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D4.3 - Domestic Robot Handbook 2014

Executive Summary

This robot handbook is part of the public deliverable Final Domestic robotic platform pro-
totype for the second experimental loop (D4.3) of the European integrated research project
Robot-Era, www.robot-era.eu. It documents the hardware, software, and services architec-
ture of the Domestic Robot, a state-of-the-art indoor service robot designed to help elderly
people with their daily activities. Together with the companion reports of the project (D3.3,
D3.4, D5.3, and D6.3), the document describes the robot systems and ambient intelligence
architecture to be used in the upcoming second experimental phase of the project.

The report is a revised and extended version of the original robot handbook D4.2 [58].
Based on user-feedback and experiences gained during the first experimental phase of the
project in 2013, several S/T requirements were identified and documented in deliverable
D2.8 [52]. The corresponding changes and improvements have all been implemented. The
result is a more capable and more robust robot platform for the real end-user tests.

Hardware updates

• redesigned and improved outer appearance of the robot, motivated by analysis of the
user-acceptance during the first experimental loop,

• minor hardware changes to improve robot capabilities, including updated arm and
main-pillar positions and larger object transportation tray,

• additional sensors for manipulation tasks and robot docking,

• additional on-board computers for better performance.

Notable software improvements

• improved HRI and speech manager, see D5.3 [60],

• meta-tuples based PEIS interface (“exekutor”), see D3.4 [56],

• multi-modal object perception, combining PCL, SIFT, and AprilTags,

• PCL-based human tracking to complement the AmI user tracking,

• sensor-based robot-to-human object handover capability,

• collision-aware object manipulation based on the MoveIt! framework.

Improved Robot-Era services

• additional robot services implemented and exported to PEIS,

• reconfiguration of services using meta-tuples,

• Doro/Coro object exchange using custom objects and basket,

• improved implementation of laundry and object transportation tasks,

• initial version of cleaning tasks,

• services regression testing using multi-robot Gazebo simulation.

1
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1 Overview

This handbook summarises the updated hardware, software, and service architecture of the
Domestic Robot, short doro, of project Robot-Era. The report is a revised and extended
version of the original robot handbook D4.2 [58]. It documents the changes made to the
robot hardware and software based on the experiences gained during the first experimental
loop of the project. For convenience, those parts of the text that have been added or are
significantly changed are marked by vertical bars in the margin of the document.

Together with the companion reports D3.4 (Ambient Intelligence) [56], D5.3 (Condo-
minium Robot) [60], and D6.3 (Outdoor Robot) [61], this handbook documents the overall
system to be used and tested during the upcoming second experimental loop of the Robot-
Era project.

See Fig. 1 on page 4 for a photo of the updated robot prototype. Only minor changes were
made to the basic robot hardware. The main pillar with the head was moved backwards a
bit to make room for the transport tray on the robot and the mount position of the arm was
changed slightly. A new cover was designed for the robot based on user-feedback collected
during the first experimental loop. The overall software architecture remains unchanged, but
several improvements have been integrated to track developments of the ROS and MIRA
frameworks, and to improve the robustness of the robot. Most of the development effort
has concentrated on refining and implementation of the end-user driven services provided
by the robot.

Please visit the project website at www.robot-era.eu for details about the Robot-Era project
and its background and goals. The core objective of the Robot-Era project is to improve
the quality of life and the efficiency of care for elderly people via a set of advanced robotic
services. Going beyond the traditional concept of a single standalone robot, the project
considers a set of different robots operating in a sensor-equipped intelligent environment,
or smart home. Besides the actual design and implementation of the robot services, the
project also monitors the feasibility, scientific/technical effectiveness and the social and
legal plausibility and acceptability by the end-users.

Three robot prototypes are developed in the context of the project, each targeting different
scenarios identified as relevant for the end-users in the initial phase of the project. The
outdoor robot provides transportation, guidance, walking support and surveillance services,
and the services of the Condominium Robot centre around transportation tasks. The Domes-
tic Robot is a classical indoor service robot equipped with advanced sensors for environment
perception and a robot arm and gripper to manipulate household objects.

