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Abstract

The paper introduces a new air flow analysis approach based on Particle Track-
ing Velocimetry (PTV). One of the special features of the proposed method is that
after the tracer particles are detected, matching and tracking are jointly conducted.
To this end, we introduce an interpretation module based on a directed hypergraph
for 3D curve reconstruction. At first the 2D inter-frame locations are localised and
used for the extraction and calculation of 3D keypoints. Through 3D keypoints
which are evaluated by the hypergraph together with the time information in sev-
eral steps, reverse curve matching for path selection can be reconstructed and the
resulting trajectories visualised.

In contrast to the preceding works our approach tries to describe the measuring
data by 3D trajectories directly instead of estimating 2D trajectories first and then
matching afterwards. A higher precision can be achieved also with complicated
trajectories. A certain independence of the reflections and lighting conditions is
reached by the interpretation. Moreover, the path of particles can also be recon-
structed with the minimum number of 3D keypoints under consideration of the
path energy minimization.

1 Introduction
According to a Dow Jones Newswires prediction, the number of aircraft built by Boe-
ing and Airbus will double by 2023/2026. The number of passenger aircraft worldwide
will be approximately 35,000. Passenger comfort plays an increasingly important role
for the marketing of modern aircraft. Passenger comfort is strongly influenced by the
structure and intensity of cabin air flow. Most aircraft are different from each other,
because the airlines order the cabin layout for a certain purpose and the aircraft are
manufactured individually. In this case, each new cabin has to be checked for com-
patibility with the air conditioning requirements by the manufacturers for the custom
layout. More than that, in most cases adaptations and changes of the air conditioning
system are necessary.

Therefore, a computer-aided system which evaluates the measurements and visu-
alises the air-streams inside the cabin would be enormously helpful. The resulting
system could assist the developers not only in the prototypes, but also in the assembly
of the aircrafts to be modified.
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2 Related Work
Over the course of years, several measuring technologies have been discovered. One
of the most well-known ones is based on the use of anemometers which are placed at
different places in the aircraft. Further information about the measurement technology
can be found in [1], measurement and assessment can be found does in [2]. For any
realistic air-flow model, several anemometers should be placed and calibrated. More-
over, only one dimension of the air-flow is measured and afterwards all data must be
merged. As a result the procedure takes a lot of staff, time, and is cost-intensive.

Furthermore, there are three general categories of methods which measure the ve-
locity of air-flow with the help of tracer particles. Particle Image Velocimetry (PIV)
uses a setup consisting of cameras and a laser scanner [3]. As particles pass through
the laser illuminated plane, two images are taken within a short period of time. On
these images, a cross correlation of image regions is performed, in order to obtain the
direction and velocity of the flow. This approach is limited by the area which can be
illuminated by the laser, as well as the acquisition and transfer rate of the cameras. The
main difference between PIV and Hot-wire anemometry respectively Laser Doppler
velocimetry techniques is that PIV produces two dimensional vector fields [4].

The principle idea behind Particle Streak Tracking (PST) is to control the scene
illumination through a shutter system [5]. It generates a train of pulses, during which
the camera is exposed to the reflections of the tracer particles in the scene. As in PTV,
only a single plane is illuminated, and the pulses are synchronised with the exposure
time of the camera, so that exactly one pair of pulses fall into each captured frame. In
each pair, one pulse is longer than the other. This separates the image of each particle
trajectory into two components with different length. Knowing this, it is possible to
determine the direction of each particle. For an application of PST for 3D velocity
measurement of flows on a single plane see [6]. The PST methods support only a low
number of particles. Therefore the resulting information density is rather low. This is
a serious handicap for the measurement of turbulent air-flow.

Particle Tracking Velocimetry (PTV) methods identify single particles, and track
them from frame to frame [7][8]. This makes PTV more suitable for experiments with
a low number of particles. The lower number of particles allow depth reconstruction
for each particle, provided correspondence can be established.

