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Zusammenfassung

Innerhalb der letzten Jahre wurden viele Beispiele für autonome Robotersysteme demonst-
riert. Einige dieser Systeme profitieren stark davon, dass für sie eine Karte der Umgebung
verfügbar ist. Es existieren allerdings auch Anwendungen, für die eine vorherige Er-
fassung einer Karte nicht möglich ist. In derartigen Situationen muss das autonome
System selbständig eine Karte generieren. Diesbezüglich sind viele Beispiele für Kartogra-
phierungssysteme, die zweidimensionale Karten herstellen, bekannt, wobei dreidimensionale
Karten der Umgebung mächtiger wären und als Grundlage für weitere Anwendungen
genutzt werden könnten. Systeme, die autonom die Umgebung erkunden und eine 3D
Karte generieren, sind hingegen rar.

Das Ziel dieser Diplomarbeit ist die Entwicklung eines Robotersystems, das in der
Lage ist, eine Innenraumumgebung autonom zu erkunden und zu kartographieren. Hierzu
wenden wir einen Algorithmus zur Simultanen Lokalisierung und Kartographierung (SLAM)
an, um eine 3D Karte zu generieren, die zur Planung der Navigation des Roboters genutzt
wird, um die Umgebung weiter zu erkunden. Wir realisieren dies als verteiltes System und
implementieren weiterhin Programme zur Simulation des Roboters und zur Visualisierung
der erfassten Karte. Zum Abschluss evaluieren wir das System als Ganzes und schlagen
Ideen für Weiterentwicklungen in diesem Zusammenhang vor.
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Abstract

Within recent years many examples for autonomous robot systems were demonstrated.
Some of these systems strongly benefit from the availability of a map of their environment,
although there exist applications in which a prior acquisition of a map is not feasible. In
such situations the autonomous system has to build up the map on its own. In this regard,
many examples for such map building systems exist for two dimensional maps, although
three dimensional maps of the environment are more powerful and can be used as a basis
for further applications. Systems that autonomously explore the environment and build
up a 3D map are rare.

The objective of this diploma thesis is the development of a robot system capable
of autonomously exploring and mapping an indoor environment. For this we apply a
simultaneous localization and mapping (SLAM) algorithm to build up a 3D map and use
it to plan the navigation of the robot to further explore the environment. We realize
this as a distributed system and additionally implement programs to simulate the robot
and visualize the acquired map. Finally, we critically evaluate the system as a whole and
propose ideas for further developments in this context.
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Chapter 1

Introduction

Within the last years progress in robotics, computer science, performance improvements
of computer hardware as a consequence of Moore’s law [1], and cheaper and cheaper
sensors bring autonomous robotics for several applications within the range of realization.
Meanwhile, several excellent examples for autonomous systems exist which are very
promising with respect to anticipated future developments. One popular example for
such systems are autonomous vehicles as they were demonstrated in the DARPA grand
challenge events [2].

In this diploma thesis we focus on another application of autonomous robotics which is,
however, equally promising. The objective of this work is the autonomous 3D exploration
of indoor environments. This means that we develop a system that lets a robot move
through an indoor environment, take 3D scans of its surroundings, and finally build a 3D
map of the environment. We build up an integrated system that generates a map in each
exploration step and uses this map to determine the future exploration behavior of the
robot. Of course, many applications for such a system can be imagined. First of all, the
system autonomously generates a map of an indoor environment. Such a map is useful for
many purposes, beginning with the planning of the interior accessories of a building and
ending with the planning of the jobs for a household robot. Often, it is not feasible to
acquire such a map in the run-up of some task that needs it. This can be due to technical
reasons or due to the costs of acquiring such a map. We develop a system that offers a
cheap way to automatically generate a 3D map of an indoor environment.

The proposed system consists of several components where each component is an
own program within a distributed system architecture. The connections between these
programs are visualized in figure 1.1. The central part of the system is the control program
RobotController. This program controls the communication between the other components.
It gathers data from some of the components and sends the data together with commands
to other components. The second main component is the connection to the robot which
is interchangeable with a simulation program for the robot in an indoor environment.
The robot controller sends commands to these programs to trigger robot movements
or measurements by the robot’s sensors. In exchange the robot connector program or
the simulation send the scanner data or the robot’s odometry data back to the central
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10 CHAPTER 1. INTRODUCTION

Figure 1.1: Overview of the exploration System. The system incorporates several compo-
nents that form a distributed system architecture.

control program. The next step in the exploration process is the construction of a 3D
map of the environment. For this, the control program sends the data from the robot to
another program that applies a so-called Simultaneous Localization and Mapping (SLAM)
algorithm on it. Such an algorithm uses the odometry and sensor data to accurately
determine the robot pose and build up a map. The program sends this new information
back to the central control program. After this, the following step in the exploration
process is the determination of the next scan location for the robot. For this, the robot’s
pose and the map are sent to the exploration program Explorer. On the basis of this data
the exploration program decides, where the robot should take the next scan. It calculates
a route to this position and sends it back to the central control program. Now, the control
program has enough information to generate a sequence of commands that moves the
robot to the next location. These commands are sent to to robot connection program or
to the simulation and this closes the exploration cycle. Finally, we also develop a program
SurfaceProcessor that visualizes the generated map.

In this thesis we describe the main components of the exploration system, although we
start with a general introduction to the SLAM problem in chapter 2. Here, we discuss
several approaches to solve this problem and select one of these approaches for the SLAM
component of our system. This is an approach on the basis of the Iterative Closest
Point (ICP) algorithm. We continue in chapter 3 by describing the physical component
of the system and the RobotConnector program. Due to the fact that we need very
high quality data as a basis for the exploration algorithm, one important aspect of the
RobotConnector program is an outlier filtering for the scan data. Chapter 4 then discusses
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the details of the ICP SLAM algorithm and its implementation. The most important
component of the system, the exploration program, is then described in chapter 5. To
develop this component we put together several low-level algorithms to form a high-level
approach to the exploration problem. The basis for the development of the simulation
program RobotSim is then given in chapter 6. The discussion of the simulation program
mainly covers an overview of the applied movement and sensor models. Outside of the
exploration system a visualization program for the map is developed in chapter 7. This
program visualizes the map in two ways. First of all the map is simply visualized by
a representation of the sampled scan points. The other visualization technique is more
sophisticated. Here, we reconstruct the surface of the environment by the Ball Pivoting
algorithm. The chapter mainly discusses this surface reconstruction algorithm. After
presenting the visualization, we show and discuss results for the exploration of a room in
chapter 8. Finally, we summarize the work and give an outlook on possible consecutive
developments in chapter 9.

Throughout the work we assume that the reader has a background in computer science
and mathematics. Therefore, we make use of common technical terms from these disciplines
without explicitly introducing them. Detailed discussions on such terms can be found in
common text books.





Chapter 2

Simultaneous Localization and
Mapping (SLAM)

For an autonomous mobile robot that has to interact with its environment it is advantageous
to know its pose with respect to the surroundings. This implies that it has to have a map
of the environment. In general, there are several ways a robot can build up knowledge
about its pose. We present three different scenarios in which we assume that the robot has
sensors to scan the local environment. Laser range finders, sonar sensors, radar sensors or
cameras are instances of such sensors. We also assume that the robot has internal sensors
to measure its odometry.

The first scenario is a pure mapping scenario in which the robot has explicit sensors to
directly estimate its location and the direction in which it is oriented. This can be a GPS
sensor for the estimation of the location and a compass for the orientation measurement.
There is no previously recorded map available but the robot can use its sensors to estimate
the local environment, combine this information with pose measurements and build up a
map by collecting and fusing data from different locations.

In the second scenario the robot has to do pure localization. It has no sensors to
directly estimate its pose but there is a previously acquired map available. The robot can
then use its local environment scanning sensors, compare the measured data with the map
and thereby estimate its pose.

Lastly, there is the Simultaneous Localization and Mapping (SLAM) scenario in which
the robot neither has a previously acquired map nor sensors to directly measure its pose.
In this scenario the robot scans the environment, moves to another location, scans the
environment again and fuses the data with the first scan. To do this the robot uses the
odometry sensors to get a first guess of its pose. Unfortunately no sensor measurement
has unlimited accuracy. In the case of SLAM the errors of all odometry measurements
sum up and after a few steps a robot pose that is purely acquired with the odometry data
is unusable. The robot therefore uses the environment scans to correct the odometry pose
guesses by matching the scans to each other. In this scenario the map is also represented
by the fused environment scans.

There are many applications for autonomous mobile robots in each of the three scenarios.
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However, we focus on SLAM. Examples for this scenario are indoor scenarios in which
it is not feasible to previously acquire a map. Underwater scenarios or robots on other
planets are also instances of the SLAM class of scenarios.

In this chapter a general overview of the SLAM problem is presented that follows the
detailed discussion by Thrun et al. [3]. We give a definition of the problem in section 2.1
and a presentation of the challenges for SLAM algorithms in section 2.2. An overview of
algorithms that approach the SLAM problem is then given in sections 2.3 to 2.6. Finally
we choose one of these algorithms for the exploration system in section 2.7 and conclude
the chapter in 2.8.

2.1 The SLAM problem

When doing Simultaneous Localization and Mapping the central problem is the inaccuracy
of scanner data. There is a time-independent inaccuracy in the local environment scans
but the inaccuracy of the odometry measurements is more crucial. The limited accuracy of
these measurements leads to a growing error in pose estimations depending on the actions
the robot has done up to some point in time.

The SLAM problem can easily be expressed in a probability distribution

p(xt0:t,m|zt0:t, ut0:t) (2.1)

where xt0:t are the poses from time t0 to time t, m is the map and zt0:t and ut0:t are the
actions (odometry measurements) and environment measurements the robot has made
between t0 and t. In this expression we assume a fixed and known pose for the robot at t0.
Algorithms that try to handle the SLAM problem now have a well defined task. They
have to find the poses xt0:t and the map m that maximize expression 2.1.

A formulation of the SLAM problem that is based on expression 2.1 is known as the
Full SLAM problem. Another probability distribution

p(xt,m|zt0:t, ut0:t) (2.2)

is used to formulate the Online SLAM problem. In the Online SLAM problem, measure-
ments in the future (t > t1) do not affect the probability for a pose at time t1.

The two SLAM problems have different applications. If the goal is to get an accurate
map after the robot has followed some path, the Full SLAM problem should be solved. On
the other hand, if the map data has to be used while the robot is in action, it is reasonable
to only solve the Online SLAM problem as an approximation to the Full SLAM problem.
Of course, Full SLAM is computationally more demanding than Online SLAM.

In this diploma thesis we use the acquired map data in action as a basis for an
exploration algorithm. Therefore we approach the Online SLAM problem.

Mathematically, it is easy to calculate the Online SLAM distribution 2.2. This is done
by integrating out past poses from the Full SLAM problem. An expression for this is given
by

p(xt,m|zt0:t, ut0:t) =

∫
· · ·
∫
p(xt0:t,m|zt0:t, ut0:t)dxt0 . . . dxt (2.3)
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where we assume discrete time steps from t0 to t. To get a practical approach for the
Online SLAM problem we further reformulate equation 2.3 and get

p(xt,m|zt0:t, ut0:t) = p(zt|xt,m) ·
∫
p(xt|xt−1, ut)p(xt−1,m|zt0:t−1, ut0:t−1)dxt−1. (2.4)

In this stepwise approach we calculate the posterior for xt on the basis of the distribution
for xt−1. This is computationally a tremendous improvement with respect to equation 2.3.
In expression 2.4 we only have one integration at each discrete time step in comparison to
a number of integrations that grows linearly with the number of past time steps. Assuming
constant time for each integration, expression 2.4 may in principle lead to algorithms that
also calculate the position at each step in constant time.

Although equation 2.4 is a real step forward, it is not yet the final step in making the
SLAM problem computationally solvable. So far, we did not yet say anything about the
representation of the different quantities in it. This is a problem for which every SLAM
algorithm has its own solution and we address it when we discuss each algorithm in detail
in later sections of this chapter.

2.2 Challenges for SLAM algorithms

In order to further specify the problem to solve, we mention some of the possible challenges
in localization and mapping and determine which challenges we have to deal with.

2.2.1 The localization problem

In the pure localization scenario there are three different types of problems which we may
have to deal with:

• Position tracking. In this scenario the initial robot pose is known and the robot
has to keep track of its location and orientation at each time step. The odometry
data connects each step with the next one.

• Global localization. In global localization a map is given, but the initial pose
is unknown. This leads to pose posteriors that are not unimodal since there are
in general several poses that fit to the initial environment measurements. In this
scenario different steps are also connected by the robot actions which manifest in
odometry data.

• The kidnapped robot problem. The kidnapped robot problem finally breaks
the odometry connections between each step. In this scenario the robot has to
incorporate the possibility that it is moved from on pose to another without noticing
it by its odometry measurements.

In SLAM we clearly have to approach the Position tracking problem. The initial pose in
SLAM is the origin of the coordinate system that represents all possible locations and
orientations.
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2.2.2 The environment

We classify the environment with respect to two aspects. The first aspect is the static or
dynamic behavior of the environment:

• Static environment. In static environments nothing besides the robot moves. This
means that the environment at time t1 is equal to the environment at any other
point in time.

• Dynamic environment. Dynamic environments change over time. This could be
due to moving people or other aspects of the surroundings. Dynamic environments
make the mapping more difficult. Since the map is acquired step by step it has to
be taken into account that scans at some point in time show dynamic aspects of the
environment which are not present in other scans.

The SLAM problem can be solved for both, static and dynamic environments. In the
context of this diploma thesis we deal with static environments.

The second aspect considers the flatness of the environment.

• Flat environment. In flat environments the robot has three degrees of freedom,
such that its pose can be represented by a vector

x =

x1

x2

θ

 (2.5)

where x1 and x2 represent the location and θ the orientation.

