
M A S T E R T H E S I S

3D Printing of Nonplanar Layers
for Smooth Surface Generation

vorgelegt von

Daniel Ahlers

MIN-Fakultät

Fachbereich Informatik

Technical Aspects of Multimodal Systems, TAMS

Studiengang: Informatik

Matrikelnummer: 6424701

Erstgutachter: Prof.Dr. Jianwei Zhang

Zweitgutachter: Dr. Norman Hendrich

mailto:2ahlers@informatik.uni-hamburg.de
mailto:zhang@informatik.uni-hamburg.de
mailto:hendrich@informatik.uni-hamburg.de

Abstract

Abstract

Stair stepping artifacts reduce the surface quality of 3D printed objects, especially

when the slope is close to horizontal. Previous researchers showed that nonplanar

surfaces could reduce these artifacts but only presented prototypes for the toolpath

generation. The combination of nonplanar and planar layers results in smoother

surfaces and the object is still printable on a three-axis 3D printer. Adding the

ability to print nonplanar surfaces to an open-source slicer increases the usabil-

ity and provides a general-purpose approach. This work presents a slicer that is

capable of generating nonplanar toolpaths from any object. While printing, the

printhead does not collide with the object since this is checked beforehand. The

surface quality of objects with nonplanar layers is significantly better than with

planar layers only.

Zusammenfassung

Der Treppeneffekt auf 3D gedruckten Objekten, der vor allem auf flach verlaufenden

Steigungen auftritt, verringert die Oberflächenqualität deutlich. Frühere Arbeiten

haben gezeigt, das nicht-planare Oberflächen dieses Problem beheben können. Die

Pfadgenerierung war dabei aber nur in Prototypen implementiert. Die Kombina-

tion von planaren und nicht-planaren Schichten führt zu glatteren Oberflächen auf

Objekten dabei kann das Objekt mit einem Drei-Achs-Drucker gedruckt werden.

Durch die Integration der nicht-planaren Schichten in einen Open-Source Slicer

wird dieser Ansatz universell nutzbar. Außerdem erhöht sich die Benutzbarkeit

deutlich. Diese Arbeit zeigt einen Slicer der in der Lage ist, nicht-planare Schichten

in beliebigen Objekten zu generieren. Beim Druck der Objekte treten keine Kol-

lisionen auf, da dies von vornherein überprüft wird. Die Oberflächenqualität der

gedruckten Objekte ist dabei besser als die der planar gedruckten Objekte.

III

Contents

1 Introduction 1

1.1 Problem Statement . 2

1.2 Goal of this Thesis . 3

1.3 Outline . 3

2 Principles 5

2.1 3D Printing . 5

2.2 STL . 7

2.3 G-Code . 9

2.4 FDM Slicing Software . 10

2.5 FDM Printers . 12

3 Related Work 15

3.1 Multi-Direction Slicing . 15

3.2 Inclined Layer Printing . 16

3.3 Active-Z Printing . 17

3.4 Multi-Axis Material Extrusion . 18

3.5 Fully Three-Dimensional Toolpath Generation 18

3.6 Curved Layer Fused Deposition Modeling 20

3.7 Combining Flat and Curved Layers 20

3.8 Path Planning for CLFDM . 21

4 Implementation 23

4.1 Planar Toolpath Generation . 23

4.1.1 Layer Generation . 24

4.1.2 Perimeter Generation . 25

4.1.3 Prepare Filling . 26

4.1.4 Surface Filling . 27

4.1.5 Support Generation . 29

4.1.6 Skirt and Brim Generation 30

4.1.7 G-code Generation . 31

V

Contents

4.2 Hardware Limitations . 33

4.2.1 Nozzle Geometry . 34

4.3 Nonplanar Toolpath Generation . 36

4.3.1 Identifying Printable Nonplanar Surfaces 37

4.3.2 Collision Avoidance . 39

4.3.3 Surface Generation for Nonplanar Layers 41

4.3.4 Toolpath Generation for Nonplanar Layers 44

4.3.5 G-code Generation for Nonplanar Layers 50

4.3.6 Toolpath Visualization . 52

4.4 Limitations . 53

4.4.1 Unusable Slic3r Features . 53

4.4.2 Over- and Under-filling . 54

5 Evaluation 57

5.1 Stair-Stepping . 57

5.2 Complex Surfaces . 58

5.3 Printability of Different Angles . 59

5.4 Print and Slicing Speed . 60

5.5 Approximation Error . 61

6 Conclusion 63

6.1 Outlook . 64

Bibliography 67

VI

List of Figures

1.1 Quarter sphere with stair-stepping 2

1.2 Growth of stair-stepping . 3

2.1 3D printing process . 6

2.2 The ASCII STL file format . 8

2.3 The binary STL file format . 9

2.4 Cura and Slic3r . 11

2.5 Two different FDM printers . 12

2.6 A bowden and a direct drive extruder 14

3.1 Inclined layer printing . 16

3.2 Bread slicer . 17

3.3 Nozzle sweeping out a surface . 19

3.4 Curved on top of planar slices . 21

3.5 Printing height compensation . 22

4.1 Layer generation . 24

4.2 Perimeter generation . 25

4.3 Layer classification . 27

4.4 Surface filling . 28

4.5 Finding overhangs . 29

4.6 Collision model . 34

4.7 Different nozzle geometries . 35

4.8 Penetration depth . 36

4.9 Printable surface . 37

4.10 Simplified printhead collider . 40

4.11 Object colliders . 42

4.12 Nonplanar surface generation . 43

4.13 Point in facet . 46

4.14 Toolpath projection . 47

4.15 Travel moves to acoid collisions . 50

VII

List of Figures

4.16 Extrusion correction factor . 51

4.17 Toolpath visualization . 52

4.18 Support collisions . 54

4.19 Underfilling . 55

5.1 Stair-stepping on a flat surface . 57

5.2 Stair-stepping on a curved surface 58

5.3 Complex surface . 59

5.4 Printability test . 60

5.5 Approximation error test . 62

VIII

1 Introduction

Three Dimensional (3D) printing is a process where 3D models can be printed as

physical objects. It is possible to print objects with a complex geometry that is

impossible to produce with classic fabrication methods [Gibson et al., 2015]. Expir-

ing patents on some 3D printing techniques helped to spread low-cost printers on

the market. They are affordable for home and small business use cases. The hype

in the consumer market also pushed the Additive Manufacturing (AM) industry

further where prototypes and even products with small quantities are printed. 3D

printing mostly uses different types of plastics. In the industry, metal and ceram-

ics are also common. Today different materials can be printed at once, and even

electronics are integrated directly into the object [Wasserfall, 2015].

Fused Deposition Modeling (FDM) is an important technique for small-scale plas-

tic 3D printers. Like in other techniques, the objects are built by stacking planar

layers onto each other. Each layer is built by pushing melted plastic through a

nozzle. Due to the discretized layer structure, printed objects have approximation

errors from the original model like stair-stepping. These artifacts occur especially

on surfaces with a slope close to horizontal. The intensity of the stair-stepping

artifacts can be lowered by reducing the layer thickness. This can either be done

on all layers evenly or adaptively on layers where it is necessary [Tyberg, 1998].

But since FDM printers have relatively thick layers, the stair-stepping will still be

visible. They can be removed by post-processing the object with either chemicals

or a Computerized Numerical Control (CNC) mill. Both of these methods require

additional, often manually triggered work steps.

To get rid of stair-stepping, [Chakraborty et al., 2008] proposed to use curved

layers on the surface of objects. These curved layers are nonplanar and follow the

surface of the object instead of spreading it over different layers and creating a

stair-stepping effect. [Huang and Singamneni, 2014] and [Llewellyn-Jones et al.,

2016] used these curved layers to build prototypes with planar layers below and

curved layers on top.

1

Chapter 1. Introduction

Figure 1.1: A quarter sphere with generated layers (green). The visible stair-stepping
artifacts lead to approximation errors from the model (red).

1.1 Problem Statement

Due to the discretized layer structure of printed objects, stair-stepping artifacts

occur on the surfaces where the slope is close to horizontal. Theses stair-steps are

an approximation error from the model. Figure 1.1 shows stair-stepping artifacts

on a quarter sphere and the approximation error from the model. The stair-

stepping is way worse on surfaces with a low ramp angle than on those with a

high ramp angle. Figure 1.2 shows the growth of the stair-step length when the

ramp angle decreases on different layer heights. The stair-step length is calculated

with a right triangle which is placed between two layers. The adjacent side of the

angle forms the stair-step length while the opposite side represents the layer height.

Stair-stepping is also unaesthetic and influences the mechanical properties of the

printed object. Friction, fluid-dynamics, and aerodynamics are different from the

designed object. For example, on a printed wing, these stair-stepping artifacts

can produce air turbulence and reduce the uplift. Nonplanar layers can reduce

the stair-stepping effect on surfaces. These objects look more aesthetic and have

mechanical properties which are closer to the modeled object. Lastly, the objects

are stronger since a nonplanar surface bonds multiple layers together.

2

1.2. Goal of this Thesis

0 10 20 30 40 50 60 70 80 90

0

2

4

6

8

10

surface angle / ◦

st
ai

r-
st

ep
le

ng
th

/
m

m

0.1 mm
0.2 mm
0.3 mm

Figure 1.2: The stair-stepping length in relation to the angle of the surface. The stair-
stepping length rises drastically below 20◦.

1.2 Goal of this Thesis

The goal of this work is to develop a method to print nonplanar layers on top of pla-

nar layers in any object. This will lead to smoother surfaces with less stair-stepping

artifacts. The toolpaths that are generated will be printable on a three-axis 3D

printer without further modifications. To be able to generate the nonplanar tool-

path, the surfaces are identified by their angle. They are checked for collisions

during the printing process. The actual printing layers are created by moving the

surfaces upwards from their original position below the nonplanar surface. The

toolpaths are generated for a planar layer and are then projected downwards along

the original surface mesh. To achieve a general purpose method which can be

used by anyone, an existing open-source slicing software is modified to generate

toolpaths for nonplanar surfaces. This increases the usability that previous imple-

mentations did not have. The nonplanar surfaces are only generated on surfaces

facing upwards.

1.3 Outline

Chapter 1 introduces this work and sets its goals. The principles which are neces-

sary to understand this work are presented in chapter 2. The related work, done

by other researchers, is analyzed in chapter 3. Chapter 4 shows how the nonplanar

surfaces can be found and how a toolpath is generated for them. The evaluation

in chapter 5 presents some test prints with nonplanar surfaces and compares them

with regular prints. Lastly, chapter 6 concludes this work.

3

2 Principles

This chapter describes the basic principles necessary for this work. First, the

general 3D printing process is described in section 2.1. Then, the file format STL,

which is the most used format in 3D printing, is presented in section 2.2. Then,

the relevant open-source slicing tools are described in section 2.4. Lastly, an FDM

printer is described in section 2.5.

2.1 3D Printing

3D printing is similar to regular Two Dimensional (2D) printing on paper. It just

adds the third dimension to produce objects that can be taken into hand. Like in

paper printing it transforms the digital data from the computer into a real physical

object. A term that is often mentioned as 3D printing is additive manufacturing.

Which means 3D printing, but often in a more industrial environment. 3D printing

can also be used for mass production of objects without the process planning and

tool making of traditional fabrication processes. 3D printing saves complex plan-

ning and makes the process more flexible, but that does not mean that it is simple.

The general 3D printing process can be separated into three steps: Model gen-

eration (figure 2.1(a)), slicing (figure 2.1(b)), and printing (figure 2.1(c)). For the

model generation, the model has to be designed, downloaded or scanned. Slicing

means that the printing instructions have to be generated in such a way that the

printer can print the model. The last step is the actual printing of the model on

the 3D printer. These steps are described further in the following paragraphs.

Model Generation

The first step in the model generation process is to define what should be mod-

eled. Maybe the model has to be generated by scanning an existing 3D object.

The model could also be downloaded from a 3D model sharing platform or is sent

by an external supplier like a customer. The new generation of a model within

5

Chapter 2. Principles

(a) Model generation (b) Slicing (c) Printing

Figure 2.1: The 3D printing process. First, the model is generated. Then it is sliced
with a slicing software and lastly, the object is printed on a 3D printer.
[Ahlers, 2015]

a computer is called Computer Aided Design (CAD). There is a wide variety of

CAD tools for different fields. Not every CAD software is capable of producing 3D

printable models but since 3D printing became such a big topic in the last years,

most vendors added the capability to their software. Common tools are Open-

SCAD, Tinkercad, Autodesk Inventor or Blender. OpenSCAD is an open-source

tool where code-like instructions generate the model. Tinkercad has a drag and

drop mouse centered design approach. Autodesk Inventor is a more engineering

centered tool with the capability of creating printable parts and also assembling

different parts or performing stress tests. Blender is a visual or sculptural program,

often used by artists and game designers.

Formats which most 3D slicing programs can process are STereoLithograhy (STL),

OBJ and Additive manufacturing file format (AMF). The de facto standard is STL

which is further described in section 2.2. The OBJ and AMF are also facet based

formats like STL with a similar structure. They add further information about

color and could handle models with different parts.

Slicing

Since printers cannot print the model directly, it has to be transferred into a form

that the printer can understand and execute. This is quite similar to paper print-

ing where the text or image that should be printed is translated into instructions

for the printhead and its movements. In 3D printing, this transfer from the model

to a form that the printer can print it is called slicing. The instructions generated

while slicing are called G-code and are further described in section 2.3.

6

2.2. STL

Common slicing tools in FDM printing are Cura, Slic3r, and Simplify3D. The

different FDM slicing tools are further described in section 2.4. The slicing pro-

cess as it is implemented in Slic3r is described in detail in section 4.1.

Printing

When the G-code, is generated by the slicer, it has to be executed on the printer

to get the desired object. To execute the G-code, it has to be sent to the printer.