The disadvantages of the methods that deliver a two dimensional vector field are
significant. One of the velocity components (depth direction) is disregarded, some
particles and turbulences will not be sufficiently recognised or be totally absent. In
other words the resulting visualisation is not complete and accurate. In addition, most
resulting applications need elaborate setups and are time-consuming.

Many of the above methods need many hours or even days for the evaluation of
measurement data and the visualisation of air-flows.

In this paper, we propose a new approach for the evaluation of measurement data
and the visualisation of air-flows inside the aircraft cabin based on PTV. The setup
consists of only two synchronised cameras with long exposure time, similar to the setup
described by Bosbach et al. [9] as illustrated in fig. 1. The helium filled soap-bubbles
that are injected through the air-intakes are detected via the stereo camera system.
Moreover, the results for the soap bubbles are traced. First, the 2D inter-frame locations
of the bubbles are localised and then used for the calculation and extraction of 3D
keypoints. The biggest difference from the other methods is to describe the measuring
data directly by 3D trajectories instead of estimating the first 2D trajectories and then
matching them to the 3D trajectories. A higher precision can be achieved even with
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Figure 1: Cross section of a full scale aircraft cabin mock-up, as used in our experi-
ments

complicated trajectories. Our method uses reverse curve matching for path selection,
so a directed hypergraph is used to evaluate a data-fit term on a curve obtained from a
few points obtained from an earlier step.

The hypergraph connects several 3D keypoints through adjacent frames and con-
tains time information. In the next step the subpaths are combined. The accruing curves
are enhanced with a B-spline in consideration of the energy, so-called active contour
models. An explanation of the theory can be found in sections 4.2 and 4.3.

Independence of the lighting conditions and reflections is reached by the interpre-
tation to a certain degree. Moreover, the way of particles can also be reconstructed
with the minimum number of 3D keypoints under consideration of the path energy
minimization. We do not assume to have perfect control of the experimentation envi-
ronment and our method can deal with a variable number of helium filled soap bub-
bles. Furthermore, the investigated volume is considerably larger than in most other
PTV applications. Based on the theoretical foundations, we implemented the proto-
type and tested it in the full scale aircraft cabin mock-up. Our application calculates
and visualises the results online without lengthy delays.

The rest of this paper is structured as follows. In the next section we present the
theoretical foundations of our method. In it we describe the applied model, different
pre-processing steps, particle segmentation, as well as the curve fitting and interpre-
tation. Then, in section 5, we describe the experimental setup. The implementation
and experimental results are described and discussed in detail. Finally, we present our
conclusion in section 6.

3 Model Description And Abstraction
PTV is about obtaining information on fluid flows by means of digitized images. Con-
sequently, one must employ image processing techniques.

Starting with the physical model, PTV methods are based on the assumption that
trajectories of small particles closely follow pathlines (eq. 1) of the fluid flow being
observed, which allows the reconstruction of aspects of the time dependent velocity
field.
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In fact, the measurements amount to a 1-dimensional sampling of the time-dependent
velocity field.

d
dt

C(t) =~v(C(t), t) (1)

Our method can deal with long exposure times, provided the intra-frame portions
of trajectories are sufficiently well described by low-order terms.

We do not make any further assumptions about the flow, but if the smaller scales of
turbulence [10] cannot be resolved, that is a question of the resolution attainable by the
observation of tracer particles; no amount of image processing can extract information
which was lost in the image formation process.

Motions which are not distinguishable should be treated with a kind of smoothness
assumption (in the spirit of multi-scale analysis, one likes to separate the main flow
patterns from details); one must introduce the least spurious detail possible, as per the
maxim known as pluralitas non est ponenda sine necessitate (“plurality should not be
posited without necessity”) [11].

Now a video camera is a system composed of a lens system and a sensor array. The
role of the lens is to obtain a two-dimensional geometrical image of a three-dimensional
scene, and its intended effect is accurately modeled by projective geometry. The sensor
array is a device which measures illuminance integrated over a certain exposure time,
and at the same time performs a digitization and therefore allows the continuum to be
processed.

