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Abstract: Cross-modal integration processes are essential for service robots to reliably perceive relevant 

parts of the partially known unstructured environment. We demonstrate how multimodal integration on dif-

ferent abstraction levels leads to reasonable behavior that would be difficult to achieve with unimodal ap-

proaches. Sensing and acting modalities are composed to multimodal robot skills via a fuzzy multisensor fu-

sion approach. Single modalities constitute basic robot skills that can dynamically be composed to appropri-

ate behavior by symbolic planning. Furthermore, multimodal integration is exploited to answer relevant que-

ries about the partially known environment. All these approaches are successfully implemented and tested 

on our mobile service robot platform TASER. 
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Introduction 

The plan-based robot control paradigm is the most 
promising approach to adapt robot behavior to a dy-
namically changing environment. Nevertheless, gener-
ating and executing plans that perform high-level tasks 
is difficult for robots – like our service robot TASER 
(see Fig. 1) – that act in dynamic unstructured envi-
ronments, for several reasons. One reason is that often 
not all necessary knowledge is available in order to 
generate a plan for a given task. Especially dynamic 
facts, like the state of doors or the location of move-
able objects (e.g., cups, plates, buckets, etc.), should 
not be stored for a longer period of time in the robot’s 
memory. We developed the planning system for artifi-
cial cognitive systems (ACogPlan) as the deliberative 
planning component of the overall plan-based robot 
control architecture. ACogPlan is able to deal with    
a partially known environment by reasoning about   

necessary unknown information, generating queries 
about this information, and submitting these queries to 
external knowledge sources. One major knowledge  

 
Fig. 1  TASER executing a manipulation task 
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source for service robots – that are usually equipped 
with several sensor systems – is perception. However, 
reliably perceiving the external world is still a chal-
lenging task for robot platforms. 

The integrative processing of different sensing and 
acting modalities is an essential approach to provide 
reliable information about complex dynamic environ-
ments[1]. In order to perform high-level tasks in a 
plan-based robot control architecture, we propose to 
integrate sensing and acting modalities in the following 
– not exclusive – two ways: 

(1) Acting and sensing modalities are composed to 
multimodal robot skills; and 

(2) Each sensing and acting modality is a unimodal 
robot skill and integrated by symbolic planning to rea-
sonable multimodal robot behavior. 

“An atomic robot skill is the generic term for pairs 
of primitive operators and control programs. It de-
scribes robot actions in both symbolic representation 
and numerical implementation”[2]. In this sense robot 
skills connect the symbolic planning layer with the 
robot control programs. Figure 2 illustrates the two 
proposed multimodal integration approaches. Unimo-
dal skills are statically integrated into multimodal skills 
and dynamically composed into multimodal plans by 
symbolic planning. Uni- and multimodal robot skills 
then serve as the basic building blocks for the genera-
tion of plans that perform high-level tasks.  

 
Fig. 2  Static and dynamic multimodal integration 

1  State-of-the-Art in Multimodal 
Plan-Based Robot Control 

1.1  Open world robot planning 

Conformant, contigent, or probabilistic planning ap-
proaches can be used to generate plans in situations 
where insufficient information is available at planning 
time[3-5]. These approaches generate conditional plans 
– or policies – for all possible contingencies. Unfortu-
nately, these approaches are computationally hard, scale 

badly in dynamic unstructured domains, and are only 
applicable if it is possible to foresee all possible out-
comes of a knowledge acquisition process. Therefore, 
we agree with Brenner and Nebel[6] that these ap-
proaches can hardly be applied in real world robotics. 

The recently published continual planning system[6] 
deals – like our approach – with the challenge of gen-
erating a plan without initially having sufficient 
knowledge, but focuses on a different question. While 
Brenner and Nebel[6] described why and when agents 
should switch between planning and acting, ACogPlan 
is able to generate knowledge acquisition queries for 
indeterminable preconditions in order to find necessary 
information. 

The approach of Dornhege et al.[7] also integrates 
external components – so-called semantic attachments 
– into the planning process. However, semantic at-
tachments do not directly consider multimodal percep-
tion as a source of external information, but mainly 
aims at the integration of high-level general purpose 
symbolic planning and domain specific lower-level 
reasoning (e.g., path or motion planning). Furthermore, 
integration is not done autonomously (i.e., by reason-
ing on the need to acquire information from external 
sources), but predefined in the domain description. 

1.2  Multimodal integration in robotics 

Luo and Kay[1] classified the combination of different 
sensor modalities into multisensor integration, which is 
the synergistic use of information provided by multiple 
sensors to assist in the accomplishment of a task, and 
multisensor fusion, which refers to an actual combina-
tion of different sources of sensory information into 
one representational format. 