It can be transferred through USB by a print server like OctoPrint or with a

G-code sender integrated into the slicing software. The G-code could also be

sent via network to the printer or stored on an SD-card which is then put into

the printer. The printer executes the G-code commands one after another in

the same order as they appear in the G-code file. The whole printing process

runs automated and does not need assistance. Since mistakes may always occur,

monitoring the machine while printing is quite useful. When starting the print, the

printer prepares itself for the print job. All axes are driven to their home position to

ensure their positions. When the printer supports print bed leveling, the leveling

process is executed. The printer then heats up the print bed and the nozzle.

Some printers prime their printheads before starting the print. Then the printer

starts with the execution of the G-code commands which print the actual object.

Usually, a print has several hundred thousand instruction lines. The amount of

print instructions depends on the size and complexity of the object. The printer

usually gives feedback to the user while printing. When the print is finished, the

printer shuts down its nozzle and print bed and moves the printhead aside. The

finished object can now be removed from the print bed by the user. The hardware

of a 3D printer is further described in section 2.5.

2.2 STL

STL is a file format which was created by 3D Systems [3D Systems, 1988]. It stands

for STereoLithograhy and is the de facto standard for 3D printing. It describes the

geometry of the model without additional information like color or texture. The

surface of STL models is composed out of multiple facets. Each facet is defined

by three vertices and a facet normal. The facets lay beside each other to form the

model. Each facet is separate and has no direct relation to other facets. The only

relation neighboring facets have is that they both contain the same edge. Since

7

Chapter 2. Principles

facets cannot be round, the facet mesh is only an approximation of the actual

model as long as it contains any round surface or edge. This approximation could

also lead to visible facets on the outside of the model. Each facet has a surface

normal vector to determine the outside of the facet. The units in the STL format

are arbitrary and they have no scaling information. Common units are mm, inch

or meter. When the surface normal vector is zero, it can be calculated with the

right-hand rule. To be printable, a STL model has to be watertight and manifold.

Watertight means that the model has no holes in its surface. This is reached

when each facet has exactly three neighbors. Manifold means that the facets of

the model are arranged correctly and facing the right direction. Watertight and

manifold models are generally allowed in the STL format and have to be checked

before printing. Many CAD programs can output STL models. STL files can be

stored in American Standard Code for Information Interchange (ASCII) (figure

2.2) or binary (figure 2.3) format. In the ASCII format, all coordinates are stored

as written float values with a describing text. STL files in ASCII format take up a

lot of disk space and are rather inefficient. To reduce the necessary storage, STL

solid name

facet normal ni nj nk

outer loop

vertex v1x v1y v1z

vertex v2x v2y v2z

vertex v3x v3y v3z

endloop

endfacet



+

endsolid name

Figure 2.2: The ASCII STL file format. Each triangle is stored with its three vertices
and a facet normal. [Burns, 1993]

files are often stored in a binary format. It is about 80 % smaller than the same

file stored in ASCII format. The binary format has an 80 byte header which is not

further defined, followed by the number of facets in the whole object. The facets

are then listed, beginning with the surface normal, followed by the three vertices.

Lastly, each facet has an attribute count value.

8

2.3. G-Code

Byte[80] ASCII Header

unsigned long int Number of facets

float ni Normal vector

float nj

float nk

float v1x Vetex 1

float v1y

float v1z

float v2x Vetex 2

float v2y

float v2z

float v3x Vetex 3

float v3y

float v3z

unsigned int Attribute byte count



+

Figure 2.3: The binary STL file format. To save file size, only the values are stored as
float. [Burns, 1993]

2.3 G-Code

G-code is a numerical control language which is widely used in Computer Aided

Manufacturing (CAM). It is used to automate machine tools such as CNC mills,

laser cutters, lathes or 3D printers. G-code tells the machine how to move its

axis to produce the object. For example, the single G-code instructions tell the

machine how fast and where to move. The machine then moves its motors to

reach the given position. G-code can also control other machine behaviors like the

temperature or control a servo. There are many different standards for G-code.

In the past, controllers had to be aware of the differences in G-code. Today, most

G-code generators can output different styles for different machine types. G-code

is very machine specific, a code that works flawlessly on a machine can damage

another one. The different G-code commands start with either a G for preparatory

commands or an M for miscellaneous functions. Some example G-code commands

are:

G28 X Y Z Homes the x-, y- and z-axis by moving each one of them to its endstop

and setting the coordinate zero there.

9

Chapter 2. Principles

G1 X100 Y100 Z100 E10 F2400 Moves linear interpolated to the position x 100,

y 100, z 100 and moves the extruder 10 mm with the maximum speed of

2400 mm/min. In linear interpolated movement, each axis dives with dif-

ferent speed so all axis reaches their target at the same time with the tool

moving at the desired speed. The G1 command is by far the most used com-

mand in 3D printing because the whole object is built with this command.

M109 S210 T0 Heats up the extruder 0 to 210 C◦ and waits for the extruder to

reach its temperature before continuing with the next command.

2.4 FDM Slicing Software

There is a wide variety of different slicing software for FDM printers. Some are

made for a specific printer manufacturer others are general-purpose. The general-

purpose slicers can be divided into three subgroups: paid-, free- and open-source-

slicers. Since paid- and free- slicers have inaccessible source code, they cannot be

modified to add nonplanar layers. Therefore, these slicers will not be considered

any further here. What’s left are the open-source slicers. [Cura] and [Slic3r] are

currently the only two open-source slicers which are actively developed and can be

called state of the art. Skeinforge is outdated and no longer developed and other

slicers mostly use Slic3r or Cura Engine for slicing and just provide a different user

interface. Cura and Slic3r can be called the only two relevant open-source slicers

and are described further in the following sections.

Cura

Cura is an open-source slicing software developed by Ultimaker B.V.. It is licensed

under the GNU Lesser General Public License (LGPL) license. Ultimaker does the

main development and the slicer is therefore optimized for the Ultimaker printers.

Other printers are also supported and some have already predefined profiles which

are shipped with Cura. When a printer is not predefined, a custom printer can

be configured. Cura has also included different material profiles, both for branded

and generic filament. The development is rather active with a new release every

1-3 month. The software is divided into two parts, Cura and the Cura Engine.

Where Cura is the frontend written in Python and Cura Engine is the actual slicing

software written in C++. Cura has its own plugin infrastructure where different

features can be added. Features and usability can be called state of the art. Cura

10

2.4. FDM Slicing Software

(a) (b)

Figure 2.4: The interface of (a) Cura 3.4.1. and (b) Slic3r 1.3.1-dev.

has a recommended mode where the user can only adjust five different settings and

a custom mode with over 200 different print settings. The interface of Cura can be

seen in figure 2.4(a). It is possible to load STL, 3D Manufacturing Format (3MF)

and OBJ files into Cura. A detailed user documentation is available online.

Slic3r

Slic3r is an open-source slicer started by Alessandro Ranellucci. It is not spon-

sored or developed by any company and is licensed under the GNU Affero General

Public License (AGPL). Slic3r war originally written in Perl. Today most of the

core features are ported to C++, mainly because of performance improvements.

The GUI and some leftovers are still in Perl. This combination of two languages

makes it sometimes hard to understand the source code. Slic3r supports models in

STL, OBJ, AMF and 3MF file format. Printer profiles are usually provided from

the printer manufacturers but can be also created for an own printer with the

configuration wizard. Slic3r has a simple and an expert mode in the current stable

version, the simple mode was removed in the current development version. The

interface of Slic3r can be seen in figure 2.4(b). Due to the complexity, Slic3r is not

very beginner friendly but rather feature rich. The user documentation is slightly

outdated. The development is active and new features are constantly added, but

the last stable release is over two years old. Due to this lack of active releases,

there is a fork, the Slic3r Prusa edition by Prusa Research s.r.o.. This fork natively

supports Pursa 3D printers and adds new features like a new support structure

written in C++. It also has a fast release cycle with up to multiple new releases

per month.
11

Chapter 2. Principles

2.5 FDM Printers

FDM Printers are very common printers, especially in the low-cost segment. The

hardware of these printers can be divided into the motion system and the extrusion

system. The motion system moves the printhead to the desired position in the 3D

printer while the extrusion system lays down the material.

(a) (b)

Figure 2.5: (a) A Cartesian motion system with a Cartesian-xz-head configuration.
(b) A delta printer with its three-axis all moving along the z-axis.
[Horvath, 2014]

Motion System

Other CNC applications like milling, laser cutting, pick and place machines and

robotics have inspired motion systems of 3D printers. The most common motion

system of 3D printers is the Cartesian. These printers move each axis of the print-

head with a distinct motor. The x-axis is usually left and right, the y-axis is front

and back and the z-axis moves up and down. Stepper motors drive either belts

or leadscrews to transfer the rotary motion into linear motion alongside the axis.

Since belt systems are a bit faster, these are often used for the x- and y-axis while

leadscrews are mostly used for the z-axis. There are two common Cartesian con-

figurations. The first being the Cartesian-xz-head, where the printhead is moved

12

2.5. FDM Printers

along x- and z-axis while the print bed is moved back and forth along the y-axis.

The other common is the Cartesian-xy-head configuration where the printhead

is moved along the x- and y-axis while the print bed moves up and down along

the z-axis. A Cartesian printer can be seen in figure 2.5(a). Delta printers are

another motion system which was originally used in pick and place applications.

The printhead is mounted on a carriage with three attached arms which move

individually along the z-axis. To reach the desired coordinate, the position of the

individual arms is calculated with inverse kinematics. The printhead is capable of

reaching every-position above a round print bed. Belts or leadscrews with stepper

motors are usually used to position the individual arms. The main advantage of

this configuration is that the actual end effector carries little weight so it can move

faster. Calibrating a delta printer is slightly harder than a Cartesian printer thus

all axis have to be calibrated at once and not one after another. A delta printer

configuration can be seen in figure 2.5(b).

Extrusion System

The extrusion system of an FDM printer is usually a stepper motor which pushes

filament through a heated nozzle. The part that moves the filament forward is

called the feeder while the heated nozzle block is called the hotend. The pushing

into the feeder is done by a drive gear which presses against the filament string.

The drive gear is driven directly from the stepper motor or with a transmission

gear to increase the pushing force. The filament is a very long plastic string with a

fixed diameter. Common sizes of filament are 1.75 and 2.85 mm. The filament can

be fed directly into the hotend or with a Bowden tube in between. The advantage

of the Bowden system is that the stepper motor does not have to be directly on

the print head. That reduces the weight of the carriage but it adds extra flexibility

in the filament path. This flexibility causes issues in the extrusion especially, with

flexible filaments. With a directly driven extruder without a Bowden tube, the

printhead has to carry the heavy stepper motor of the feeder. The purpose of the

hotend is to heat the filament up and bring it to a defined width to get a continuous

filament path while printing. The heating is done by a heating element which is

monitored by a thermistor. The heater is controlled by a Proportional Integral

Derivative (PID) controller forming a closed loop system with the thermistor. To

get the filament into a defined width, it is pushed through a heated brass nozzle.

A nozzle is conical and has a hole with a very precise diameter on its pointy end.

Common diameters are between 0.25 mm to 1.0 mm. The diameter of the tip is a

13

Chapter 2. Principles

Figure 2.6: Left: A Bowden extruder with the feeder, the Bowden tube and the hotend.
Right: A direct drive extruder with the feeder directly above the hotend.
[Forefront Filament, 2016]

trade-off between speed and printable details because bigger diameters extruding

wider traces which leads to faster prints. The width of the print trace can be

variated a little bit by pushing more or less filament through a nozzle.

The first layer of the filament extrusion is laid out on the print bed. A print bed is

a flat surface where the print object is built on. To increase adhesion of the print

and to reduce warping of prints, most print beds are heatable. The adhesion can

also be increased with special print surfaces, a layer of glue stick or painters tape.

The printer electronics control all motors and heaters. Stepper motor drivers drive

stepper motors, heaters are controlled by Metal Oxide Semiconductor Field Ef-

fect Transistors (MOSFETs), the temperatures are read by thermistors and the

homing position is found with attached switches. An 8-bit Arduino style micro-

controller drive most FDM printers. Some newer models use 32-bit architecture.

The microcontroller reads the G-code commands and executes them with the at-

tached hardware. The G-code commands are sent by a control software via a serial

interface or read from an attached SD-card.

14

3 Related Work

Several researchers already used nonplanar layers or other forms of 3D toolpaths

to get better objects. Better could either mean printing without support mate-

rial, improved part strength or printing esthetically better-looking objects with a

smoother surface. The different researchers either use special printers with at least

five-axis or standard three-axis printers that can usually be bought off the shelf.

In the following paragraphs, each approach is presented with a rough overview of

how each problem was solved.

3.1 Multi-Direction Slicing

To print objects with heavy overhangs without using support structures, [Ding

et al., 2015] used multi-direction toolpath planning. The toolpaths where gener-

ated for a five-axis printer. The multi-direction toolpath is generated by slicing

the model in different directions so that some layers are not horizontal. Two sep-

arate modules are used to generate the desired toolpath. The first module is for

volume decomposition and regrouping. It takes the object and decomposes it by

searching for closed concave loops in the volume mesh. Concave loops contain only

edges which are also concave. On concave edges, the adjacent facets form an angle

that is smaller than 180◦. Holes in the mesh that emerge when decomposing the

object are filled so that these meshes can be sliced later. For the later performed

regrouping of the subvolumes, the topology information and the position of each

subvolume is stored. The second module is responsible for the actual slicing pro-

cess of the different subvolumes. For each subvolume, the best possible printing

direction is calculated and the subvolume is sliced with a regular planar slicing

algorithm. The different toolpaths are then translated and rotated back to their

original position and arranged according to their topology information. In the

whole process, collision detection is not taken into account. The toolpaths where

only shown in theory, no actual printed objects where shown.