• Uneven environment. In uneven environments the robot has six degrees of
freedom. In such scenarios we need three coordinates for the location and another
three coordinates for the orientation of the robot. Therefore, the SLAM problem
becomes more complex, although its fundamental aspects are not changed.

In this diploma thesis we consider indoor environments which are flat. This is mostly
predetermined by the laser range finder which is used to scan the surroundings. This laser
scanner only has a very limited range and is therefore not adequate for the use in uneven
outdoor environments.

2.3 SLAM with an Extended Kalman Filter

To handle equation 2.4 one method is to use an Extended Kalman Filter (EKF). In this
section we show how this can be done by first describing the Kalman and Extended Kalman
Filters and then the application of the EKF to the SLAM problem. This yields to the
EKF SLAM algorithm.



2.3. SLAM WITH AN EXTENDED KALMAN FILTER 17

A Kalman filter is a special Bayes Filter that makes the so called Gaussian Noise
Assumption for the quantities taken under observation. This means that the belief for
each quantity is represented by a Gaussian. Now assume that some process transforms
a quantity, e.g. if a robot moves, its pose is transformed. The arising question is how
the corresponding belief is transformed. The Kalman filter is only applicable to processes
that linearly transform the quantities. In this case, a Gaussian belief is transformed into
another Gaussian belief.

To be more precise, if xt−1 is the state at time t− 1, and the action ut transforms this
state like

xt = Atxt−1 +Btut + εt (2.6)

where At and Bt are matrices and εt is a Gaussian random vector with zero mean and
covariance Rt, the probability distribution for xt is given by

p(xt|ut, xt−1) = det(2πRt)
1/2 exp

{
−1

2
(xt − Atxt−1 −Btut)

TR−1
t (xt − Atxt−1 −Btut)

}
.

(2.7)
Unfortunately, the transformations due to robot motion are not linear. Instead, the

robot pose is transformed by

xt = g(ut, xt−1) + εt (2.8)

where g is a nonlinear function. Therefore, the Kalman Filter approach for calculating
and representing robot poses as Gaussians has to be modified. This is done by linearizing
the transformations with the first two terms of a Taylor expansion of g at the mean of the
original Gaussian for xt−1.

So far, we have only sketched the idea for the Kalman Filter algorithm and its extension
to nonlinear transformations. The final algorithm also incorporates the measurements zt

at time t and its posterior p(zt|xt). Of course, the original Kalman Filter also makes the
linearity assumption

zt = Ctxt + δt (2.9)

where Ct is a matrix and δt is a Gaussian random vector. In the nonlinear extension,
the dependence between zt and xt is given by

zt = h(xt) + δt (2.10)

where h is a nonlinear function that is linearized by using a Taylor expansion and δt
has the same meaning as in equation 2.9. Putting all of this together, we obtain the final
EKF approach as it is given in algorithm 1. The algorithm’s input is the state at t− 1,
represented by the mean µt−1 and covariance Σt−1 of the Gaussian belief of xt−1. The
action ut and the measurements zt are also given to the algorithm as input. The output of
the algorithm is the belief of xt in terms of its mean µt and covariance Σt.
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Algorithm 1 Extended Kalman Filter

1: procedure ExtendedKalmanFilter(µt−1,Σt−t,ut,zt)
2: µ̂t = g(ut, µt−1)
3: Σ̂t = GtΣt−tG

T
t +Rt

4: Kt = Σ̂tH
T
t (HtΣ̂tH

T
t +Qt)

−1

5: µt = µ̂t +Kt(zt − h(µ̂t))
6: Σt = (I −KtHt)Σ̂t

7: return µt , Σt

8: end procedure

In detail, the EKF algorithm first calculates the predicted belief p(xt|xt−1, ut) and
represents it by its mean µ̂t and covariance Σ̂t. Due to the linearization of g the Jacobian
Gt(µt−1, ut) of this transformation function is needed in this calculation. The random
vector εt is incorporated by its covariance Rt. Consecutively, the so called Kalman gain
Kt is computed in terms of the Jacobian Ht of h and the covariance Qt of δt. This
quantity represents the effect of the measurements zt on the belief for xt. Finally, the
belief p(xt|xt−1, ut, zt) is calculated and returned by its mean µt and covariance Σt.

Assuming that the state vector x has a rather small dimension n, the computationally
most demanding step in this algorithm is the matrix inversion for the calculation of the
Kalman gain. The matrix to be inverted has a size of k×k, where k is the dimension of the
measurement vector zt. Since todays best matrix inversion algorithms have a complexity
of O(k2.4) [3], it is worthwhile to reduce the dimension of zt by applying feature extraction
methods on the raw measurements and use the measured data of these features for the
construction of zt. All in all the computational complexity of this algorithm is O(k2.4 +n2).

After illustrating the Extended Kalman Filter algorithm, we take the next step and
apply this method to the SLAM problem. This can be done in a rather straightforward
way. The main point to realize here is that the state at time t does not only incorporate
the robot pose xt, but also a representation of the map m. In the EKF SLAM algorithm
the map is represented by a set of point landmarks and therefore the state vector has to
be extended with this information. It is then given by

yt =

(
xt

m

)
. (2.11)

Of course, this new definition of the state vector increases its dimension enormously.
Hence, to keep the EKF SLAM algorithm fast, it is required to use as few landmarks
as possible to represent the map. To implement the EKF SLAM algorithm it is also
required to handle unknown correspondences between landmarks in the map and measured
landmarks. However, a detailed discussion of all the challenges of a realization of this
algorithm is beyond the scope of the SLAM overview in this work.
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2.4 SLAM with a Sparse Extended Information Fil-

ter

In this section we sketch the Information Filter and the Extended Information Filter (EIF).
Just like the Extended Kalman Filter the EIF linearizes nonlinear transformations. After
presenting the EIF algorithm, we proceed and illustrate the application of this approach
to the SLAM problem. This yields the Sparse Extended Information Filter (SEIF) SLAM
approach.

In principle, an Information Filter makes the same approach as a Kalman Filter.
This Bayes Filter also makes the Gaussian Noise Assumption. The difference between
the two Filters is the representation of the different quantities, which leads to different
computational complexities. Although the difference is not huge, it is interesting to
compare the two approaches to see their strengths and weaknesses with respect to each
other.

The central quantities used in the Information Filter to represent Gaussians are the
information matrix Ω = Σ−1 and the information vector ξ = Σ−1µ. A representation
by these quantities is called a canonical parameterization in contrast to the moments
parameterization used by the Kalman Filter. It is easy to see that both representations
are equivalent, since they can be expressed in terms of the other. Therefore, it is also easy
to formulate a Bayes Filter in terms of the new quantities Ω and ξ. We do this once again
for the extended version and keep the notations of section 2.3. The result is algorithm 2.

Algorithm 2 Extended Information Filter

1: procedure ExtendedKalmanFilter(ξt−1,Ωt−t,ut,zt)
2: Σt−1 = Ω−1

t−1

3: µt−1 = Σt−1ξt−1

4: Ω̂t = (GtΣt−1G
T
t +Rt)

−1

5: ξ̂t = Ω̂tg(ut, µt−1)
6: µ̂t = g(ut, µt−1)
7: Ωt = Ω̂t +HT

t Q
−1
t Ht

8: ξt = ξ̂tH
T
t Q
−1
t [zt − h(µ̂t) +Htµ̂t]

9: return ξt , Ωt

10: end procedure

Assuming that the Gaussian random vector δt from equations 2.9 and 2.10 is represented
by its information matrix Q−1

t , the only matrices that are inverted by this algorithm have
a dimension of n× n. This yields a computational complexity of O(n2.4 + k2). Comparing
this with the computational complexity of the Kalman Filter, shows that both have
advantages over the other algorithm depending on the ratio between n and k.

Of course, the EIF can be applied to the SLAM problem just like the EKF by using
the state vector 2.11. Examining the information matrix then shows that it naturally is
nearly sparse. There are some elements in it that have far larger values than most of the
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other elements. This fact can be used to greatly enhance the efficiency of this approach.
In an approximation the small elements of the information matrix can be set to zero, such
that the matrix inversions can be done more efficiently. This leads to the Sparse Extended
Information Filter (SEIF) SLAM approach. If done in a smart way, the sparsification
of the information matrix yields a SLAM algorithm that needs constant time for each
iteration. However, the sparsification approximation leads to inaccurate results.

2.5 The FastSLAM approach

The EKF SLAM and SEIF SLAM algorithms both make use of the Gaussian Noise
Assumption and approximate the robot movement by linear transformations. The so called
FastSLAM [4] approach does not use these approximations. Instead, it uses a completely
different way to describe the posterior for the robot pose and the transitions. While
the preceding algorithms use Kalman and Information Filters to describe the movement
and the poses of the robot, FastSLAM uses a so called Particle Filter. This is also a
realization of a Bayes Filter. However, instead of using a Gaussian to describe probability
distributions, the Particle Filter describes these Distributions by a set of representative
samples. Of course, this is a description which is compatible with every error and odometry
model for the robot movement. Nonlinear movement of the robot results in a nonlinear
transformation of the samples and it is also no problem to apply non-Gaussian error
models to the robot movement.

Algorithm 3 Particle Filter

1: procedure ParticleFilter(χt−1, ut, zt)
2: χ̂t = χt = ∅
3: for m = 1 to M do
4: sample xm

t ∼ p(xt|ut, x
m
t−1)

5: wm
t = p(zt|xm

t )
6: χ̂t = χ̂t + 〈xm

t , w
m
t 〉

7: end for
8: for m = 1 to M do
9: draw pair i from χ̂t with probability ∝ wi

t

10: add xi
t to χt

11: end for
12: return χt

13: end procedure

Algorithm 3 shows the Particle Filter in a pseudo code notation. In this algorithm χt is
the set of samples at time t while the action ut and measurement zt have the same meaning
as in the other algorithms. M is the number of samples (or particles) used. The particle
Filter consists of two steps. In the first step the old poses are transformed according to
p(xt|ut, x

m
t−1) and weights wm

t = p(zt|xm
t ) are associated with each of the new poses. In
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the second step we resample the posterior of xt. This is a critical step since we get rid of
bad samples.

The particles in the FastSLAM approach do not only contain the robot pose. They
also contain a representation of the map so that p(zt|xm

t ) can be calculated. This is a very
different approach to the preceding algorithms where we only had a single representation
of the map. In the FastSLAM algorithm every particle has its own map, which can be
represented in different ways. One common approach is to represent the map as a set of
features and to use Kalman Filters for each of these features. Another approach is the
representation by an Occupancy Grid Map. This map representation is not feature based,
instead it subdivides the space into a regular grid and saves the probability of something
being in a grid cell for each cell. Although this representation takes a lot of space, it has
some advantages. The most compelling one is the fact that so called Negative Information
is retained. This means that information from the robot’s sensors which indicate that
some area in the space is not occupied by anything is also integrated into the map.

From a performance standpoint the FastSLAM algorithm offers very desirable options.
Its runtime is proportional to the number of particles and the algorithm can easily be
parallelized over the particles. This means that accuracy can be traded against runtime
and it is even possible to implement FastSLAM as an anytime algorithm. If FastSLAM
is implemented including the Occupancy Grid Map option, accuracy can also be traded
against runtime by varying the resolution of the real-space grid. All in all there are many
options to adapt the algorithm to particular requirements.

2.6 SLAM with the Iterative Closest Point algorithm

A SLAM solution can also be realized by applying the Iterative Closest Point (ICP)
algorithm [5]. This approach does not use an error model for the movement to keep track
of the robot motion.

In ICP SLAM the map m is represented by a sequence of robot poses with associated
point clouds of measured points on surfaces within the environment. For every step of
the robot, the algorithm makes an initial estimate for its pose xt. The algorithm then
compares the current measurements zt with the map and minimizes

E (R, t) =
Nm∑

i

Nd∑
j

wi,j ‖mi −Rdj + t‖2 (2.12)

with respect to to robot pose xt. In this expression R is a rotation matrix and t is a
translation vector. Both, R and t, are applied to the robot pose xt or, as a consequence,
directly to the measurements zt. The current measurements are represented as a point cloud
with points dj and the map is represented as a point cloud with points mi. wi,j is a weight
function that indicates correspondence between points in {mi} and {dj}. Equation 2.12 is
an expression for the sum of the quadratic distances between corresponding points in the
two sets. ICP SLAM iteratively minimizes equation 2.12 and thereby corrects the initial
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estimate for xt. It terminates when some convergence criteria are met.
The advantage of this approach is that no complicated error model for the robot

movement has to be developed. A feature extraction on the measurements is also not
required.

2.7 Choosing a SLAM algorithm

In this work we develop an integrated exploration system that uses data from a 3D laser
range finder. The system uses a SLAM algorithm to keep track of the robot motion and
build up a consistent map that is used as a basis for the exploration.

Although there are works like [6] that use feature extraction techniques in a similar
context, we notice that features like lines, corners and so on depend a lot on the environment
the robot is situated in. We want to keep our approach as general as possible, such that
feature extraction is not an option. The EFK SLAM algorithm as well as SEIF SLAM
require feature extraction. Therefore, we will not choose one of these two approaches for
the SLAM solution of the exploration system.

The remaining options are the FastSLAM algorithm in combination with Occupancy
Grid Mapping and the ICP SLAM algorithm. Both algorithms have advantages. For our
prototype system we choose the ICP SLAM option since it is already proven to work for
3D SLAM, even with 6 degrees of freedom [5]. Another advantage of this approach is the
fact that it does not rely on a sophisticated error model for the robot movement and the
scanner measurements. A realization of an exploration system on the basis of the other
option would also be interesting, but the feasibility of such a solution would have to be
proven first. This would shift the focus of this work into another direction, although future
derived works are encouraged to explore this option.

2.8 Summary

In this chapter we gave an overview over the Simultaneous Localization and Mapping
problem and its solutions. The problem was defined in section 2.1 and we gave an overview
of the challenges associated with this problem in section 2.2.