In our simplest image formation model, we consider an image to be a sampled
version of a continuous function. There are theoretical reasons for establishing images
as elements of a Schwartz space S (Rn) [12]. Notably, one can define convolutions and
other LTI operators. Digitized images, by virtue of the sampling process, are associated
with a certain resolution. The resolution of an image is arbitrary but limits the inner
scale of the observations [13]. Noticing this leads immediately to scale space theory,
viewing an image at all possible scales (i.e. from coarse to fine). Florack et al. [14]
derive Gaussian scale space as the unique possibility from some general assumptions
about low-level vision without a priori knowledge. In the PTV application, it is not
necessary to build an entire scale-space representation because particles appear at a
limited range of scale.

Each frame is composed of background, particle traces and noise. We assume a
simplified model, wherein particles are transparent. In any case, the detection does
not depend on observed intensity, except for the requirement of sufficient contrast;
assuming that particles are opaque also do not impact the detection process.

This image formation model can thus be formulated by describing the frame as a
sum of three signals: illuminance gathered from the particle traces, scene background,
and pixel noise (as indicated in eq. 3).

It is advantageous to abstract from signal theory and think of an image as a con-
tinuous function or scalar field [13] and describe its properties in terms of isophotes
(subject to scale-space considerations) rather than pixels.

The essential point is that particle traces appear at a certain scale to be ideal lines
(1D piecewise submanifolds of the plane), thickened by a unimodal, radially symmetric
PSF. This fact is not invalidated by the complex nature of the actual reflections (tracer
particles are often highly non-Lambertian scatterers); higher frequencies are smoothed
out at the correct scale.

The PSF’s support does not really matter, but the apparent diameter ρ of a par-
ticle can be defined by noting where the signal-to-noise ratio makes detection of a
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well-contrasted particle impossible (e.g. by introducing suitably “local” features and
observing error bounds in classification).

For practical purposes, ρ is about the particle’s projected diameter: the experimen-
tal setup should be designed such that it is of the order of at least a few pixels, to ensure
sufficient spatial sampling.

The effect of the finite aperture is often described simply as a linear filter [15],
disregarding depth. In our model this effect is subsumed, together with the finite extent
of the image of a particle and its specular reflection, into a compound PSF, which does
not need to be analyzed further because the only important properties for our purposes
are that it be unimodal and radially symmetric.

The endeavour of accommodating long exposure times entails that the temporal
discretization can no longer be usefully approximated by a Dirac comb; instead, one
obtains an integration process over a finite, and non-neglectable time, which excludes,
for instance, optical-flow based methods of motion estimation. Another factor dimin-
ishing the utility of consecutive frame differences is that with a motion in the direction
of an optical ray, the particle would escape detection, which means a systematical error.

4 Theoretical Description Of The Originating Method

4.1 Preprocessing
The PTV system we developed is based on two synchronised cameras with long expo-
sure time. We used Zhang’s calibration method [16] to obtain the camera parameters.
As a result of the single camera calibration, we got its intrinsic parameters and the
lens distortion. This was done separately for both cameras. After that, we used the
semi-automatic calibration method to calibrate the stereo camera system. The trans-
formation matrix between the two cameras’ image planes also needs to be determined.
There are a wide array of algorithms for this problem, e.g. Bouguet’s [17]. To deter-
mine the rectification matrices based on intrinsic and extrinsic camera parameters, we
implemented a procedure based on the work of Fusiello, Trucco and Verri [18].

For the background removal, as stated in the model description, an image I can be
seen as the sum of several components:

Fi, f (
−→x ) = α·BGi, f (

−→x )+Ni, f (
−→x )+Ti, f (

−→x ) (2)

or simplified
Fi = Ti +BGi +Ni (3)

where F denotes the image, Ti the foreground region containing the traces, BGi the
background, and Ni the camera noise at frame number i.

