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I

Abstract

English

The robot this work refers to is a TurtleBot from Kobuki. In this work, an optical method for

position determination should be used in order to create a new automated docking algorithm for

this TurtleBot. This new docking approach should replace the old one, from Kobuki that still

uses Infrared. Another goal is to answer the question whether optical position determinations

are precise enough to be used permanently for autonomous docking. Finally this new approach

should be compared to the old one, by using a benchmark designed for docking approaches.

German

Der Roboter, auf den sich diese Arbeit bezieht, ist ein Kobuki-Turtlebot. In dieser Arbeit sollte

eine optische Methode zur Positionsbestimmung verwendet werden, um einen neuen automa-

tisierten Docking-Algorithmus für den Kobuki Turtle-Bot zu erstellen. Dieser neue Docking-

Algorithmus sollte den alten von Kobuki ersetzen, der immer noch Infrarot verwendet. Ein

weiteres Ziel ist es, die Frage zu beantworten, ob eine optische Positionsbestimmung genau

genug ist um dauerhaft für das Docking verwendet zu werden. Desweiteren sollte dieser neue

Algorithmus mit dem alten verglichen werden, der die Infrarotsensoren verwendet. Hierfür

wird eine Auswertung beider Algorithmen durchgeführt um die beiden Ansätze mit hilfe eines

Benchmarks zu vergleichen.
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1 Introduction

Autonomous robotic systems are slowly entering areas of business and research. They will

become more and more important in households. An example of an assistant robot in the house-

hold is an automated vacuum cleaner. A key role in their development plays algorithms and

procedures that describe what the robot should do. It becomes more and more important that

the robot performs its work autonomously. A battery-operated robot, for example, can explore

the landscape autonomously, and for that, it must be able to autonomously decides to go to his

charging station in order to recharge there.

The robot, this work refers to, is a Kobuki turtle robot. It comes with integrated infrared sensors

on the robot and on the docking station. These sensors are used for determination of the position

during docking. But this approach is not sufficient for the robot to work autonomously. In

practice, docking often fails, because the infrared sensors do not deliver exact positioning data

to the robot. However, these infrared sensors are disturbed by ordinary daylight, and at group

TAMS some sensors were manufactured imprecise. This are two reasons why the docking with

the on board sensors have a high error rate. Furthermore the algorithm, which comes from

Kobuki, is not able to start a new attempt, after trying one unsuccessfully. Thus the robot is not

usable when he has to operate autonomously.

Because there is a Kinect on the Turtle-Bot we want to implement a docking that is based on an

optical positioning using an optical fiducial mark such as Apriltags. This has the advantage that

it is not necessary to upgrade the robot with extra sensors. With an optical positioning it is even

possible to print the position mark on the docking station. Thus it is a very cheep alternative to

other approaches like RFID or Infrared.

1.1 Objective

This work realizes an optical method for position determination and with a docking algorithm.

Furthermore, the procedure described here is examined for accuracy.

The goal is to answer the question of whether optical position determinations are precise enough

to be used permanently for autonomous docking. Furthermore, a node is to be implemented,

that allows the robot to dock with the help of the Apriltags. Then this new approach should be

compared to the old one, which uses the infrared sensors.
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2 Description of the robot

There is a turtle robot of Kobuki, which can be programmed with the help of the ROS Frame-

work. The ROS Framework offers the use the programming of the robot in Python or C/C++.

Nodes, which are processes that run on the ROS system, can communicate with each other

by using ROS-messages, that belong to a certain topic. A topic is formatted like a path (e.g.

mobile_base/sensors/imu_data) and is unique in the ROS system. A node does publish

a message to a certain topic, and another node can subscribe to this topic. Most information

between the nodes are shared by using ROS messages and a topic. Thus all information that is

needed to get information from a sensor is the topic where the messages are published and the

type of the message.

(a) The Kobuki TurtleBot with
the Kinect and the mounted
laser sensor

(b) This figure shows a typical
IMU. It is a PIXHAWK IMU
that is described in [3].

(c) This is the laser low-
frequency sensor, that is
mounted on the TurtleBot.

Figure 1: Shows the TurtleBot in a) an IMU in b) and the Laser-Sensor in c)

The robot has a Kinect (1a), a laser low-frequency sensor (1c), and an infrared interface, which

is up to now used for the docking algorithm. The Camera on the Kinect [1] does have a field

of view of 43° vertical and 57° horizontal. The videos taken from the Kinect has a resolution

of 640x480 Pixel. The laser sensor as described in [2] is able to scan for obstacles. It can

be used to master mapping, localization and navigation. Furthermore the Robot does have an

IMU (=Inertial Measurement Unit) (1b) which publishes it’s messages under the ROS-Topic

mobile_base/sensors/imu_data

using sensor_msgs/Imu messages. Most IMU’s consist of different sensors. The PIXHAWK
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Internal Measurement Unit described in [3] for example does have a Gyroscope to measure the

rotation of the robot, a Magnetometer to measure magnetic flow density, an Accelerometer to

measure acceleration and a Pressure Sensor to measure pressure. The list of sensors that are

built in an IMU variates from model to model, but mostly these four mentioned sensors ca be

found.
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2.1 Kobuki’s Docking Algorithm

Still today the robot uses a docking algorithm as described in [5]. As stated in [5] there are

three IR-Receivers on the TurtleBot and three IR-Emitters on the docking station. In ROS the

information from the IR-Receivers is available

under the topic /mobile_base/sensors/dock_ir in the form of a

kobuki_msgs/DockInfraRed message.

(a) Illustrates the tree different regions in front of
the docking station. Each region is divided into near
and far.

(b) Shows the three IR-Sensors on the Kobuki
Turtle-bot

Figure 2: a) shows the different regions in front of the docking station, which come from the
tree IR emitters on the docking station. b) shows the IR-receivers on the TurtleBot.

As shown in fig. 2a the IR emitters on the docking station divide the docking field into three Re-

gions. A right region a left region and a central region. Furthermore it is distinguished between

a near and a far field. Fig. 2b shows the three IR-Sensors, which are on the TurtleBot. One on

the left, one on the right and one in the front.

The robot can be in one of the three regions. If the robot is in the central region, the robot simply

has to follow the central region’s signal until it reaches the docking station.

If the robot is placed in the left region as the starting position, it has to turn counter clockwise

until the right sensor detects the left regions signal. At this position, the robot looks to the central

region, so the robot just has to move forward in order to reach the central region. The robot has
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reached the central region when the right sensor detects the central region. After the robot has

reached the central region it just have to turn clockwise until the frontal IR-Sensor detects the

central region.

The algorithm for the starting position at the right region is analog.

2.2 Problems of the Kobuki’s Docking Approach

The Docking Algorithm which was previously shown should be replaced because there are three

reasons why this approach does not work properly.

The first is, that the robot is not able to distinguish between different docking stations, because

of using the infrared sensors, which are equally on all docking stations. If there are more than

one docking station in the room it often happens, that the robot does not detect the nearest station

but a station which is further away.

The second reason why the infrared approach does not work well is that the infrared sensors can

be distorted by ordinary daylight. Thus the robot gets inexact values from the sensors, which

often result in a failed docking.