15

Chapter 3. Related Work

3.2 Inclined Layer Printing

Like in the previous approach, [Zhao et al., 2018] printed objects with a multi-

direction toolpath. But instead of a five-axis printer, they use a standard three-axis

printer to print the overhang regions with different printing angles. Overhanging

regions are especially hard to print when the offset of the previous layer is bigger

than the extrusion width of the line printed in the current layer. These lines are

printed into thin air and often hang down instead of forming a layer as intended.

Support structures are usually generated to print such regions. The support has

to be removed from the finished print and the contact areas of the object stay

rather rough. So the idea is to print some regions with a different non-horizontal

direction to get rid of the support structures. The object is partitioned into differ-

ent regions regarding their overhang to generate different printing directions. The

whole process is visualized in Figure 3.1. Each partition is rotated by the desired

printing angle and translated onto the print bed. All models are then sliced with a

standard slicing tool for horizontal layers. The generated paths of the partitioned

object are then translated and rotated back into their original position. There can

be multiple printing angles in one object. The generated G-codes are executed

one after another to get the correct printing order. Zhao et al. also observed that

with rising printing angle of the non-horizontal extrusions the bonding between

the layers decreases. They assumed that this happens because the force that the

extruder pushes the filament on the previous layer is heading in a different direc-

tion than on horizontal layers. This only occurs on three-axis printers, with five

or more axis the printer can direct this pushing force onto the previous layer by

tilting the nozzle towards it. They also observed that gravity is an issue when the

surface angle is very high. Single extrusion lines can hang down due to sticking

issues to the previous layer looking similar to overhanging extrusions.

Figure 3.1: The inclined layer printing method. The model runs through the steps to
generate toolpath in another direction than horizontal. [Zhao et al., 2018]

16

3.3. Active-Z Printing

3.3 Active-Z Printing

3D printed objects with planar layers are weak when load is applied perpendicularly

to the layers interfaces. [Khurana et al., 2017] had the idea is to use nonplanar 3D

shaped layers to improve the mechanical strength of the printed objects with a

standard three-axis 3D printer. This nonplanar layer printing was called active-z

printing because it involves motions in the x-, y- and z-axis simultaneously to print

the desired layers. They use the open-source [Bread slicer]. The bread slicer needs

two STL files for the actual slicing process (Figure 3.2). The first STL file is the

object that should be printed later. The second STL file holds the shape that the

layers of the object should later have. Process parameters like the desired layer

thickness are added in a configuration file. The slicer shapes the object regarding

the layer shape modifier through the whole object. The 3D toolpaths are later

generated for these layers. Because of the early development status of the bread

slicer, it produces many unwanted travel moves which sometimes cause collisions

and increase the print time unnecessarily. To get a fast toolpath without collisions

while traveling, the G-code is post-processed with a MATLAB script. The authors

did several test prints with a sinus formed layer structure with different amplitudes

and performed several mechanical tests with them. It shows that the parts with

nonplanar layers are both stronger and stiffer than regular printed objects with

Figure 3.2: The bread slicer which combines the model STL with the layers STL to
generate a 3D toolpath. [Khurana et al., 2017]

17

Chapter 3. Related Work

planar layers. Parts with a small rotation of the filling structure are stronger while

parts which were printed with a higher amplitude get stiffer. Overall, active-z

printing with nonplanar layers increases the mechanical strength of the printed

parts where the force is applied perpendicularly to the interface layers.

3.4 Multi-Axis Material Extrusion

To improve the mechanical properties along the printing axis, [Kubalak et al., 2018]

printed a reinforced surface onto a regularly printed core with a six-axis robotic

arm printing system. The idea is to shift the stress from the layer bonding to the

shell of the object which is printed in a different direction as the core. Starting

points are generated at the bottom contour of the object to generate this skin.

The distance of the individual starting points depends on the desired line width

for the shell extrusions. The path is generated for each starting point with a given

angle around the object until the path reached the top of the object. The G-

code commands for the paths are generated using the coordinates for the position

and the inverse of the facet normals for the print heads rotational component. The

algorithms can only process objects that have only one single closed loop perimeter.

A clear maximum z-height with no local maxima where path generation would get

stuck is necessary. Since the printhead would collide with the print bed, the skin

cannot be printed directly from the bottom of the object. The object cannot be

excessively concave to prevent collisions between the object and the printhead.

Overall, the skinning process increases the mechanical strength of the object. The

best performance is reached when the skin lines are printed along with the expected

load.

3.5 Fully Three-Dimensional Toolpath Generation

To get rid of the stair-stepping artifacts caused by the layer based structure, [Micali

and Dornfeld, 2016] generated a 3D toolpath which can follow a free-form surface.

This approach is designed for nozzle based printing processes in standard three-

axis 3D printers. CNC toolpath planning approaches inspire the 3D toolpath

generation. The machine geometries are taken into account to check for collisions

and guarantee a collision-free toolpath. Nozzles are most often conical, so it is

possible for them to access narrow regions while printing. The ability to reach

narrow regions decreases with shorter, more bulky nozzles with a lower ramp angle.

18

3.5. Fully Three-Dimensional Toolpath Generation

Figure 3.3: An upside down nozzle is sweeping out an envelope surface with its tip.
This surface is used to check for collisions and build a toolpath that fills
the surface. [Micali and Dornfeld, 2016]

The inverse toolpath offset is generated to calculate the printability of a path.

The nozzle is therefore taken upside down and its tip follows the printing surface

sweeping out an envelope with its body (Figure 3.3). The formed envelope surface

is a printable, collision-free surface. When the envelope surface lies above the

printing surface at any point, this point is not reachable with the nozzle. The

surface in its current shape is not printable. When the difference between these

two surfaces does not exceed a given tolerance, the generated envelope surface can

be used for the toolpath generation instead of the object surface. The toolpath

is generated by starting from one side of the surface and filling it along one edge

until it reached the other side. This process is repeated with a new starting point

near the previous starting point in an unfilled area until the surface is completely

filled. The extrusion amount that is necessary to fill the surface is calculated by

multiplying the Euclidean distance between two points of the path with the desired

flow. The full 3D toolpath is now generated for this single shell and is guaranteed

to be collision-free. This approach is only used to generate a toolpath for a given

surface and does not provide a printable toolpath which produces a 3D printed

object.

19

Chapter 3. Related Work

3.6 Curved Layer Fused Deposition Modeling

To improve the surface quality, [Chakraborty et al., 2008] printed nonplanar curved

layers over different z-heights. This process was named Curved Layer Fused Depo-

sition Modeling (CLFDM) by Chakraborty et al. They defined three key factors

for the printability proper toolpath generation, proper filament orientation, and

proper filament bonding. A three-axis printer can print the toolpaths, but a five-

axis printer would be better. They are generated from the top to the bottom of

the object. The curved surface is defined as a parametric surface. A MATLAB

script was written to get the toolpaths for the layer along the parametric surface.

The thickness of the object is generated by offsetting the top surface until the

desired number of layers is reached. Chakraborty et al. assumed that the bonding

of adjacent filament paths is worse than within planar layers. Mostly, paths do

not necessarily lie on the same plane as they would with planar layers. They also

assumed that the inter-layer bonding would be better than that of planar layers

since curved layers have more surface area to create this bond. The generated

toolpaths where just visualized and not printed on a real printer.

3.7 Combining Flat and Curved Layers

CLFDM was used in combination with planar layers to get rid of the stair-stepping

artifacts in real printed objects. Both [Huang and Singamneni, 2014] and [Llewellyn-

Jones et al., 2016] used three-axis printers to print the objects. They use STL files

to provide the model or at least parts of it. To get a printable CLFDM surface,

they use different approaches.

Huang and Singamneni

To identify the surface area which should be printed as a curved surface, all facets of

the STL mesh are classified by their angle of the normal vector and the z-axis. Each

facet is either part of the top, side or bottom surface. The user can define the angle

to classify the facets between top and side surfaces. Next, all connected surfaces are

defined as one single continuous top surface. The top surface is offset downwards

along their facet normals to get the number of desired shell surfaces. The toolpath

is generated by rasterizing the surface and generating the toolpath along those

raster points. To get the planar layers, the offset surfaces are subtracted from the

original STL and a new one is created. The planar layers are then generated from

the new STL. The final layer structure can be seen in figure 3.4.

20

3.8. Path Planning for CLFDM

Figure 3.4: Curved slices are printed on top of the planar slices. This increases the
surface smoothness while being still printable on a three-axis printer. [Huang
and Singamneni, 2014]

Llewellyn-Jones et al.

The input STL file for this approach needs to be a thin skin of the object. It has

to be thinner than the actual layer height. The skin is repeated over a number

of layers by offsetting it in z-direction to get the desired model thickness. This

approach can only produce an extrusion of the skin in z-direction. The toolpath

is created by a MATLAB script which also generates a scaffold structure on which

the skin layers can be printed. To create a toolpath of the skin, first, a perimeter

is printed along the edge of the skin. The filling structure is generated again by

rasterizing the surface as Huang et al. did. The scaffold structure is sliced as

planar layers and is printed before the skin.

3.8 Path Planning for CLFDM

To get better surfaces with curved layers, [Jin et al., 2017] analyzed and optimized

the toolpath generation. The surfaces of the different layers are generated by

offsetting parametrized shells downwards. The focus lies on how to lay down

toolpaths in a curved layer surface properly. For an optimal surface quality, the

printhead should follow the surface with a five-axis printer. The printhead should

be perpendicular to the surface at all times. Since this is impossible with three-axis

printers, the printhead can cause collisions with the currently printed layer. The

distance between the nozzle and the layer should be changed in regard to the print

direction to prevent digging the nozzle in already printed areas or laying material

down with a nozzle which is too high. The different print heights H for a curved

surface with the angle θ and a nozzle tip diameter D is shown in figure 3.5. The

21

Chapter 3. Related Work

Figure 3.5: Different printing heights H regarding the print angle θ, the nozzle tip
diameter D and the print direction. This correction factor should ensure
a good surface extrusion without the nozzle penetrating the surface. [Jin
et al., 2017]

distance to the top of the actual surface has to be larger when printing upwards

than when printing downwards. The surfaces in the STL file are transferred into a

B-spline which forms the reference surface to generate the toolpath. The toolpath

is then generated along this surface. The void depth between two adjacent lines

should be kept constant to get a constant extrusion. This results in a smooth

surface on concave and convex surfaces. No real printed objects were presented in

this work.

22

4 Implementation

In this chapter, the implementation of the nonplanar layer generation is described

in detail. Nonplanar layers are added to an existing slicing software by modify-

ing its source code. Slic3r is modified in this work because it is not owned by

a single company and it is more likely that experimental features like nonplanar

layers find a way into an actual software release. Furthermore, the visualization

of Slic3r it better than the one from Cura. Lastly, the author of this work has

already some knowledge about the Slic3r source code and its structure. The idea

is to reuse as much as possible of the current implementation for planar layers and

change the structure of the source code only where it is necessary. If possible, the

implementation should use no additional external libraries for the nonplanar layers.

Since it is essential to understand the way planar toolpaths are generated, a thor-

ough description follows in section 4.1. Section 4.2 describes the hardware lim-

itations when printing nonplanar layers with a three-axis printer. It also shows

parameters that could be used to build a proper collision detection. The imple-

mentation of nonplanar layers with all steps to print smooth surfaces is described

in section 4.3. Lastly, the limitations of the current implementation are described

in section 4.4.

4.1 Planar Toolpath Generation

In 3D printing, the toolpath generation is often called slicing. It is an essential

step in the whole 3D printing process. The appearance of the printed model is set

in this step, for example by using different layer heights. The overall print quality

is also heavily influenced by the toolpath generation. For example, by applying

retractions to the filament while moving the print head, the print does not suffer

from oozing. Mechanical properties like the strength of a part or its weight are

influenced by the thickness of the layers and the density of the internally printed

structures. When the printer works correctly, the toolpath generation makes the

difference between a good, a bad or even a failed print. The toolpath generation

23

Chapter 4. Implementation

is a software process step that every 3D printer needs. Some printers may take

object models directly for printing. The toolpath generation of these devices is

then done internally.

This chapter shows how toolpaths are generated in Slic3r. Each toolpath is only

usable for one specific FDM printer since each one needs its own configuration. The

process starts with a loaded object model, usually in STL format. The toolpath

generation can be started automatically when a model is loaded, or manually by

the user. Slic3r then generates a toolpath for each object on the print surface. The

slicing can be separated into layer generation, perimeter generation, fill prepara-

tion, surface filling, support generation, skit and brim generation, and the G-code

generation. In the following paragraphs, each step is described in detail.

4.1.1 Layer Generation

First, the layers are generated for the object height. These layers are distributed

evenly along the z-axis of the printed object. The first layer is usually slightly

thicker than the rest of the layers. Variable layer thickness is also possible and can

be generated adaptively according to the geometry of the object. The object mesh

is transformed, scaled and rotated when the user has used these features. Then

the slicing of the object mesh into layers begins. The model is cut horizontally on

the height of the layer and the contour of this cut is taken as the layer. To get the

contour, each facet is checked against all layers that lay between their minimum

and maximum z-coordinates. Then, each facet edge is checked for intersections

with the layer. For each intersection that is found, the intersecting line is added to

the layer. When a layer lies exactly on the edge of the facet, this edge is added to

the layer. No line will be added when the layer crosses one of the facets vertices.

z

x

y

x

Figure 4.1: The generation of the layers from the contours of the object. Each red line
represents a different layer. An example layer is shown in top-down view
on the right.

24

4.1. Planar Toolpath Generation

These lines are chained together to generate contour loops from these independent

lines. First, all tangent lines are removed because they hold no information about

the shape of the object. The first line that was found is chosen to start a new loop.

Then, the line that starts where the previous line ends is appended to the new loop.

The process is repeated until the starting point of the first line is reached again.

When there are unchained lines left, the process is repeated until no lines are left.