In a static scene, BGi is affected only by changes in illumination (and reflections).
The main of BGi’s intensity can be removed by calculating a median image over several
frames. This template is then subtracted from each input image. If an effort was made
to keep illumination constant, the remaining BGi intensity is low enough to not affect
further segmentation steps significantly, so that we can assume Fi = Ti +Ni, which
simplifies the following segmentation steps.

4.2 Particle Segmentation
Keypoint extraction may be too computationally expensive to apply it to entire images.
In order to obtain regions of interest in which to search for keypoints, region based
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segmentation methods are useful.
Structuring element with hysteresis: Our first approach for segmentation was to

apply a morphological operator to test for four-connectivity on the pixel grid by eroding
the binary image with a cross-shaped structuring element. Testing for four-connectivity
seemed like a suitable, if unrefined, indicator for the presence of traces, as the pattern
is unlikely to occur at random ( 1

32 if BGi has been removed and Ni consists of white
noise). The detection rate, however, is strongly dependent on the threshold used to
obtain the binary image. The regions gained were then used as starting points in order
to complete the segmentation result by hysteresis on the original image.

Gradient Magnitude: Particle traces, at an appropriate spatial scale, show a higher
gradient magnitude than the surrounding area. For an image F(x,y), it is defined as
presented below (Eq. 4).

|∆F(x,y)|=

√
(

δF(x,y)
δx

)2 +(
δF(x,y)

δy
)2 (4)

This was exploited for segmentation by calculating the gradient magnitude at each
pixel and filtering through a threshold Tr, which was set to a multiple n of the square
root of the empirical variance of gradient intensities V : Tr = n∗

√
V

We found that changing n does not change the detection yield significantly. While
the algorithm is suitably quick, and gradient estimates can be reused for detection, it
breaks down on images with low contrast, thus low overall variance, leading to too
many spurious regions of interest.

MeanShift: If F is viewed as feature space, the MeanShift algorithm [19] can be
used for segmentation. It operates by following the density gradient with a kernel in

Figure 2: Performance of the Mean Shift based mask generator with kernel radii of 8.
Not all traces are distinguishable as separate segments, which has no bearing on the
keypoint extraction. Some traces are partially segmented, making a dilation or blurring
adviseable before the mask is used. The detection rate does not change significantly
with different kernel values.

the feature space until a maximum has been reached. Pixels sharing the same gradient

6



maximum are assigned the value of that maximum. All other pixels are assigned the
density estimate of the kernel centered at their position. If the kernel is chosen to
be suitably large, and the noise is uniform and white distributed, the method is noise
resistant.

Although by no means perfect, the MeanShift based segmentation showed the best
performance of all the tested methods, see fig. 2. Due to its suitability to varying
classes of input images. All methods can be sped up by using a suitable representation
which allows operating on multiple scales, such as [13].

4.3 Curve Fitting And Interpretation
First, we will exploit known image structure to obtain a combinatorial representation
as a starting point for further analysis. In most points, the projected curve can be
approximated as in Eq. 5.

Π(ta + t) = h◦
−→
ζ (ta + t) =

= Π
′(s) =

−→
Π(ta)+

δΠ′

δ s
(0)·s+ 1

2
δ 2ζ ′

δ s2 (0)·s2 +O(s3) (5)

where ζ is the space curve, h the de-homogenization, Π the projected curve and Π′ its
unit-speed version (parametrized by arc length, since t is unobservable in practice).

Many methods use templates or intensity maxima for detection and tracking. Going
by intensity maxima is not an option for data with long exposure times, because they
do not come with a well defined time stamp; while one could envisage using some
formulation of templates (usually contour-based), it seemed more promising in terms of
efficiency and also for the sake of parsimony, to continue thinking in terms of thickened
lines as opposed to regions.

4.3.1 Keypoints

We introduce inter-frame locations of particles as a choice of 2D keypoints, which can
be detected on each view individually; the 2D keypoints introduced above are then
combined to 3D keypoints, all while respecting the epipolar constraint1.