The third reason is, that the IR-Emitters and IR-Sensors are sometimes badly manufactured and

therefore inexact.
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3 Important Terms

Terms like Odometry, dead-reckoning and visual odometry are often found in the literature. This

chapter should explain the most important terms.

3.1 Odometry

In [6], Odometry is described as the process of estimate the position by using motion sensors.

Odometry is the most widely used method for determining the position. Sensors can be any

motion sensor like a Gyroscope or a speedometer. Mostly the term is used by wheeled robots

and as sensor very often the revolutions taken by the wheels are meant. Because Odometry uses

only motion sensors, which may have small errors in accuracy, the resulting position will become

more and more imprecise after some time, because the errors from the sensors can accumulate.

3.2 Dead-reckoning

As mentioned in [7], dead-reckoning is the process of determining the current position by using

a previously known position. Dead Reckoning is based on Odometry e.g monitoring the wheel

revolutions to compute the offset from a known starting position. In many cases, dead-reckoning

can reduce the cost of a robot system, because no extra sensors are needed. But there are two

general error sources. On the one hand there can be systematic errors and on the other hand,

there can be non-systematic errors. Systematic errors can be caused by kinematic imperfections

e.g unequal wheel diameters. Systematic errors are regularly because the refer to properties

of the robot itself. The second type of errors are the non-systematic-errors, that are caused by

things like irregularities of the floor. These errors do not refer to properties of the robot.

3.3 Visual-odometry

As mentioned in [8], visual odometry is the same as odometry but instead of using different

sensor types, it restricts you using a camera as a sensor. Whenever a visual input alone is used

for positioning visual odometry is done.
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3.4 Different Regions in the Docking-Area

Figure 3: Docking regions as described in [9]

Before we talk about the docking algorithm we have to specify some regions which are impor-

tant and mentioned in [9].

Ballistic Region
This is the area which is more than 2m away from the docking station.

Controlled Region
This is the area which is less than 2m around the docking station. This area can be divided into

three different areas, the approach zone, the coercive zone and the frontal Zone.

Approach Zone
This is the zone where the robot sees the docking station or the Apriltag. The robot should be

able to do the docking, when it is in the approach zone.

Coercive Zone
In this zone, the front of the docking station cannot be seen by the robot. Thus the robot has to

do a repositioning in order to be in the approach zone. In this zone the robot is not expect to be

able to do the docking.

Frontal Zone
In this work, a frontal zone is a zone where the robot must be in when it wants to drive straight

forward into the docking station with only small corrections of the angle. This zone is although

known as central zone.
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4 Localization

In the literature, many different possible solutions for localization are mentioned. All these ap-

proaches can be distinguished by the use of the sensor system. In [10] the following approaches

could be found.

• Infrared Sensors

This approach measure the electromagnetic spectrum in the optical range of 1mm to 78nm

wavelength.

• IEEE 802.11 RADAR

This approach uses standard 802.11 network adapters and does the localization by mea-

suring the signal strength.

• Ultrasonic

The most approaches using ultrasonic sending an ultrasonic sound and measure the time-

of-flight to gather the distance. This approach requires much infrastructure.

• RFID

This approach uses radio-frequency identification.

Like the IEEE 802.11 RADAR, it uses the signal strength to calculate the position.

• Optical

Optical approaches use a camera and some kind of visual fiducial markers like Apriltags

or QR-codes in order to determine the position.

Because not all these approaches are suitable for this work, only infrared, RFID and the opti-

cal approach is described more detailed, because for a new docking approach we are mainly

interested in localization with respect to a local landmark.

4.1 Localization with Infrared

All infrared sensors can be put into two groups. The first are the active sensors, that work with

self-emitted signals, the second are the passive sensors that react on an external signal source.

Infrared works in a wavelength range of 850 nm to 50 µm. The Kobuki-TurtleBot uses passive

IR-Sensors with IR-Emitters on the docking station. Because the daylight contains Infrared,

these sensors can be distorted by normal daylight.

The following portable three-dimensional infrared local positioning system (IR-LPS) is men-

tioned in paper [11]. That system uses an IR-emitter and then triangulate the position of the
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robot by using two IR receivers. The system does have a range of 30m and an accuracy of 1cm

at a range of 2m. The localization is done by determining the angle that the robot has relative to

two points that are a known. Figure 4 shows the IR-emitter and two IR-receivers. The angles Ø,

β and π− ∂ are known angles and DX is a known distance because the IR-receivers are put in

place by the user.

Figure 4: This figure from [11] shows the IR-Emitter on the top and two IR-Receivers placed on
the x-z-plane. The Angles θ , β and π − ∂ are known angles and the distance DX is although
known. The distance Z in the x-z plane has to be computed.

As described in [11] the following equations can derived form fig. 4:

I :X = Z
tan(β )

II :(DX−X) = Z
tan(π−∂ )

III:Y = Z · tan(φ)

and finally by subbing I into II

Z =
DX

1
tan(π−∂ ) +

1
tan(β )

This approach comprises one IR-emitter and two IR-receivers, in order to localize the robot in

the x-z plane.
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4.2 Localization with RFID

The localization task can be solved by using RFID. A well-known RFID localization technology

is SpotOn [10], which uses a three-dimensional location sensing based on the strength of the sig-

nal. Another System is the Spider System manufactured by RFCode [10] which uses a frequency

of 308MHz. As described in [10], a RFID system consists of an RFID-Reader and RFID-Tags.

The RFID-Reader reads the data from the tags. The RFID-Tags are available in an active and

a passive form. The active tags operate with a battery, which powers a radio transceiver on the

tag. The passive tags do not have a battery and no transceiver. It just reflects the signal from

the reader and adds information by modulating the reflected signal. Active tags have more range

than the passive once. The range is influenced by the angle subtended between the tag and reader.

Both active and passive tags have unique hardware IDs, which makes it possible to distinguish

between the different tags. Because the reader is not primarily designed to do localization tasks,

there is often only one antenna in the reader, this makes the localization task difficult because

since there is only one antenna it is not possible to detect changes while the robot is moving.

[12] describes the use of a dual directional antenna, which consists of two identical loop anten-

nas, positioned to each other in a 90◦ phase difference. With such an antenna in the reader, it

is possible to estimate the Direction of Arrival(=DOA), without scanning the environment. As

(a) The RFID dual directional antenna, in which the
voltage is inducted.