Now, all loops of the current layer are found. Since these lines have the same start

and endpoint, they are actually polygons. Next, expolygons are created from the

found polygons where they represent either the contour or a hole. An expolygon is

a contour polygon with multiple hole polygons representing one connected region

on one layer. All the found expolygons of the layer represent the contour of the

model on a specific height. An example cut can be seen in figure 4.1.

4.1.2 Perimeter Generation

In the next step, the perimeters are generated on each layer. A perimeter is the

outer printed wall along the edges of the object. Perimeters are generated by

offsetting the outline polygons, which were found in the previous step, by half the

extrusion width to the inside of the object. Usually, more than one perimeter line

is generated, therefore the outline is offset even more. When the path intersects

with itself or another path, the loops are cut into different paths. The number

of perimeters is defined by the user; common are two to three perimeter lines.

Passages which are too narrow for two perimeters to pass each other are filled with

a single extrusion line called gap fill. Extrusion objects are formed from the loops

to print the generated perimeters later. Extrusion objects contain a path that will

be printed and additional printing information. The perimeter of a layer is shown

in figure 4.2.

z

x

y

x

Figure 4.2: Two perimeters generated on each layer from the outline of the object by
offsetting it to the inside. Each layer is filled like the example layer on the
right.

25

Chapter 4. Implementation

4.1.3 Prepare Filling

Since there are different types of surfaces in an object with different print charac-

teristics, the surfaces have to be classified into different types. Surfaces that are

on the first layer are bottom surfaces as long as no raft is printed below the object.

The outline of the layer above the current layer is subtracted from the current layer

to detect top surfaces. The remaining area is classified as a top surface since it

has nothing above itself. For the last layer, the full layer is classified as top surface

because there is no layer above it. The same difference is calculated with the layer

below the current layer to identify the bottom layers. They are either classified as

bottom when dissoluble support is used or as bottom-bridge when normal or no

support is used. This differentiation is important since both types need different

print characteristics for a good print. All surface areas that remained unclassified

yet are classified as internal surfaces. When the user does not want top or bottom

surfaces, these surfaces are set back to internal. Usually, surfaces with a small area

are set to internal solid to prevent internal surfaces with no infill structure.

Since the user can configure more than one top and bottom surface, these ar-

eas have to be grown to the layers inside the object. The multiple surfaces are

called shells. The areas top, bottom, and bottom-bridge are grown into the upper

or lower layers until the desired thickness is achieved. All found shells are merged

by type and set as internal solid surface. To get a better solid layer directly over

the infill, the flow of these areas is set to the same value as used for bridges. This

is done as long as the infill density is below 25% and the additional material would

fit into the void area of the previous layers. This is checked by calculating the

additional volume that will be extruded, and by comparing it with the volume of

the void areas from the layer below. In figure 4.3 classified object layers are shown

with an example layer.

To print continuous bridges, internal areas which are surrounded by bridges are set

to bottom-bridge by offsetting them. Then, adjacent bottom-bridge surfaces are

merged into one surface when the bridges have the same direction. All bottom-

bridges, which are not supported by two opposite edges on the layer below, are

marked as unsupported bridges.

For faster printing and stiffer objects, the infill of multiple layers can be com-

bined into one higher layer with thicker extrusion lines. Perimeters or surface

26

4.1. Planar Toolpath Generation

z

x

y

x

Figure 4.3: Classification of the layers with an example layer on the right. Top surfaces
are blue, internal solid surfaces are light blue, bottom surfaces are red, and
internal surfaces are yellow.

areas which are not marked as infill are not combined and stay untouched. When

the combine infill option is set, intersecting areas which are marked as internal

are searched. The user sets the layer range in which the layers are combined. To

combine the layers, the lower layers of the found group are set to void and the ma-

terial flow in the topmost layer is increased so it would fill its infill over multiple

layers. All areas which are not an intersection with the combined layers remain

unchanged and are filled regularly.

4.1.4 Surface Filling

After classifying every surface on the layers of the object, the paths can be filled

with a toolpath. Each layer is filled separately although, some filling might reach

down into other layers. For a more even and better-connected filling structure, all

surfaces with the same proprieties are grouped. These properties are surface type,

surface thickness, and bridge angle. Then a fill pattern is assigned to each group.

Rectilinear is usually used for solid layers like the top, bottom, and bridges. It

is also used for infilling an object with a gap between the lines. Especially for

the infill, there are much more patterns like honeycomb, cubic or triangles. For

a smoother surface finish on top layers, these layers get a specific flow. Then the

groups with similar properties are merged into one surface regardless of their type.

This is necessary to print connected print paths even when the type of the surface

changes. For each surface, the specific flow is calculated taking the layer height and

the extrusion width into account, and whether the surface is a bridge or whether

a surface lies on the first layer. Next, the specific fill pattern of every surface is

generated.

Since the rectilinear fill pattern is used for solid fills and also often for infill, it

27

Chapter 4. Implementation

z

x

y

x

Figure 4.4: The filled layers where the top and internal solid surfaces are filled with
100% and the infill surface is filled with 40%. Each layer is filled according
to the classification of the previous step. One example layer is shown in
top-down view on the right.

is described here. The fill direction alternates by 90◦ on every layer; usually, 45◦

and 135◦ are used. On bridges, the bridge angle is used as fill direction. For

the actual fill generation, the polygon is rotated by the fill direction angle to get

lines along the y-axis while generating the pattern. This makes the actual pattern

generation simpler than with a tilted pattern. To get a pattern with the desired

density, the distance between the individual lines which leads to this density has to

be calculated. Then the bounding box of the polygon is calculated and rectilinear

lines with the calculated distance are generated inside the bounding box along the

y-axis. All intersections between the polygon and the lines are searched to get only

the lines inside the polygon. The intersection points of each line are sorted de-

scending by their y-position and grouped into pairs. Each pair forms a line with an

upper and a lower endpoint and lies inside the polygon. To generate a continuous

path from the independent lines, they are chained together. The upper endpoint

of a line is connected to the nearest upper endpoint of another line. Then, the

lower endpoint is connected to the nearest lower endpoint of another line. This

process is repeated until each line is part of the path. The surface is now filled

with lines which are connected with a zigzag pattern. Since it is not possible to

connect all lines with a continuous path, travel moves are added when two points

of a chained path do not lie directly next to each other. The generated toolpath is

rotated back into its original position to get the toolpath back in the orientation

of the layer. Then, extrusion entities are generated from the path and appended

to the fill extrusion objects of the actual layer. Figure 4.4 shows a filled layer with

a tilted rectilinear pattern. The top surface is filled with 100%, while the internal

surface is filled with 40% material.

28

4.1. Planar Toolpath Generation

4.1.5 Support Generation

Since some objects might need support material to be printable, it must be gener-

ated during the slicing process. The support is generated for each object separately.

To generate useful support, the areas which need it have to be found.

Finding Overhangs

Whether support is needed on an overhang surface or not is defined by a threshold

angle. A right triangle with the threshold angle is formed between the previous

and the current layer to find the area where the angle is greater (figure 4.5). Every

part of the surface which is greater than the triangle also has a greater angle. The

length of the upper side of this triangle d can be calculated with the following

equation where h is the layer height and θ is the threshold angle.

d = h · tan θ (4.1)

To get the actual areas where the support is later generated, the previous layer is

offset by the calculated d and then subtracted from the current layer. All areas

that remain have a higher angle than the threshold and need to be supported.

Since supported bridges usually do not need additional support, these areas are

removed from the found surfaces. When the support is set to build-plate-only, the

top surfaces of all layers below the current layer are merged and removed from

d

h

θ

•

needs support

Figure 4.5: The right triangle which shows the maximum support angle θ, the layer
height h, the maximum overhang distance d, and the area that needs
support.

29

Chapter 4. Implementation

the potential supported areas. The remaining area is offset by half an extrusion

width to support perimeters properly. This offset area is set as contact surface and

stored for further support generation.

Finding Contact Areas

As long as the option build-plate-only is not selected, the top surfaces where the

support is attached are searched. The algorithm iterates through all layers from

top to bottom to find these contact areas. Each time an overhang surface is found

it is added to the supported areas. These areas are intersected with the top surfaces

of each layer. When they intersect, the intersection is stored as a top contact area

and is removed from the support area. When the supported area is empty, or the

first layer is reached, the top contact layers are all found.

Support Generation

When the overhangs and the top surface areas are found, support structures can

be generated between these two. First, support layers are generated by taking

the height of the overhang surfaces and the top contact surfaces and adding more

layers in between. To generate the interfaces below the overhang surfaces, they are

propagated down to the layers below. The number of propagated layers depends on

the desired interface thickness. Since the down-propagated layers could intersect

with the object, its silhouette is removed from the interface layers. The interface

layers are merged with already generated support surfaces and contact areas and

are projected downwards to generate the support surfaces below the interface.

Since these support surfaces should not intersect with the already found top contact

surface, interface surfaces, and overhang surfaces, they are removed before adding

them to the support layers. To get interface surfaces above top contact surfaces,

all areas above these are marked as bottom interface areas. The generation of the

support layers and its surfaces is now finished and they are added to the actual

object. The toolpaths are then generated for all surface types. The actual path

generation of the support surfaces is pretty similar to the toolpath generation of

regular layers but with slightly different patterns.

4.1.6 Skirt and Brim Generation

Since a good print relies heavily on a primed extruder with a constant flow, a skirt

is printed around the object to have a constant extrusion when the actual model

is printed. The skirt’s job is to prime the extruder before printing and it is thrown

30

4.1. Planar Toolpath Generation

away after printing. It is possible to generate a skirt that has the same height as

the object, but usually, a skirt is only generated for the first layer. All points of all

polygons from every layer where a skirt is generated are collected from all objects

on the build plate to generate the skirt without colliding with any printed object.

Then a convex hull is calculated from all points. This convex hull represents the

outline of all objects on the print bed. To print the skirt with distance to the

objects, the convex hull it is offset. When more than one skirt line should be gen-

erated it is offset again. To later print the skirt, extrusion objects are generated

for the offset path. This process is repeated for every layer until the maximum

height is reached. When a minimum skirt length is defined, it is generated until

the desired length of the skirt is reached. Extrusion loops are generated from the

paths to print them later.

A brim is a specialized skirt which is attached to the printed object. Its pri-

mary purpose is to hold the part down to the print bed. This minimizes warping

and increases the overall adhesion. A brim is only created on the first layer of the

print. Since all objects get a brim when activated, their contours of the first layer

including support are collected. Then multiple offsets are generated from these

contours until the brim has the desired width. The loops are chained together

when they intersect to get rid of overlapping brim. The brim is now successfully

generated and extrusion loops are generated from the paths.

4.1.7 G-code Generation

The toolpaths for all objects are now generated. To be able to print the toolpath

on a 3D printer, the extrusion objects have to be translated into G-code. The gen-

eration is started when the user decides to save the G-code, and not directly after

the toolpath generation. First, the commands for setting the extruder and bed

temperature are written to the file. The defined start G-code is also written to the

file. If a skirt or brim exists, these are processed first. Then the toolpaths of the

actual objects are processed. To minimize traveling moves between the objects,

they are sorted by their nearest neighbor. Then all layers of all objects are sorted

by their print height. Next, the layers are processed from bottom to top and in

the sorted object order. For each object, the support G-code is generated first to

prevent oozing on already printed areas. Then the G-code for the individual object

layers is generated. On every layer change, the layer change G-code is inserted into

the file. All layers are processed by the following steps:

31

Chapter 4. Implementation

All extrusions inside a layer are grouped by the extruder to minimize tool changes.

The lastly used extruder is used first. Then the toolpaths are grouped by indepen-

dent islands for every extruder. For each island, the perimeter is printed first and

then the infill if not configured differently. The perimeter is made out of closed

loops. They are cut open either on the same position for every layer or close to

the previous extruder position. The fill paths are ordered by a greedy algorithm

to minimize travels. The algorithm always takes the nearest path to its current

position. When a path is marked as reversible, it is also possible that the algorithm

takes the end of a path instead of the start and reverses the path. The paths are

chained until no path is left. All extrusion operations are now paths with different

speeds and material flow.

Since some paths can be unnecessarily complicated, each path is first simplified

with the Douglas-Peucker algorithm [Douglas and Peucker, 1973]. The algorithm

removes points in the path which do not change the overall geometry of the object.

The simplification is done by recursively analyzing the furthest point between the

start and the endpoint of a path. If the furthest point is closer than a given thresh-

old, only the start and endpoint are kept. Otherwise, the path is split into two

sub-paths and the algorithm is called recursively. When the algorithm terminates,

the now simplified path is put back together.

Next, the extrusion paths are converted into G-code. First, the G-code to move to

the first point of the path is written to the file. Then the retraction is compensated

if the extruder is retracted. Next, the acceleration speed for the current path is set

in the G-code. When cooling is considered necessary, they are turned on. Then

the different points of the path are added one after another. The extrusion vol-

ume is calculated by the length between the current position and the next planned

position multiplied by the desired material flow. When the last point of a path

is reached, the extruder position is updated and the G-code is written to the file.

The speed of the whole layer is lowered when the minimum layer time is higher

than the actual print time to give each layer enough time to cool properly. When

all layers are generated, the end G-code is written to the file and the file handler is

closed. The time and material usage estimation are shown in the interface to give

the user some feedback. The desired path can now be printed with a 3D printer.

32

4.2. Hardware Limitations

4.2 Hardware Limitations

When printing only planar layers, there should not be any collisions between the

printhead and the print. This is because the print process strictly prints the layers

from bottom to top without ever traveling back to a layer that was printed before.

The only exception from this is when parts are printed one after another. The

bounding box of the printhead, as well as the maximum height, is defined in the

printer configuration to prevent collisions. The printhead sometimes collides with

the previous layer which unintentionally warped up while cooling down. The slicer

cannot prevent this collision because they cannot be calculated. Warping can be

prevented for example by increasing the adhesion to the print bed with a brim.