The integration of multiple sensing and acting mo-
dalities occurs in almost every robot action, because 
most of the actions are guided – or at least monitored – 
by sensors and thus at least two modalities are inte-
grated. Typical service robot manipulation tasks like 
opening a door[8] or pushing a wheel chair[9] usually 
involve even more modalities. For multimodal percep-
tion laser range data and camera images are often fused 
due to their complementary properties while being eas-
ily directed at a common workspace[10,11]. A technique 
to fuse visual and depth information acquired by a 
camera and laser range scanner is proposed by Scheibe 
and Scheel[12]. 
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2  Multimodal Robot Skills  

Mobile service robots are usually equipped with many 
different sensor systems. The integration of multiple 
sensors can result in more informative percepts of the 
external world. In this way multimodal integration can 
significantly improve the reliable perception of rele-
vant parts (e.g., type of objects, state of doors, etc.) of 
the environment. 

2.1  Multisensor fusion 

Sensor data may always contain errors and thus may 
lead to incorrect and incomplete internal representa-
tions of the external world. Several probabilistic ap-
proaches exist that are expressive enough to represent 
these uncertainties in a reasonable manner. Unfortu-
nately, probabilistic representations lead to an enor-
mous rise in computational complexity because prob-
ability values have to be assigned to all possible loca-
tions and configurations for all known objects. 

In order to avoid these computational problems we 
propose – as published in Weser et al.[13] – the practical 
approach to adopt a fuzzy representation of certainty 
about the existence and identity of objects and their 
defining features. An object/feature can be existent, 
doubtful or impossible. Objects are defined by sets of 
features. Features are defined as subsets of the sensory 
data stream that can be differentiated. The approach is 
extendible to new algorithms that may provide features 
that are not detectable yet. Some detectors provide 
features that overestimate occurrences of the requested 
object, others provide features underestimating them. 
Others, however, gain from previous assumptions (i.e., 
they confirm/dismiss object evidences derived from 
other features).  

Unimodal features are integrated to multimodal 
perceived objects using membership to fuzzy sets. The 
underlying fuzzy rules can be visualized in Fig. 3. The 
presented rules define how unimodal detectors are 
combined to multimodal percepts. If the integration  

 
Fig. 3  Fuzzy rules that describe how unimodal detec-
tors are combined to multimodal percepts 

results in the doubtful detection of an object, then it is 
tried to use additional modalities or other knowledge 
sources (e.g., human-robot interaction) in order to de-
termine the sufficiently exact state of the external 
world. The fuzzy multisensory fusion approach is de-
veloped for goal driven scenarios, where only objects 
of interests are perceived. Thus, it is not necessary to 
match detected features from the bottom up to corre-
sponding objects. 

The fuzzy multisensor fusion approach is used on 
our service robot platform TASER (see Fig. 1) to relia-
bly detect relevant parts of its natural office environ-
ment (e.g., the state of doors, detection of tables, etc.). 
See Weser et al.[13] for more details. 

2.2  Encapsulate multimodal robot skills 

Multimodal robot skills are described on a symbolic 
level in the form of planning actions – sometimes also 
called planning operators[14]. Planning actions are de-
fined by a precondition and an effect (i.e., a set of facts 
that are removed from the world model and a set of 
effects that will be added to the world model after the 
execution) and are the basic building blocks for sym-
bolic planning processes[4]. 

We define the availability of necessary sensing and 
acting modalities as part of the precondition of the 
planning action for each multimodal robot skill. This 
approach makes it possible to find plans even in the 
case of unavailable modalities via dynamically com-
posing robot actions that do not depend on unavailable 
modalities. If, for example, the main visual perception 
system is not available (e.g., due to malfunction or in-
sufficient lighting conditions) the planner tries to 
compose the remaining modalities to a plan that per-
forms the currently desired task. 

Figure 4 demonstrates how we encapsulate the mul-
timodal robot skill check_latch – which is able to de-
termine whether the door latch is in the notch – by a 
robot action.  

 
Fig. 4  Symbolic description of multimodal robot skill 
check_latch 
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3  Integrated Architecture 

The integrated planning and control architecture is 
sketched in Fig. 4. Facts, axioms, and taxonomic 
knowledge are stored in the robot’s memory system. 
State-of-the-art planning systems – like SHOP2[15] – 
usually store the planning methods and actions in 
separate domain files (i.e., the world is a priori parti-
tioned into fine-grained domains). In this manner the 
performance can be increased, because only relevant 
methods and actions have to be considered by the 
planning system. This approach is usually inflexible in 
the context of embodied service robots. Furthermore, it 
is impossible to partition an unstructured environment 
into fine-grained subdomains. Thus, we store all plan-
ning related information in the same memory system. 
Information that is known to be irrelevant for a given 
task can be temporally hidden from the planning sys-
tem in order to improve the performance by not con-
sidering irrelevant information.  

Actions – as already mentioned – describe primitive 
executable robot actions which are directly dependent 
on the available robot devices. In contrast, HTN me-
thods represent domain knowledge that defines how to 
decompose tasks into subtasks.  

The human-robot interaction (HRI) module features 
the instruction of tasks and the acquisition of knowl-
edge. A dedicated predicate-based language is cur-
rently used to communicate with the robot platform. 
The controller is responsible for the execution and 
monitoring of generated plans. If the controller detects 
that the existing plan has become invalid, it initializes 
the replanning process. 