(b) The measured Voltage in antenna 1 and antenna
2

Figure 5: Both figures are from [12].a) shows the dual directional Antenna, which is used to
make the DOA estimation. b) shows the measured Voltage in both antennas over the angle ϕ

described in [12], the induced voltage in the dual antennas can be computed by the following

equations:

V1 ∝

∣∣∣∣C ·S ·Br
· sin(θ −ϕ)

∣∣∣∣
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V1 ∝

∣∣∣∣C ·S ·Br
· sin(θ −ϕ)

∣∣∣∣
υ12 =

V1

V2
= |tan(θ −ϕ)|

S : surface area of the antenna

B : average magnetic flux density of the wave passing through the antenna

C : accounts for the environmental conditions

r : distance from the transponder

Thus V1 , V2 and θ can be measured in order to compute ϕ . As mentioned in [12] the accuracy

of the DOA estimation using the directional antennas is within ±4◦ in an empty indoor envi-

ronment. The RFID-based localization does have the advantage, that it is independent of the

changes in illumination and it does not require an optical line of sight as many optical proce-

dures. But the major disadvantage is scattering obstacles, that may distort the measurement of

the voltages in antenna one and two. As stated in [12], it is almost impossible to include the

whole scattering effect of signals in the obstacle cluttered environment.
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4.3 Localization with Apriltags

After a small overview about some localization approaches, we should look closer into the April-

tags, because they will be used for localization in this work. Actually, Apriltags are similar to

the well known QR-Codes, but QR-Codes have a different domain of applications. Because of

that there are three disadvantages that QR-Codes would have if they would be used as landmark

for localization. The first is that QR-Codes need a high Resolution, the second is that the user

points the camera to the QR-Code thus QR-Codes does not need to be robust to rotation and the

third disadvantage of QR-Codes is that often there is information coded into the Code. Aprilt-

ags are specially designed for localization, thus they do not have the three disadvantages, which

means they do not need a high resolution, are robust to rotation and they code only necessary

information into the code.

The procedure of the localization is done in two steps. The first is the detection of an Apriltag

and the second is to calculate the position. The detection is the most CPU-intensive part. The

Apriltag used in this work gives us a poseStamped. A poseStamped consist of a header and a

pose. In the header, the frame_id and a timestamp is given and the pose consists of a point and a

quaternion. This point gives the position relatively to the camera_rgb_optical_frame and the

quaternion gives the relative rotation to the camera_rgb_optical_frame. Thus we can con-

struct a transform T A
B from Apriltag to the camera_rgb_optical_frame. As fig. 6b shows we

(a) This figure shows the detected Apriltag. The
colored coordinate system (x=red,y=green and
z=blue) is the coordinate system of the Apriltag.

(b) This figure shows all the frames that are in-
volved by the computation of T A

D .

Figure 6

can compute the transform T A
D from the base_link D to the Apriltag A by the following equation.

[(T A
B )−1 ·TC

B ] ·T D
C = T D

A (1)
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(T D
A )−1 = T A

D

4.3.1 Size of the Apriltag

On the one hand, the Apriltag should be small as possible, on the other hand, it must be big

enough to produce sufficient detections in the required range of 2m. The luminosity does not

have an influence on the detection range, because of the Apriltag Package [13], does a bina-

rization of the image by using multiple filters. The size of the Apriltags is measured with the

white surrounding. The measurement of the coherence between the maximal distance from the

Apriltag and the size of the tag is detected experimentally. Therefore the robot was places in the

frontal zone. Then the robot had to detect the Apriltag. If it was possible to detect the tag, the

robot was pushed further away until there was not detection anymore. The distance the robot

had when the first problems with the detection occurred were taken as maximal distance and

noted. This experiment was repeated with different sizes of the Apriltag. The results are shown

in fig. 7a. The resolution of the camera was 640x480 Pixel.

Size [cm2] Dmax [cm]
8 138
10 188
12 227
14 273
16 302

(a) The relationship between the size of an Apriltag
and the maximal range of the Apriltag.
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(b) The plotted values from Table a) and the linear
regression graph
f (x) = 20.63x−22.3

Figure 7

As can be seen in fig. 7b the coherence between the size of the Apriltag and the maximal distance

is linear. The resulting function Dmax(A) can be computed using a standard least square error

method. The relationship between max. distance and size of the Apriltag can be written as:

Dmax(A) = 20.63
1

cm
·A−22.3cm (2)

For the evaluation of the docking algorithm, a distance of 2m is required. According to equation
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2 we need an Apriltag with a size of at least:

A =
200cm+22.3cm

20.63 1
cm

= 11.75cm2⇒ 12cm2

To be sure the Apriltag can still be detected at a distance of 2m a slightly bigger tag with 20cm2

is used.

4.3.2 Tag Retainer

(a) The 3D-Model of the
Apriltags retainer.

(b) Shows printed retainer.

(c) Shows the retainer on top
of the docking station.

Figure 8

In order to mount the Apriltag on the docking station, a special retainer was designed using

OpenSCAD and a 3D-Printer. As can be seen in fig. 8, the retainer consists of three parts. The

fist part is the block, where the tag is put on. The second part is the bar, in order to variate the

height. The third part is the foot. Each part of the, the retainer was designed to be replaceable,

if there is a need of changing the height or the size of the tag. The foot is connected to the bar

with two M4 screws and two hex nuts. The complete code of the 3D-Model is in the attachment

at section 11.2.
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5 Fundamental Functions

5.1 Angles

The yaw Angle αYAW is an angle which states how two coordinate system are rotated to each

other, when the z-axis is the rotation axis. When the x-axis of the robot’s frame is rotated π

2

to the right, it looks in the same direction as the x-axis of the Apriltags frame. Thus the angle

αYAW is −π

2 , if the robots frame B is not rotated. Then we can compute the position angle with

αP = tan(ty/tx).

Figure 9: This figure shows the robot in front of the Apriltag. The robot is performing a rotation
about the angle ε . The influence of the rotation and the angle αP is shown.

If we rotate the robot the computation of the angle αP has to be corrected. As shown in fig. 9

the angle ε is the rotation of the robots frame B to B’. The angle αYAW can be expressed as the

rotation angle between the x-axis of frame A and the x-axis from frame B. Thus (−π

2 )+(−ε) is

the yaw angle between the frames A and B’. So we can write:

ε =−π

2
−αYAW

As shown in fig. 9 the angle αP can be found in the coordinate system of the robot because it is

an alternate angle, when the z-axis of A and the x-axis of B are parallel. Furthermore αP can be

written as α
′
+ ε . And α

′
is in the frame B nothing else than tan(ty/tx).

Thus we can write:

αP = α
′
+ ε = tan(

ty
tx
)− (

π

2
+αYaw) (3)

With this equation we can compute αP, when we only have the data from frame B’, as long as
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αYAW is the rotation between A and B’. In a situation like the frontal docking where the robot

has to drive directly to the Apriltag, it might be useful to ignore ε , because we want to have an

angle, which becomes zero if the robot looks directly to the Apriltag in order to drive forward

following the Apriltag. The angle α
′

in fig. 9does have this property. The angle without the

correction of ε is the docking angle αD with:

α
′
= αD = tan(

ty
tx
) (4)

In many use cases during the docking, we need an exact value especially when the robot moves

during a measurement. In order to deal with outlier detection we have to average over the values.

But if we use the function

tf::TransformListener::lookupTransform(...) or

tf::TransformListener::lookupPose(...)

from the tf library the values are not exact, because this function is doing an interpolation if an

value is not available at the requested moment.

(a) The timeline shows the incoming detections of
the Apriltag in TF and it shows the moment when
the function lookupTransform(..) makes a request.

(b) The Graph shows the linear interpolation that
is done with the values of the detected Transforms.
Furthermore, it shows the requests that are made by
TF are illustrated by the blue arrows.