Next, we sketched some general approaches to the Online SLAM problem in sections 2.3
to 2.6. We identified advantages and disadvantages of each algorithm. The Full SLAM
problem was not covered since it is difficult to apply it to the objective we address
in this work. Note that we excluded most of the implementation details and several
other important aspects that have to be discussed if one of these algorithms has to be
implemented. This applies to the problem of finding corresponding features as well as to
the problem of closing loops in cyclic environments. A detailed discussion of these aspects
is beyond the scope of this work.

Finally, we chose the ICP SLAM algorithm in 2.7 as basis for the exploration system
which is developed in this work. An explanation for this choice was also given.



Chapter 3

The Robot Platform

The physical entity of the exploration system designed in this work is a Pioneer 2 DX robot
by Mobile Robots Inc. [7]. A rotation platform for a 2D laser range finder is constructed
and mounted on top of the Pioneer in a preceding work [8]. By registration of scans from
the 2D laser range finder into a three dimensional, local coordinate system, the rotation
platform effectively creates a 3D laser range finder that provides the measurements used
to map the environment.

In this chapter we discuss the physical properties of the robot platform and the laser
range finder. The low-level control of these two components is also described in this topic,
as well as the low-level preprocessing of the acquired data.

Section 3.1 describes the Pioneer robot, while section 3.2 introduces the range finder
rotation platform and section 3.3 shows the control for both components. We end the
chapter by describing the preprocessing of the scanner data in section 3.4 and give a
summary in 3.5.

3.1 The Pioneer 2 DX robot

The physical basis for the exploration system is the Pioneer 2 DX mobile robot shown in
figure 3.1. The robot’s locomotion is based on two independently driven wheels in the
front and a single unpowered castor wheel in the rear. This is a typical construction for
an indoor robot, although [9] also shows other locomotion principles in this context that
have differing properties.

The construction of the robot incorporates several sources for inaccurate movement.
For example, the castor wheel has some disadvantages if certain movements have to be
performed. If the robot rotates and then moves forward, the castor wheel is misaligned
in the beginning of the forward movement. This leads to a small swivel and a slightly
wrong direction of the forward movement. There are also other systematic errors that
make the locomotion of the robot inaccurate. First of all, slightly differing wheel radii
lead to a curvature if the robot should straightly move forward. The robot also makes a
small rotation at the end of a forward movement. On top of these internal error sources,

23



24 CHAPTER 3. THE ROBOT PLATFORM

Figure 3.1: The Pioneer 2 DX robot. The original robot is slightly modified by extending
the platform on its top. The picture also shows the sonar sensors mounted on the robot’s
front. (Image from [8])

the movement depends a lot on the structure of the ground.

Practical experiences with the robot also revealed that the odometry information
obtained by internal sensors is also inaccurate. The error sources in the locomotion
actuators, the interaction with the floor, and the errors in the odometry sensors lead to
difficulties when a good error model for the robot movement is to be designed. However,
our choice to use the ICP SLAM algorithm implies that we don’t need such a model.

Lastly, we note that one of the modifications done to the robot is the integration of a
second accumulator. This enables the robot to be under autonomous operation for about
24 hours. Therefore, the robot is able to do long-running explorations of the environment.

3.2 A rotation platform for a 2D laser range finder

The rotation platform for the laser range finder and its control was constructed and built
in the work of Peter Breuer [8]. The goal of developing this platform was to get an effective
3D laser range finder for the cost of a 2D range finder. In this section we give an overview
of the construction of the rotation platform.

The platform mainly consists of the laser range finder itself, a stepper motor, the
mechanical build-up and a microcontroller board which is used to control stepper motor
and range finder. Figure 3.2 illustrates the construction in detail.

The central component of the rotation platform is the Hokuyo URG-04LX 2D laser
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Figure 3.2: Illustration of the rotation platform. The components of the rotation platform
are 1 the laser range finder, 3 a needle bearing, 5 a slip ring, 6 a coupling, 7 the stepper
motor, and 8 the control for the stepper motor. Component 10 is the plate on top of
the robot and components 2, 4, and 9 are aluminium parts that hold the construction.
(Image from [8])
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Figure 3.3: The Hokuyo URG-04LX 2D laser range finder. (Image from [8])

range finder [10], as shown in figure 3.3. The range finder scans the distances in an angle
of 240 degrees, where the resolution is about 0.35 degrees. For such a scan step the range
finder needs 66.7 ms and another 33.3 ms to complete the rotation to be in the starting
position for the next scan. Without any break the range finder performs one scan after
the other.

The maximal scan range of the URG-04LX is 5600 mm. Therefore, it is clear that
this sensor is only applicable to indoor environments. The accuracy of the laser range
finder is stated to be 10 mm if the scan point is nearer than 1 m and 1% of the measured
distance if the point is further away. However, there are additional systematic errors in
the measured distance. Some surfaces disturb the measurements. On the one hand highly
reflective surfaces lead to measured distances that are smaller than the real distance, on
the other hand highly absorbing distances do not reflect enough of the laser beam to make
valid measurements possible. Additionally to these surface effects, there are absolutely
random measurements.

There are different options to construct a mechanism that effectively transforms a 2D
range finder into the 3D counterpart by registering the 2D scans into a 3D coordinate
system. Breuer constructed a mechanism with a rotation axis in up-down orientation as it
is shown in figure 3.4. The resulting angular scan point density is also shown in the figure.
The construction has two main advantages over other possible realizations of such a 3D
sensor, where the first advantage is regarded to the points missing due to the 2D range
finder’s limited scan angle. There are only points missing below the construction. Since
the robot is located at that position, this is no valuable information about the environment
at all. The second advantage is the angle needed to scan the whole space around the robot.
The construction only needs a 180◦ rotation to do this.

Due to the limited scan speed of the URG-04LX the whole construction also has
performance limitations. Typically, the 180◦ rotation needed to scan the whole space
is subdivided into 400, 200, 100, or 50 scan planes. Since the URG-04LX needs 100 ms
for a single scan plane, capturing the whole space takes up to 40 s. There is also some
preprocessing like error filtering taking place on the microcontroller board which consumes
a comparable amount of time. Lastly, the transmission of the data from the microcontroller
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Figure 3.4: Rotation axis and resulting angular scan point density. (Image from [8])

board to a notebook also consumes a lot of time.

The performance considerations of this basic capturing mechanism yields a limited
type of operation for the exploration of the environment. The capturing speed does not
allow a continuous movement of the robot. Therefore, we will use a so-called scan-stop
strategy in this context. This is a strategy in which the robot scans the environment while
it is standing on a certain point. It then decides where to move from there, then moves
there, and finally makes another scan at the new position. This is repeated until the
exploration is finished.

3.3 Robot and rotation platform control

In this section we do not describe the control of the rotation platform on the microcontroller
board. Instead, we put the focus on the program RobotConnector that connects to the
robot and to the control program for the rotation platform.

The connection to the robot is provided by the Player/Stage interface [11]. This
interface defines methods to set the forward movement speed and the angular velocity of
the robot. Methods to read out the data from the odometry sensors are also provided, as
well as methods to read out the data from the sonar sensors. Since we follow a scan-stop
strategy, we only need to define very basic movement methods. These are a method to
rotate the robot by a given angle and a method to move the robot forward by a given
distance.

We realize these methods by setting the rotation speed or the forward movement speed
to a fixed value. Next we keep track of the data from the odometry sensors and as soon as
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the odometry indicates that the angle or the distance is reached, we set the corresponding
velocity to zero. In practice it turns out that the robot reacts rather slowly and that
the data from the odometry sensors is inaccurate and sometimes erroneous. This makes
the control of the robot, in the way we do it, difficult. However, the RobotConnector
program is realized in a way that overcomes most of these problems. After moving the
robot, the program acquires the odometry data from the robot, compares it with the
starting position, and calculates and returns the traveled distance or the rotation angle.

The connection to the rotation platform is realized in a different way. The notebook is
connected to the microcontroller board by a serial connection via a USB to serial converter.
We open the communication channel to the board over a given port. The program running
on the microcontroller board offers us the possibility to set the number of scan steps
in the rotation, to start a scan, to acquire the current status of the rotation platform
and to acquire the data from the last full space scan. Of course, it is easy to realize a
corresponding method on the notebook that sets the scan resolution, triggers a full scan
and collects the data from this scan. We will not describe this method in detail.

The RobotConnector program runs on its own and connects itself to the central
RobotController program which is responsible for the high-level control of the exploration
process. The connection between these two programs is realized within a distributed
software architecture. Therefore, the two programs could be located on totally different
computers. While the RobotConnector program is realized in C++ and uses Boost
Asio [12] to establish the connection, the RobotController is a Java program that uses the
Java standard library to accomplish this task.

3.4 Outlier filtering in scan data

One important function of the RobotConnector program is the filtering of outliers out
of the scan data. These are scan points that are obviously not located on surfaces. To
accomplish this task we make a straightforward approach.

The basis for our approach is an approximation to the local surface around a scan point.
We assume that the surface is locally flat, at least in one direction. If this is the case,
each 3 neighboring scan points that are on a line in the scan mesh are located on a line in
3D coordinates. Figure 3.5 shows this situation in detail. The figure shows a situation
with one outlier. Another point is highlighted and the lines on which the corresponding
sampled 3D point lies are shown.

Of course, 3 neighboring points will never exactly lie on a line. Therefore, we introduce
a tolerance that depends on the distance of the sampled points to the robot. We assume
that three points lie on a line if

ε >

∣∣∣∣a+ b

2
− c
∣∣∣∣ (3.1)

is fulfilled. Here a and b are the distances between the scanner and the end points of
the line while c is the distance between the scanner and the center point. The tolerance is
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Figure 3.5: Methodology for the outlier filtering. The figure shows points on the angular
scan mesh and it is assumed that the red point is an outlier. One of the other points is
highlighted and the possible lines on which the corresponding sampled 3D point lies are
shown.

defined by ε = 0.01 m + 0.015 · c. Note that the tolerance is not equivalent to the distance
dependent accuracy of the laser range finder, but the difference is not large.

The RobotConnector program checks for each 3 neighboring points that lie on a line
in the angular scan mesh if they fulfill equation 3.1. If this is the case, all three points
are accepted to lie on a surface. Each sampled 3D point that lies on no line is filtered
out of the data set. The complexity of this algorithm is O(n), where n is the number
of sampled points, although, in comparison to the scanning process, the runtime of the
outlier filtering is negligible.

Figure 3.6 shows a sample result of the outlier filtering algorithm. Note that the
algorithm appears to be very effective. In the example all outliers are filtered out. To
demonstrate how many outliers are filtered out by the algorithm we also present total
numbers: If a full scan with 400 scan steps is performed, theoretically there should be
272800 sampled points. But there are two filtering steps that reduce this number. The
first step filters erroneous transmissions from the laser range finder to the microcontroller
board. In this step whole scan planes are taken out of the set of sampled points. This
reduces the number of valid points to about 200000. The other filtering step is the outlier
filtering which further reduces the number of valid points to 180000. So, about 10 percent
of the sampled points are outliers and all in all about one third of the scanned points are
invalid.

3.5 Summary

In this chapter we described the physical component of the exploration system. This is
the Pioneer 2 DX robot which was introduced in section 3.1 together with a rotating 2D
laser scanner shown in section 3.2. We discussed the properties of the robot locomotion
and named some sources for inaccurate behavior. We also discussed the rotation platform
which effectively transformed the 2D laser range finder into its 3D counterpart in detail.
We motivated the choice of the rotation axis and noted that we have to use a scan-stop
strategy for the exploration system.
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Figure 3.6: Result of the outlier filtering. The images show the sampled points above
the ceiling of a room. Left: result including the outliers. Right: result after applying the
outlier filtering.

We continued by describing the program that connects the robot and the rotation
platform to the rest of the system in section 3.3. The role of this program in the system
was defined and we gave a short sketch of the realization. Lastly, we discussed the outlier
filtering of the scan data in section 3.4. In this section we used a local approximation to
a surface to define a very effective filtering algorithm. Results of an application of this
algorithm were also shown.



Chapter 4

Using the ICP Algorithm for 3D
SLAM with 3DoF

The choice of the SLAM algorithm for the autonomous exploration system was made in
section 2.7. We chose the ICP SLAM approach since, for our purposes, it is a proven
concept and the obstacles associated with it are limited. The other promising approach
was the FastSLAM algorithm in combination with Occupancy Grid Mapping, although for
this algorithm it is difficult to estimate the computational requirements for the case of 3D
SLAM. The number of particles as well as the required resolution of the occupancy grid
map are difficult to estimate in the run-up to the algorithm implementation.

We sketched the idea of the ICP SLAM approach in section 2.6. In this chapter we
make a more sophisticated and detailed approach in discussing ICP SLAM. We start in
section 4.1 by introducing the ICP algorithm in detail. On the basis of this introduction
we show how to build up an ICP SLAM algorithm in section 4.2. The next point in this
chapter is the presentation of the implementation details for the ICP SLAM realization
made within this work in section 4.3. Finally, the chapter finishes with a discussion of
the parametrization of the algorithm in section 4.2 and a summary of the chapter in
section 4.5.

4.1 Theoretical background of the ICP algorithm

The Iterative Closest Point (ICP) algorithm [13, 5] rotates and translates a point cloud
{dj} with respect to another point cloud {mi} to minimize the sum of the quadratic
distances between corresponding points in both sets. Formally this can be expressed as
the minimization of the function

E (R, t) =
Nm∑

i

Nd∑
j

wi,j ‖mi −Rdj + t‖2 (4.1)

where R is a rotation matrix and t is a translation vector. In this equation wi,j is a
weight factor that expresses correspondences.

31
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Figure 4.1: Corresponding points. In this figure the point cloud {dj} is shown in blue
while {mi} is shown in red. For each point in {dj} the nearest point in {mi} is determined.
If the distance between the two points is smaller than cmax, they form a corresponding
point pair. The point on top of the image has no partner that fulfills this requirement.