As described in chapter 3.1, the overall software architecture for the Robot-Era services con-
sists of several layers, where the PEIS system provides the ambient intelligence (AmI) that
manages the sensor-network and the different robots in the system. The end-user requests
services from the whole system, which implies that no advanced human-robot interface is
required for the Domestic or Condominium Robots. Details of the AmI layer and software
have been documented in the project reports D3.1, D3.2, and D3.3 [53, 54, 56].
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Figure 1: The Domestic Robot combines the SCITOS-G5 differential-drive platform, the
Kinova Jaco 6-DOF arm with integrated 3-DOF hand, and a pan-tilt sensor-head. Sensors
include one front and one rear laser-scanner, two high-res cameras equipped with different
lenses, and the Asus XtionPro RGB-D camera. Voice input is possible via the XtionPro
microphones or additional microphones. The handle on the right carries the iPad tablet-
computer that provides a touch-screen interface and additional sensors.
The picture shows the Y3 redesign of the robot with the new cover, foldaway moving handle,
and the object transportation tray.
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Outline

This report is part of the public project deliverable D4.3, which consists of the actual Domes-
tic Robot prototype, and provides the tutorial and handbook information about the physical
robot and the software developed to control it. The handbook is structured into three main
chapters, followed by reference information about software installation and setup:

• Chapter 2 summarises the hardware of the Domestic Robot, starting with a short
summary of concept studies and the aspects of user-friendliness and acceptability
that guided the design of the robot in section 2.1. Section 2.3 describes the SCITOS-
G5 mobile differential-drive platform selected as the mobile base of the Domestic
Robot, while section 2.4 summarises key data of the Kinova Jaco 6-DOF arm and
integrated gripper selected as the manipulator on the robot. Section 2.5 describes
the movable (pan-tilt) sensor head equipped with one Asus XtionPro RGB-D depth-
camera and two standard RGB cameras. The head also includes microphones as part
of the XtionPro device. Section 2.6 sketches the hardware devices used to control the
robot; a standard iPad tablet PC provides a friendly user-interface to the end-users,
while a joystick interface allows expert users to tele-operate the robot.

• Chapter 3 describes the software architecture designed for the Domestic Robot, which
is based on the ROS middleware, and the integration into the intelligent environment.
A general overview of the software is presented in section 3.1, followed by sections
describing the key components of a service robot, namely navigation 3.2, environment
and object perception 3.3, object manipulation 3.4. Additional information about
the Kinova Jaco robot arm is collected in section 3.5 and the integration into the
MoveIt! motion planning framework is described in 3.6. The complete ROS/Gazebo
simulation model of the robot is explained in 3.10. Finally, section 3.11 motivates and
explains the design of the PEIS-ROS bridge, which integrates the Domestic Robot
into the ambient intelligence and the multi-robot planner of the smart home.

• Chapter 4 provides the complete list of all services of the Domestic Robot. The list
is subdivided into three groups of increasing complexity, starting with a set of basic
robot skills in section 4.1. These skills are then combined and nested to provide
the intermediate services described in section 4.2. These services form the basis for
the first experiment phase of project Robot-Era. The last section 4.3 summarises
the advanced high-level robot services that form the core of the scenarios developed
by the project. Each service corresponds to a complex task that requires autonomous
operation of the Domestic Robot in close interaction with the ambient sensor network
and the end-users.

• Chapter 5 provides reference material about download, installation, and set-up of the
major software components for the Domestic Robot.

• The handbook concludes with a short summary and the list of references.
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Domestic Robot Updates for the 2nd Experimental Loop

Following analysis of the first experimental loop [62], no major changes were required to
the basic robot design. However, evaluation of the user-feedback resulted in a couple of
changes to improve the visual appearance and acceptability of the Domestic Robot:

• new robot cover and brighter colours. The material is now robust plastic, easier to
clean and more rugged than the 2012 soft cover,

• enlarged removable tray for object transportation,

• different mount positions for the Jaco arm and the main robot column,

• updated robot head with a “cap” for friendlier appearance,

• additional gyroscope to improve localisation and navigation,

• additional camera to help precise-docking and manipulation tasks,

• additional on-board computers for extra I/O and performance.