With nonplanar layers involved, the printhead must travel down into regions with

already printed structures. This can cause collisions with parts of the printhead.

This could be the nozzle, fans, the extruder body or bed level sensors. The al-

gorithm needs further information about the printheads geometry to prevent the

collisions between the printhead and the previously printed structures. The more

detailed this information about the printhead is, the better the slicer can decide

if a nonplanar layer can be printed without collisions. One approach would be to

include a full model of the printhead to check for collisions. These checks would be

rather complex because of the many different shapes of the extruder model. Fur-

thermore, each printer has a different printhead so a complex model would look

different on every printer.

A simple parametrized print head model would be much easier because it could be

measured and stored in the configuration of the slicer. The individual values can

be measured on every printer model. The simple extruder model contains only two

variables, first the maximum printing angle and second the maximum height that

can be printed with a nonplanar layer. The maximum printing angle is the an-

gle which the printer can print without collision in any direction of the printhead.

The whole printhead has to be collision-free in this angle until the maximum height

is reached. Figure 4.6(a) shows the maximum printing angle and the maximum

height on the printhead of an Ultimaker 2. This maximum height is necessary to

prevent collisions with parts of the motion system which do not move along with

the printhead like the rails of the x-axis. These values can either be used to print

small angles with a great height difference (Figure 4.6(a)) or to print high angles

33

Chapter 4. Implementation

50 mm

8◦

(a)

7.5 mm
45◦

(b)

Figure 4.6: The collision model of the Ultimaker 2 either (a) taking the whole printhead
into account with an 8◦ angle and 50 mm maximum height or (b) taking
only the nozzle into account with an 45◦ angle and 7.5 mm maximum
height. With these configurations, either large surfaces with a small angle
or small surfaces with a large angle can be printed.

on a small height difference by only using the nozzle as a collision model (Figure

4.6(b)). The collision model forms a large cone with the angle that is in any case

smaller than the ramp angle of the nozzle.

On most printers, the collisions are probably not caused by the nozzle or the

heater block but by the attached fans or bed level sensors. When designing a

printhead specifically for nonplanar printing, these parts can be designed so they

would not cause any collisions. With dual nozzle printers, nonplanar printing is

not possible on most printers because the second nozzle sits on the same height as

the first one. This will always cause collisions on the slightest nonplanar surface

angles.

4.2.1 Nozzle Geometry

Nozzles come in different forms and sizes. Some have an internal thread and some

have an external thread. Nearly all nozzles are shaped like a pointy cone with

a hole at the tip. Common nozzle types are the E3D nozzle (figure 4.7(a)) and

the Olsson Block nozzle (figure 4.7(b)). There is a wide variety of nozzles, but

mostly they all look similar. As [Jin et al., 2017] mentioned, nozzles are not en-

tirely pointy. In fact, they have a flat surface at their ends. In planar printing,

this surface has two purposes. First, it makes the nozzle more robust since the

walls around its hole are more solid. Second, this flat surface squishes down the

printed path to make it flatter. The surface is essentially ironed with the nozzle.

34

4.2. Hardware Limitations

(a) E3D (b) Olsson Block (c) Fictional

Figure 4.7: Different nozzle geometries with differently formed tips. The pointier a tip
is the better the result of the printed surface.

On planar layers, this results in a slightly better surface quality but can sometimes

be an issue since more heat is applied to the previously printed surface. This heat

can melt small printed structures. Most nozzle manufacturers do not publish any

data about the size of the flat area at the tip of the nozzle. Only E3D has defined

that the plateau size is 2.5 times the nozzle diameter. The Olsson Block nozzle of

the Ultimaker 2 was measured with a flat area diameter of 0.8 mm on a 0.4 mm

nozzle.

When printing nonplanar layers, the flat surface will melt previously printed areas

while driving through them with the hot nozzle. This will result in a rough sur-

face finish especially on surfaces with a high angle. As [Jin et al., 2017] already

mentioned, there are also problems while printing upwards or downwards a slope.

The nozzle is either a bit too high while printing upwards or too low while printing

downwards. With a thin layer and a high printing angle, the nozzle will push the

complete trace away while printing or sometimes even damage previous layers. Jin

et al. also presented a method to compensate this penetration by adding addi-

tional height while printing, but this will also result in a rough surface because the

extrusion line is not laid down constantly. The depth of the nozzle penetration p

can be calculated with the following equation where D is the diameter of the flat

surface and θ is the angle of the printed slope.

p =
D

2
· sin θ (4.2)

35

Chapter 4. Implementation

Using the Olssen Block nozzle with the 0.8 mm flat surface, the penetration depth

evolves as shown in figure 4.8. This graph shows that it is better to use thicker

layers with higher printing angles because the extrusion would otherwise collapse

when the nozzle penetrates too deeply. However, the stair-stepping is much worse

on surfaces with an angle below 10◦ where the penetration is relatively low. It

might be a good idea to restrict the maximum ramping angle for a print even if

the printer can print higher ramping angles to get the smoothest surface possible.

The optimal nozzle for printing nonplanar layers is rather long and pointy and has

a flat surface diameter very close to the actual nozzle diameter. This nozzle would

be very fragile due to its thin tip. A sketch of this fictional nozzle can be seen in

figure 4.7(c).

0 10 20 30 40

0

0.1

0.2

0.3

surface angle / ◦

p
en

et
ra

ti
on

de
pt

h
/

m
m p = 0.8

2
· sin θ

θ

p

D

Figure 4.8: The penetration depth of the Olssen Block nozzle with 0.8 mm flat surface
on its tip. The penetration problem is visualized on the right where the
nozzle penetrates the path while printing.

4.3 Nonplanar Toolpath Generation

In this section, the toolpath generation of nonplanar layers is described. The

individual steps are included in the planar slicing process described in section 4.1.

The printable surfaces are searched in the STL model to generate the toolpaths for

the nonplanar layers. Then the surfaces are checked for potential collisions. Next,

the nonplanar surfaces are generated within the layer structure. Then the toolpaths

are generated for the surfaces and projected according to the nonplanar geometry.

Lastly, the G-code is generated from the toolpaths. The toolpath visualization of

Slic3r is modified to be able to display 3D toolpaths.

36

4.3. Nonplanar Toolpath Generation

z

x

Figure 4.9: The nonplanar printable surfaces (red) that are found and grouped from
the model’s mesh.

4.3.1 Identifying Printable Nonplanar Surfaces

To generate nonplanar toolpaths, nonplanar surfaces are searched in the facet

mesh. This step is performed after the layer generation of the planar slicing pro-

cess. The previously defined hardware limitations are the maximum printing angle

and the maximum height. All facets from the provided STL that should belong

to the nonplanar surface have to be within this limitation. Since every facet has

a normal which represents the orientation of the facet, the z-component of it can

be used to calculate the angle of the facet relative to the z-axis. First, all facets

that meet the criteria normal.z ≥ cos θ, where θ is the threshold angle, are stored

as potentially printable facets. The x- and y-components of the normal can be

entirely ignored because the threshold angle has to be valid in all directions. The

potentially printable facets are stored as NonplanarFacets. This is a facet with an

additional bounding box and the calculated facet surface area. A NonplanarFacet

also provides scale and rotate functionality which is needed when the user scales

or rotates the model.

Connected components are searched to get surfaces from the individual facets.

The algorithm takes the first facet, marks it and all its neighbors, then their

neighbors are marked as well. This is repeated until no more unmarked neigh-

bors can be found. The marked facets form a connected component and are

removed from the facet vector. The process is repeated with the next facet in

the vector until every facet belongs to one connected component. The pseudo

code can be seen in algorithm 1. All facets of a connected component are

then added to a NonplanarSurface. A NonplanarSurface also has a bound-

ing box and a calculated surface area. It provides rotation and scale operations

like the NonplanarFacet as well as a horizontal projection of the surface. Each

NonplanarSurface now represents a connected component and is further called

nonplanar surface. The nonplanar printable surface can be seen in figure 4.9.

37

Chapter 4. Implementation

Algorithm 1 Find all connected components and group them into NonplanarSurfaces.

1: function group surfaces(facets)
2: if facets empty then
3: return
4: end if
5: mark neighbor facets(facets.first)
6: for all facets do
7: if marked then
8: add to NonplanarSurface
9: erase from facets

10: end if
11: end for
12: return NonplanarSurface and group surfaces(facets)
13: end function

1: function mark neighbor facets(facet)
2: if marked then
3: return
4: end if
5: for all facet.neighbors do
6: mark neighbor facets(neighbor)
7: end for
8: end function

All nonplanar surfaces are now below the maximum printing angle because none

of their facets are exceeding this limit. To meet the maximum printing height, all

nonplanar surfaces are removed where the distance between the highest and the

lowest point exceeds this limit. All remaining nonplanar surfaces are printable.

Printing tiny areas does not improve the surface quality since the nonplanar sur-

face would only contain a single outline with no infill. Therefore all surfaces where

the area is below 20 mm2 are removed from the nonplanar surface vector.

The nonplanar surfaces are by definition collision-free for the printhead. Each

surface is checked for collisions to ensure that the printhead will not collide with

the surrounding layers that are not part of the nonplanar surface. When a surface

causes a collision, it is removed from the nonplanar surface vector. The collision

detection is further described in section 4.3.2. All remaining surfaces that meet

all the criteria are printable and collision-free. A toolpath is generated for each of

them in the following steps.

38

4.3. Nonplanar Toolpath Generation

4.3.2 Collision Avoidance

While printing only planar layers, there are no collisions because the printhead

never travels below the current printing layer. When printing nonplanar layers

the printhead drives down into already printed layers. This can cause collisions

with the printhead. To prevent these, the surface which causes this collision is not

printed nonplanarly. Collisions can be found by checking on the complete printing

path for when the printhead would collide with some already printed structures.

The printhead is abstracted as a big pointy cone with a maximum printing angle

and a maximum height. Since the nonplanar surface is by definition collision-free,

the only parts which have to be checked are the contour path of the nonplanar

surface. The printed object should only be checked up to the maximum height of

the nonplanar surface since the area above is built after the nonplanar surface is

printed.

Collision checks on two 3D shapes are not trivial. The following paragraphs present

three different ways to check for collisions. First, the octree collision check, second

the intersection of facets collision check and lastly the layer based collision check.

The layer based collision check is the one that is used in the implementation.

Octree Collision Check

To check collisions with an octree a collider and the object are needed. The collider

has to represent every possible position of the printhead while printing the object.

This is, as mentioned before, the outline of the nonplanar surface. The collider is

generated by building a Minkowski sum of the surface and the simplified pointy

printhead cone. A Minkowski sum is built by sweeping one object along the borders

of another and generating a hull from all positions. Figure 4.10 shows the simplified

printhead, the nonplanar surface, and the generated Minkowski sum. An octree is

built around the object between the minimum and the maximum nonplanar surface

height to check for collisions. An octree represents a volume that is divided into

eight equally sized cubes and each cube can be further divided into eight cubes.

This forms a tree where every node has eight or zero children. Then the collider

is added to the octree. Every cube of the octree is then examined, whether both

objects are part of the cube. If not, the next cube is checked. Otherwise, the cube

is split up into eight new cubes and the check is repeated for each one of them.

There are no collisions when both the object and the collider occupy no cubes.

There are collisions when both occupy cubes and the minimal cube size is reached.

39

Chapter 4. Implementation

Minkowski sum

Figure 4.10: The simplified printhead defined by the maximum angle, the nonplanar
surface that needs to be checked for possible collisions, and the Minkowski
sum which is generated out of both.

The calculation can be aborted when the first collision is found. Since the collider

will always collide with the nonplanar surface, this area has to be excluded from

the calculations. The precision and the necessary calculations rely on the minimal

cube size. To implement this method into Slic3r, the octree, the Minkowski sum,

and the check if a cube is occupied have to be implemented or added by an external

library.

Intersection of Facets Collision Check

Another way to check for collisions is to find out if the facets of both the collider

and the object intersect at any point. The Minkowski sum collider is again used

in this method. Both the collider and the object have to be represented as an

STL. The object is cut above and below the minimal and maximal surface height

to prevent checking for collisions above the actual nonplanar surface. Then every

facet of the collider is checked against every facet of the object. If any two facets

intersect, there is a collision; if not, there is none. This method is very precise but

has a relatively high complexity of O(n · m) where n is the number of facets in

the model and m is the number of facets in the collider. The computation time

can be reduced by simplifying a complex model before checking for collisions. To

implement this method into Slic3r the Minkowski sum and a facet intersection

check have to be implemented or added by an external library. Cutting a model

on a given height is already implemented and can be reused.

Layer Based Collision Check

A 3D printed object is not really printed three-dimensionally. In fact, the areas

where the material is laid down are stacked 2D layers. Each of this layers can be

checked for collisions to get the collisions on the whole toolpath. This results in a

40

4.3. Nonplanar Toolpath Generation

bunch of simple 2D collision checks instead of one complex 3D collision check. To

check for collisions, first, a horizontal projection of the nonplanar surface and an

empty collider polygon is generated. Then the algorithm iterates through all layers

between the minimum and the maximum nonplanar surface height. On each layer,

it is checked if the collision polygon collides with anything from the surface polygon

by calculating an intersection between these two. The projected nonplanar surface

is excluded from this check because it would generate a false positive. When the

intersection is not empty, there is a collision; otherwise, continue. On each layer,

the intersection will be checked against the collider from the previous iteration.

The first layer is checked against an empty collider since there can be no collisions

on the first layer because the nozzle always stays above this layer. The potential

top surfaces are calculated by the difference between the current and the next layer.

