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Abstract
Purpose – The Printable Modular Robot (PMR) is a highly customizable, modular, snake-like robot platform for
research and education. The robot can be assembled and re-assembled on the fly and automatically detects changes in
its topology during operation.
Design/methodology/approach – The robot consists of a number of autonomous modules coupled by magnetic
interfaces. Each module combines 3D printed mechanical parts with widely available standard electronic components,
including a microcontroller and a single servo actuator. The mechanical and electrical connection is provided by a set
of magnets which generate the physical force between the modules and at the same time serve as wires for power and
communication.
Findings – The PMR is a fully equipped robotic device, well integrated into a simulation framework, capable to
execute common locomotion patterns but still very affordable (∼25 $ per module). Furthermore, the design is easy to
extend and replicate for other research and education groups.
Originality/value – This paper explores a novel approach of connecting robot modules by utilizing very simple
magnetic parts. A second focus lies on the concept of closely integrating simulation and hardware development,
blurring the edge between the digital and physical world.
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1. Introduction

Rapid prototyping and 3D printing in particular have
become an ubiquitous topic in the last decade and the
technology to generate free-form parts on demand is
now available to basically every researcher and engi-
neer. In this paper, we describe our approach to cre-
ate an open source, easy to prototype modular robot,
intended for use in research and education. The mod-
ules are optimized for printing and include only stan-
dard hardware parts. Module attachment is realised via
a novel design that uses magnets for both the mechani-
cal and the electrical interconnection.
All module specifications and design files are open
source, allowing students to develop and modify the de-
sign and thus learn how to go about creating a robot.
The basic design criteria are inspired by the Miniskybot
project (Gonzalez-Gomez et al., 2011). The proposed
robot is designed for chain-configurations, where the
modules can be connected in arbitrary combinations

of pitching and yawing joint configurations (Zhang
et al., 2009; Hirose and Yamada, 2009). According to
the classification of reconfigurable modular robots by
Murata and Kurokawa (2012), the proposed robot is
positioned between class 2 and class 3, as a semi-self-
reconfigurable modular robot. Reconfiguring the physi-
cal topology requires manual interaction, but can be per-
formed during operation. The robot automatically rec-
ognizes its topology and actively adopts changes to the
running locomotion patterns. This concept is similar to
the CoSMO modular robot design (Liedke et al., 2013),
but focusses on providing only essential functionalities
required for locomotion at a fraction of the costs.

2. From simulation to reality and back

Based on previous work (Krupke et al., 2012), we used
an extension of the OpenRAVE simulation framework
(Diankov, 2010) for the optimization of the modular
robot design and locomotion. To simulate the behaviour



of servo motors, the OpenMR (González-Gómez, 2014)
plugin is utilized. Realistic robot motion is calculated
by the ODE physics engine (Smith, 2014). Arbitrary
robot models are easy to integrate into this system, be-
cause standardized robot definition files are used to de-
fine a robot from 3D model files and joint definitions.
The very same 3D models (.stl files) are used for both

Figure 1 – Upper: Evolution of the robot design. Three ver-
sions of the lower module. Note the increased wall thickness
in the second generation and improved magnet slots in the
third generation. Lower: Simulation of mechanical assembly
and locomotion in the OpenRAVE framework.

the simulation system and the 3D printing. Thus, the
simulation automatically captures the mechanical prop-
erties of the real housing of a specific robot module.
The system has been used to create, test and optimize
the generation of locomotion patterns, based on the spe-
cific configuration of the robot. Figure 1 shows a sim-
ulated robot in locomotion with the same 3D models
that have been printed to create the real robot and a se-
ries of three iterations of improvement of one part of the
robot, with the inner magnets added during the second
generation and increased thickness of the base for pre-
cise alignment of the magnets in the final design. This
concept allows for simulation and reality to be as close
as possible. The close coupling of 3D models, simu-
lation and real hardware substantially aids the develop-
ment process. Robots created only for simulation can be
printed if they were successful in simulations. In turn,
existing robots can be simulated (if their 3D models are
available) and possibly modified to achieve better re-
sults for the next production series.
We identified the development cycle drafted in Figure 2
as an abstract, recurring core pattern of this process.
The iterations in hardware design and improvement can

be verified against the simulation in short intervals. The
results are effortlessly printable, bypassing the process
of exporting and preparing the data or even waiting
for an external supplier. Surprisingly, the bottleneck in
this continuous two-stage verification process is not the
printing time itself, but the manual assembly of hard-
ware components. Printing an entire set of modules can
be done e.g. over night, since it does not require human
interaction. Both the iterative process and the estimated
amount of time for a single iteration of one part are
comparable to the findings in (Macdonald et al., 2014),
where the time to part is estimated to be within a range
of 7.5-18 hours.
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Figure 2 – Iterative hardware development cycle. The ini-
tial draft can be tested and optimised against the simulated
environment in short iterations. When the virtual parts fulfil
the desired requirements, they can be materialised by the 3D
printer. Complete modules are then assembled and evaluated
in the real world and the development cycle starts over again
with extended requirements or remaining insufficiencies. For
final product releases, the 3D printing can be replaced by a
moulding process.

