on the robot without the robot falling. A further dis-
advantage is the speed of the simulation as it runs significantly slower than in reality.

68



7. Conclusion

In this thesis, it was decided to improve the robot description file of the Wolfgang robot
platform as this seemed to be a valuable first step, which was done by other researchers
as well to minimize the Reality Gap. The physical parameters of the robot’s links and the
physical parameters for the joints, except for the dynamic friction, have been updated.
For this updates, the links of the robots and the robot’s motors, representing its joints,
were studied. In Section 7.1, the results are summarized, and a conclusion is drawn.
Further work needed to close the Reality Gap further is presented in Section 7.2.

7.1. Summary

The improvements of the chosen physical parameters in the robot description file of
the Wolfgang robot platform lead to an overall enhancement of the simulation accuracy.
In general, the robot is behaving more realistic in simulation regarding the motion ex-
ecution because of the improvements. The improvements consist of an examination
of the robot’s links regarding their mass, their center of mass, and their inertia tensor.
Besides the into the joints integrated motors were analyzed. Due to this analysis, the
torque, angular velocity, and static friction are now described more accurately in the
robot description file. As a result of these improvements, the joint’s position and torque
values are modeled more realistic. Just the joints velocity simulation decreased due to
influences like the PID control algorithm.

Additional investigations figured out that the motor’s behavior is impacted by lots of
different aspects. For example, the input voltage profoundly affects the for a motor
maximal achievable torque and angular velocity. That impacts the robot due to a voltage
drop in the robots chains. This voltage drop increases due to high load on the robot. In
general, the load already has an effect on a motor’s performance.

Overall, the simulation of the Wolfgang robot platform is better usable now, which sym-
bolizes a minimization of the Reality Gap. For ultimately bridging the Reality Gap, fur-
ther work is needed. The decision to improve the robot description file and the methods
used to find the physical parameters were useful as they lead to an improvement of the
simulation. Because the used methods are generally applicable, they can be used for
other robots as well to improve the physical characteristics in their robot description file
and thereby achieve a more accurate simulation of the regarded robot.
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7. Conclusion

7.2. Future Work

For keeping the level of simulation accuracy, it is necessary to update the parameters
in the robot description file when changes are made to the robot. So for example,
when the robot gets a new head link for a new camera or when a new computation
unit is added to the torso of the robot, the physical characteristics of the impacted links
change. So the parameters describing the impacted links have to be adapted to the
new structure and weight.

For bridging the Reality Gap further, there are lots of approaches, which can be pur-
sued. In general, some are explained in chapter 2. Regarding the Wolfgang robot, it
would be interesting to analyze the forces and vibrations within the robot as well, as the
forces occurring because of collisions. That could be used to determine the load acting
on a motor of the robot more precisely. Moreover, creating a model of the grass for
simulation could be helpful. Simulating the collision forces between the feet and grass
should result in a more accurate simulation of the robot’s motion. It would also be in-
teresting to investigate if the other physics engines are simulating these effects and the
robot, in general, more accurately. For realization, a working simulation setup has to be
found, and possibly some crucial functionalities have to be integrated into Gazebo. A
significant step is to determine useful values for the update rate and solver iterations.
That should also be investigated further for the used physics engine ODE. Moreover,
the force transfer from the motor horn to the link depends on how tight the screws are.
This impact on the robot’s behavior should also be analyzed.

Furthermore, a study of the input voltage of the motors would be interesting as it has
been figured out in this thesis that there is a voltage drop in the robot. Moreover, the
input voltage has an effect on the torque and velocity the motors can produce. Therefore
a further analysis would be helpful to create a more accurate actuator model.

This actuator model can be written as a plugin for Gazebo and then be used to include,
for example, the influences of the input voltage and the load or other impacts to the
actuator in the simulation. Also, motor characteristics, e.g., backlash, resolution, gear
ratio, or internal friction in the motor could be described. The implementation of the
PID controller should also be included in this model because this impacts the motor
control significantly. For this, it has to be investigated further how the PID controller of
the motors is implemented. Besides a deeper knowledge of the influence of the P, I and
D values on the in simulation used controller should be gained, to be able to use the
robot’s PID values in simulation. A useful guideline are the joint position controllers for
simulation in the ros_controller package [O12] because the at the current state used
PID controller is implemented in this package. Furthermore, for a simulation of a real
game, it would be nice to be able to simulate the accumulator operation as the voltage
drop impacts what the robot can still do. An example of this is the stand up of the
robot from the ground. Successful execution can get hard for the robot near the end of
halftime.
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7.2. Future Work

A further effect, which would be interesting to study and then also include in the actuator
model is the impact of the temperature of the motors on the robot’s behavior. Possibly
there is a difference between a motor at room temperature and a motor which heated
due to usage. That the motors get warm also happens during a game and when, e.g.,
overload errors occur and can, therefore, impact the robot’s behavior.

All in all, there are still lots of physical aspects unknown or unclear, which can be studied
and then implemented. That will help to improve the simulation accuracy and therefore
to bridge the Reality Gap. Besides, a deeper understanding of the robot is gained.
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A. Appendix

A.1. Center of Mass Measurements

link measured Autodesk
x position y position z position x position y position z position

torso 0.007 -0.002 0.021 0.014563 0.001600 0.016559
hip_1 0.000 0.000 -0.011 -0.000001 0.000000 -0.014563
hip_2 0.046 -0.002 -0.026 0.051391 0.000232 -0.014250
upper_leg -0.006 0.004 -0.126 -0.004721 -0.000424 -0.132759
lower_leg 0.012 0.000 -0.076 0.005873 -0.000102 -0.093305
ankle -0.020 -0.005 0.026 -0.017874 0.000190 0.013809
foot 0.081 -0.016 -0.033 0.075576 -0.013868 -0.035997
shoulder -0.012 0.020 0.000 -0.010164 0.022268 -0.000376
upper_arm 0.000 0.000 0.031 -0.000158 0.000012 0.035495
lower_arm 0.055 0.000 0.001 0.050639 -0.000164 0.000492
neck -0.005 0.000 0.016 -0.027758 -0.000252 0.032356
head 0.004 0.000 0.096 0.012794 -0.000380 0.100180

Table A.1.: A look-up table for the center of mass of the Wolfgang robots links is shown.
On the left side in the measured column, the experimentally determined x,
y and z positions can be found, and on the right side, the values outputted
from Autodesk can be found. All values are stated in the unit meter [m].
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A. Appendix

A.2. Mass Values of the Wolfgang Robots’ Links

link stated mass measured mass relative error
torso 1.8051 2.889 0.600465348180156
hip_1 0.073374 0.098 0.335622972715131
hip_2 0.35844 0.349 -0.026336346389912
upper_leg 0.38276 0.248 -0.352074406939074
lower_leg 0.20549 0.085 -0.586354567132221
ankle 0.35903 0.349 -0.027936384146172
foot 0.1488 0.312 1.09677419354839
shoulder 0.025434 0.097 2.81379256113863
upper_arm 0.2575 0.229 -0.110679611650485
lower_arm 0.23502 0.208 -0.114968938813718
neck 0.15587 0.153 -0.01841277988067
head 0.40746 0.110 -0.73003485004663

Table A.2.: A look-up table for comparing the in the given URDF stated mass with the
new weighed values is shown. The mass values are stated in the unit [kg].
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