Then the intersection between the nonplanar surface projection and the potential

top surfaces is calculated with a polygon intersection. This intersection is added to

the collider. Then the collider is offset by the maximum radius that the printhead

collider would gain within one layer. This radius r is calculated with the following

equation where h is the layer height and θ is the maximum printing angle.

r =
h

tan θ
(4.3)

The collision check of the layer is now completed and is repeated with the next

layer. The collider grows on every layer since it is offset in every iteration. The

pseudo code of the algorithm is shown in algorithm 2. Three layers with their

collision polygons can be seen in figure 4.11. Since all calculations are simple poly-

gon operations like offset, intersection, and difference, it is relatively inexpensive

to compute the possible collisions. The polygon operations are already present in

Slic3r, so no additional libraries have to be added. This method is implemented

because of its simplicity and because there is no need for new features.

4.3.3 Surface Generation for Nonplanar Layers

The found nonplanar surfaces are still only facet meshes. Now they have to be

converted into areas on which a printable toolpath can be generated. The idea

is to keep the planar layer structure of the object and print nonplanarly in the

previously identified regions. The full object is sliced with the regular layer gen-

eration step as described in section 4.1.1 to generate the planar layers. The layer

slices now also include the areas that should be printed nonplanarly. The top and

41

Chapter 4. Implementation

Algorithm 2 The layer based collision check.

1: function check nonplanar collisions(surface)
2: Polygon collider
3: Polygon nonplanar surface = nonplanar projection(surface)
4: offset = layerheight

tan θ

5: for all layers between surface.min and surface.max do
6: layer collider = difference(collider, nonplanar surface)
7: if intersection(layer.surface, layer collider) 6= empty then
8: return collision
9: else

10: potential top = difference(layer.surface, upper layer.surface)
11: new collider = intersection(nonplanar surface, potential top)
12: collider = offset(union(collider, new collider), offset)
13: end if
14: end for
15: return no collision
16: end function

(a) (b) (c)

Figure 4.11: The generated collision polygon (red) of (a) the first, (b) the sixth and
(c) the last layer of the nonplanar extrusion. The object outline that
is checked for collisions is blue, the white area in between is from the
nonplanar surface and is excluded from the collision check. The collider
grows on each layer because it is constantly offset. The object can be
seen in 5.1(b).

shell areas are removed and replaced by nonplanar layers to generate the needed

space for the nonplanar extrusions. The replacement is done by first finding the

layer where the nonplanar surface should be generated. This is achieved by it-

erating through all layers starting from the top and stopping when the height of

the layers is smaller or equal to the height of the nonplanar surface. This layer is

then marked as the home layer and the nonplanar surface is attached to the layer’s

NonplanarSurface list. The next step is to remove the top surfaces from the

42

4.3. Nonplanar Toolpath Generation

lower layers and adding them to the home layer. This is done by iterating through

all layers that lie between the minimum nonplanar surface height subtracted by

the thickness of one layer and the home layer. In each layer, the potential top

surfaces are taken by calculating the difference between the current layer’s surface

and the surface of the layer above. Then, the intersection between the potential

top surfaces and the nonplanar projection is calculated (figure 4.12(a)). This in-

tersection is removed from the current layer and added to the home layer (figure

4.12(b)). This will generate enough room for the nonplanar surfaces and will also

z

x

(a)

z

x

(b)

Figure 4.12: (a) The top surfaces (blue) which lie below the nonplanar surface(red) are
(b) moved to the home layer of the nonplanar surface. The home layer is
the first layer from top that lies below the nonplanar surface.

generate their surface in the layer structure. The moved surface is marked as

stTopNonplanar to enable printing the toolpath generated from this surfaces with

different parameters than other parts of the object. All remaining surfaces of the

current layer are again marked as stInternal as they were before. The process

is repeated until all layers in the given range are processed. Since usually top sur-

faces have more than one shell, the nonplanar surface should also have more than

one shell. The previous projection process is repeated with the home layer shifted

one layer downwards to create these additional surfaces. The moved surfaces are

marked as stInternalSolidNonplanar since they are usually printed differently

from the topmost layer. For later calculations, each layer where the surfaces are

moved up has to store the distance to the top layer. For the topmost layer, this is

0, for the next shell layers, the thickness of the previous layers is added up. The

home layers now contain the surface area of the nonplanar surface. The layers

are floating above the other layers only with contact to the planar layers where

the nonplanar surface is the highest. The surface contains multiple small surfaces.

They are merged to generate toolpaths in the next step.

The planar surface preparation continues as usual. While identifying the top sur-

43

Chapter 4. Implementation

faces, it is essential to remove everything below the nonplanar surface from the

potential top surfaces. Otherwise, the slicer will generate top surfaces below the

nonplanar surfaces. To not exclude all top surfaces in this region, this only applies

if the potential top surface lies between the minimum and maximum height of the

nonplanar surface. It is important that the nonplanar surfaces which are already

classified as stTopNonplanar and stInternalSolidNonplanar remain with this

classification and are not classified as anything else.

4.3.4 Toolpath Generation for Nonplanar Layers

The surfaces of the planar and nonplanar layers are now entirely generated. The

filling of the planar surfaces is done as usual. Until now, the nonplanar surfaces are

also planar surfaces that float above their intended position in mid-air. The idea

is to generate a regular planar toolpath for the nonplanar surface and project it

downwards regarding the actual surface geometry. So, a 2D toolpath is created and

changed to a 3D toolpath by adding the z-coordinate to each point. The perimeters

and the fillings are generated as shown in section 4.1. Figure 4.14(a) shows the

generated but unprojected toolpath. It is possible to generate the toolpaths for

the nonplanar surfaces with a different algorithm that follows the surface geometry

while generating the toolpath. But then it would be harder to print mixed layers

where parts of the toolpath are planar and parts are nonplanar. A major drawback

with the projected toolpath is that the filling cannot react to the geometry of the

surface. This can be a problem on concave or convex surfaces and leads to over-

and under-filling of those regions. The problem is further described in section

4.4.2.

Toolpath projection

The generated toolpath is now a regular 2D toolpath. To get a 3D toolpath from it,

it is projected downwards regarding the facet geometry. Perimeters are extrusion

loops which are a special case of an extrusion path where the start and the endpoint

are the same. The filling is generated out of extrusion paths. All extrusion paths

are polylines with some print specific additions like extrusion width, height and

some more. A polyline is a multipoint which is a vector of points. Each of these

points has an x- and y-coordinate which represents a point in the print volume.

All coordinates in the print volume are represented as integer values. To ensure

the necessary sub-mm precision, all float values are multiplied by 100.000 before

44

4.3. Nonplanar Toolpath Generation

they are converted to integers. This new coordinate system is called the scaled

coordinate system. All operations while slicing are done in this coordinate system.

When generating G-code from the toolpaths, the values are calculated back into

unscaled float coordinates. An extrusion path is basically an array of 2D points.

To get the third dimension to the points, they get an additional z-component.

To further use the current implementation of the 2D point, the z-component is set

to a default value of -1. Every time the z-component is not needed, it belongs to -1.

The toolpath is projected downwards to get the path to follow the geometry of

the nonplanar surface. On each layer where a nonplanar surface is attached, every

point in every toolpath is processed. Since the z-coordinates of the extrusions rep-

resent the position which the nozzle would reach, the z-component of the points

has to be set to the same height that the nonplanar mesh has at this position.

This is done by first searching the facet of the nonplanar surface in which each

point lies. So each point is checked against each facet which leads to a complexity

of O(n ·m) where n is the number of facets and m is the number of points in the

extrusion path. To only check facets which lie close together, it is first checked if

the point lies inside the bounding box of the facet. When the point lies inside the

bounding box, there is still a 50% chance that the point does not lie inside the

facet. To test that, the point in facet test is performed.

Point In Facet Test

The same side test is performed to check if a point lies inside a facet. The

facet edges can be defined as three vectors: AB, BC, and CA. When a

point is on the same side of all of all three vectors, it must be inside the

facet. When the point lies on the other side of only one vector, it is not in

the facet. To check on which side of the vector AB a point P lies, the cross

product AB × AP is calculated. When the cross product is greater than 0,

the point P lies on the right side of the vector AB; otherwise, it lies on the

left. A point P is inside the facet if all cross products are greater than 0

or all smaller than 0. Since this algorithm just contains multiplications and

subtractions, it is very efficient.

With the correct facet, the point needs to be projected onto the facet to get the

correct z-height. When the point is interpreted as a vertical line, this can be done

with a line plane intersection. The line plane intersection works with an infinite

plane so it is important just to project points that are already checked to be inside

the facet because otherwise, it would create false hits.

45

Chapter 4. Implementation

A

B

C

•P

Figure 4.13: The facet with its three edges, each described as a vector. The cross
product AB and AP is used to calculate if the point is either on the left
or on the right side of the triangle. A point is inside the triangle when it
lies on the same side of every edge vector.

Line Plane Intersection

For the line plane intersection, the plane has to be converted into the follow-

ing from:

ax+ by + cz + d = 0 (4.4)

where a,b and c are the x-, y- and z-components of the surface normal and d

is defined as follows:

d = −(N · V) (4.5)

where N is the normal vector and V is any vertex from the facet that is

currently checked.

The intersection point of the line will now be calculated. Since the x- and

y-component does not change with a vertical intersection line, only the z-

component of the point (P.z) has to be calculated with the following formula:

P.z = P.z + u · (L2.z − L1.z) (4.6)

where L1 is the position of the point that should be projected and L2 is the

same position shifted upwards by one mm. This shift by one mm is used so

that L2.z − L1.z evaluates to one and can be ignored. The previously not

mentioned component u is defined as follows:

u = −(N · P + d)/N.z (4.7)

46

4.3. Nonplanar Toolpath Generation

z

x

(a)

z

x

(b)

z

x

(c)

z

x

y

(d)

Figure 4.14: (a) The unprojected planar toolpath, (b) the points are projected down-
wards, (c) the line intersections are added, and (d) the projected example
toolpath of the upper nonplanar layer.

where N is again the normal vector and P is the point that should be pro-

jected. The generated point stays unchanged in x- and y-axis. Only the

z-component is changed to the position where the point is projected onto the

plane which represents the facet.

To ensure that the interface layers are placed lower than the top shell layers, the

found z-component is lowered by the distance to top, which was saved earlier. All

points that did not get projected and still have a z-component at -1 are set to

the current layer z-height. The x- and y-components of all points stay unchanged

during the whole process. The toolpath with the projected points can be seen in

figure 4.14(b).

The projected path does not follow the geometry yet, because an extrusion line

takes the shortest path between the start and endpoint which usually goes from

one side of the object to the other. This can be seen in figure 4.14(b). On non-

planar surfaces with more than just a flat surface, this does not represent the

surface geometry and will also collide with the internal planar layers. The start

and end points are already on their correct position. Each line has to add ad-

ditional points every time the surface changes its direction to follow the actual

47

Chapter 4. Implementation

geometry of the nonplanar surface. These direction changes only occur along the

edges of the facets. Within a facet, the surface is flat and the direction is constant.

To get the path to follow the contour it has to be split up on every intersection

with a facet edge from the nonplanar surface. Every line of the print path has to

be checked against every edge of every facet of the nonplanar surface to get these

intersections. This check has the complexity of O(n ·m) where n is the number of

facets and m is the number of extrusion lines. Since the path is projected along

the z-axis, the intersection test can be simplified by only checking in 2D space and

ignoring the z-component. The z-component is then added when the intersecting

lines are found. The two-line intersection test is performed on every possible pair

of lines.

Two-Line Intersection

The two-line intersection algorithm needs two lines which should be checked.

They are described by four points P1, P2, P3, and P4 where the first two

represent the line from the facet and the last two represent the extrusion

line. The intersection point P of the two lines can be calculated as follows:

P.x = P1.x+ ua(P2.x− P1.x) (4.8)

P.y = P1.y + ua(P2.y − P1.y) (4.9)

where the following formula defines ua:

ua =
((P4.x− P3.x) · (P1.y − P3.y))− ((P4.y − P3.y) · (P1.x− P3.x))

((P4.y − P3.y) · (P2.x− P1.x))− ((P4.x− P3.x) · (P2.y − P1.y))

(4.10)

ub =
((P2.x− P1.x) · (P1.y − P3.y))− ((P2.y − P1.y) · (P1.x− P3.x))

((P4.y − P3.y) · (P2.x− P1.x))− ((P4.x− P3.x) · (P2.y − P1.y))

(4.11)

ub is not needed for the calculation of the intersection point but for checking

if the intersection happens on those two lines later. When the two lines are

parallel and have therefore no intersection the denominator of the equation is

zero. This has to be checked before calculating ua and ub because otherwise,

it would be a division by zero. Since two endless lines always intersect unless

they are parallel, it has to be checked if the found intersection lies between

the start and end points of both lines before calling it an intersection. This

is the case if both ua and ub are in the interval [0, 1]. When this is not the

48

4.3. Nonplanar Toolpath Generation

case for just one of them, the two lines intersect, but not in between the start

and end points of both lines. This is not an intersection and is not further

handled. The equations 4.8 and 4.9 just calculated the x- and y-position of

the point because this is a test in 2D space. Since the projection happens on

a vertical axis, this is not a problem. The z-component P.z of the point can

be calculated by the following equation:

P.z = P1.z −
(
Dist(P1, P)

Dist(P1, P2)

)
· (P1.z − P2.z) (4.12)

where Dist() is the Euclidean distance between these two points in 2D space.

The intersection is now completely calculated.

When the intersection test is performed with all facets of the mesh, all intersections

are stored in the potential intersection vector. Like with the projected points, the

distance to top is subtracted from the z-component if the toolpath belongs to an

inner shell. The intersection points are usually not in the correct order because it

relies on the order of the facets. The points must be stored in the correct order to

get a constant extrusion. They are sorted in the same direction where the previous

line was heading. Each inner facing edge of a facet is twice in the mesh because each

facet is described by all three edges and is independent of the other facets. These

duplicate edges create duplicate intersection points which have to be eliminated.