3. Module hardware and design

The printable 3D models for the plastic parts of the
robot are designed in OpenSCAD. OpenSCAD is an
open source solid 3D CAD modelling system for pro-
grammers. Objects are created with Constructive Solid



Figure 3 – Upper: Assembled robot with 4 modules in all-
pitch configuration. Lower: Standard components of one
PMR module. One servo motor and one Arduino board are
needed for each module; batteries are optional but at least one
battery is needed for a whole robot.

Geometry (CSG), using a scripting language. Stan-
dard components like nuts, servos and microcontroller
boards are directly integrated into the module design.
They can be easily applied after printing and fit accu-
rately into the custom shaped slots. Parametrization in
the scripting language allows for creating generic pack-
ages that can be reused for different sized modules and
additional hardware.
Each PMR module consists of at least three printed
plastic parts. The battery slot is prepared to attach
printed tactile feet sensors by a snap-in mechanism.
Single modules are mechanically connected by perma-
nent magnets for a fast and easy change of topology.
These magnets also provide electrical contacts between
adjacent modules on the outer side and to the internal
wiring on the inner side, by locking the ferromagnetic
screws in place which are attached to the wires. Com-
munication is implemented via serial interfaces which
are integrated into Arduino boards in hardware and soft-
ware.

3.1. 3D printing

The 3D printer used for this project is a custom designed
device, based on the Reprap design (Jones et al., 2011).
The design has been extended to support simultane-
ous printing with three extruders for a wide range of
extruder characteristics and materials. Objects can be

printed from PLA- or ABS-plastic. PVA is used for
water soluble support structures. We incorporated ex-
perimental adaptive slicing algorithms to achieve high
precision prints on affordable hardware. The resolution
of the printer’s z-axis and extrusion diameter is dynam-
ically modified, depending on the local structure of the
object.

3.2. Hardware components

Each module combines the printed mechanical parts,
one servo for locomotion, one Arduino Nano V3 board
for control and one extension slot, which either holds
a battery (lower picture in Figure 3) or other hardware,
particularly sensors. The batteries are connected in par-
allel as a shared power supply. This allows for a sub-
set of modules to operate autonomously but does not
require a battery on every module which saves space
for sensors or other cargo. The Arduino Nano con-
troller was chosen for its small form factor and afford-
able price, as well as the extensive collection of open-
source software and drivers. It also benefits from easy
programmability via USB using the Arduino IDE. All
hardware components are open-source (Arduino, CAD-
models) or standard parts (servos, magnets). Specifica-
tions of the key-components are summarised in table 1.

Control board Arduino Nano V3 (ATmega328p,
16 MHz, 32 KB flash memory,
USB, I2C, RS232 (Hard-/Software)

Servo Micro servo (Tower Pro MG90,
2 kg/cm torque at 4.8 V )

Weight ≈ 0.12 kg (completely assembled)
Power supply Low cost two-cell LiPo batteries

(7.4 V, 820 mAh)
Magnets Neodymium (N52, r=3 mm,

h=2 mm, ≈ 20 N force)
Price 20-25 $ (per module)

Table 1 – Specification of the hardware components.

3.3. Magnetic module interconnection

The key feature of the robot is the combined mechani-
cal and electrical module attachment via a set of eight
magnets on each end of the module, as illustrated in
Figure 4. We combined the concept of a magnetic con-
nector introduced by Nagy and Abbott (2007) with the
approach of a redundant pin layout, comparable to the
work of Yim et al. (2000). At least two-times redundant
layouts are required in order to realise modules that al-
low for combinations of pitching and yawing orienta-
tions.



Figure 4 – Upper (from left to right): Male connection-face, close-up of the wire connection, female connection-face, back side
of a female connection-face. Permanent magnets provide both electrical and physical contacts. The combination of screws, nuts
and cable clips build a plug-system that allows for attaching wires from the backside of the connection-faces to the magnets. The
male connection-face has a special feature, where contacts of RX and TX are not fixed but can move slightly to establish robust
contact. Lower: Wiring scheme of the bus interface. Both faceplates at each end of a module are connected to the Arduino board.
Two different receive pins at the female faceplate are used to determine the orientation of the neighbouring module.
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Figure 5 – Cross section of one magnetic connector. The
magnet is glued into the narrowing slot, the screw/nut is fixed
in its slot by magnetic force only.