During our initial research, the idea of searching directly for 3D keypoints was re-
jected because searching, e.g. by masking regions of low contrast and then applying
Newton’s method to a response function in two dimensions, is less costly in two di-
mensions than it is in three and, more to the point, there is no essential advantage in
doing so.

All available image information being essentially two dimensional because it stems
from two 2D views, the fundamental ambiguity of epipolar geometry is not resolved
by choosing another representation.

Subpixel measurements are introduced naturally in the context of modern image
analysis, but we would like to point out that it is not directly responsible for increased
precision in our setup; that can be a by-effect, but the main advantage of subpixel-
methods is that they allow to deal more meaningfully with image information. The
gain in precision, which is smaller than the apparent radius ρ of a tracer particle, is
in practice smaller than calibration errors, which may be of the order of several pixels
even in a carefully calibrated setup.

1Actually, strictly enforcing the epipolar constraint at this point would mean no 3D keypoints at all,
because of subpixel localization!
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Inter-frame locations are a very good candidate for anchoring further steps because
they are well localized spatially as well as temporally. Furthermore, they are detectable
in the image series. At the same time, they can be said to have a standard appearance.

The suspicion that inter-frame locations can be detected with high accuracy was
confirmed by a test we carried out to investigate whether different regions correspond-
ing to background, endings and interiors of thickened lines could be classified with a
max-margin linear classificator, and which turned out successful even within a non-
adapted feature space, taken from another experiment – as long as contrast was suffi-
cient.

There is more to the choice of such 2D keypoints as essential significant feature:

• they are very robust against the choice of exposure time, because their aspect,
except for inevitable overlaps, depends only on first order of arclength of the
original trajectory, and not on curvature or other aspects of its shape;

• no matter how long the duration of the integration of intra-frame information,
these keypoints are always equally well localized (localization of observations
in time and space being a cornerstone of optical velocimetry).

For the software prototype, the choice fell on Harris’ and Stephens’ combined edge
and corner detector [20] over other possibilities because of excellent localization and
high specificity (empirical, synthetic and actual image series), and especially for its
avoidance of multiple detections (which would not be good for the accuracy of mea-
surements).

This detector is based on the gradient second-moment tensor, or structure tensor,
M, whose components are image derivatives taken at an inner scale It is defined as
hs = det(M)− k · tr(M) and is a smooth function of location (and scale).

When is calculated on each (background-subtracted) frame separately, then cor-
roborated between neighboring frames, it indicates probable intra-frame locations of
particles.

Figure 3: Example of correctly detected inter-frame locations, superposed onto a color-
coded two-frame difference image.

The fact that it consistently showed better detection rates (lower false-positive,
lower false-negative) than an isophote-curvature derived criterion and a detector based
on critical points of a certain function calculated on the time-series remains somewhat
surprising if one looks at the images.
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Because it is a gradient-based detector, it good at capturing properties which do not
change much with exposure time – which are also related to first-order properties, i.e.
gradients – and we found that the choice of scales does not have appreciable influence
on the localization of the inter-frame position, except in crowded areas. This is because
any wandering of the spatial maxima is offset by the requirement that the feature be
strong on both frames – distribution of the gradient is locally symmetrical at the inter-

Figure 4: Example of correctly detected inter-frame locations, superposed onto a color-
coded two-frame difference image.

frame location, as predicted by the model. Figures 3 and 4 show several examples.

4.3.2 Interpretation

As mentioned before, the epipolar constraint is a soft constraint in the analysis of actual
stereo image data, in the sense that some tolerance must be allowed for.

This circumstance can even be leveraged to accommodate for imperfections in cal-
ibration; indeed, for every matching which is made between 2D keypoints, the image
is subsequently locally subjected to an affine warping, according to the average offset
normal to the epipolar lines, which approximates the local effects of a re-calibration
“as if the matchings were confirmed”.

In this way, intra-frame observations are not lost even if calibration is less than
perfect, and moderate calibration errors do not result in non-detection, only in a pre-
dictable error in the estimation of velocities.