Because the points where sorted beforehand, the same points always lie next to

each other. Each point is compared to the next point and is deleted if they match

to eliminate the duplicates. This leaves valid and unique points behind. They are

added between the start and end point of the initially checked extrusion line. This

forms a bunch of new lines which all follow the nonplanar surface mesh. When

all lines are processed, the complete toolpath follows its contour. The toolpath no

longer floats in mid-air but lies directly above the planar layers. It seems easier to

replicate the toolpath of the top layer to the inner shell layers. This is not possible

since the lower layers do not have the same geometry. Furthermore, usually the

angle of the filling changes in every layer. It is necessary to project each toolpath

separately. Figure 4.14(c) shows the fully projected toolpath. Both planar and

nonplanar layers are now entirely filled with printable toolpaths.

49

Chapter 4. Implementation

4.3.5 G-code Generation for Nonplanar Layers

The G-code generation now chains the independent toolpaths together to a contin-

uous 3D printing path, calculates the extrusion amounts and generates the actual

G-code which can be executed by the 3D printer. The whole process is pretty sim-

ilar to the planar one. Most parts of it can be reused as they are. The nonplanar

layers are located on the layer where the highest point of the nonplanar surface is.

So they are handled as they were on this layer. To be able to generate nonplanar

extrusion G-codes, the z-component has been added where it is present. When

the z-component is not set, the point is part of a planar extrusion and the layer

print height is used as the z-component. While extruding, no collisions can occur

since this was already checked in the collision avoidance (section 4.3.2). Travel

moves, on the other hand, can cause a collision even if the target is lower than the

starting point of the travel move. This is because travel moves can go across the

whole object with obstacles in between. Figure 4.15(a) shows a travel move with

a potential collision. To avoid collisions, every travel move that starts or ends on

a height lower than the current layer height needs special treatment. Instead of

moving directly from the current point to the target point, the printhead is first

moved straight up. Then it moves to the x- and y-position of the target point and

when it reaches that, the printhead moves down to the desired z-position. The

collision-free travel path is shown in figure 4.15(b). With the new travel path, the

printhead avoids crashing into any obstacles on the travel path. To prevent this

up-and-down movement on extremely short travels, like when switching from the

perimeter to the infill, this is only performed when the travel is longer than 1 mm.

z

x

(a)

z

x

(b)

Figure 4.15: (a) Traveling directly to the target point can cause collisions with non-
planar structures. (b) When moving up to the current layer height before
traveling avoids collisions with nonplanar structures.

50

4.3. Nonplanar Toolpath Generation

nonplanar layer n

nonplanar layer n− 1

θm

z shift

Figure 4.16: Shifting layers along its z-axis lowers the distance between the surfaces
when they are not horizontal. The correction factor to compensate this
difference can be calculated with a right angle perpendicular to the surface.

This method produces some unnecessary travels and the travel paths are rather

long. It may be more effective to check if this collision-preventing travel move is

necessary for this particular travel. It might also be a good idea to follow the

surface while moving to prevent the extruder from oozing.

The necessary extrusion amount is calculated by multiplying the desired flow with

the length of the path which is calculated with the Euclidean distance. The z-

component is simply added to the calculation of the Euclidean distance.

The different shell layers are only shifted along the z-axis and not along their

normals as [Huang and Singamneni, 2014] suggested. The z-shift leads to less vol-

ume between the layers with rising slope angle. The problem is shown in figure

4.16. When this is not compensated, layers that are not horizontal are overfilled.

The compensation factor can be calculated by creating a right triangle that is

perpendicular to the surface and calculating its height. Since the surface angle is

not known in the G-code, the angle is calculated by the ratio between the z differ-

ence of both points and the overall extrusion length. This leads to the following

correction factor m :

m = cos

(
arctan

(
(P2.z − P1.z)

length(P1, P2)

))
(4.13)

51

Chapter 4. Implementation

where P1 and P2 are both points of the extrusion line and length() is the Eu-

clidean distance of both points. This compensation factor is multiplied with the

extrusion amount to prevent overfilling.

The G-code now generated and can be printed on the desired printer. The print-

ing of the object with nonplanar layers does not differ from the planar one. The

z-axis moves while extruding may be a little bit slower than expected because the

firmware of the printer cannot exceed the maximum z-axis speed that is configured.

4.3.6 Toolpath Visualization

The toolpath that will be later printed can be visualized in Slic3r. The user

can check if the toolpath is as intended and can scroll through the layers of the

toolpath. This feature is essential for many users since they check every toolpath

before printing. The feature comes in handy while developing since the toolpath

can be checked while making changes in the source code without having to print

each time. The slicer iterates through all extrusion objects and displays them to

visualize the whole toolpath. Each path will be disassembled into single lines. For

each line, a rhombic prism is generated out of facets with the length of the line. The

prism has the width of the actual extrusion and the height of the layer. The ends

and corners are covered with caps to prevent open polygons. To be able to display

3D toolpaths that go across different heights, the z-component of the build facets

can no longer be taken from the layer height but rather from the z-component of

the point. When the z-component of a point is not defined, the layer z-height is

used as before. The new visualization can display toolpaths with nonplanar layers

and can be seen in figure 4.17.

Figure 4.17: The nonplanar toolpath visualized in the toolpath preview in Slic3r. The
preview now supports 3D toolpaths.

52

4.4. Limitations

4.4 Limitations

The implementation of nonplanar layers in Slic3r works as intended. After adding

the angle and the height of the hardware limitations to the configuration for the

used printer, collision-free nonplanar surfaces can be printed. There are some

limitations regarding the usable features of the slicer and with over- and underfilling

of concave and convex structures. The next paragraphs show these limitations in

detail.

4.4.1 Unusable Slic3r Features

Not all features that Slic3r provides are usable anymore. Some need further in-

spection to work again and some cannot be activated while printing nonplanar

layers. Users can use these features but need to check the toolpath for collisions

in the preview.

At this point of the implementation, it is not possible to generate support structures

because a collision-free toolpath with nonplanar layers could not be guaranteed.

This is mainly because the support is generated after the toolpath generation of

the regular object. So the toolpaths of the nonplanar layers cannot check for those

collisions and the support implementation does not expect nonplanar layers. It

is possible to generate support structures, especially when the support is only on

layers below the lowest printing point of a nonplanar surface. But the generation

cannot be guaranteed to be collision-free. Collisions can occur when the support is

printed alongside a not yet printed nonplanar surface. Figure 4.18(a) shows a non-

planar surface with support structure that collides with the printhead. Another

more serious problem are support interfaces which are generated on top of an ex-

isting nonplanar surface. A support interface will be printed on every layer on top

of the not yet existing nonplanar surface. When the nonplanar surface is printed,

the support surface is already there and causes a collision. Figure 4.18(b) shows

a collision with the support interface that is printed where the nonplanar layer

belongs. To get collision-free support structures, the support that would cause a

collision needs to be printed after printing the nonplanar surface. However, this

could also cause collisions with other parts of the object. It is possible to gener-

ate collision-free support structures, but they are not implemented yet. Overall,

support is not generally forbidden, but the user needs to be careful and check the

actual printing preview for collisions before starting the print.

53

Chapter 4. Implementation

z

x

(a)

z

x

(b)

Figure 4.18: (a) The printhead collides with the previously printed support structure
while printing the nonplanar layer. (b) The printhead collides with the
support interface which is already printed above the nonplanr surface.

A brim cannot cause any problems with nonplanar layers because it is only printed

on the first layer. A skirt, on the other hand, can cause collisions when the skirt

is printed higher than the first layer. Since skirts that are higher than one layer

are uncommon, this is not really a problem. However, Slic3r should forbid such

configurations.

Nonplanar surfaces can be printed with a constant layer height. Even a differ-

ent layer height on the first layer is not a problem since the first layer always stays

untouched. Adaptive layer heights will cause a problem with the current imple-

mentation. While projecting the surfaces up to the home layer of the nonplanar

surface, it is assumed that all surfaces have the same height. This is necessary

to ensure that there will be enough space for the later down projected extrusion

path. With adaptive layers, nonplanar layers are generally possible, but further

research is needed to generate a planar base structure with enough space for the

later above printed nonplanar layers.

4.4.2 Over- and Under-filling

When filling a nonplanar surface with a rectilinear pattern, gaps will emerge be-

tween the individual lines since the overall distance perpendicular to the filling

direction increases. On concave surfaces, the lines are placed closer together and

on convex surfaces, they are further apart. Figure 4.19(a) illustrates the problem

on a convex surface. With a low maximum angle, these gaps or over-filling can be

compensated by increasing or decreasing the extrusion amount. On a half sphere

54

4.4. Limitations

(a) (b)

Figure 4.19: (a) A convex surface which suffers from underfilling. The gaps are espe-
cially visible on the side of the convex surface. (b) A different fill pattern
to compensate these gaps. [Lim et al., 2016]

with a high maximum angle, this is impossible since the gaps get too big to com-

pensate this by simply increasing the extrusion amount. Different fill patterns may

be suitable to fill those extreme concave and convex surfaces. One pattern would

be an endless volute track which starts on the outside polygon of the nonplanar

surface. On each round, the track goes one step to the inside to fill the whole

surface. This filling has to be done on the 3D surface without the projection used

in this work. Another method is to separate the surface into different sub surfaces

and fill each region with a rectilinear pattern with a different density like [Lim

et al., 2016] did. Figure 4.19(b) shows an alternative pattern to prevent under-

filling. This method also has to be generated on the 3D surface. On low maximum

angles, the over and under-filling can be ignored since it is not such a big problem.

Three-axis printers do not print high maximum angles well and the stair-stepping

is way worse on low angles so it might be a good idea to set the maximum angle

to a value where the stair-stepping is better and the over and under-stuffing is

acceptable.

55

5 Evaluation

This chapter shows different tests to evaluate the implementation and the prints

generated with it. The Tests that are performed include surfaces which heavily

suffer from stair-stepping and complex surfaces. The printability of different angles

is also tested with a three-axis printer. The slice and print speed is exterminated

as well as the approximation error from the designed model. All test objects are

printed on an Ultimaker 2 with a 0.4 mm Olssen Block nozzle.

5.1 Stair-Stepping

In this test, the ability to remove stair-stepping from surfaces is evaluated. Two

objects which suffer from stair-stepping are compared to the same objects with

nonplanar top layers. The first object in figure 5.1 contains one surface which is

tilted by 5◦. This object shows the ability to remove stair-stepping on tilted flat

surfaces. The second object in figure 5.2 is the top 50 by 50 mm area of a sphere

with a radius of 220 mm. This object shows the ability to remove stair-stepping

from a curved surface with multiple facets. All objects are printed with 0.3 mm

layer height. On the test prints, the objects with nonplanar layers (figure 5.1(b)

(a) (b)

Figure 5.1: The 5◦ tilted surface to test for stair-stepping printed with (a) planar layers
and (b) nonplanar layers.

57

Chapter 5. Evaluation

(a) (b)

Figure 5.2: The top 50 by 50 mm area of a sphere with a radius of 220 mm to test for
stair-stepping printed with (a) planar layers and (b) nonplanar layers.

and 5.2(b)) have a much smoother surface than the objects with planar layers

(figure 5.1(a) and 5.2(a)). The stair-stepping is removed entirely with nonplanar

layers and the surfaces appear very smooth.

5.2 Complex Surfaces

In this test, a complex surface geometry is printed to evaluate the ability of the

implementation to generate a proper toolpath on this surface without collisions.

The surface is created by the following formula:

z = (sinx · cos y) · 4 (5.1)

The surface is rotated by 45◦ and intersected with itself, which results in the

model shown in figure 5.3(a). The printed model with nonplanar surfaces is shown

in figure 5.3(b). The model is printed with 0.2 mm layer height. The toolpath

that was generated, follows the contour and caused no collisions while printing

the object. On the nonplanar layers, the print speed was slower than usual. The

speed of the z-axis was limiting the overall print speed in the surface. The slower

speed is mainly because of the relatively low acceleration and jerk values that are

configured for the z-axis. Since usually the z-axis just moves on layer changes,

these values are set very conservatively. Tuning the acceleration an jerk of the

z-axis should increase the print speed in such complex surfaces. The surface of the

58

5.3. Printability of Different Angles

(a) (b)

Figure 5.3: (a) The model of the complex surface to check for proper toolpath gener-
ation without collisions and (b) the printed complex surface.

print is relatively rough. This is because the nozzle penetrates the surface while

printing. The surface angle is on most facets of the surface above 20◦. Lastly,

slight over- and under-filling, especially on slopes perpendicular to the printing

angle, can be observed. This can be compensated by generating variable extrusion

widths which react to those variations in the line distance.

5.3 Printability of Different Angles

As seen in the previous test, the nozzle can penetrate the printed surfaces especially

when a high angle is printed. To check if a three-axis printer would generally be

able to print surfaces of a given angle and where the limitations are, seven test

objects were printed with different angles. The printed angles are 5◦, 10◦, 15◦,

20◦, 25◦, 30◦, and 40◦. All objects are also printed with planar layers to make the

problems with stair-stepping visible. The printed objects are shown in figure 5.4.

All angles can be printed without delamination problems or collisions with the

printer. Missing filament retractions while moving inside the object over different

heights caused some oozing which is visible on low corners of the object. The

oozing can be compensated by changing the travel moves on nonplanar layers as

mentioned before. The surfaces of the nonplanar printed objects get worse with

rising ramp angle while the surface quality of the planar printed objects gets better.

It seems that with a 20◦ ramp angle, the optical smoothness of the surface is even

on both the planar and nonplanar object. On the objects with a lower angle,

59

Chapter 5. Evaluation

Figure 5.4: The printability of surfaces with different ramp angles. The objects in the
top row are printed with planar layers and in the bottom row with nonplanar
layers. The printed angles are from left to right 5◦, 10◦, 15◦, 20◦, 25◦, 30◦,
and 40◦. Above 20◦ the surface of the planar objects is smoother and below
the nonplanar surface is smoother.

the nonplanar surface is smoother while on the higher angles the planar surface is

smoother. It might be a rough estimation to only print nonplanar surfaces with a

maximum angle of 20◦ to get the smoothest possible object.