Fig. 10a shows some occurring detections and the moment when the request with the lookupTransform()

function is done. Furthermore, we can set the time tf has to wait for a detected transform if there

is none at the requested moment. If there is a new Transform available, the tf Library does now

a linear interpolation and gives back the interpolated value at the requested time. If we now

assume that the tf::TransformListener::lookupTransform(...) function is in a loop in

order to always refresh a value, we know there are many requests at a very high frequency. Like

in fig. 10b illustrated we get an interpolated value very often. If we try to make the detection

more exact, by averaging over 40 values in order to illuminate outliers. We have to take into
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account that we cannot average over the blue requests in fig. 10b, because we would average

over a linear interpolation.

The following figure 15 shows the result of averaging over these interpolations.
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Figure 11: This graph shows the the measured angle αP using
thetf::TransformListener::lookupPose() function during the linear-approach, in
which the robot drives to the ideal path by keeping the Apriltag in the visible field. This is an
example in which the avarage of 40 values is made over the linear interpolation. Actually this
Graph should be linear with a negative gradient.

All in all we cannot use the tf Library, because we want to average over the values to illuminate

outliers.

Thus we have to write our own transform function, which computes the transform between the

frames "base_link" and the Apriltag according to the equation 1. And which does wait for

detections of the Apriltags, and calculates the transforms, when the new values arrive directly

from the Apriltags node as poseStamped Messages. Instead of asking the system to give us a

value at a certain point in time, we just wait when a new detection arrives and then we make the

transform calculations.
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1 vo id g e t _ a v g _ p o s i t i o n _ a n g l e ( c o n s t a p r i l t a g s _ r o s : : A p r i l T a g D e t e c t i o n A r r a y & msg )
{

2 i f ( s t a r t _ a v g ) {
3 a p r i l t a g s _ r o s : : A p r i l T a g D e t e c t i o n d e t e c t i o n ;
4 i n t s i z e = msg . d e t e c t i o n s . s i z e ( ) ;
5 i f ( s i z e ! = 1 ) {
6 ROS_ERROR( " g e t _ a v g _ p o s i t i o n _ a n g l e must have e x a c t l y one a p r i l t a g " ) ;
7 } e l s e {
8 a p r i l t a g s _ r o s : : A p r i l T a g D e t e c t i o n d e t e c t = msg . d e t e c t i o n s [ 0 ] ;
9 geometry_msgs : : PoseStamped pose = d e t e c t . pose ;

10 geometry_msgs : : Pose p = pose . pose ;
11 geometry_msgs : : P o i n t p o i n t = p . p o s i t i o n ;
12

13 f l o a t x = p o i n t . x ; f l o a t y = p o i n t . y ; f l o a t z = p o i n t . z ;
14 t f : : Q u a t e r n i o n o p t i c a l _ t a g _ q u a d = p . o r i e n t a t i o n ;
15 t f : : Vec to r3 * o p t i c a l _ t a g _ o r i g i n = new t f : : Vec to r3 ( t f S c a l a r ( x ) ,
16 t f S c a l a r ( y ) ,
17 t f S c a l a r ( z ) ) ;
18 t f : : T rans fo rm * o p t i c a l _ t a g = new t f : : Trans fo rm (* o p t i c a l _ t a g _ q u a d , *

o p t i c a l _ t a g _ o r i g i n ) ;
19 t f : : T rans fo rm tag_cam = o p t i c a l _ t a g −> i n v e r s e ( ) *

_ t r a n s f o r m _ o p t i c a l _ c a m ;
20 t f : : T rans fo rm t a g _ b a s e = tag_cam * _ t r a n s f o r m _ c a m _ b a s e ;
21 t f : : T rans fo rm b a s e _ t a g = t a g _ b a s e . i n v e r s e ( ) ;
22 f l o a t _x = b a s e _ t a g . g e t O r i g i n ( ) . x ( ) ;
23 f l o a t _y = b a s e _ t a g . g e t O r i g i n ( ) . y ( ) ;
24 f l o a t _z = b a s e _ t a g . g e t O r i g i n ( ) . z ( ) ;
25 f l o a t yaw = t f : : getYaw ( b a s e _ t a g . g e t R o t a t i o n ( ) ) ;
26 f l o a t yy = getAmount ( _y ) ;
27 f l o a t a l p h a _ d o c k = a t a n ( _y / _x ) ;
28 f l o a t a l p h a _ p o s = ( a l p h a _ d o c k )−(M_PI / 2 + yaw ) ) ;
29 i f ( ! i s n a n ( a l p h a _ p o s ) ) {
30 _avgPos . new_value ( a l p h a _ p o s ) ;
31 _avgDock . new_value ( a l p h a _ d o c k ) ;
32 _ a v g P o s i t i o n A n g l e = _avgPos . avg ( ) ;
33 _avgDockingAngle = _avgDock . avg ( ) ;
34 }
35 }
36 }
37 }

Figure 12: This code shows how the transform between the base_link and Apriltag is computed,
then the function computes the position angle αP and the yaw angle by calculating the mean of
10 values.

5.2 Moving forward

There is a fundamental need for a function that makes it possible to drive an exact distance

forward. The easiest way to do that is a timing method because we do not need extra sensors.
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Timing-method means we calculate the time we need to drive and stop the motor when this point

in time has been reached. We have given the velocity vc and the way we want to drive. If we

assume a constant velocity we can compute the time we want do drive by t = way
vc

.

But in reality the robot first has to accelerate before it reaches the given velocity, thus the ve-

locity is not constant. As fig. 13 shows there is an acceleration phase and after that we drive at

nearly constant velocity vc.

A good theoretical approximation for the behavior of the velocity is:

v(t) =−A
t
+ vc with A as acceleration
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Figure 13: This figure shows the velocity-time graph, which shows the acceleration of the robot.
In the first phase the robot accelerates until it has reached the stated velocity at 15 cm

s .The mistake
made by the acceleration phase is illustrated by the Area A1.

As shown in in fig. 13 , we first have an acceleration phase and after some time we drive with

nearly the given velocity vc. We can assume that the error made by assuming a constant velocity,

is given by the area between the driven velocity v(t) and the constant velocity vc. An area in the

v-t-diagram is always a way. The error is calculated, by taking the difference between the driven
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way Wd and the expect way We.

E(t) =We(t)−Wd(t) = vc · t1−
t1∫

0

(v(t))dt = vc · t1− [−A · ln(t)+ vc · t1]

= A · ln(t) with t = We
vc

gives:

E(
We

vc
) = A · ln(We

vc
) = A · ln(We)−A · ln(vc)

All in all, we have a logarithmic coherence between the error and the expected way. Because we

want to measure the error we make a simplification on the equation which leads to:

E(We) = A · ln(We)−B (5)

The values for A and B will be determined experimentally because the function for v(t) is just

an approximations, which does not contain specific terms for distributing forces like the friction.

All distributing forces will be considered by determining A and B experimentally. Thus B will

not be exactly the A · ln(vc) from the theory. Once we have an error function we can calculate

the error, we want to know how much longer the robot has to drive in order to compensate the

error made by the acceleration. As shown in fig. 13 the robot will have reached nearly vc at t1.

Thus he has a nearly constant velocity at that point in time and we know we have to drive

E =We−Wd . All in all we have to drive dt = E
vc

longer.

Now we have an equation to compute the additional time the robot has to drive in order to com-

pensate the error made by the acceleration phase. But we still have to determine the parameters

A and B.