One of the first questions arising when looking at equation 4.1 is how to determine
wi,j. A simple approach to this problem is to fuse nearest points in the two sets to a
corresponding point pair. Figure 4.1 shows the approach we take to define correspondences.
For each point in {dj} we search for the nearest point in {mi} and form a corresponding
point pair if the distance between the two points is smaller than some maximal distance
cmax.

Note that there may be points in {mi} that have no correspondences in {dj}, although
points in {dj} are nearer than cmax. We set wi,j to 1 if mi and dj form a corresponding
point pair. If this is not the case wi,j is 0.

If the point cloud {dj} is rotated or translated, the correspondences change. The ICP
algorithm therefore works iteratively. First it chooses correspondences, then it minimizes
the cost function 4.1 by translating and rotating {dj}. The algorithm repeats these two
steps until some convergency criteria are met. These convergency criteria are maximal
translations and rotations for a converged correction of the position and orientation of
{dj} allowed in an iteration. It is assumed that the correspondences in the last iteration
step are correct.

The central step in the ICP algorithm is the minimization of 4.1. To do this, the
algorithm first determines the required translation and then the rotation. To calculate
the translation, we first form the subset of points of {dj} that have corresponding points
in the other set. We denote the subset as {dc

j} and the corresponding points as {mf(dc
j)
}.

The centroids of the two subsets are then given by

cd =
1

|{dc
j}|

|{dc
j}|∑
j

dc
j (4.2)
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and

cm =
1

|{dc
j}|

|{dc
j}|∑
j

mf(dc
j)
. (4.3)

After calculating the centroids cd and cm the translation is given by t = cm − cd. We
continue by translating {dc

j} and {mf(dc
j)
} by there centroids and define the new sets

D′ = {d′j = dc
j − cd} (4.4)

and

M ′ = {m′f(dc
j)

= mf(dc
j)
− cm} (4.5)

which are centered in the origin. The minimization of 4.1 then reduces to the mini-
mization of

E (R) =

|{dc
j}|∑
j

∥∥∥m′f(dc
j)
−Rd′j

∥∥∥2

, (4.6)

such that only the rotation matrix R is left to be calculated. To do this, we set up the
correlation matrix H as

H =

|{dc
j}|∑
j

d′jm
′T
f(dc

j)
(4.7)

and perform a singular value decomposition H = UΛV T of this matrix. The rotation
matrix is then given by R = V UT . Although this is difficult to see, there exists an algebraic
proof [14] that the rotation matrix can be calculated in this way.

The calculation of the rotation matrix completes the theoretical background for the
ICP algorithm. The result is summarized in algorithm 4.

4.2 SLAM on the basis of the ICP algorithm

Nüchter et al. [5, 15] propose a 3D SLAM algorithm for an uneven environment on the
basis of the ICP algorithm. Although the ICP algorithm is the central part of the proposal,
there are also other important parts in it.

Nüchter makes a multiple step approach to estimate the correct robot pose. The first
of these steps is the extrapolation of the robot pose on the basis of the last known robot
pose and the odometry data. The next step is the construction of an octree in which the
scan points of the current pose are stored. Nüchter constructs such an octree for multiple
poses near to the estimated pose of step one. Of course, this can only be done for a few
sample poses. Another octree is built-up by the map data and finally the map data octree
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Algorithm 4 The ICP algorithm

1: procedure IcpAlgorithm({mi}, {dj}, cmax)
2: repeat
3: for j = 1 to |{dj}| do
4: find corresponding point mf(dj) to dj in {mi} if it exists
5: end for
6: calculate centroids cd and cm of subsets {dc

j} and {mf(dc
j)
}

7: t← cm − cd
8: calculate sets D′ and M ′ defined in equations 4.4 and 4.5

9: calculate correlation matrix H =
∑|{dc

j}|
j d′jm

′T
f(dc

j)

10: perform singular value decomposition H = UΛV T of H
11: calculate rotation matrix R = V UT

12: translate and rotate {dj} by t and R
13: until convergency is reached
14: end procedure

is compared with the octrees for the possible current poses. Nüchter then takes the pose
which agrees best with the map and uses the corresponding pose as the input pose for
the ICP algorithm. The scan points are translated and rotated according to the choice of
the robot pose. The rotations and translations calculated by the ICP algorithm are then
applied not only to the scan points but also to the current robot pose.

In the ICP algorithm, Nüchter chooses not to compare the current scan points with
the whole map but only with the scan points from the last known pose. This has the
advantage that the computational requirements for the ICP algorithm do not depend on
the size of the map.

The algorithm is completed by a mechanism for loop closing of the map in cyclic
environments. For this, Nüchter also builds up octrees of the current pose and poses near
to this pose. However, this happens after the ICP algorithm has finished. The octrees are
compared to the map again and if an octree different to the robot pose better agrees with
the map the pose is corrected according to this agreement. Then, the correction is passed
through the history of robot poses and all poses are refined such that a consistent map is
produced.

To speed up the runtime of the algorithm Nüchter uses a point reduction mechanism.
The scanned points are also stored in a kd-tree. This considerably enhances the performance
of point search operations.

4.3 Implementation details

We realize an ICP SLAM algorithm in the programs IcpSocketSlam and IcpFileSlam. The
latter of these programs does not work in the exploration context but reads files of recorded
robot histories. These histories consist of the actions and measurements of the robot at
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each time step. The IcpSocketSlam program instead connects to the RobotController
program within the distributed software architecture that we use for the exploration
system. Of course, it can be run on a dedicated computer, just like any other program in
the collection of programs that form the exploration system. It can also be easily replaced
by another program implementing another SLAM algorithm since the communication with
the RobotConnector program only incorporates data that is independent of the SLAM
algorithm.

Since the data acquisition itself is so time-consuming that a continuous movement of
the robot is not feasible, we do not have to restrict the implementation of the ICP SLAM
algorithm with respect to some runtime constraints. Therefore, we focus the implementation
on accuracy and make any design decision that trades accuracy vs. runtime in favor of
accuracy. This implies that we do not use any point reduction technique to speed up the
execution of the program. The other main aspect affected by this principle is the part of
the map that is compared with new scan data. While Nüchter compares new scan data
only with the last scan, we compare it with all the scan data collected so far. We assume
that these two design decisions yield a better accuracy in the estimation of the robot poses.

The focus of our exploration system lies on indoor environments. This type of environ-
ment is associated with rather good robot pose estimations after odometry extrapolation.
Therefore we do not need the coarse robot pose estimation step with the octrees that
Nüchter’s algorithm performs. We also abandon the option of the loop closing step,
although this may be implemented in a succeeding work. So far, our work basically
incorporates the central ICP algorithm.

We represent the map in two ways. The first representation is a list of robot poses
with corresponding scan data. The second representation is a subdivision of the space into
a regular grid where each grid cell contains the scanned points that lie in this region of
space. We use this data structure for search operations like the search for corresponding
points.

One important detail of our realization of the ICP algorithm refers to the number
of degrees of freedom that our robot has. While Nüchter realizes a SLAM algorithm
for a robot with 6 DoF we only have to deal with 3 DoF. This affects the correlation
matrix H and the rotation matrix R. In Nüchter’s case these are 3× 3 matrices while we
have to deal with 2 × 2 matrices. This means that the z coordinate is not represented
in H, although it plays a role when corresponding point pairs are searched. Note that
this variation of the ICP algorithm means that the converged result does not necessarily
minimize expression 4.1, but empirically we obtain very good results.

Of course, the performance of our ICP SLAM algorithm can be further optimized.
Future modifications of this algorithm may also use the very promising kd-trees that
Nüchter uses. However, for our current requirements this would be an unnecessary
complication of the algorithm.



36 CHAPTER 4. USING THE ICP ALGORITHM FOR 3D SLAM WITH 3DOF

Figure 4.2: ICP SLAM for 14 scans with different parametrization. Left: cmax = 0.300m,
tc = 0.0050m, rc = 0.170◦, complete runtime: 84min. Center: cmax = 0.100m, tc =
0.0005m, rc = 0.020◦, complete runtime: 59min. Right: cmax = 0.085m, tc = 0.0002m,
rc = 0.010◦, complete runtime: 74min. There are no visual quality differences for the
SLAM results shown in the center and right image.

4.4 Parametrization of the ICP SLAM algorithm

The ICP SLAM algorithm has 3 parameters that have to be optimized to get the best
results. These are the maximal distance between two corresponding points cmax and the
convergency criteria for the translation tc and the rotation rc. These parameters are not
independent of each other. For example, the two convergency criteria of the translation and
the rotation are tied together. Interestingly, it makes sense to also make cmax dependent
on the convergency criteria. A cmax that does not fit to the convergency criteria may,
for example, lead to no convergency at all. This happens if cmax is so small that too
few corresponding point pairs are found. If the convergency criteria are too large in this
case, the resulting translation and rotation in the first iteration may fulfill the criteria,
although we get a very bad result. Neither it makes sense to make cmax too large and the
convergency criteria too small. In this case we assume a very good result in the end. This
would be inconsistent with large distances between corresponding points. Therefore, we
only have to optimize one of the parameters and choose the other parameters such that
they fit to the optimized parameter. Such an optimization is shown in figure 4.2.

The figure shows the SLAM result for 14 scans in a room of about 10× 8 meters. To
get a better visualization of the quality of the results the floor and the ceiling are cut out
of the images. Note that the runtime of the algorithm depends on the parameters in a
complicated way. A large cmax and large convergency criteria yield convergency in very few
iterations. On the other hand a large cmax also yields a larger required time for a single
iteration since corresponding points have to be searched in a larger region around a given
point. The figure shows that the result in the center is optimal with respect to accuracy
and runtime. We choose the corresponding parameter set for the ICP SLAM algorithm.
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4.5 Summary

In this chapter we introduced the ICP SLAM algorithm. The basis of such an algorithm
is the ICP algorithm for registering two point clouds with respect to each other. We
presented the theory behind this algorithm in section 4.1. After the theory was presented,
we sketched the ICP SLAM algorithm by Nüchter et al. in section 4.2. This algorithm
enhanced the central ICP part with a coarse alignment step under usage of octrees. It
also incorporated a loop closing mechanism and several performance optimizations that
traded a better runtime to the cost of worse accuracy.

Our realization of an ICP SLAM algorithm was sketched in section 4.3. We took a route
that was stronger oriented on the basic ICP algorithm and we chose to design the algorithm
to get optimal accuracy. Finally, we discussed the parametrization of the algorithm in
section 4.4. It turned out that there is an optimal parametrization that gave us excellent
results while minimizing the runtime. Of course, this optimal parameter set depends on
the environment, the robot, and the type of operation. But if these circumstances are
known, it can easily be estimated in an empirical way.





Chapter 5

Exploring the Environment

Environment exploration may or may not be based on a map that the robot possesses.
Approaches that do not rely on a map are based on a few rules that let the robot move
on the basis of its current measurements. For example, one of these approaches is the
so-called wall-following. A robot that performs wall-following moves along a wall which he
is aware of due to his current measurements.

The objective of this work is the autonomous exploration of the environment on the
basis of 3D SLAM. This is a more sophisticated idea that uses the 3D map produced by
the SLAM algorithm to choose the next robot location and navigate to it.

In this chapter, we present our exploration idea, which is realized in the program
Explorer, in detail. The general idea is introduced in section 5.1 while the implementation
details are shown in sections 5.2 to 5.5. Finally, we finish the chapter with a summary of
the presented algorithm in section 5.6.

5.1 An idea for an exploration algorithm

Since there are relatively few approaches to 3D SLAM, there also exist only a few approaches
to developing an exploration algorithm on this basis. We have some additional constraints
to the movement of the robot so that our exploration approach is probably unique. The
main constraint relates to the scan-stop strategy that we use for the exploration system.
We want to take measurements at relatively few points and the movement between these
points should be as simple as possible. We intend to move on a straight line between
the scan locations as often as possible. We also have a special environment. This is an
indoor environment that has a flat floor. Therefore we have to plan the movement on this
flat floor, which is not directly accessible through the map data. We have to extract the
accessible floor from the map data and this is the first step in the exploration algorithm.

The next step is the setting of landmarks on the floor. We do that to have some special
points between which the robot moves on a straight line. Of course, we also want to decide
where the robot should move to in the next step on the basis of the acquired map. We
build up two 2D maps to make this decision. The first map stores the costs associated
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with the movement to a certain location. The second map stores the knowledge that we
have already gathered about a given point on the map. The decision where to move the
robot then is an optimization problem on the basis of these two maps. The last step in the
exploration algorithm is the actual path planning. We will apply a simple algorithm that
moves the robot between the starting point, the landmarks, and the destination point.

Algorithm 5 The exploration algorithm

1: procedure Explore(xt, m)
2: Extract the floor from map data m.
3: Perform a distance transform of the floor.
4: Erode the floor by the robot radius.
5: Generate a homotopy preserving skeleton of the accessible floor.
6: Select landmarks on the skeleton.
7: Generate a graph of direct reachability between the landmarks.
8: Generate the cost map for the accessible floor on the basis of the current pose xt.
9: Generate the knowledge map on the basis of scan locations in the map m.