5.4 Print and Slicing Speed

The printing itself consumes most of the time in the whole 3D printing process.

The actual slicing time is only relevant when the user adjusts settings to check if

the toolpath looks as intended. In this test, either the time a slicing process needs

to complete, as well as the printing time a model needs to print is measured. Both

are measured with planar, nonplanar, and adaptive layers on the quarter sphere

from section 5.5. The sphere model has 3778 facets and a nonplanar printable

area. The object is sliced with 0.3 mm layer height while the adaptive layers vary

between 0.1 mm and 0.3 mm. For printing, the nozzle and print bed are preheated

to remove this variable from the time measurement. The time each slicing method

took to slice and print the model can be seen in table 5.1. The print time is

rounded to full minutes while the slicing time is rounded to a tenth of a second.

The slicing time of the nonplanar method is significantly higher but not unusable

slicing printing

planar 7.7 sec 91 min

nonplanar 25.8 sec 93 min

adaptive 11.7 sec 125 min

Table 5.1: The measured time to slice and print the quarter sphere the previous section.
While the slicing of the nonplanar layers is significantly longer, the print time
stays about the same. With adaptive layers, the print time is significantly
longer.

60

5.5. Approximation Error

high. It might be possible to improve the speed of the process by optimizing and

parallelizing it. But, the slicing with nonplanar layers will never be as fast as planar

slicing since the implementation adds additional steps to the process and some of

them are rather complex. The print time of the nonplanar object is similar to

planar printing but with an improved surface quality. A nonplanar printed object

outperforms an object printed with adaptive layers. Overall the print time of a

nonplanar printed object does not rise significantly compared to the planar printed

object.

5.5 Approximation Error

Approximation errors are the difference between the modeled object and the actual

printed object. Positive approximation errors are when the object is larger than

the model in one region while with negative approximation errors these regions are

smaller than designed. A quarter sphere with a radius of 40 mm is printed with

planar (figure 5.5(a)), nonplanar (figure 5.5(b)) and adaptive layers (figure 5.5(c))

to evaluate the approximation error. The side profile of each object is magnified

and the modeled sphere is overlaid in red. Each region that is above the sphere is

a positive approximation error and every region below is a negative approximation

error. The planar and the nonplanar objects are printed with 0.3 mm layer height

while the adaptive layers vary between 0.1 mm and 0.3 mm.

The planar object has a relatively high approximation error compared to the adap-

tive or the nonplanar printed object. The approximation error on the nonplanar

object in the area of the nonplanar layer is in theory zero because the toolpath

follows the surface geometry exactly. Practically, the surface roughness that the

penetrating extruder produces creates an approximation error from the actual ob-

ject. This error rises with the surface angle. Looking at the full object, the adaptive

printed object looks closest to the model due to its consistent appearance. The

different looking surfaces on the nonplanar object stands out. Furthermore, the

transition between the nonplanar and the planar region is a bit rough. Looking

only on the magnified side view, the nonplanar surface is closer to the model and

has a more smooth surface finish. It cannot be generally determined if nonplanar

printed objects have the best approximation error since this heavily depends on the

objects geometry and the possibility to generate collision-free nonplanar surfaces.

61

Chapter 5. Evaluation

(a)

(b)

(c)

Figure 5.5: The quarter sphere printed with (a) planar layers, (b) nonplanar layers, and
(c) adaptive layers. On each quarter sphere, the side profile of the surface
is magnified to see the approximation error. The modeled sphere is overlaid
in red.62

6 Conclusion

The generation of nonplanar layers for smoother surfaces works as intended. The

surfaces are extracted from the triangle mesh of the model by their angle rel-

ative to the z-axis. They are grouped and filtered, so each surface meets the

two criteria of maximum angle and maximum height. Collision prevention en-

sures that the printhead does not crash into previously printed structures while

printing nonplanar layers. The surfaces are generated by moving parts of the pla-

nar layers upwards to form a new nonplanar layer. The toolpaths are generated

as 2D toolpaths and are then projected downwards according to the geometry

of the facet mesh. This forms a 3D toolpath that can be visualized in Slic3r

to ensure that the path looks as intended. The G-code is generated from the

toolpath, causing no collisions while traveling. The printed objects looked much

better with the smooth nonplanar surface than with stair-stepping artifacts from

planar surfaces. The print time for an object with nonplanar layers does not in-

crease significantly compared to the object with planar layers. The mechanical

properties are closer to the designed model. Although the bonding between the

layers should increase when a nonplanar layer is printed above them, this was

not tested. Test prints showed that a high maximum printable angle does not

mean that all surfaces should be printed that way. But on lower surface an-

gles the large stair-stepping artifacts can be compensated. On complex objects,

the nonplanar surfaces are often not printable due to possible collisions with the

printhead. This could be compensated by designing a special printhead made for

nonplanar printing that can reach angles over a great height. The implementation

in this work is open-source and can be found on GitHub on the following URL

https://github.com/Zip-o-mat/Slic3r/tree/nonplanar-thesis.

63

https://github.com/Zip-o-mat/Slic3r/tree/nonplanar-thesis

Chapter 6. Conclusion

6.1 Outlook

The software implemented in this work is usable and stable. But since some

features might not work as intended, nonplanar surfaces must be used with caution.

The missing compatibility with the support generation is the main problem since

this feature is essential for some objects printed with an FDM printer. Further tests

will show if more features are incompatible with nonplanar layers. The toolpath

generation can be parallelized to increase the speed since this is not always the

case yet. The current implementation might be ineffective at some steps. Better

collision prevention on travel moves and overall better path planning which reduce

oozing would increase the print quality even further. Stair-stepping also occurs

on bottom facing surfaces, this was completely ignored in this work. It would

be generally possible to print nonplanar layers on top of support layers and then

generate the planar layers above. While printing the nonplanar extrusion heights,

the nozzle height is currently not adjusted according to the printing direction.

This could be compensated in future releases of the software. The test prints

showed that surfaces with a high angle are squished onto each other. It is to be

evaluated whether the offset for the different layers should be generated along the

facet normals rather than along the z-axis to reduce this effect. Last but not least,

the emerging gaps on convex surfaces stay to be examined and compensated in

future releases of the software.

64

Glossary

2D Two Dimensional

3D Three Dimensional

AM Additive Manufacturing

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CNC Computerized Numerical Control

STL STereoLithograhy

AMF Additive manufacturing file format

3MF 3D Manufacturing Format

ASCII American Standard Code for Information Interchange

FDM Fused Deposition Modeling

CLFDM Curved Layer Fused Deposition Modeling

PID Proportional Integral Derivative

MOSFET Metal Oxide Semiconductor Field Effect Transistor

LGPL GNU Lesser General Public License

AGPL GNU Affero General Public License

65

Bibliography

[3D Systems, 1988] 3D Systems (July 1988). Stereolithography interface specifi-

cation.

[Ahlers, 2015] Ahlers, D. (2015). Development of a Software for the Design of

Electronic Circuits in 3D-Printable Objects. Universität Hamburg.

[Bread slicer] Bread slicer. https://github.com/nick-parker/bread.

[Burns, 1993] Burns, M. (1993). Automated fabrication: improving productivity in

manufacturing. Prentice Hall.

[Chakraborty et al., 2008] Chakraborty, D., Aneesh Reddy, B., and Roy Choud-

hury, A. (2008). Extruder path generation for curved layer fused deposition

modeling. Computer Aided Design, 40(2):235–243.

[Cura] Cura. https://ultimaker.com/en/products/ultimaker-cura-software.

[Ding et al., 2015] Ding, D., Pan, Z., Cuiuri, D., Li, H., Larkin, N., and Duin,

S. (2015). Multi-direction slicing of STL models for robotic wire-feed additive

manufacturing. In Solid Freeform Fabrication Symposium.

[Douglas and Peucker, 1973] Douglas, D. H. and Peucker, T. K. (1973). Algo-

rithms for the reduction of the number of points required to represent a digitized

line or its caricature. Cartographica: The International Journal for Geographic

Information and Geovisualization, 10(2):112–122.

[Forefront Filament, 2016] Forefront Filament (2016). http://www.foref

rontfilament.co.uk/blog/2016/11/14/how-to-print-with-flexible-

filaments. accessed on 04 oct. 2018.

[Gibson et al., 2015] Gibson, I., Rosen, D., and Stucker, B. (2015). Additive Man-

ufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital

Manufacturing. Springer, New York, 2nd edition.

67

http://www.forefrontfilament.co.uk/blog/2016/11/14/how-to-print-with-flexible-filaments
http://www.forefrontfilament.co.uk/blog/2016/11/14/how-to-print-with-flexible-filaments
http://www.forefrontfilament.co.uk/blog/2016/11/14/how-to-print-with-flexible-filaments

Bibliography

[Horvath, 2014] Horvath, J. (2014). Mastering 3D Printing. Apress, Berkely, 1st

edition.

[Huang and Singamneni, 2014] Huang, B. and Singamneni, S. (2014). A mixed-

layer approach combining both flat and curved layer slicing for fused deposition

modelling. Proceedings of the Institution of Mechanical Engineers, Part B: Jour-

nal of Engineering Manufacture, 229(12):2238–2249.

[Jin et al., 2017] Jin, Y., Du, J., He, Y., and Fu, G. (2017). Modeling and pro-

cess planning for curved layer fused deposition. The International Journal of

Advanced Manufacturing Technology, 91(1-4):273–285.

[Khurana et al., 2017] Khurana, J. B., Dinda, S., and Simpson, T. W. (2017).

Active-z printing: A new approach to increasing 3D printed part strength. Solid

Freeform Fabrication Symposium.

[Kubalak et al., 2018] Kubalak, J. R., Wicks, A. L., and Williams, C. B. (2018).

Using multi-axis material extrusion to improve mechanical properties through

surface reinforcement. Virtual and Physical Prototyping, 13(1):32–38.

[Lim et al., 2016] Lim, S., Buswell, R. A., Valentine, P. J., Piker, D., Austin,

S. A., and De Kestelier, X. (2016). Modelling curved-layered printing paths

for fabricating large-scale construction components. Additive Manufacturing,

12:216–230.

[Llewellyn-Jones et al., 2016] Llewellyn-Jones, T., Allen, R., and Trask, R. (2016).

Curved layer fused filament fabrication using automated toolpath generation. 3D

Printing and Additive Manufacturing, 3(4):236–243.

[Micali and Dornfeld, 2016] Micali, M. and Dornfeld, D. (2016). Fully three-

dimensional toolpath generation for point-based additive manufacturing ssys-

tems. In Solid Freeform Fabrication Symposium.

[Slic3r] Slic3r. http://slic3r.org/.

[Tyberg, 1998] Tyberg, J. (1998). Local adaptive slicing for layered manufacturing.

PhD thesis, Virginia Tech.

[Wasserfall, 2015] Wasserfall, F. (2015). Embedding of SMD populated circuits

into FDM printed objects. In Solid Freeform Fabrication Symposium, volume 26,

pages 180–189, Austin.

68

Bibliography

[Zhao et al., 2018] Zhao, H.-m., He, Y., Fu, J.-z., and Qiu, J.-j. (2018). Inclined

layer printing for fused deposition modeling without assisted supporting struc-

ture. Robotics and Computer-Integrated Manufacturing, 51:1–13.

69

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstu-

diengang Informatik selbstständig verfasst und keine anderen als die angegebenen

Hilfsmittel – insbesondere keine im Quellenverzeichnis nicht benannten Internet-

Quellen – benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichun-

gen entnommen wurden, sind als solche kenntlich gemacht. Ich versichere weiter-

hin, dass ich die Arbeit vorher nicht in einem anderen Prüfungsverfahren ein-

gereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen

Speichermedium entspricht.

Hamburg, den 19 Okt, 2018 Daniel Ahlers

Veröffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik

zu.

Hamburg, den 19 Okt, 2018 Daniel Ahlers

	1 Introduction
	1.1 Problem Statement
	1.2 Goal of this Thesis
	1.3 Outline

	2 Principles
	2.1 3D Printing
	2.2 STL
	2.3 G-Code
	2.4 FDM Slicing Software
	2.5 FDM Printers

	3 Related Work
	3.1 Multi-Direction Slicing
	3.2 Inclined Layer Printing
	3.3 Active-Z Printing
	3.4 Multi-Axis Material Extrusion
	3.5 Fully Three-Dimensional Toolpath Generation
	3.6 Curved Layer Fused Deposition Modeling
	3.7 Combining Flat and Curved Layers
	3.8 Path Planning for CLFDM

	4 Implementation
	4.1 Planar Toolpath Generation
	4.1.1 Layer Generation
	4.1.2 Perimeter Generation
	4.1.3 Prepare Filling
	4.1.4 Surface Filling
	4.1.5 Support Generation
	4.1.6 Skirt and Brim Generation
	4.1.7 G-code Generation

	4.2 Hardware Limitations
	4.2.1 Nozzle Geometry

	4.3 Nonplanar Toolpath Generation
	4.3.1 Identifying Printable Nonplanar Surfaces
	4.3.2 Collision Avoidance
	4.3.3 Surface Generation for Nonplanar Layers
	4.3.4 Toolpath Generation for Nonplanar Layers
	4.3.5 G-code Generation for Nonplanar Layers
	4.3.6 Toolpath Visualization

	4.4 Limitations
	4.4.1 Unusable Slic3r Features
	4.4.2 Over- and Under-filling

	5 Evaluation
	5.1 Stair-Stepping
	5.2 Complex Surfaces
	5.3 Printability of Different Angles
	5.4 Print and Slicing Speed
	5.5 Approximation Error

	6 Conclusion
	6.1 Outlook

	Bibliography