To determine A and B we measure the error E =We−Wd , we use a constant velocity vc = 15 cm
s .

The following table shows the expected way the robot should drive and the actually driven ways.

After the measurement, we compute the average error and create an E-w-Diagram (fig. 14) in

which the error is associated with the way (We).
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We 25cm 50cm 100cm 150cm 175cm 200cm 250cm 300cm
25.0 44.65 — 119.85 157.55 180.35 229.65 278.35
23.45 44.35 93.25 133.95 157.55 181.35 229.55 278.25
24.85 45.85 88.05 140.85 157.55 180.75 277.25

Wd 23.45 88.25 132.85 180.25
87.85 133.35 180.95
88.75 134.15 179.35
88.85 134.35

33.85
∅ E 0.82 5.05 13.65 17.10 17.45 19.5 20.40 22.05
MSE 1.21 25.92 276.37 193.06 304.50 380.65 416.16 486.45

Table 1: The expected way We, the actual measured driven ways (Wd) and the average error ∅ E
calculated for every We

Then we can calculate the values for A and B by using a standard least square method. This

method gives us:

E(We) = 8.92 · ln(We)−28.35

and

dt =
E(We)

vc
(6)
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Figure 14: This diagram equation 7 for way > 24cm and it shows the measured actually driven
ways with their errors. The x-axis does have a logarithmic scale.

The plotted average errors have a logarithmic correlation to the expected way. But if you look

closer the small ways, e.g 1cm the found function does not seem to be correct, because E(1cm)=

8.92cm · log(1)−28.35cm =−28.35cm this would mean that the robot has to drive backwards,

in order to correct an error. Thus the found function is not correct for small distances. This

happens, when the distance is so small, that the robot reaches the end, but did not reach the given

velocity vc. Thus the velocity (vend) the robot has, in the end, is smaller than vc. And then the

equation 6 is not correct, it would be correct if we used vend instead of vc, but this is not possible

because we do not know this velocity. We denote all distances as small that have a negative error,

calculated by equation 5 with the found values for A and B. Thus E(x) = 0⇔ x = 24.00cm is the

boundary between small distances and normal distances. The equation works fine for distances

bigger than 24 cm.

If we have to drive a distance under 24cm we set the velocity to a very slow value. The robot

will reach vc very quickly and the error that comes from acceleration will be very small. The

same measurement as above was made, and this time a linear correlation between the error and

small distances was found.
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We[cm] 2 4 6 8 10 12 16 18
1.6 2.8 3.6 4.6 6.2 6.8 9.7 11.0
2.0 2.8 3.5 4.7 6.1 7.0 10.1 11.4

Wd[cm] 1.7 2.5 3.9 4.9 5.9 7.1 10.2 10.6
1.5 2.6 3.8 4.7 6.3 7.4 10.1 11.3

∅Wd 1.7 2.675 3.70 4.725 6.125 7.075 10.025 11.075
∅E 0.3 1.325 2.30 3.275 3.875 4.925 5.975 6.925
MSE 0.035 0.017 0.025 0.012 0.022 0.047 0.037 0.097

Table 2: The ecpected way We, the actual measured driven ways (Wd) and the average error ∅ E
calculated for every Wd
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Figure 15: This diagram equation 7 for way < 24cm and it shows the measured actually driven
ways with their errors.

Then we can calculate the values for A and B by using a standard least square method. It was

found : E(way) = A ·x+B with A = 0.4029 and B =−0.2153 If we put both equations for large

and small distances together, we get:
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E(way) =

0.4029 ·way−0.2153 for way < 24

8.92 · ln(way)−28.35 for way≥ 24
(7)

With this equation for the error we can implement the following pseudo code.

Algorithm 1 DriveForward
1: procedure DRIVEFORWARD(distance)
2: velocity = 0.15
3: time_to_wait← distance/velocity
4: ERROR← 8.92 · log(distance∗100)−26.515
5: dt← ERROR/(velocity∗100)
6: if td > 0 then
7: time_to_wait← time_to_wait+dt
8: else
9: velocity← 0.05

10: time_to_wait← distance/velocity
11: ERROR← 0.395 · (distance∗100)−0.079
12: dt← ERROR/(velocity ·100)
13: time_to_wait← time_to_wait+dt
14: startTime← Time :: now()
15: while (Time :: now()− startTime)< time_to_wait do
16: drive_forward(velocity)
17: Duration(0.5).sleep()

5.3 Turn by an Angle

It is also very important to be able to turn the robot exactly. Again we have two possibilities

to stop the turning process when the stated angle is reached. The first one is a timing method,

the second is using the IMU sensor to detect the angle. The IMU is a built-in sensor that can

measure the angle the robot has turned. Thus we do not need the timing method because with an

exactly measured angle, the movement will be more precise than using the timing method. The

IMU gives us the angle in a range from -180° to +180°. When the IMU is initialized the angle

the robot stands will be set to 0°. Because of that is is not possible to give an angle bigger than

180°. If an angle e.g 190° is given the sensor would have to stop at -170° because the measured

value jumps from 180° to -180 and then it goes +10° further. Thus we first have to adjust the

stop angle in order to be in the range of -180° and +180°.
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1 r o s : : S u b s c r i b e r sub2 = _n . s u b s c r i b e ( " m o b i l e _ b a s e / s e n s o r s / imu_da ta " ,
2 1 ,
3 &Docking : : a c t u a l _ a n g l e ,
4 t h i s ) ;
5

6 vo id a c t u a l _ a n g l e ( c o n s t s enso r_msgs : : Imu& msg ) {
7 _ a n g l e = t f : : getYaw ( msg . o r i e n t a t i o n ) ;
8 }
9

10 vo id move_angle ( f l o a t a l p h a _ r a d ) {
11

12 i f ( a l p h a _ r a d ! = 0 . 0 ) {
13 f l o a t g o a l _ a n g l e = _ a n g l e + a l p h a _ r a d ;
14 i n t N = ( i n t ) getAmount ( ( g o a l _ a n g l e / M_PI ) ) ;
15 f l o a t r e s t = g o a l _ a n g l e − ( ( f l o a t )N * M_PI ) ;
16

17 i f ( ( r e s t > 0 ) && (N > 0 ) ) {
18 / / Th i s i s n e s s e s a r y b e c a u s e t h e imu i s between −180 − 180
19 g o a l _ a n g l e = ( g o a l _ a n g l e > M_PI ) ? −M_PI + r e s t : g o a l _ a n g l e ;
20 g o a l _ a n g l e = ( g o a l _ a n g l e < −M_PI ) ? M_PI − r e s t : g o a l _ a n g l e ;
21 }
22 f l o a t r a d _ v e l o c i t y = ( a l p h a _ r a d < 0 ) ? − 0 . 5 : 0 . 5 ;
23 boo l w e i t e r = t r u e ;
24

25 w h i l e ( w e i t e r ) {
26 geometry_msgs : : Twis t ba se ;
27 base . l i n e a r . x = 0 . 0 ;
28 base . a n g u l a r . z = r a d _ v e l o c i t y ;
29 _ p u b l i s h e r . p u b l i s h ( base ) ;
30 / / We wai t , t o r e d u c e t h e number o f sended Twis tMessages ,
31 / / I f we would n o t t h e a p p l i c a t i o n c r a s h e s a f t e r some t ime .
32 r o s : : D u r a t i o n ( 0 . 5 ) . s l e e p ( ) ;
33 f l o a t e p s i l o n = g o a l _ a n g l e − _ a n g l e ;
34 e p s i l o n = getAmount ( e p s i l o n ) ;
35 w e i t e r = e p s i l o n > 0 . 1 ;
36 }
37 }
38 }

Figure 16: The code shows the function which is used to turn the robot around the z-axis.
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6 Docking Algorithm

In order to dock reliably, we have to divide the docking algorithm into five parts. The basic

idea of the algorithm is very easy, first the robot drives somewhere in the approach zone. In the

second step, the robot turns to the Apriltag. The third step consists of driving to the ideal line

until the robot stands directly in front of the Apriltag. If Step3 does not position the robot exactly

enough, Step4 may correct this by using a linear approach to the frontal zone. After standing in

front of the Apriltag the robot can begin with the frontal docking.