Keypoints appearing on consecutive frames might belong to the same particle.
However, which 3D keypoints actually correspond to particle locations is not known
beforehand because of the epipolar matching ambiguity, and which continuations cor-
respond to particle trajectories is not known either.

For that reason, an immediate interpretation is not possible; it is necessary to take
intra-frame observations into account at this point. These are not timestamped and we
know only that they were accumulated between the instants T · i and T · (i+ 1), and
furthermore we know the temporal ordering because we regard a particle trace as a
blurred line.
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It is true that the 3D keypoints are already furnished with a tangent direction for
each view except when the motion is exactly along an optical ray, which occurs almost
never, and which determines the direction in 3D except for a motion inside an epipolar
plane (i.e., each keypoint is a point in R4×RP1×RP1), which makes a preferred search
direction plausible, but extrapolation, with moderate exposure times, is not possible
especially in the case where turbulent motion is resolved and even so, it can only serve
to reduce the number of possible candidates.

In the following, we always assume that all inter-frame locations which are de-
tectable with sufficient confidence have been detected.

While it might be possible to achieve good results by suitably tracing out the tra-
jectories directly on the image, we think it preferable not to proceed in this direct way
but instead to generate hypotheses and filter them according to how well they explain
the frame content. This circumvents most problems local path-following methods have
with ambiguous situations, especially in the presence of occlusion.

The advantages to indirect analysis via hypotheses are manifest:

• Thanks to a global, top-down, view, results are much less likely to be influenced
by local fluctuations, noise and difficult situations (i.e. crossings of traces) than
local approaches.

• There are enhanced opportunities for a true probabilistic interpretation of the
image series, as explained below

• One can unambiguously fit simple curves to just a few keypoints, which nev-
ertheless remain accurate to high order if desired (B-splines lend themselves to
it).

The third point above can be understood as an instance of Occam’s Razor; more-
over, it renders optimization over curve spaces completely unnecessary.

0

0

3

2

3

frame 0-1

frame 1-2

Figure 5: Directed graph of continuations.

All possible immediate continuations form an acyclic, directed graph (fig. 5). We
extend it to a directed hypergraph by considering all paths up to an arbitrary number
of frames f . f can be small, of the order of about 5 frames, and longer range de-
pendencies are disregarded, because the particle motion can be described locally. By
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cutting hyperedges (e.g. bottom-up, by removing edges first and enforcing transitivity
under these constraints), one can partition the hypergraph of continuations into non-
branching segments. These partitions are possible explanations, or interpretations, of
the image evidence g and should be assigned a probability.

An application of the Bayes theorem: in eq. 6, β represents the curve parame-
ters and g the image evidence. The prior distribution p(β ) can be picked on physical
grounds; for example, one should favor interpretations which do not require excessive
kinetic energy to realize. p(β |g) would be read as the probability of a single trajectory
being supported by the image evidence; the probability of the whole hypergraph par-
titioning depends on the individual trajectories’ probabilities, which are independent
except for the interdiction of crossings and for the handling of subchains.

p(β |g) = p(g|β )p(β )
p(g)

(6)

In our implementation of the framework, p(g|β ) is replaced by any of a set of cri-
teria for good fit, ideally a monotonically increasing function of the actual probability,
while the hypergraph partitioning itself is carried out by a greedy algorithm, which
orders the possible trajectories by their score and discards all but the best one in am-
biguous situations (proceeding recursively from longer chains to subchains). p(β ) was
chosen as to penalize curves with abnormally high acceleration and p(g) is irrelevant,
because one is mostly interested in relative probabilities; A unified way of determining
a threshold for any of the scores so as to reject bad explanations (in case no path is
viable) would be a topic for further research.

The problem of interpreting the images is thus reduced from a problem involving
properly an integration over continuous probability distributions to the purely combi-
natorial question of finding the chains of keypoints which correspond to actual particle
traces, reducing the search space to a realistic size by arguing that all sensible curves
which contribute most to the probability of a path looks about the same and can be
reduced to a point estimate.