10: Select a point on the accessible floor with low knowledge and low cost.
11: Plan path to selected point.
12: return path
13: end procedure

Our approach for a single exploration step is summarized in algorithm 5. After
extracting the floor, we erode it by the radius of the robot to obtain the accessible floor
for a robot that is reduced to a point. To do this, we first generate a map that stores the
distance to the floor boundary for every point of the floor. We then delete all points from
the floor that feature a distance smaller than the robot radius, such that the robot would
hit something if it moved there. The next step in the exploration algorithm is the selection
of landmarks on the floor. To do this, we first select the local maxima of the distance
transform and use these points as anchors for the generation of a homotopy preserving
skeleton. Additionally to the anchor points we choose special points like junctions in the
skeleton as landmarks. If one special point on the skeleton is not directly reachable from a
neighboring special point, we additionally select points in between. We assume that we
can reach every point on the accessible floor on a direct line from one of the anchor points,
although we can think of special situation in which this is not the case. For example, a
floor that looks like a perfect donut in 2D has no local maxima in the distance transform
from which another point on the floor is directly reachable, at least if the space would
not be discretized. We assume that such a situation will not occur in the exploration.
Therefore the anchor points let us reach every point on the floor while the special points
on the skeleton assure that we can reach each anchor point from another anchor point if
such a connection is physically possible. On the basis of the landmarks on the skeleton
and the current position xt we continue and build up a cost (distance) map of the floor.
We also generate a knowledge map on the basis of past scan locations. These two maps
are used to select the optimal location for the next scan. After selecting this point, we
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Figure 5.1: Extracted floor. The image shows the floor map after the basic floor extraction
step. Gray pixels mark cells that only contain the floor flag, red pixels mark cells with the
obstacle flag, and black pixels mark cells with unknown status. Note that the underlying
3D map is chosen to be suboptimal in this example.

finish by planning a path from xt to the new scan point on the basis of the connections
between the landmarks. The next sections present the algorithm in detail.

5.2 The accessible floor

The starting position for the extraction of the floor is the map m. This map consists of
a collection of robot locations associated with the corresponding measurements at those
position. These are point clouds. We want to have a 2D representation of the accessible
floor. Therefore, we subdivide the relevant 2D area into a regular grid. For each grid cell,
we determine if there is floor in that region, if there is an obstacle in the region, or if we
do not know anything about the region. To do this, we define a thin layer of thickness
dfloor around the floor. For every scanned point in the map we check if the point is located
in this layer and if this is the case we mark the corresponding cell in the floor map as a
floor cell. Above the floor layer we define another layer of thickness drobot which has the
thickness of the robot’s height. For every scanned point in the map which lies in this layer,
we mark the corresponding grid cell in the floor map as an obstacle cell. After doing this,
cells that do not feature the floor cell or obstacle cell flag are cells for which we do not
have enough knowledge to decide what they contain.

Figure 5.1 shows the extracted floor after performing the procedure described above.
The example uses a suboptimal 3D map as basis to show the importance of very well
aligned scans. The bad alignment of the scans yields many obstacle cells in the floor map.
This ultimately limits the movement of the robot.

The next step in the determination of the accessible floor is the calculation of a distance
transform of the floor-only cells in the floor map with respect to any other cell type. There
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exist many approaches for distance transforms [16, 17, 18, 19, 20]. We choose to implement
the approach by T. Saito and J. Toriwaki [20] since it shows very promising properties in
surveys like [21].

The algorithm’s input is a 2D image f with width W and height H that contains
foreground (1) and background (0) pixels. In our application, floor-only cells are foreground
pixels while every other cell is a background pixel. The algorithm calculates the square
distance of each foreground pixel to the nearest background pixel. To do this, the algorithm
first calculates the image g given by

gij = min
x
{(i− x)2|fxj = 0, 1 < x < W}. (5.1)

This is a transform of the image in i-direction. gij contains the square distances of
foreground pixels to background pixels in this direction. Since the calculation can be done
by scanning f once from left to right and once from right to left, this is an O(n) operation
where n is the number of pixels.

The next step is a transformation in j-direction to calculate the image h which is given
by

hij = min
y
{giy + (j − y)2|1 < y < H}. (5.2)

This new image contains the square of the desired distance transform. If done in a
smart way, this last step can be calculated in O(n · Average{√gij}). We assume that
the average value of

√
gij does not depend on the image size. In this case the whole

algorithm has a runtime of O(n). For our application on maps of indoor environments,
this assumption is true for large maps since the size of a room typically does not depend
on the size of the map.

After calculating the distance transform we remove all pixels from the floor that feature
a distance to the boundary smaller than the robot radius. By this the robot is effectively
reduced to a point and the remaining floor represents the accessible floor for this point-like
robot. An example showing the distance transform of the remaining floor pixels is shown
in figure 5.2. Note that we stick to the same situation already shown in figure 5.1.

The remaining floor pixels are then used to determine landmarks on the floor.

5.3 Landmarks on the floor

To choose the landmarks on the floor, we generate a homotopy preserving skeleton of the
floor. There exist a couple of skeletonization algorithms [22] from which we choose to
implement the algorithm by L. Vincent [23] since it features homotopy preservation and
several other good properties. Vincent’s algorithm works on a hexagonal grid. Since we
work on rectangular grids, we modify his approach to work on such grids. We assume
4-connectivity on these grids. This is an important decision since it affects the homotopy.
Actually, it even turns out that an implementation of Vincent’s algorithm on a rectangular
grid with 8-connectivity does not work.
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Figure 5.2: Distance transform of the floor. The image shows the distance transform of
the floor. The non-accessible pixels due to vicinity to the boundary are already removed.

Vincent’s algorithm consists of three steps. The first step is an initialization step in
which the anchor points are set and the data structures that are temporally used by the
algorithm are created and filled. The second, so-called propagation step generates an
initial skeleton and the last step prunes the extremities of the skeleton branches to create
the final skeleton.

Of course, the algorithm has to have knowledge about the important pixels for the
homotopy of the skeleton as well as knowledge about the pixels that can be pruned. For
this it uses tables. For the hexagonal grid these tables can be found in [23] and [24]. Since
we use a rectangular grid, we adapt these tables to be used with such grids. The resulting
table for homotopy relevant pixels is shown in figure 5.3. If one of the homotopy relevant
pixels would be removed from a skeleton, the homotopy of the skeleton would change. The
table showing the pixels that can be pruned is shown in figure 5.4.

As an input, Vincent’s algorithm anticipates an image I with foreground (1) and
background (0) pixels. Another image Ia incorporates the anchor points for the skeleton.
These points are also marked with a 1 in the image. Any other point in it is 0. As anchor
points we use the local maxima of the distance transform calculated in section 5.2. The
algorithm’s output will be generated in the input image I.

The algorithm begins with an initialization step. In this step the anchor points are
marked with a 1 in I. Every other foreground pixel in I is marked with a 2. Next, we fill
a FIFO queue with the border pixels and set these pixels to 3 in I. The border pixels are
foreground pixels that have background pixels in their direct neighborhood.

After initializing the FIFO queue the algorithm continues with the propagation step.
This propagation pulls every pixel p from the FIFO queue and performs the following
steps on it. It first determines the neighborhood configuration of the pixel and puts
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Figure 5.3: Homotopy relevant pixels. For every possible combination of set and unset
pixels in the neighborhood of a black reference pixel, it is shown if the reference pixel
is relevant for the homotopy. This is the case if the set neighboring pixels are colored
in green. If the neighborhood is colored in red the reference pixel is not relevant for the
homotopy.

Figure 5.4: Pruning relevant pixels. For every possible combination of set and unset pixels
in the neighborhood of a black reference pixel, it is shown if the reference pixel can be
pruned from the skeleton. This is the case if the neighborhood of the pixel is colored in
green.
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Figure 5.5: Skeleton after propagation step. The skeleton after the propagation step still
features several extremities which are unnecessary and have to be pruned to get the final
result. The red points mark the anchor points for the creation of the skeleton.

each neighboring pixel pn into the FIFO queue for which I(pn) = 2 is true. For such a
pixel I(pn) is then set to 3. Next, the propagation step checks with the neighborhood
configuration and the table in figure 5.3 if the current pixel is relevant for the homotopy.
If this is the case the pixel is put into a data structure TAB. In the opposite case I(p)
is set to 0. This removes p from the foreground region and therefore from the skeleton.
The result after the propagation step is a skeleton with several unnecessary extremities.
An example for such a skeleton is given in figure 5.5. Note that we still stick to the same
situation already taken under scrutiny in the other examples in this chapter.

The final step of Vincent’s algorithm is the pruning step. For this, we check every pixel
in TAB if it can be pruned. This is determined by the pruning table in figure 5.4. If a
pixel p can be pruned, we set I(p) to 2 to mark it as a boundary pixel and add it to the
FIFO queue.

Next we eliminate the branches. For this we check for every pixel p in the FIFO queue
if it can be pruned. If this is the case we set I(p) to 0 and put every pixel pn in the
neighborhood of p for which I(pn) = 3 into the FIFO queue and set I(pn) to 2. If p cannot
be pruned we set I(p) to 3.

After doing this we set I(p) to 1 for every pixel with I(p) = 3. Now, the extremities
are pruned from the skeleton and the final result is given by the pixels marked by 1 in I.
For our example situation the final skeleton is shown in figure 5.6.

The figure also shows the special points that are selected as landmarks on the skeleton.
The selection of these points is also based on a table shown in figure 5.7. Additional
special points are selected on the skeleton between two special points A and B which are
directly connected by the skeleton if the robot cannot move from A to B on a direct line.
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Figure 5.6: Final skeleton with additional landmarks. The image shows the final skeleton
after the pruning of its unnecessary extremities. Special points on the skeleton that are
used as landmarks, as well as the anchor points, are colored in red.

Figure 5.7: Special points on the skeleton. For every possible combination of set and unset
pixels in the neighborhood of a black reference pixel, it is shown if the reference pixel is a
special point in the skeleton. This is the case if the neighborhood of the pixel is colored in
green.
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Figure 5.8: Cost map. The brighter a point on the map is the higher are the costs of
moving there. It is easily visible that some points are only reachable by an indirect
traveling route over certain landmarks. The current robot position is also easily detectable
in this image.

After calculating the skeleton and the landmarks on it we proceed in the next section
by defining cost and knowledge maps.

5.4 Cost and knowledge maps

To decide where the robot should move to, we construct a cost and a knowledge map. While
the cost map reflects the costs of moving to a certain point on the floor, the knowledge map
shows the knowledge that the robot already has gathered about a point. The definition of
both maps is in principle arbitrary. The same applies to the algorithm that determines the
next scan point on the robot’s agenda. The only important thing is that the combination
of the maps and the algorithm result in a reasonable behavior of the robot. We start this
section by defining the cost map.

We define the cost map on the basis of the distance the robot has to travel to reach
the point. The point can either be reached directly or by moving over a sequence of
landmarks on the skeleton and finally to the point. We additionally define a maximal
distance the robot travels on a line. The cost map is now created as follows. The first step
is the calculation of the distance to certain landmarks which can be reached directly or by
moving over a sequence of other landmarks. We first check which landmarks can directly
be reached from the starting point and then use a simple shortest path algorithm like
Dijkstra’s algorithm on the graph that reflects the connectivity between the landmarks to
estimate the distance to all landmarks. When we have these distances we check for every
point in a local environment of each landmark and of the starting position if the point
is directly reachable from that location. If this is the case, we check if there is already a
shorter path to this point known and if this is not the case we associate the point with
the given landmark or with the starting position. The point is also associated with the
total traveling distance needed to get there. In the calculation of these distances, the local
environment is given by the maximal direct movement distance. The final cost map for
our example situation is shown in figure 5.8.

The cost map algorithm’s runtime is proportional to the square of the maximal direct
movement distance which is a constant. It is also proportional to the number of landmarks.
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Figure 5.9: Knowledge map. The brighter a point on the map is the higher is the knowledge
already obtained for this point. The scan positions of the robot are easily detectable in
this image.

We assume that the number of landmarks grows linearly with the map size. Therefore, the
algorithm is very fast. This good performance behavior would be broken if the robot was
allowed to move without any limit on a direct line. But this is not a desirable behavior of
the robot after all. We want to be able to make relatively good predictions of the robot
position by extrapolating the last position on the basis of odometry data. This only works
well if the traveled distance is not too large.

The knowledge map is defined in such a way that every scan adds knowledge to its
environment. We define a knowledge enhancement radius to determine this environment.
If the robot makes a scan it increments the knowledge inside an area with that radius
around its current position by 1. The knowledge map for our example situation is shown
in figure 5.9.

We end this section by defining the next point the robot should move to. We choose
the point that maximizes

bxy =
1

kxy + k0

· 1

cxy + c0
(5.3)

where kxy is a point on the knowledge map, cxy is a point on the cost map and k0 and
c0 are constants that are used as knowledge and cost offsets.

The selection of the maximal movement distance dmax, the knowledge enhancement
radius kr, as well as k0 and c0 is more or less arbitrary. The behavior of the robot can
be tuned by varying these parameters. We choose these parameters to be dmax = 2.0m,
kr = 1.0m, k0 = 1.0 and c0 = 3.0. However, the choice of these parameters should depend
on the properties of the laser range finder, the robot, and the environment.

5.5 Moving to the next robot location

The last step to be defined for the exploration algorithm is the path planning to the next
selected scan point. Implicitly, this is already done by determining the cost map. The cost
map consists of traveling distances that are needed to reach a given point. To calculate
these costs the path to each point has to be known. We only have to extract this implicit
information from the cost map and the connectivity graph for the landmarks.



5.6. SUMMARY 49

While calculating the cost map we associated each point on the map with the landmark
from where we would move to it or with the starting position. We also associated each
landmark with the landmark from which we would move to it. If we can reach a landmark
directly from the starting position the landmark is associated with this position. So, all
information to plan the path is already available. We extract it by starting at the target
position and moving back to the current robot location over the associated points between.

When the path is extracted, the robot moves to the new position. Since we do not
want to accumulate large errors while the robot follows the path, the robot makes a full
scan at each intermediate landmark and performs the SLAM algorithm to correct its pose.

5.6 Summary

In this chapter we developed the exploration algorithm which is the core of the system
we build. We explained the general idea in section 5.1. In this section we started by
defining the constraints for the exploration algorithm. Since the input data, as well as the
constraints are special, only very few comparable algorithms exist. At least, we are not
aware of any exploration algorithm that applies to the situation we deal with.