Figure 17: Flowchart of the docking algorithm with it’s five Steps

6.1 Step 3 : Positioning

The third part of the docking algorithm is the Positioning. When the Robot is somewhere in the

approach zone, it has to position in front of the Apriltag in order to dock. The robot can only

make the last step of the docking algorithm when he stands right in front at the Apriltag. As in

fig. 18 the robot stands in Point A and want to drive to Point P.
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Figure 18: This figure shows the situation where the robot is after he arrived near the Apriltag
by using the approach described in Phase 1. At Point A the robot still have to do the positioning
in order to reduce the angle α .

Thus the angle αP is to be measured which is the angle between~v and z-axis. Once we have this

angle we can compute the angle β which is the angle the robot has to turn. If we assume a right

triangle (A,T,P) we know that the sum of all angles is π = α +β + π

2 and with this equation, it

follows:

β =
π

2
−α

After the robot turned β to the left/right we have to compute the way. Because we have a right

triangle, we can say that sin(α) = way
|~v| . Thus the way must be:

way = sin(α) ·
√

(v.x)2 +(v.z)2

After the robot drove that distance he has to turn about π

2 right/left in order to look at the Apriltag.

If the robot finished the positioning he decides if the next step is the linear approach or the frontal

docking.

α =

linear approach for α > 10.0◦

frontal docking for α ≤ 10.0◦
(8)

If the angle is smaller than 10.0° the frontal docking algorithm can compensate that. Thus in

this case we do not need the linear approach to the ideal path. But if the angle is bigger than

5.0° it is better to do the linear approach.
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6.2 Step 4 : Linear approach

The fourth part of the docking algorithm is the linear approach to the ideal path. After the linear

approach, the robot should stand with αP = 0 and αYAW in front of the Apriltag. This approach

is shown in fig. 19a. It is not possible to use dead reckoning by calculating the way the robot

has to drive and use the function drive distance, because of the inaccuracies, which are about

3cm. Thus the robot has to see the Apriltag during the approach to the ideal path. As mentioned

(a)
(b)

Figure 19: a) shows the situation before we begin with the fine positioning. b) shows the the
situation when the robot is at point P.

before the Apriltag must be visible in order to detect if the robot has reached the ideal path. Thus

in the Point P, the Apriltag must still be visible. This is the reason why the ε the robot has to

turn in order to drive to the ideal path is not allowed to be too big. This angle must be as big as

possible but small enough to keep the Apriltag in the camera field. If the robot loses the visual

contact to the Apriltag, he cannot compute the angle α and does not know when to stop.

As shown in fig. 19b we can see that θ

2 = γ + ε furthermore we can see that tan(γ) = b
2·d . Thus

we can conclude the following equation:

ε =
θ

2
−atan(

b
2 ·d

) (9)
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Figure 20: This Diagram shows the equation 9 with the parameters θ = 56° and b = 18cm

The angle ε is the maximal angle the robot can turn without losing the Apriltag out of the field

of view. At the Point A we do not know the distance d, but we know that the Apriltag must be

visible. Thus dmin is the distance which belongs to ε(dmin) = 0.

dmin < d < tz

The angle εmax with d ∈ [dmin-tz]. As shown in fig. ?? there are three more equations:

I : β = π

2 − ε

II : tan(β ) = x
tx

The part x of the ideal path should be about p = 25 % of the entire ideal path (x+d).

III: p = x
x+d ⇒ x = −pḋ

(p−1) with x = tan(β ) · tx

d =
p−1
−p
· tan(β ) · tx (10)

Thus we have two equations:

I : d = 1−p
p · tan(π

2 − ε) · tx
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II: ε = θ

2 −atan( b
2·d )

We calculate ε by subbing equation I into equation II then we solve this equation to ε . The

complete derivation of the following equation is in the attachment at 11.1.

Finally, we get the following equations:

P(p, tx) := (b+a+A(p,tx)·a−b·A(p,tx))
(1+ab·A(p,tx))

and Q(p, tx) := −(ab+A(p,tx))
(1+ab·A(p,tx))

and A(p, tx) := −b·p
2·(p−1)·tx

ε1,2(p, tx) = atan

(−P(p, tx)
2

)
±

√(
−P(p, tx)

2

)2

−Q(p, tx)

 (11)
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Figure 21: This Diagram shows the equation 11 over the interval of tx ∈ [0.0cm - 20.0cm]. The
function is plotted for multiple parameters for θ as shown in the legend. The parameter p is set
to 25%.

In theory, the linear approach works well, just the angle ε has to be computed and then the robot

can turn ε deg, drive forward until the angle αP becomes zero. Once αP is zero you can turn ε

deg in the opposite direction. And then the robot should stand in front of the Apriltag, with an

angle αP of nearly zero. One of the fundamental problems of this approach is the fluctuation of
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the measured angle αP. Thus we use an average value of N angles to flatten these fluctuations. As

describes in section 5.1 the function getavgpositionangleisusedtocalculatetheangleinordertoavoidtheaveragingoverinterpolatedvalues.A f terwritingthis f unctionthereisstillaneedtobemoreprecise, thuswecomputetheaverageo f Nmeasurements.Especiallywhentherobotisdriving, themeasuredanglebecomesmoreinaccuratebecauseo f smallconvulsions.Furthermore,wemeasurehowbigthisNmustbetogetacceptablevalues f orαP

even during a drive.
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Figure 22: This figure shows the angle αP over the iterations of the get_avg function. The
measurement was taken during the linear approach (section 6.2) when the robot drives to Point
P. The diagrams shows the angle αP with a mean of N measured values during the drive at a
velocity of 7 cm

s

As shown in fig. 22 a reasonable value for N is 40, because the graph looks

almost linear.

6.3 Step 5 : Frontal docking

The last part is the part where the robot sees the Apriltag and drives towards

it,with small corrections of the angle α. In this Phase, no big changes of

the position are performed.