4.3.3 B-Splines

Each path candidate (chain) from the hypergraph is converted to a smooth trajectory
candidate by means of B-splines [21].

As alluded to above, B-splines play a simplification role. On the one hand, detail
which cannot be resolved when measuring is not spuriously resolved in the description
(since B-spline spaces with few knots do not allow for it), and over fitting does not
occur; on the other hand, they approximate data well (the approximation of a smooth
function is accurate to high order, see [21] for details).

Note that B-splines are not suited for extrapolation. This is not a disadvantage in
our application.

5 Prototype Development And Evaluation

5.1 Experimental Setup
Frames {Fi, f } captured by the camera number i at frame number f ∈ {0, ..., fmax} are
images obtained by the cameras sensors integrating from f

f ramerate [s] to f
f ramerate −

gap[s] along the time axis. The gap during which the sensor is “not exposed” should be
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as short as possible; it is always disregarded in the remainder of the text. In our setup,
the camera positions are fixed with respect to an immobile scene. The backgrounds
overall brightness may vary, because of oscillations in lighting intensity (indeed, fluo-
rescent lamps might serve as light sources), which flicker at a frequency usually out of
tune with the imaging system. This should not throw off our system, and indeed in the
experiments it did not, even without more sophisticated background subtraction.

5.2 Implementation
In order to evaluate the system, a prototype was programmed in C++, using data struc-
tures and algorithms from the VIGRA library for image processing. Aside from an
implementation of the detection and tracking algorithm, a GUI was build using the QT
library, containing a visualisation widget based on the VTK library. The prototype can
visualize detected particle trajectories, and a model of the experimental environment in
3D. The overall structure of the prototype can be seen in figure 6.

Figure 6: Illustration of the implementation of the system. Data is denoted by parallel-
ograms, and processing components by rectangles.

Each feature is implemented as a separate widget. The detection and rectification
steps are assigned their own threads, in order to keep the GUI operational while they
are processing images. While the system can work on wholly rectified images, as in-
dicated in figure 6, it is also able to rectify (and free from distortion) single points.
Considering that neither rectification nor freedom from distortion are necessary for the
particle segmentation and keypoint extraction, this yields a considerable performance
gain. Rectification is, however, crucial for efficient correspondence search, by facili-
tating the search for correspondences on the scanlines of image pairs. The prototype is
equipped with a widget to allow the user to visually evaluate the quality of the rectifi-
cation (and in extension of the stereo calibration).

Our PTV system calculates the positions of the particle trajectories relative to one
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of the cameras, and not in the world coordinate system. As knowledge of the latter
position is required for a meaningful interpretation of the measurements, a widget is
provided to assist the user in obtaining the necessary transformation between the two.
This is done by calculating the absolute orientation between two sets of points from
either system [22]. The user is required to manually establish the correspondences.

5.3 Experimental Results
The implemented prototype comprises temporal information and the reconstructed 3D
particle trajectories. In spite of the foundations described in 4.3 the temporal informa-
tion can be determined through the synchronized cameras and particle traces (blurred
lines).

Figure 7: Visualisation of air-flow velocity with numerical indicators placed directly
on the reconstructed 3D trajectories.

To computate the velocity of single particles we use two different algorithms, the
above mentioned physical properties or the first derivative of the resulting curvature.

Figure 8: Color and hue coded velocities of reconstructed 3D trajectories. The slowest
particles are green, the fastest are red.

To assist the developers of air conditioning systems we use different means for the
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visualisation of the velocity of the particles. For the visualisation of single particles the
direct numerical indicator (shown in fig. 7) can be used.

For a large number of particles, the color-coded visualisation of the velocities is
advantageous. Figure 8 shows the color and hue coded trajectories of the particles, the
slowest particles are green, the fastest are red (color and hue coded).

Exact evaluation of fluid experiments needs ground truth, which is not always easily
obtainable: however, for validation, one can resort to synthetic images, employing ray
tracing in order to use the observational model as a generative model.