The algorithm’s approach is rather intuitive and straightforward. It combines several
low-level algorithms into one high-level algorithm as a whole. The first steps of this
high-level algorithm are the extraction of the accessible floor and the generation of an
Euclidean Distance Transform (EDT) of this floor. These steps were taken under scrutiny
in section 5.2. The next steps had the objective to define special landmarks on the
accessible floor. For this we took the local maxima of the distance transform and used
them to create a homotopy preserving skeleton of the floor. The anchor points, as well
as special points on the skeleton, then defined the landmarks. We described these steps
in section 5.3. The third group of steps of the algorithm had the goal to define cost and
knowledge maps. This was presented in section 5.4. Finally, we completed the algorithm
by presenting the path planning mechanism which was described in section 5.5.

The resulting algorithm is a robust approach to the exploration task we have to solve. It
fulfills the constraints we have defined for the algorithm and to some extend the algorithm
is also tunable for differing exploration tasks. This can be done by varying the parameters
used to select the next scan point.





Chapter 6

Simulating the Robot

For testing purposes, evaluation purposes, and due to temporary unavailability of the
real robot we develop a simulation program RobotSim for the robot. This is important
since the robot could behave in an unintended way if something in the exploration system
does not work as it should. We use the simulation to test the robot’s behavior, as well
as the visualization of the result. In a simulation we can create basic environments for
which errors in algorithms are easily detectable and trackable. Another reason for the
development of the simulation is that the rotation platform for the laser range finder was
not available in the beginning of this work.

We start this chapter in section 6.1 by describing the basic functionality of the simulation.
Next, we introduce the configurable error models for the movement of the robot and for
the laser range finder in sections 6.2 and 6.3. The chapter closes with section 6.4 by giving
a summary of the simulation program.

6.1 General overview

We develop a robot simulation program for an indoor environment. Although the environ-
ment is three-dimensional, we assume a flat floor. Therefore, the robot in the simulation
has three degrees of freedom. We also simulate a 3D laser range finder on top of the robot
that gathers data from the 3D environment.

The simulation program loads the environment data in terms of data files in the STL
format [25]. This is a very common file format for storing sets of triangles together with
their normals. Although this file format allows the storage of arbitrary sets of triangles,
we make further assumptions about this set. In detail, we assume that the set describes
an indoor environment with a floor in the z = 0 plane. The coordinates of the triangles
are assumed to be given in meters. We construct such environments using the free 3D
modeling program Blender [26] which features an option to export STL files.

An example image showing the simulation program with a loaded environment and
a robot after some movements and measurements is shown in figure 6.1. The triangles
containing to the floor are displayed in gray while every other triangle is only shown as a

51



52 CHAPTER 6. SIMULATING THE ROBOT

Figure 6.1: Screenshot of the RobotSim program. The robot is displayed as a green circle
and its orientation is marked by a green line. On the left pane the action commands for
the movement and the sensor measurements can be invoked, while the right pane shows a
history of the robot’s past movements and measurements.

wireframe. The robot itself is represented as a green circle with a line inside that marks
its orientation. The pane on the left side of the program incorporates the control panel
for invoking special movement commands for the robot and starting a measurement with
the robot’s sensors. Of course, the robot can also automatically move if the simulation
connects to the central RobotController program. The right pane shows a list of the past
movement commands, measurements, and poses of the robot. In this example, it can easily
be seen that the movement commands and the robot poses are not completely consistent
to each other. This is the case since the movements and measurements are also affected
by error models.

The error models can be configured inside the graphical user interface. The action
history can be saved in a simple file format that consists of a sequence of identifiers for
each action or measurement class together with its parametrization or measurements. The
measurements with the 3D laser range finder themselves are simulated by using a simple
variant of ray casting.

The simulation at the moment only features basic functionalities that are required for
our special purpose. A collision detection is not implemented, although the program is
easily extendable with this or other functionalities.
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6.2 A model for the robot movement

The movement model for the robot is subdivided into a model for the forward movement
and a model for rotations. This is adequate since the movement commands coming from
the exploration system are also subdivided into these two classes.

The forward movement model assumes systematic errors in the movement and addi-
tionally some random deviations. The first systematic error is a systematic curvature.
We assume that the robot does not move on a straight line but on a curve. This is
realistic since the radii of the two wheels will be slightly different. We also define a random
deviation from this curvature. Therefore, we use a Gaussian with a configurable standard
deviation and randomly sample a value from this distribution. The value is then added to
the systematic curvature of the forward movement.

The second systematic error is a relative distance error. We assume that the radii of
the wheels do not exactly match the assumptions of the robot’s odometry sensors. This
clearly leads to a relative distance error that is proportional to the traveled distance. We
also define an additional deviation from this relative distance error by a Gaussian.

The last systematic error in the forward movement model is an error in the finishing
angle. We assume that the two independently drivable wheels are not completely syn-
chronized which leads to a small rotation at the end of a forward movement. Empirical
observations support this assumption. Additionally to this systematic error in the finishing
angle, we define a random error for this quantity.

The rotation model is chosen to be more arbitrary. We define a Gaussian for the
change of the position due to the movement and relate the standard deviation of the
Gaussian to the rotation angle. Although the position clearly changes due to a rotation, it
is questionable how this should be modeled. For the development of a realistic rotation
model this should be examined.

We also define a systematic error in the relative angle for a rotation. This is a deviation
from the rotation angle that is proportional to the angle. Of course, we also add a random
error to this quantity.

The movement model defined in the simulation is not completely consistent with the
real robot behavior. For example, we do not model the small swivels that we observe at
the beginning of a movement of the real robot. We also do not model any interactions
with the floor that lead to additional errors. Note that this is acceptable for our purposes,
since the applied SLAM algorithm does not rely on such a realistic error model. If we had
to extend the exploration system with another SLAM algorithm that uses an error model
for the robot movement we would have to reconsider this issue. The simulation program
is easily modifiable with respect to the movement model. If a realistic model had to be
implemented this is doable without any problem as soon as this model is known and if
interactions with the environment are not part of the error model.

Finally, note that the configurability of the error model features the option to simulate
a large set of such models. We can test how the exploration algorithm or other algorithms
react to certain movement models and compare it to a perfect movement as a reference.
This implies the option to evaluate algorithms with respect to certain robot behavior. If an
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algorithm does not work very well due to the behavior of the robot, this can be detected
in the simulation. The usage of the real robot does not feature such evaluation options
since its movement properties cannot be configured.

6.3 A model for the laser range finder

After defining the movement model for the robot, the only thing that is left to perform
the simulation is the definition of a model of the 3D laser range finder. We will define this
model in this section.

The 3D laser range finder model used in the simulation is geometrically analog to the
real laser scanner and the rotation platform. The simulated rotation axis is conform with
the axis of the rotation platform and the height of the laser scanner is configurable. We
set it to the height of the real range finder. The number of scan points in a scan plane
is also configurable and the same applies to the number of rotation steps used for a full
scan of the environment. Finally, the maximal range of the laser range finder is also a
configurable parameter.

The error model for a scan differentiates between three cases. The first case is a normal
scan in which we calculate the intersection point of the laser beam with the surface of
the environment. This is done by applying ray casting. If the intersection point is within
the range of of the laser scanner we take the distance to the surface and add a distance
dependent error to it. We choose this error to be consistent with the specifications of
the real laser range finder, although this is a modifiable quantity. If the distance to the
intersection point is not within the range of the laser scanner we set the measured distance
to the maximal scan range. The real laser scanner acts in a similar way if it cannot detect
anything and sets the distance to zero.

The second case is a random scan in which we select a random value for the measured
distance which is taken from a uniform distribution over the whole scan range. Random
scans are also observed for the real range finder. Although, it is not clear if they are
uniformly distributed.

The last case is a maximum scan in which we set the measured distance to the maximum
scan distance. Such a case can also be observed in the data taken from the real laser
scanner, although the real laser scanner sets the distance to zero.

All cases are associated with configurable relative probabilities that are used to select
one of them. Note that this laser range finder model is similar to the model defined in [3],
although the other model is more sophisticated and features an additional case to deal
with dynamic environments.

Of course, the real laser scanner shows a more complicated behavior. The most
important difference is the fact that its measurements depend on the surface which is hit
by the laser beam. If this surface is highly reflective the distance is underestimated. If it
is absorbing the distance is overestimated. Some surfaces cannot even be detected. The
form of an object is also relevant. The measurements are reliable if the surface is large
and flat. If the distance to a small object is measured the distance is not very reliable and
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can depend on the surroundings of the object.
Note that the evaluation options arising for the movement model due to the configura-

bility also arise for the scanner model. We can simulate the behavior of many different
laser range finders and we can also simulate perfect measurements. Therefore, we can also
evaluate algorithm behavior with respect to the sensor models.

6.4 Summary

In this chapter we presented the simulation used to test the exploration system. The
simulation program is connectable to the RobotController program in the same way the
RobotConnector program connects to the exploration system. Therefore, the simulation
and the real robot can be replaced with each other depending on the purpose of a run of
the whole exploration system.

We started the chapter by giving a general overview of the simulation program in
section 6.1. We developed a graphical user interface for the program that can be used to
control the robot. However, the robot can also be controlled by the exploration system
to simulate autonomous exploration of the environment. We continued the chapter in
section 6.2 by defining the movement model which incorporated systematic and random
inaccuracies in the movement. The movement model is not defined to be completely
realistic, although we noted that the model is adequate for our purposes. The same
conclusion can be drawn for the laser scanner model defined in section 6.3.

Note that the algorithm evaluation options related to the configurability of the error
models, together with the fact that the simulation can also run on its own, transform the
simulation program into a valuable tool beyond the purpose of this work. The program
can be adapted to provide important data for the evaluation of other algorithms or other
sensors and actors as well.





Chapter 7

Visualizing the Map

To evaluate and show the map data generated by the exploration robot we visualize it by
two different visualization algorithms. The first visualization is just a 3D-representation of
the collected data points. This very basic data visualization is important since it does not
imply any data interpretation. The quality of the map can very well be evaluated with
this visualization.

The second visualization technique is based on a surface reconstruction. We use the
map data and extract a surface from it. Such a reconstructed surface can be used as a
basis for more sophisticated visualizations of the map that are beyond the scope of this
work. It is, for example, possible to mount a camera on the robot and project the camera
image onto the reconstructed surface. After generating the surface in terms of a set of
triangles we use OpenGL [27] to visualize it with hardware acceleration. This is very
important since the number of triangles is too large for a pure software visualization that
features immediately reacting navigation capabilities.

In this chapter we discuss the surface reconstruction based visualization. For this we
start in section 7.1 by giving a short overview over the visualization program SurfacePro-
cessor which is developed within this work. To reconstruct a surface from the map data
we implement the so-called Ball Pivoting algorithm. This method is described in detail
in sections 7.2 and 7.3. While section 7.2 describes the general idea in two dimensions,
section 7.3 applies this idea to three dimensional data. Section 7.5 then shows and discusses
first results obtained by applying the Ball Pivoting technique. We finish the chapter with
a summary in section 7.6.

7.1 A program for the map visualization

The visualization program developed in this work offers two independent visualization
modes. We can visualize the map directly by the recorded data points or after performing
a surface reconstruction on the map. In the latter case, a set of triangles is visualized.
Figure 7.1 shows a screenshot of the visualization program that demonstrates these two
modes.
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Figure 7.1: Screenshot of the SurfaceProcessor program. In this screenshot a simulated
environment is visualized. The program has two visualization modes. The left frame shows
direct visualization of the recorded data points. The right frame shows the visualization
that is based on a surface reconstruction by the Ball Pivoting algorithm.

The program can load map data in a simple format that incorporates a collection of
robot poses associated with the measurements taken at these locations. Since the surface
reconstruction is rather time-consuming, the program also offers the option to save and
load a reconstructed surface. For this, the STL file format [25] is used.

The program offers the possibility to continuously navigate through the visualized map.
It is possible to slide in different directions using the keyboard and the orientation of the
camera can also be rotated by using the mouse. To provide such a continuous navigation
at a reasonable speed, hardware acceleration is required. We use the graphics hardware
through the OpenGL [27] libraries. Both visualization modes are hardware accelerated.

There exist several approaches for the surface reconstruction on the basis of scan data
from multiple scans [28, 29, 30, 31, 32, 33]. We choose to implement the ball pivoting
algorithm [28] for this task since it is a common and state of the art approach that produces
very good results. The next sections describe this method in detail.



7.2. BALL PIVOTING IN TWO DIMENSIONS 59

Figure 7.2: Choosing a seed edge. The left image shows a valid seed edge defined by the
circle with given radius and two points of the data set. No points lie within the circle and
the normals of the edge and the data points point into the same half space. The center
image shows an invalid choice of a seed edge. In this case there lies a point from the data
set inside the circle. The right image also demonstrates an invalid choice. Here, the normal
of the edge points into another half space than the normals on the two ending points.

7.2 Ball Pivoting in two dimensions

To get an easier understanding of the Ball Pivoting algorithm we first introduce the idea
for two-dimensional data. This implies some fundamental differences to the 3D version of
the algorithm. While the 3D version reconstructs a surface in terms of a set of triangles,
the 2D algorithm reconstructs a boundary for data points on a plane in terms of edges.
Of course, we also have no ball in 2D but a circle. In two, as well as in three, dimensions
the sampled data points are associated with normals on these points. If the data points
are produced by a laser range finder it is an obvious choice to choose the normal such that
it points towards the laser scanner.

The parametrization of the algorithm is done by choosing the radius of the circle or
the ball in 3D. In 2D, the circle will always touch two supporting points from the data set
so that the radius should be chosen such that it is consistent with the typical distance
between neighboring points on the boundary. In 3D the ball will always touch three
supporting points from the map data. Therefore, the radius should be chosen in a similar
way.