As shown in fig. 23 the robot does some corrections if the position angle

αP is bigger than a certain threshold αT. Thus we can write:
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Algorithm 2 Linear Approach

1: procedure LINEARAPPROACH

2: Vector2 pos← getposition() . Gives us pos.x=tx and pos.y=tz
3: ε ← pos.x

|pos.x|
· epsilon(|pos.x|) . If the robot stands right ε is negative

4: β ← π

2
− ε

5: d← pos.y−|pos.x| · tan(|β |)
6: if d < minDistance then
7: moveAngle (π)
8: driveForward(0.5)
9: moveAngle (−π)

10: linearApproach()
11: break
12: else
13: moveAngle (ε) . Turns right if ε < 0 and left if ε > 0
14: αneu← 2 ·π
15: E← 0.3
16: while αneu > E do
17: αneu← | _avgPositionAngle |
18: driveforward()
19: moveAngle (−ε)

−αT < αP < αT (12)

If the robot is in a position where αT <αP holds, then the robot has to turn

LEFT and has to drive forward until equation 12 holds again or αP becomes zero.

After the robot as driven this correction way he finally has to turn in the

opposite direction. If the robot is somewhere where −αT >αP we can do the

same analog with a turn to the RIGHT. Now we still have to think about a suitable

threshold angle αT.

In order to find a suitable threshold value some measurements have been made where the robot

use the frontal docking algorithm described in algorithm 3 and test multiple values for αT .
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Figure 23: The figure shows the
last part of the docking procedure.
The blue vectors represent small
correction the robot does during
docking.

αT [deg] N success [%]
0.5 13 0.23
1.0 27 0.37
1.5 30 0.44
2.0 31 0.53
2.5 17 0.41
3.0 15 0.33
4.0 15 0.27

Table 3: The measurements which have been
done in order to find a suitable threshold value
for αT . For every αT the success rate of suc-
cessful docks is computed.

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0  1  2  3  4  5

D
o

c
k
in

g
 s

u
c
c
e

s
s
 [

%
]

Alpha [deg]

Threshold angle alpha and the docking success

Alpha

Figure 24: This is the diagram which belongs
the measured values in table 3. The graph does
have a peak at αT = 2.0◦, which is the suitable
threshold for αT

The robot is put 68cm in front of the Apriltag with an position angle of 0◦ and ε = 0◦, then

the robot has to perform frontal docking. The measured value is the success rate. The result of

these measurements is shown in table 3. If the threshold angle is too small the robot does stop

to often in order to correct the angle and if the angle is too big the robot does not correct the

course. Thus there are two things that can prevent a successful docking. The first are too many

stops especially when the robot try’s to drive in the docking station, the second are not enough

corrections. As shown in table 3 an angle of 2.0◦ is the reasonable threshold.
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Algorithm 3 Frontal Docking

1: procedure MOVE(ω,v) . This function send a Twist-Message
2: procedure FRONTALDOCKING

3: Vector2 pos = getPosition()
4: αT ← 2° · π

180°
. This is the boundary angle

5: αdock← _avgDockingAngle . We take 10 values for the mean
6: if αdock > αT then . We have to turn LEFT
7: ω ← 2° · π

180°
8: else if αdock <−αT then . We have to turn RIGHT
9: ω ←−1 ·2° · π

180°
10: else
11: ω ← 0.0
12: v = 0.07 . This is the driven velocity
13: if pos.y > STOP_DISTANCE then . reached the end
14: move(ω,v)
15: frontalDocking()
16: else . the robot stops driving forward
17: adjust() . The robot turns until yaw angle is zero
18: sleep(3s)
19: if ! is_recharging then
20: drive forward(-0.65)
21: frontalDocking()
22: break . Stop vehicle
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7 Evaluation of the docking algorithm

Figure 25: Testfield with startingpoints for evaluation

To evaluate the docking algorithm with others, we use the same approach as [9]. We use a test

field which lies in the approach zone. Then we use 16 locations that are distributed over the test

field. This field extends to 2m and 60◦ in both directions from the center, as shown in fig. 25.

Furthermore, we set the zero point to the point where the base_link of the robot stands when

is is docked. Because the left side of the test field is exactly the same as the right side, only the

right side is part of the Evaluation. Thus we can summarize some points to reduce the number

of measurements. For example, 8,10 becomes one Point, 13,15 and so on. In order to compare

the new docking algorithm with the old one mentioned in section 3.1, measurements for both

algorithms are made. Before a measurement is counted as a failure the robot is allowed to do

the retry at the and of the frontal docking five times. Because the old approach from Kobuki

does not have any retry functionality, only the new approach is influenced by this rule. As can

be seen in table 4, the new docking approach works quite well. But at the Points 15 and 16 the

robot was not able to dock correctly. This failures come from inexact detections of the Apriltag.

If the Apriltag is constructed bigger e.g. 16cm² it should be possible to dock correctly. The

range of the Apriltag gets slightly smaller, when looked from an angle on it. Because the tag

was designed with 12cm², which is the size that correspondent to the maximal distance of 2m,

the small reduced range at Point 15 and 16 causes some docking failures.

Still now the bumper on the robot is still activated during docking. If the robot drives into the

docking station the bumper can be triggered, because the robot drives 1̃cm to far. This is mainly

the reason why we have the failed docking in Point 3.

The Kobuki’s Docking Approach worked well in the Points 2,5,9 and 14. But it was not able to

dock on all the other Points. One reason is that the robot tried to dock on a different docking

station that was more than 5m away. The other reason is that the robot was not able to drive

exactly in the docking station.
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degree Points New Docking Kobuki’s Docking
sucess missed % sucess missed %

0 2 6 0 100 6 0 100
0 5 6 0 100 6 0 100
0 9 6 0 100 6 0 100
0 14 6 0 100 6 0 100
30 8,10 7 0 100 0 6 0
30 13,15 8 7 50 0 6 0
60 1,3 8 1 87,5 0 6 0
60 4,6 6 0 100 0 6 0
60 7,11 6 0 100 0 6 0
60 12,16 8 10 44 0 6 0
all 2,3,5,6,9,10,11 45 1 97.8 18 24 42.8
all all 67 18 78.8 24 36 40.0

Table 4: This Table shows the measurements that are taken to evaluate the new docking algo-
rithm and compare it to the Kobuki’s docking algorithm
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8 Conclusion

It could be demonstrated, that the localization with Apriltags is precise enough to do the docking

with a success rate of 100%. Because of the retry at the end of the new docking approach, the

new approach does have a 38% higher success rate at a range of 2m. If we reduce the range

to 1.33m we reach an improvement of 55 %. Furthermore, it is now possible to distinguish

between multiple docking stations by using a different Apriltags. This was one of the main

weaknesses of the old approach from Kobuki, which sometimes mixed up the docking stations

if the infrared signal from two stations arrived at the robot. The major disadvantage of the new

docking approach is the drive_forward function, which uses a calibration in order to drive an

exactly a given distance. The first disadvantage is that a fixed acceleration must be used, the

second, that the calibration only works on an even floor. If the floor is e.g covered with tiles, the

calibration does not work properly anymore. If would be much better, when the drive_forward

function would be rewritten, using sensors to measure the driven path, by counting the wheel

revolutions or using the accelerometer in the IMU. Still now in both approaches, there is no

collision control for obstacles during docking. Thus the approach zone should always be free

of permanent and non-permanent obstacles. Furthermore, the used Apriltag must be visible for

the robot’s camera when the robot starts the frontal docking or the linear approach. This makes

avoiding obstacles during docking very difficult, because if the obstacle covers the Apriltag, no

optical based docking will be possible. One of the improvements that could be done by using the

laser sensor is to detect non-permanent obstacles and then stop the docking in order to resume

when the obstacle has gone. Especially interesting is the RFID-approach described in section