 
Fig. 5  Overall system architecture 

4 High-Level Multimodal Integra-
tion via Symbolic Planning 

The sensing and planning modalities of robot platform 
constitutes its basic skills. All available modalities of 
our mobile manipulator TASER are symbolically de-
noted by corresponding planning actions. This ap-
proach enables the planning system to dynamically 
compose available modalities to reasonable multimo-
dal behavior. While the integration of different modali-
ties to multimodal robot skills (as described in Section 
2) is suited for low-level sensor fusion, the integration 
of unimodal skills by deliberative planning enables the 
flexible high-level integration of sensing and acting 
modalities. 

5  Multimodal Perception Planning 

As already mentioned above, generating plans for mo-
bile service robots that act in unstructured environ-
ments is difficult, because often not all necessary in-
formation is available at planning time. Our planning 
system ACogPlan is based on an open world model. 
Thus, in a given world model w a logical statement, st, 
is called provable if w entails that st is true, disprov-
able if w entails that st is false, or indeterminable oth-
erwise. ACogPlan is able to (1) reason about relevant 
unknown information, (2) generate queries about this 
information, (3) execute knowledge acquisition actions 
in order to submit these queries to external knowledge 
sources, and (4) reasonably integrate the responses into 
the planning process. We distinguish between ground 
queries and new instance queries. Let us assume that 
the task of the robot is to grasp a red cup which is lo-
cated in the lab and thus it tries to find a true ground 
instance of the statement: cup(X), red(X), and 
in_room(X, lab), where ‘X’ denotes an existentially 
quantified variable. Furthermore, let us assume that the 
robot only knows that cup1 is located in the lab. Then 
first the ground query red(cup1)? would be generated. 
If this query can not be determined to be true the query 
new instance(cup(X), [cup(cup1)], [red(X), in_room(X, 
lab)])? would be generated. New instance queries con-
sist of the unground literal (cup(X)), the known ground 
instance ([cup(cup1)]), and the context ([red(X), 
in_room(X, lab)]).  

Since perception is a major source of information 
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for mobile service robots we propose to exploit   
available sensing modalities in order to answer these 
abstract queries. Special HTN methods encapsulate 
domain knowledge that describes how to compose the 
basic acting and sensing capabilities for the purpose of 
answering the desired query. 

6  Results 

All the described multimodal integration approaches 
are implemented on our service robot platform TASER. 
During the experiments TASER executed many dif-
ferent pick-up and delivery tasks like “bring me a cup 
of coffee from the kitchen” in our office environment. 
The current state of the dynamic office environment is 
usually only partially known by TASER. Especially, 
dynamic facts (e.g., the state of doors or the location of 
moveable objects) are not stored in the robots’ long-    
term memory and have to be acquired on demand. 
TASER was able to reason about relevant unknown 
information (i.e., find out what additional information 
may help to solve a currently unsolvable planning 
problem) and acquire this information by reasonably 
composing multi- and unimodal perception skills. For 
example TASER autonomously detects unknown doors 
during a pick-up and delivery task, as already pub-
lished in Weser et al.[13] Figures 6-8 demonstrate how 
the multimodal integration of an omnidirectional cam-
era and a laser range finder are used to detect doors. 
Simple features in laser range scans and omnidirectional 
images are used to estimate door candidates. The de-
tection method in laser range scans searches for line 
segments that show a sufficiently long gap that is not 
caused by occlusion. In omnidirectional images, pairs 
of sufficiently long horizontal edges are considered as 
potential door candidates. As shown in Figs. 6 and 7 
the separate results of each feature detector are not 
reliable. The overall result of a fuzzy multimodal com-
bination, however, renders higher elaborated methods 
unnecessary. Figure 8 shows the combined result using 
fuzzy rules. The combined multimodal result shows 
only doors belonging to assured.  

We demonstrated how service robots can benefit 
from multimodal integration processes on different 
abstraction levels. The fuzzy sensor fusion approach 
enabled us to compose sensing and acting modalities to 
multimodal robot skills without the need to use com-
putational hard probabilistic approaches. Additionally,  

 
Fig. 6  Feature detector using omnidirectional image 

 
Fig. 7  Feature detector using laser range scan, the 
results are transformed to image coordinates for better 
visualization. 

 
Fig. 8  Integrated multimodal result 

we defined each single modality as a basic robot skill. 
In this way modalities can be dynamically integrated 
by symbolic planning techniques to reasonable robot 
behavior. The plan-based robot control paradigm is the 
most promising approach to endowing robots with 
autonomy and intelligence. Unfortunately, reasoning 
about external information and the acquisition of rele-
vant knowledge has not been sufficiently considered in 
existing planning approaches and is seen as an impor-
tant direction of further growth[16]. Our open world 
planning system ACogPlan takes a step in this direc-
tion. Abstract queries about relevant unknown infor-
mation are generated and then – if possible – available 
sensing modalities are composed into multimodal per-
ception skills that are able to answer these queries.  

Directions of future work include the integration of 
incremental natural language processing and the world 
wide web as additional knowledge sources.  
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