The internal wiring is realised with standard ferromag-
netic screws and nuts, attached to the wires and held
in their slots by the magnets (Figure 5). The batter-
ies are connected in parallel as a shared power supply
to allow a subset of modules to operate autonomously
without consuming the entire cargo capacity. Due to the
precise alignment of the magnets in the printed parts,
the contact force generated by the magnets is strong
enough to reliably connect the modules during robot
movements. On the other hand, the user can connect
and disconnect modules easily at any time and without
tools. To allow for dynamic changes of the modules’
pitch/yaw orientation, a special hardware and software
interface was designed. Requirements were a rotatable
pin layout and dynamic initialisation of the communi-

cation lines. The faceplates are physically genderless,
but logically directed (by the UART-assignment). To
prevent invalid rotations (shorting VCC and GND), an
additional bolt and two corresponding holes are added
to the faceplates. This restriction could of course be
solved using a more complex concentric magnet layout
or more complicated connectors. Note that attaching
two faceplates of the same type is impossible anyway
due to the magnets’ polarization.

4. Control architecture

A complete robot consists of a master-module, located
at the male end of the chain, and a number of 0-14 slave
modules. The number of modules is limited by the cur-
rent protocol’s address space of 4 bit. A higher number
of modules is possible with a modified protocol. Tech-
nically, every module is able to act as master, depend-
ing on the software configuration. Due to the Arduino’s
limited computing power, and due to easier program-
ming and teleoperation, it is necessary to connect an ex-
ternal controller for remote control or real-world appli-
cations. This occupies one of the two possible UART-
interfaces and therefore requires the master to reside at
the end of the chain. An external controller can be car-
ried inside the master’s cargo-slot for autonomous op-
eration, or connected wireless by Bluetooth.



Local
controller

Remote
controller

Upstream(rx)

(rx)

(tx)

(tx)

Downstream

Module 0
(master)

Module 1
(slave)

Module 2
(slave)

Module N-1
(slave)

   Hardware Serial Interface

   Software Serial Interface

Figure 6 – Diagram of the robot’s hardware- and communication topology. The master module is required to be at the end of the
chain. It is usually connected to an external controller by serial interface: either directly to an on-board micro-controller (Local
controller), or via Bluetooth/USB to stationary hardware (Remote controller). Every pair of modules is connected by a combination
of one hardware- and one software-UART, to allow for dynamic pin assignment and pitch/yaw topology detection.

4.1. Topology management

The robot is organized in a semi-dynamic master-slave-
architecture. Every node has a unique address, assigned
in software during the programming process. The mas-
ter node stores and manages current information about
order and orientation of every attached module.
The modules are wired in a daisy-chain configuration.
Inter-module communication is realised via serial inter-
faces (UART). Modules are connected pairwise by one
hardware UART and one software UART (Figure 6),
with the hardware UART facing in the master’s direc-
tion. A module first initializes the hardware UART
and waits for an incoming connection request. After
successfully establishing the connection, it alternately
probes the two software UART pins for messages from
a successor module, implicitly determining its relative
orientation. The established connections are periodi-
cally probed by heartbeat messages between adjacent
modules to determine breakups and changes in topol-
ogy. Every change in topology gets propagated up-
stream to the master, triggering an adoption of the lo-
comotion pattern. A loss of connection to the master
module gets propagated to every downstream module
as well. Every detached module disconnects completely
and waits for a new incoming connection request at the
upstream UART. The connection chain always extends
downstream, beginning at the master module. Remov-
ing and adding modules can be performed at any time
during operation, without stopping the currently exe-
cuted locomotion.
The current version of the Arduino software serial
library allows for dynamic pin assignment but only

supports half-duplex communication. The interrupt-
routines are disabled during a write operation, and in-
coming data may be lost. To overcome this problem,
important messages have to be acknowledged and are
retransmitted when lost.

4.2. Communication protocol

The communication protocol consists of two layers: one
for internal communication and one for communication
between master node and external controller. The in-
struction set of the internal protocol is a subset of the
external ones.

Internal 5-byte messages: 4 bit address, 2 bit flags,
6 bit command type, 12 bit message value and
start/end sequence. The address-field is evaluated
depending on the messages’ direction. In a down-
stream message (read on the hardware UART), it
denotes the receiver. Since upstream messages are
always sent to the master, the address field can be
used for the sender-address. Operations simultane-
ously performed on every module can be transmit-
ted as broadcasts.

External External messages are ASCII encoded. The
master implements a number of high-level com-
mands, as run or stop with parameters to mod-
ify phase, amplitude etc. To provide full external
control, every low-level command is accepted and
translated to the internal format by the master.