In 2D, the algorithm starts with the choice of a seed edge in the boundary. This seed
edge features some important properties. First of all it is an edge between two points
from the data set which are no further apart than twice the radius of the circle. Next, we
calculate the position of the circle that touches the two points. Of course, there will be 2
circles that fulfill this property, although only one of the two circles will fulfill our other
requirements. The center of the two circles are on different sides of the edge. We define a
normal on the edge that points to the center of the associated circle. Now that we have
defined a normal on the edge, we can distinguish between the edges associated with each
circle. We choose the circle and the edge with the normal that points into the same half
space as the normals of the two data points, where the two half spaces are separated by
an infinite line through the two data points. If the normals of the two data points do not
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Figure 7.3: Adding edges to the boundary. The left image shows a valid new edge that
will be added to the boundary. The right image shows an invalid edge since its normal
points into another half space than the normals of its end points.

point into the same half space, we cannot choose one of the edges as seed edge. If one of
the edges fulfills all properties up to now, one last requirement also has to be met. No
points from the data set, with exception to the ending points of the edge, are allowed to lie
inside the circle or touch the circle. Figure 7.2 demonstrates the properties of a seed edge.

After selecting a seed edge, we add it to the boundary. This is just a collection of
edges. The boundary also has so-called active points. The end points of the seed edge are
the active points we start with. The next step in the 2D Ball Pivoting algorithm is the
pivoting step. In this step we select an active point A from the boundary. This active
point is associated to an edge AB for which a corresponding circle is given. We take this
circle and pivot it around the active point until it touches another point C from the data
set. With this new point we have a new candidate for a boundary edge. This is the edge
AC. The new candidate has to fulfill the same requirements that had already been fulfilled
by the seed triangle. There have to be no other points inside the circle and the normals of
the points and of the edge have to point into the same half space. Figure 7.3 demonstrates
this situation. If AC is a valid boundary edge, we add it to the boundary and also add C
to the set of active points. Regardless of the result of the validity check for AC we remove
A from the set of active points.

The ball pivoting step is repeated over and over again until the set of active points is
empty. When this is the case, we cannot expand the boundary selected by the seed edge
any further. Of course, there can also be some special cases that have to be treated in
a special way. For example, the new edge could add a point to the set of active points
that is already in this set. In this case we fuse two ends of the boundary and the new
point has to be removed from the set of active points. It can also be the case that the new
point already is an inactive point in the boundary. In this case we choose not to add the
edge nor the new point to the boundary. If we added the edge to the boundary we would
possibly end up in an infinite loop.

In the 2D Ball Pivoting algorithm, the seed edge selection step with its subsequent
edge addition steps are repeated until no further seed edge can be chosen. When this
point has been reached, the boundary is complete and the algorithm terminates.
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7.3 Ball Pivoting in three dimensions

After presenting the Ball Pivoting algorithm in two dimensions we transfer the idea to
three dimensional data sets. In this case, we reconstruct a surface in terms of triangles. In
principle, the 3D algorithm follows the same approach as the 2D algorithm. We first select
a seed element which is a triangle in the 3D case. This triangle is then added to a set of
triangles called the surface which is expand as far as possible until no further triangle can
be added.

The seed triangle has to fulfill similar requirements as in the 2D case. Although, there
are some differences. First of all we use a ball with a fixed radius and not a circle. The
ball touches three points from the dataset that are the corners of the triangle. We define
the triangle such that its normal points in the direction to the center of the ball that is
used to construct it. Of course, there are two possible triangles for each three points with
normals in opposite directions. A valid seed triangle has to have a normal that points into
the same half space, defined by the plane through the 3 data points, as each normal on its
corners. The second requirement for the seed triangle is that no further points may lie
inside the ball associated with it.

After constructing the seed triangle, we add it to the triangle set that defines the
surface. Further, we add its three edges to the boundary of the surface. This is a set of
sequences of connected edges that define the frontiers between the surface triangles and
the void. Of course, the sequences are indeed loops since the last edge in a sequence is
connected to the first one. Edges in the boundary can be active or inactive, just like the
active or inactive boundary points in the 2D case.

The next step expands the surface by pivoting a ball on a surface triangle around one
of its active boundary edges until it touches another point. The new point and the two
old points from the active edge define a new triangle that is a candidate for addition to
the surface. The new triangle has to fulfill the same requirements that the seed triangles
have to fulfill. This means that the relevant normals all have to point into the same half
space and no other points may lie inside the ball. If the new triangle can be added to the
surface this is done. The edge used for pivoting is removed from the boundary and the
two new edges are added as active edges to the boundary. If it cannot be added to the
surface, the pivoting edge is marked as inactive.

The pivoting step is repeated until no further active edges exist in the boundary.
Figure 7.4 shows the selection of a seed triangle with subsequent expansion of the surface.
Of course, there exist special cases, the pivoting step has to handle. We assume that the
new triangle fulfills all requirements with respect to the normals and other data points
inside the ball. If this is given, we have to distinguish between different cases. The first
case is that the new data point to be added to the surface is not yet used. This means
that this point is not yet part of any surface. This is the case that we have described in
the simple example above. We name the operation that removes the pivoting edge and
adds the two new edges to the active edges of the boundary a join operation. If the new
point is already part of the surface, the situation is more complicated. If it is part of the
surface but not on the boundary, we cannot add the new triangle to the surface since this
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Figure 7.4: Construction of a surface with Ball Pivoting. The upper left image shows the
pure sample data set with normals on the data points. In the upper center image a seed
triangle is found that fulfills all associated requirements. The upper right image shows a
first pivoting step to add another triangle to the surface. In the lower left image, a test
triangle fails to fulfill one of the requirements. Here, the associated ball contains another
point from the data set that is not part of the triangle. The last, lower right, image shows
the completed surface after performing the Ball Pivoting algorithm.

would create a non-manifold vertex which we want to avoid. If the new point already is
part of the boundary we also have to check if the addition of the triangle would create a
non-orientable manifold. If this is not the case, we perform a simple join operation. This
join operation may add edges to the boundary that are already part of the boundary. In
this case we have to perform a so-called glue operation.

For the glue operation, we define a direction for the edges. This direction is defined
such that the edges of a triangle are went through in counter clockwise order if one follows
the edge direction. If two edges with the same end points are part of the boundary, they
always have different orientation. We have to distinguish four different cases to deal with
such pairs of edges. In the first case, a loop of connected edges only consists of two edges
with same end points and opposite orientation. In this situation the whole sequence of
edges is removed from the boundary. The second case features two adjacent edges with
the same end points in a sequence of connected edges. This case differs from the first one
by the length of the sequence which here is larger than two. We deal with this situation by
removing the two adjacent edges from the loop. In the third case, the two edges are still
part of the same loop, although they are not adjacent. Here we have to split the loop into
two loops. For this we remove the two edges from the loop. This produces two sequences
of edges that are not connected with each other. Although, both sequences form loops on
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their own. All the edges in both loops have predecessors and successors. The last case
merges two loops. Here, the two edges exist in different loops. Again, the two edges are
removed and, if fused together in a correct way, the two resulting edge sequences form a
single loop where every edge is connected to two other edges.

These are all problematic cases that have to be dealt with. The approach as a whole,
as it is proposed in [28], is summarized in algorithm 6. In this pseudo code algorithm S is
the data set of sampled points, while B is the data structure representing the boundary.
After presenting the general algorithm we discuss the implementation details in the next
section.

Algorithm 6 The Ball Pivoting algorithm

1: procedure BallPivotingAlgorithm(S,B)
2: while true do
3: while ei,j = getActiveEdge(B) exists do
4: if σk = ballP ivot(ei,j) exists then
5: if notUsed(σk) or onBoundary(σk) then
6: addTriangleToSurface(σi, σk, σj)
7: join(ei,j, σk, B)
8: if ek,i ∈ B then
9: glue(ek,i, ei,k, B)

10: end if
11: if ej,k ∈ B then
12: glue(ej,k, ek,j, B)
13: end if
14: end if
15: else
16: removeActiveF lag(ei,j)
17: end if
18: end while
19: if (σi, σj, σk) = findSeedTriangle(S) exists then
20: addTriangleToSurface(σi, σj, σk)
21: addActiveEdge(ei,j, B)
22: addActiveEdge(ej,k, B)
23: addActiveEdge(ek,i, B)
24: else
25: return
26: end if
27: end while
28: end procedure
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7.4 Ball Pivoting implementation details

The ball pivoting algorithm does not define the details for its implementation. Questions
like how the balls are constructed or how the pivoting is done are not answered by the
general algorithm description. In this section we address these questions.

The first question is how to construct a valid seed triangle. For this we select a point
from the data set and search for nearby points. The search radius is given by two times the
ball radius. To reduce the time needed for the search, we subdivide the space into a regular
grid. Each grid cell stores a list of data points which are located in the corresponding
region. By doing this, we can focus the search on the relevant region which is a great
advance. An even better performance for the search might be achieved by using kd-trees.
Of course, we only accept points that are not yet used for the surface. Each triple of
points that we find in this way defines a triangle with defined orientation through the
ordering of the three points. When we have found such a triangle we first check if its
normal points into the same half space as the normals on the corner points. If this is
the case we calculate the center point of the corresponding ball. After performing some
linear algebra operations this calculation reduces to a quadratic equation which only has
real solutions if a ball with the given radius can be constructed that touches the three
points. If no real solutions exist we reject the test triangle and search for the next one. If
there are real solutions, the two solutions correspond to the two balls on both sides of the
triangle. We choose the solution that is in the half space into which the normal on the
triangle points. Now that we know the center point of the ball, we search for data points
inside the ball. If we find such points we have to reject the triangle. If no point is found
that is not one of the corner points, we accept the triangle as seed triangle.

The second important question is how to pivot the ball around an edge until it touches
another point. The answer is that this is not done. Instead, we search for valid triangles
for which two of the corner points are the end points of the pivoting edge. The validity of
the triangle is given by the requirements to the corresponding ball and the normals. For
each triangle we find in this way we calculate the pivoting angle for the ball. Finally, we
select the triangle that features the smallest pivoting angle.

The last important implementation detail we discuss here is an extension to the
approach also proposed by [28]. We apply the algorithm multiple times with different ball
radii to the same data set. We start with a small radius and construct a surface. Then we
mark the boundary edges as active again and apply the algorithm a second time with a
larger radius to the data set. By this procedure, we apply three different ball radii to the
data set. This has two main advantages. The first advantage is performance related. A
small ball radius results in searches for points in small regions which speeds up the search
a lot. The second advance relates to the details visible on the surface. Of course, the
minimal size of the visible details is related to the ball radius. By applying different ball
radii we get the details with the smallest ball radius and we are also able to construct a
surface if the point sampling is not dense enough for a surface reconstruction with a small
radius.
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Figure 7.5: Surface reconstruction by ball pivoting for simulated environments. The left
image shows a rounding of edges which is a typical property of the algorithm. The right
image shows gaps in the reconstructed surface. Due to the functional principle of the
algorithm there are gaps that cannot be closed.

7.5 Ball Pivoting results

Finally, we present some results of the surface reconstruction with ball pivoting. Funda-
mental properties of the algorithm can best be seen on surface reconstructions of simple,
simulated environments. Figure 7.5 shows examples for generated surfaces for such envi-
ronments. The examples show two typical artifacts that can always be seen in surfaces
reconstructed by ball pivoting. First of all, the algorithm is not capable of producing
sharp edges. This is due to the point sampling not being infinitely dense and the finite
ball radius preventing a reconstruction close to an inner edge.

The other artifact are gaps that exist in the reconstructed environment. There are
several reasons for such gaps. First of all, if the radius of the ball is given, not all sets of
three points can lie on the surface of such a ball, even if the points are close to each other.
If, for example, the points lie nearly on a line, the minimal radius for a ball touching all
three points is very large. Another reason for a gap is that the normals on the corner
points might not point into the same half space. If the resulting gaps are to be closed, a
postprocessing of the surface is required that performs this job.

Figure 7.6 shows the surface reconstruction for a single 3D scan on top of a table.
Here, we see several artifacts of the scan process. First of all, there are spikes on the
ceiling of the room. This is due to inaccurate scan data. Next, there are some gaps in the
reconstructed surface that correspond to certain objects. These are objects that feature
a high absorption coefficient for the wavelength of the laser range finder beam. Due to
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Figure 7.6: Ball pivoting for a single scan. For this scan the 3D laser range finder was
positioned on a table. Several artifacts of the scan can be seen: The spikes on the ceiling are
due to inaccurate scan data. Additionally, some surfaces with high absorption coefficients
are obviously not reconstructed. Nevertheless, some objects are very well identifiable after
the surface reconstruction.

the high absorption, the scanner is not able to measure the distance to these objects.
Therefore, we do not get any reliable data points for the distance to these objects. There
are also some scan planes missing in this image due to bad data transfer from the laser
scanner to the microcontroller board.

There are also objects in the surface reconstruction that are very well identifiable. This
is the case for the door or for the trash can in front of the door. We also see a board on
the wall.

7.6 Summary

In this chapter, we demonstrated two different visualization approaches for the map
data. The first approach is a simple representation of the sampled data points. This
representation is very well suited for the evaluation of the map. There is no interpretation
of the scan data in this method. The other visualization approach is the representation of
a reconstructed surface on the basis of the scanner data. Here we interpret the data in
terms of surfaces.

We started the chapter in section 7.1 by giving a general overview of the visualization
program. Then we discussed the Ball Pivoting algorithm in detail. This discussion
included an introduction of a 2D version of the algorithm in section 7.2. On the basis
of this introduction we described the algorithm for 3D data in section 7.3. The main
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implementation details were discussed in section 7.4 and we finished the chapter by a
presentation of surface reconstruction results in section 7.5.





Chapter 8

Autonomous Exploration and Map
Building Results

The central objective of this thesis is the development of an exploration system, which
was described in the preceding chapters. This chapter now uses the complete exploration
system for the exploration of a room of about 10× 8 meters. We demonstrate the process
of exploring the room and evaluate the final results.

This chapter is organized in two main sections. It starts in section 8.1 by showing the
intermediate results for each exploration step. Section 8.2 then evaluates the final result
after 21 exploration steps. We conclude the chapter in section 8.3.