4.2. With this approach, there is no need to keep the Apriltag in the reach of vision. This could

make it more easy to avoid obstacles during docking.
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10 Attachment

10.1 Derivation of Equation 11

We have two equations:
I : d = 1−p

p · tan(π

2 − ε) · tx
II: ε = θ

2 −atan( b
2·d )

We calculate ε by plug in d from I in the equation II:

⇒ ε = θ

2 −atan( b
2· 1−p

p ·tan( π

2−ε)·tx
) = θ

2 −atan(
−b · p

2 · (p−1) · tx︸ ︷︷ ︸
=:A

· 1
tan( π

2−ε)
) = θ

2 −atan( A
tan( π

2−ε)
)

⇒ tan(ε) = tan(θ

2 −atan( A
tan( π

2−ε)
)) =︸︷︷︸

tan(A−B)= tan(A)+tan(B)
1−tan(A)·tan(B)

tan( θ

2 )+tan(atan( A
tan(β ) ))

1−tan( θ

2 )·tan(atan( A
tan(β ) ))

=
tan( θ

2 )+
A

tan(β )

1−tan( θ

2 ·
A

tan(β ) )

⇔ tan(ε)(tan(β )− tan(
θ

2
) ·A) = tan(β ) · tan(

θ

2
)+A

tan(ε) · tan(β )− tan(ε) · tan(
θ

2
) ·A− tan(β ) · tan(

θ

2
) = A

To simplify the expressions we substitute:

x := tan(ε), a := tan(π

2 ), b := tan(θ

2 )

and with β = π

2 − ε we can write tan(β ) as:

tan(β ) = tan(π

2 − ε) =︸︷︷︸
tan(A−B)= tan(A)+tan(B)

1−tan(A)·tan(B)

tan( π

2 )+tan(ε)
(1−tan( π

2 )·tan(ε)) =︸︷︷︸
substitution

= a+x
(1−a·x)

using this substitutions gives:

x · a+ x
1−a · x

− x ·b ·A− a+ x
1−a · x

·b = A

⇔ x(a+ x)
1−a · x

− x ·b ·A · (1−a · x)
1−a · x

− a+ x
1−a · x

·b = A

⇔ x · (a+ x)− (x ·b ·A · (1−a · x))−b · (a+ x) = A · (1−a · x)

⇔ ax+ x2− x ·b ·A+b ·A ·a · x2−ab+bx−A+Aax = 0

⇔ x2 +b ·A ·a · x2 +bx+ax−A+Aax− x ·b ·A−ab = 0

⇔ (1+abA) · x2 +(b+a+Aa−bA) · x− (ab+A) = 0

⇔ x2 +
(b+a+Aa−bA)

(1+abA)
· x+ −(ab+A)

(1+abA)
= 0
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now we can substitute again with:
P(p, tx) := (b+a+A(p,tx)·a−b·A(p,tx))

(1+ab·A(p,tx))
and Q(p, tx) := −(ab+A(p,tx))

(1+ab·A(p,tx))
and A(p, tx) := −b·p

2·(p−1)·tx

x1,2(p) =
(
−P(p, tx)

2

)
±

√(
−P(p, tx)

2

)2

−Q(p, tx)

ε1,2(p, tx) = atan

(−P(p, tx)
2

)
±

√(
−P(p, tx)

2

)2

−Q(p, tx)

 (13)
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10.2 Code of the 3DModel

1 / / W r i t t e n by K o l j a P o r e s k i
2 / / <9 p o r e s k i @ i n f o r m a t i k . uni−hamburg . de > , < Poreski@gmx . de >
3 / /
4 t r a n s l a t e ( [ 0 , 0 , 1 5 ] ) {
5 d i f f e r e n c e ( ) {
6 cube ( [ 8 , 2 , 8 ] , c e n t e r = t r u e ) ;
7 t r a n s l a t e ( [ 0 , 0 , −4 ] ) {
8 cube ( [ 5 . 1 , 1 , 5 ] , c e n t e r = t r u e ) ;
9 }

10 }
11 }
12 t r a n s l a t e ( [ 0 , 0 , 7 ] ) {
13 cube ( [ 5 , 0 . 9 7 , 4 ] , c e n t e r = t r u e ) ;
14 }
15 t r a n s l a t e ( [ 0 , 0 , 0 ] ) {
16 cube ( [ 1 . 5 , 0 . 9 7 , 1 1 ] , c e n t e r = t r u e ) ;
17 }
18 t r a n s l a t e ( [ 0 , 0 , −6 ] ) {
19 d i f f e r e n c e ( ) {
20 cube ( [ 5 , 0 . 9 7 , 2 ] , c e n t e r = t r u e ) ;
21 f o r ( i =[−1 ,1] ) {
22 t r a n s l a t e ( [ i * 1 . 5 , 0 , 0 ] ) {
23 un ion ( ) {
24 c y l i n d e r ( r = 0 . 2 3 , h = 1 0 0 , c e n t e r = t r u e , $ fn =60) ;
25 f o r ( i = [ 0 : 3 ] ) {
26 t r a n s l a t e ( [ 0 , i * 0 . 3 , 0 ] )
27 r o t a t e ( [ 0 , 0 , 3 0 ] )
28 c y l i n d e r ( r = 0 . 4 3 , h = 0 . 4 , c e n t e r = f a l s e , $ fn =6) ;
29 }
30 }
31 }
32 }
33 }
34 }
35 t r a n s l a t e ( [ 0 , 0 , −1 0 ] ) {
36 d i f f e r e n c e ( ) {
37 un ion ( ) {
38 cube ( [ 1 0 , 4 , 1 ] , c e n t e r = t r u e ) ;
39 t r a n s l a t e ( [ 0 , 0 , 1 ] ) {
40 cube ( [ 6 , 2 , 2 ] , c e n t e r = t r u e ) ;
41 }
42 }
43 t r a n s l a t e ( [ 0 , 0 , 1 . 5 ] ) {
44 cube ( [ 5 . 1 , 1 , 2 ] , c e n t e r = t r u e ) ;
45 }
46 f o r ( i =[−1 ,1] ) {
47 t r a n s l a t e ( [ i * 1 . 5 , 0 , − 0 . 5 2 ] ) {
48 c y l i n d e r ( r = 0 . 2 3 , h = 1 0 0 , c e n t e r = t r u e , $ fn =50) ;
49 c y l i n d e r ( r = 0 . 5 , h = 0 . 4 , c e n t e r = f a l s e , $ fn =50) ;
50 }
51 } } }
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10.3 Linear Regression Method

P is a given set of two dimensional Points.
For example: P = {(1.0,2.0);(3.0,2.0);(3.0,1.7)}
The calculation of a regression line that minimizes the mean square error can be done with the
following equations:

m =

∑
p∈P

x · y

∑
p∈P

x2 and b =
1
|P|

(
∑
p∈P

(y)−m ·∑
p∈P

(x)

)

f (x) = m · x+b
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