Figure 7 – Recorded joint angles for sinusoidal locomotion
generated by the master module during execution on the actual
hardware. The plotted values describe the actual joint angles
of the four modules. The corresponding topology configura-
tion is depicted by the images above. The lower two modules
are detached at t = 3 sec. When the third module is reattached
in yaw configuration around t = 5 sec. it is no longer incorpo-
rated into the sinusoidal movement by the master. When the
fourth module is reattached in pitch orientation at t = 7.6 sec.
it starts moving immediately after attaching to participate in
the robots movement.

4.3. Performance of the protocol

The serial connections were tested to work reliably
at transfer rates up to 19200 baud, while higher rates
require improvements to the software serial library.
The length of one message is 5 ·8 bit+5 ·2 bit = 50 bit
(Start/Stopbit in 8N1-mode). Up to 19200

50 = 384 msg/s
are possible in half-duplex transfer. Computing and
timing overhead reduces this to about 200 msg/s,
measured on a single link between 2 modules. Setting
the joint-angles of 8 modules requires 7 messages via
the connection between master and slave 1. Given a
certain amount of further communication on the bus,
e.g. heartbeat messages, this results in a maximum
update rate of the travelling wave of ∼20 Hz.
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Figure 8 – Sequence of the handshaking protocol to handle
the changes in topology as illustrated in Figure 7. The mas-
ter module stores the current topology. Disconnecting the last
two modules in second 3 causes the last remaining slave mod-
ule, slave 1, to send a topology update to the master. Reat-
tached module slave 2 connects in yaw orientation at second
5 and slave 3 respectively in pitch orientation.

To overcome this limitation, we implemented an ex-
perimental mode for decentralized parametric oscilla-
tion. In this mode, every module locally generates its
own sine wave based on the parameter frequency, am-
plitude, phase and offset which can be modified by the
master during operation to achieve a consistent motion
sequence. To prevent drifting, the master node propa-
gates a broadcast CLOCK RESET message every 1

f req s
downstream, synchronizing the modules to their initial
phase once in every full oscillation.

5. Experimental results

To evaluate the functionality of the hardware and soft-
ware, some basic locomotion algorithms for chainlike
modular robots have been implemented. An illustration
of a sinusoidal locomotion pattern is shown in Figure 7.
The master uses these values to actuate the robot’s
joints. Changes of the robot’s topology are integrated
smoothly into the movement. The handshaking-based
process that adds modules to the currently stored
topology of the robot is illustrated in Figure 8. The
incremental procedure starts at the direct neighbour of



the master module and continues with its successors.
Acknowledges are passed to the master that stores
the change in topology. By taking only several mil-
liseconds the initialization process allows for very fast
integration of newly connected modules into the current
locomotion pattern. Smooth locomotion patterns are
achieved even if further modules are attached during
locomotion. Figure 7 illustrates a situation where
module 4 connects after the three preceding modules
are already initialized and involved in locomotion. The
fourth module instantly joins the harmonic locomotion
pattern after initialization.

A lateral rolling gait has been implemented as a sec-
ond common locomotion pattern. A chain of alternat-
ing pitch- and yaw-oriented modules is used to create a
rolling movement. Experiments with this locomotion
pattern pushed the magnetic connectors to their lim-
its, revealing that sudden impacts on hard surfaces can
cause short disconnects.

6. Conclusions and future work

This work demonstrates the successful design and
creation of a modular robot by using rapid prototyping
with FDM printers and standard components. It can be
regarded as a case study that shows that the techniques
for designing new robots have changed significantly
with the increased availability of 3D printers. The
presented result is a very flexible, open source and
low-cost robot platform that is suitable for research
and education in the field of intelligent modular robots.
Since every part of the robot is open source, or at least
an easy to purchase standard component, it perfectly fits
the needs of educational purposes or low-cost research.
As a first application of the robotic platform, dynamic
detection of the topology has been implemented in
hard- and software.

Future work will focus on improving the bandwidth of
the upstream bus and the decentralized motion genera-
tion in each module to reduce communication overhead.
The next steps include extensive testing of various loco-
motion techniques from literature and integration of dif-
ferent sensors, to enable adaptive locomotion and intel-
ligent behaviour. The use of other microcontrollers with
more hardware serial controllers would provide the sys-
tem with the capability of dealing with more complex
topologies.

7. Building a PMR

We explicitly encourage researchers and teachers to
copy and enhance our work. The sourcecode for
hardware design and operating software is released
under a GPLv3 license and can be found on our website
http://tams.informatik.uni-hamburg.
de/research/3d-printing/pmr.

For educational use, besides the actual replication and
modification of the hardware, the PMR can potentially
be used as a platform for introduction into robotic con-
cepts. The fact that every module comes with its own
processor makes it particularly interesting for student
projects. To give an inspiration, we developed a simple
project scenario:

• Each group gets a single module without operating
system and a specification of the communication
protocol.

• Each group implements its own protocol against
the specification. Local oscillation or integration
of sensors as additional tasks.

• Final assembling of the robot together with test of
the students designs together.
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