8.1 Exploring a room

Here, we show the results for 20 consecutive exploration steps of a room. However, before
we start we show a visualization of the final result after 21 exploration steps. This is done
to demonstrate the quality of the resulting map. We see the final map in figure 8.1. The
two maps with and without SLAM clearly show that we need a SLAM algorithm if we
want to perform map based exploration. Without the application of a SLAM algorithm
the map has a bad quality that is not adequate for the basis of an exploration system.
The SLAM based map instead has a very high quality. This means that all scans are well
aligned to each other. There are no wrongly aligned scans in this map that yield a 2D
exploration map with non-existent obstacles. Such obstacles, produced by wrongly aligned
walls and other objects are the main point why the bad quality map without SLAM is not
useful for exploration purposes. The robot would not be able to move a lot on the basis of
such a map. Every new scan would limit the possible robot movements even more instead
of revealing unexplored floor that is accessible for the robot.

The discussion of the first 20 exploration steps starts with the presentation of the
extracted floor from the map data in these steps. This is shown in figure 8.2. Like the final
map, the extracted floor shows that the scans are very well aligned to each other. We can
also see that each scan expands the area of the extracted floor. This lets us conclude that
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Figure 8.1: Final map for a room after 21 exploration steps. The left image shows the
final map with robot poses given by the odometry of the robot. The right image shows
the result obtained from the SLAM algorithm. The exploration system builds up the right
result by integrating each new scan in each exploration step with the SLAM algorithm.

the exploration algorithm works as it should. We gain knowledge with every new scan
and we can use this knowledge to expand the area that is accessible to the robot. The
later extracted floor maps even open the path through the door in the lower left corner of
the room. If we observed the exploration over more steps the robot would leave the room
through this door.

The development of the extracted floor over the exploration steps also shows that the
outlier filtering for the raw data works very well. A bad outlier filtering would yield red
obstacle pixels in the images showing the extracted floor. We do not observe an increase
of such unreal obstacles over the exploration steps. Of course, the robot moves in a static
environment. If we had to deal with a dynamic environment with moving objects, people
and so on, a more sophisticated approach had to be applied to overcome the problem
of temporary obstacles. Otherwise, such obstacles would pollute the static map with
temporary data. This would yield the same problems that come with a bad outlier filtering
or a bad alignment of scan data.

After showing the extracted floor for the first 20 exploration steps we continue by
showing the corresponding distance transform images for the extracted floor in figure 8.3.
In these images we observe that small gaps in the extracted floor yield large holes in the
accessible floor. This is due to the erosion of the floor by the robot radius. Although it
would be possible to perform some preprocessing to artificially close these gaps, we find
that this is not necessary. Due to the systematic exploration approach the gaps in the
floor are naturally closed over time.

A comparison of the eroded distance transform images with the images of the extracted
floor makes some requirements to the map quality obvious. Thin passages, like the door



8.1. EXPLORING A ROOM 71

Figure 8.2: Extracted floor during exploration. The images show the extracted floor for
20 consecutive exploration steps. The floor is shown in gray. Black areas mark unexplored
regions and obstacles are shown in red. The sequence goes from left to right and top to
bottom. It is visible that the SLAM algorithm aligns new scans very well to the map.
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Figure 8.3: Distance transform of the extracted floor during exploration. The images show
the distance transform for the first 20 exploration steps. The resulting floor is already
eroded by the robot radius such that only the accessible area is visualized.
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Figure 8.4: Cost map during exploration. The maps show the costs of moving to each
position of the accessible floor for the first 20 exploration steps. Brighter pixels visualize
high costs while darker pixels represent low costs. Black pixels also represent non-accessible
areas.
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Figure 8.5: Knowledge map during exploration. The maps show the artificially defined
knowledge for every location and each of the 20 exploration steps. Each scan generates
knowledge within a radius of 1 meter. Note that the brightness that defines the grade of
knowledge is not comparable between different images. This is only a measure within a
given map.



8.1. EXPLORING A ROOM 75

Figure 8.6: Next point evaluation map during exploration. The evaluation for possible
next points is shown for the first 20 consecutive exploration steps. After the evaluation,
the robot will move to the point that is marked with the brightest point in the maps. It is
easily observable that the images combine the cost and knowledge maps.
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on the lower left of the room, are made even thinner by the erosion of the floor. Therefore
the scans have to be very well aligned to keep these passages open. A passage through a
door might become closed if a scan was misaligned by perhaps 20 centimeters. The robot
has very limited space to move through such passages. Obviously, the map quality in our
case is good enough so that the thin passages stay open. This is an important property of
maps used for exploration systems.

The next maps we observe for each exploration step are the cost maps which are shown
in figure 8.4. In these images we can easily detect the current robot position. This position
is given by a black spot and continuously increasing costs with increasing distance from
this spot. We also see which locations can be reached in a direct movement and which
positions are only accessible by moving over the artificially generated landmarks. The
borders between such directly and indirectly accessible areas are marked by incontinuities
in the cost function.

After taking the cost maps under scrutiny we also have to look at the knowledge maps
to decide where the robot should move to. The knowledge maps for our example are shown
in figure 8.5. In these maps we observe that each scan adds knowledge within the given
knowledge enhancement radius. The locations for each scan are easily identifiable in the
maps. We note that the scan locations are very well distributed. This is evidence for the
good behavior of the exploration system. With each new scan the robot adds data on the
frontier of the already known area.

Finally, we examine the evaluation maps that combine the cost and knowledge maps
on the basis of equation 5.3. After looking at these maps it is very comprehensible where
the robot will move to in the next step. Typically this will be a location in the near of
the robot and on the accessible floor for which the robot has not yet collected a lot of
knowledge.

8.2 Evaluating the final result

The final map produced by the exploration system is an accumulation of single laser range
scans that are very well aligned to each other. We already showed that the alignment of
the scans works very well. In this section we will have a more detailed look at the result.
Of course, there are inaccuracies in each scan and the question is how these inaccuracies
are integrated into the map as a whole.

We will first look at scanner artifacts. As already mentioned the scanner is not able
to accurately measure the distances to highly reflecting surfaces or to strongly absorbing
surfaces. Figure 8.7 shows the accumulation of inaccurate scanner data for a reflector on
the leg of a table. It can be seen that each scan measures a distance to the reflector that
is about 10 centimeters too short. The result for the accumulation of several scans is that
we obtain a point cloud around the reflector instead of points that accurately represent
the surface. Of course, these bad data points imply a locally bad quality of the map that
also has an effect on the exploration system. For the exploration system, the accumulated
scanner data looks like data from a pillar instead of data from a thin leg of a table. In



8.2. EVALUATING THE FINAL RESULT 77

Figure 8.7: Accumulation of inaccuracies for highly reflective surfaces over several scans.
The left image shows a reflector on the leg of a table, while the right image shows the
corresponding part of the map consisting of 21 scans.

this example the accumulated inaccuracies are not critical, although if such inaccuracies
would occur for the measurements of the distance to a door frame, the accessible floor
might get eroded and close a passage through the door. The accumulated inaccuracies
also have an effect on surface reconstruction techniques. Of course, no meaningful surface
can be reconstructed for the reflector.

Another scanner artifact is the total mismeasurement of distances to strongly absorbing
surfaces. An example for this can be seen in figure 8.8. Here, a LCD monitor on a table
is shown. This monitor features a strongly absorbing surface and is not detected by any
of the scans. This is an interesting observation, since one could assume that at least
some scans produced acceptable data for such surfaces. This is not the case. There exist
surfaces that are absolutely not detectable by the used laser range finder. In this case,
the non-detectable surface is not problematic. However, we can imagine situations where
non-detectable surfaces correspond to obstacles for the robot that are not detected. If, for
some reason, there is a floor detected below such an object the exploration system might
let the robot move through the object and produce a collision.

The accumulation of inaccurate and erroneous scanner data yields fundamental problems
in the construction of a map. Although these problems are not critical for our purpose so
far, a more sophisticated fusion of the scanner data is possible and desirable. For some
scanner artifacts, the additional usage of another type of scanner and an integrated multi
sensor data fusion also is a solution. This is, for example, the case for non-detectable
surfaces.

Finally, we evaluate the surface reconstruction by ball pivoting for the map consisting
of 21 scans. An example for a part of this reconstruction is given in figure 8.9. It can be
seen that several details in the map are visible. This applies to chairs, monitors, tables and
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Figure 8.8: Non-detectable objects in multiple scans. The left image shows a LCD monitor
on a table, while the right image shows the corresponding part of the map consisting of 21
scans. The monitor is not detected in any of the scans, independent of the angle etc. to
the monitor.

Figure 8.9: Surface reconstruction by ball pivoting for a map consisting of 21 scans aligned
with the ICP SLAM algorithm. Several details of the map, like chairs or monitors, are
visible.
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so on. Although, a comparison with the surface reconstruction for a single scan, like it is
given in figure 7.6, reveals that the algorithm yields qualitatively better results for single,
isolated scans. This is easily understandable since the map accumulates the inaccuracies
of all scans. A triangulation for such a representation of the map always has the problem
that it has to deal with all inaccuracies in all scans. This does not only apply to the Ball
Pivoting algorithm but to all triangulation algorithms. To handle this problem, the scans
had to be fused into the map in a more sophisticated way that would not just add all scan
points but use these points to correct previous measurements. However, for the proof of
concept that is demonstrated in this diploma thesis, the result of the reconstruction is
very good.

8.3 Summary

In this chapter we showed the results for the exploration of a room. We demonstrated
that the exploration system works the way it is supposed to work. It produces a very high
quality map which is, of course, needed since the exploration system itself relies on the
map. However, for other purposes the map quality may have to be even higher.

In section 8.1 we demonstrated the exploration process. It became clear that all the
components of the exploration system work as they should and that they form a good
exploration system as a whole. Finally, we took a critical and detailed look at the final
result of the map in section 8.2. We saw how scanner inaccuracies accumulate in the map
and found that this is a challenge for visualization purposes.





Chapter 9

Summary and Outlook

In this diploma thesis we developed an autonomous integrated mapping and exploration
system. On the hardware side, this system consisted of a robot on which a laser range
finder with a rotation platform was mounted. The physical components of the system
allowed us to take 3D scans of the whole space from each robot pose. However, the focus
of this work was the development of the system’s software components. The software
system navigated the robot to locations from which it was supposed to take scans of the
environment. It then took the scan data to build up a 3D map by applying the ICP SLAM
algorithm. Finally, the map was used to determine the next scan location for the robot.
Each component of the system was able to run on its own and the system as a whole
formed a distributed software architecture.

We motivated the work and gave a general overview of the system in the introductory
chapter 1. Next, we proceeded by introducing the theoretical background of the SLAM
problem in chapter 2. In this chapter we also motivated the choice of the ICP SLAM
algorithm for the exploration system. Afterwards, the physical components of the system
were described in chapter 3. The consecutive chapters introduced the software components.
This started with a detailed discussion of the ICP SLAM algorithm and its implementation
in chapter 4. The second software component we developed was the exploration program
in chapter 5. In this chapter we described how the floor was extracted from the scan
data, how we set landmarks on this floor, and how we choose the next robot location
and move there. Chapter 6 then introduced the simulation program for the robot. This
component was interchangeable with the program that connected to the real robot. After
presenting the simulation program we also presented the visualization program for the
map in chapter 7. This program visualized the map in two ways. The first visualization
was a simple representation of the sampled scan points. The second visualization showed
the environment’s surface reconstructed by the Ball Pivoting algorithm. We discussed
this algorithm in detail. Finally, we discussed the results for the exploration of a room in
chapter 8. This discussion revealed that the exploration system as a whole worked very
well. However, we also discussed the disadvantages of our approach.

Of course, an outlook on possible consecutive developments of the system has to address
the disadvantages of the current approach. These disadvantages were primarily visible in
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the visualization of the map and had the potential to affect the exploration algorithm. We
mentioned that the inaccuracies of all scans accumulate in the map. This is a problem that
we can address with another representation of the map. At the moment, the map is just a
set of robot locations with associated scan data. However, it is possible to replace this
representation by a so-called occupancy grid map [3]. Such a map subdivides the space
into a regular grid and stores in each grid cell the probability that the cell is occupied
by matter. Occupancy Grid Mapping has several important advantages. First of all, the
inaccuracies do not accumulate, instead the opposite is the case. Multiple scans in the
same region reduce the inaccuracies in the map. Occupancy Grid Mapping also suppresses
wrong data in the map whenever newer scans indicate that this data is wrong. This is an
important property if dynamic environments are to be explored. Note that we hold two
maps of the environment in the exploration system. One map in maintained by the SLAM
program and another map is maintained by the exploration program. Since the SLAM part
of the system works very well, we can stick to the present map in this component. However,
we have the option to replace the ICP SLAM algorithm by a 3D version of FastSLAM with
Occupancy Grid Mapping. It is possible to just replace the present map by an occupancy
grid map in the exploration component and use this map also for visualization purposes.

In principle, an occupancy grid map offers many options for the visualization. First of
all, Direct Volume Rendering is a large field that features many techniques to visualize
such a map. If a surface reconstruction is required, the occupancy grid map may also be
preprocessed on the basis of the Marching Cubes Algorithm [34].

Another improvement can be applied to the scan acquisition process. We mentioned that
the outlier filtering works very well. This is true, but on the other side, the preprocessing
of the scan data on the microcontroller board, as well as the outlier filtering, reduce the
number of valid data points to two thirds the number of the original scan points. Here,
it is possible to replace the error filtering mechanisms with error correction mechanisms.
Such an improvement would not drastically affect the exploration, but it may have an
effect on the results of the visualization.

Finally, an obvious improvement of the system would be the extension of the approach
to uneven environments in which the robot has 6 degrees of freedom. However, this is a
complicated task since the floor extraction of the exploration component, as well as the
path planning, are designed to work on flat environments.
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