Figure 9: Trajectory accurately reconstructed from synthetic image series.

Experimental results are encouraging: the detection process, when run on a syn-
thetic image series showing a portion of a circular motion, reports after hyperedge
selection only two candidates for motion, one corresponding closely to the true motion
(with very low average deviation from it of about 1%), see fig. 9. Of course, more
extensive testing is needed.

Figure 10: Detected particle trajectories shown in a model of the experimental envi-
ronment.

The system was also subjected to a series of tests in an industrial environment for
which prior measurements with a different system were known. As it was not feasible
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to obtain the ground truth, it is impossible to calculate an error. However, the velocity
distribution and overall flow orientation matched expectations. The measurement result
of one of the test series is shown in figure 10.

Figure 11: Plot of run time against number of frames average detected keypoints per
frame: 50.

An image series of 1000 frames from each camera takes ca. 1500 s on a 1.6 GHz
computer. The system scales linearly with the number of frames, as demonstrated in
figure 11.

6 Conclusion
The ambition of this work was to develop a depth recovering particle velocimetry sys-
tem, which can operate under fairly broad conditions, such as requiring only the use
of a stereo camera setup and a low sampling frequency. The developed system com-
pose of several modules, which are developed independently from bottom up. First
of course well-known and still indispensable camera calibration. The next three steps,
namely particle segmentation, key point extraction, matching and tracking constitute
the centre and the novel scientific approach of the presented work. Last but not least,
the visualisation of the results.

This work demonstrated that depth reconstruction of sparse flow information is
practical using a stereo camera setup. Furthermore, tracking of individual particles can
be done by generating a graph of possible paths and matching generated curves. After
the summary of the results also known problems of the developed method are shown
briefly. The selecting a suitable background mask to limit the number of candidate
points and prevent the problem from becoming unmanageable from state explosion
(super linear growth of possible choices).

The system is sensitive to bad calibration. It degrades performance by forcing
wider search windows. Due to the sub optimal conditions in the experimental setup,
weak contrast reduced the detection performance of particles. In combination with
having to track particles over several frames, this leads to significant detection losses.

As a summary, the direct description of the measuring data by 3D trajectories in-
stead of estimating first the 2D trajectories and this matching afterwards offer oneself
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as advantageous. A higher precision can be achieved also with complicated trajecto-
ries. The presented system is capable of making essentially one-dimensional measure-
ments of a fully 3 + 1 - dimensional spatio-temporal phenomenon. The fact that these
measurements are subject to a number of uncertain factors is known and noted; the
uncertainty, as presented in the main text, can be estimated to a certain extent and that
information is available for every individual measurement.

7 Further Developments
We propose and plan to develop a modified version of our algorithm where the steps of
curve candidate generation and stereo reconstruction are swapped.

If matching of keypoints is required before particles can be tracked, the success
of tracking will be critically dependent on the accuracy of calibration, which is an
undesirable effect.

Tracking a particle, on the other hand, can be done on a single frame for most of
its journey; this requires only the application of the tracking algorithm described in the
above paragraphs directly to 2D keypoints. Doing so results in candidates for projected
curves to be generated.

Parts of curves can be matched because of points which can be unambiguously
identified on both views (at this point, camera calibration parameters must be taken
into account): epipolar tangencies, as used by Porrill and Pollard [23] for another stereo
vision task, are critical points of a suitable parameterization of the 2D curves which do
appear simultaneously on both views related by epipolar geometry. It is hoped that
such an approach will be less sensitive to miscalibration because the influence of errors
in calibration can be exactly determined and conditions for matching set accordingly.

An added advantage will lie in the relaxation of the stringent time synchronization
requirement, when matching is no longer dependent on the exact location 2D keypoints.

Still, other difficulties appear with this approach: a number of curves will in general
not be matched with any confidence, especially if they lack the aforementioned special
points because the particle travels only “up” or “down” during its time of visibility,
meaning that more than two cameras will in general be advisable.
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