See deliverable D3.4 [56] for details of the updated ambient intelligence software and the
speech/tablet based user interface. Several updates of the Domestic Robot software were
designed and implemented during 2014, in order to improve the usability and the robustness
of the robot software during the 2nd experimental loop. The following list summarises the
most significant changes to the Domestic Robot software:

• refined service-architecture with better feedback and status messages from the robot,

• supervisor node on the robot to schedule and manage incoming service requests, to
reduce the amount of robot state in the AmI layer and planner,

• watchdog node on the robot to monitor all required ROS nodes, to protocol failures,
and to restart nodes automatically when required and possible,

• partitioning of ROS nodes between several computers (on-board and off-board) for
load-balancing and better performance,

• rewritten launch files and new helper programs for fast software start-up and easier
re-start during the experimental tests,

• integration of the AprilTags fiducial marker [1] recognition software into the percep-
tion architecture,

• improved perception architecture with parallel execution of the point-cloud cluster-
ing, SIFT-based object detection, and fiducial marker based detection pipelines,

• improved manipulation capabilities including pick&place of known object, object
transportation, use of the robot tray,

• support for object handover tasks using visual and force sensing,

• initial implementation of cleaning motions,

• improved (marker-based) docking of the Domestic and Condominium Robots,

• support for Kinect-based 3D collision-aware navigation,

• preparation of a simplified tele-operation interface for the real testing (in user’s
homes) of the second experimental loop.
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2 Hardware

This chapter documents the hardware components of the Domestic Robot. See Fig. 1 on
page 4 for a photo of the completed robot. Please refer to project report D4.1 [57] and two
conference papers [7, 10] for additional details and the explanation of the design process
including the selection of the sensors and the Jaco manipulator.

2.1 Concept and General Robot Design

See Fig 2 for an early artists’ rendering of the Domestic Robot. The robot itself is a fairly
typical mobile service robot, combining a wheel-based mobile platform with a robot arm
and gripper to perform manipulation tasks. The sensor setup is also fairly common, with
laser-scanners on the mobile base for localisation and obstacle-detection, and a moving head
with cameras and microphones.

Unlike many service robot prototypes, which are designed for industrial environments or
research laboratories, the Domestic Robot is meant to help elderly people in their daily lives,
moving and operating in close proximity with the users. End-user acceptance of the robot
is therefore a major concern of the project, and studies and questionnaires have been used
to characterise the properties required for the robot [49]. Several aspects were identified
as crucial for the acceptability of a service robot in elderly care scenarios, including the
affordances offered by the robot, the safety guarantees, and last but not least the aesthetics
and friendliness. In short, the robust must be capable of the tasks expected by the users, but
must be non-obtrusive and integrate into the living environments.

One direct result of this study was the selection of the manipulator. Most robot arms are
designed for performance and have a clearly industrial look, even if the outer appearance is

Figure 2: Designer concept of the Domestic Robot and a photo of the first prototype. With-
out the cover, the main hardware components are clearly visible.
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Figure 3: Concept sketches of the Domestic Robot with a tilting handle.

kept smooth (e.g. KuKA light-weight robot). In addition to its certification for wheel-chair
tele-operation and therefore safe operation around humans, the smooth outer appearance
and low operational noise of the Kinova Jaco arm were clear selling points. The first two
prototypes of the Domestic Robot have been equipped with only one arm each, but the
design and payload of the Scitos-G5 platform would also allow the installation of two arms
on the robot. This would enable the robot to perform a larger set of manipulation tasks, but
at a significantly higher price point and with much more complex software.

2.2 Updated design for the second experimental loop

The overall hardware of the robot performed well during the first experimental loop [62],
but a couple of minor changes were implemented after analysis of the user-evaluations. See
deliverable D2.8 [52] for the description of updated requirements and the proposed list of
changes to the robot systems.

2.2.1 New robot cover and design changes

The most obvious change of the robot is the new design and cover, motivated by analysis of
the user-feedback from the first experimental loop. A very important issue, already known
and strongly confirmed by the answers of the interviewees, concerns the too large dimen-
sions of the two indoor robots, and especially of Domestic Robot: according to most of the
people interviewed, in fact, the robot wouldn’t able to integrate into their homes because
of its large size. To the question “If you were a technical developer and you could change
anything you want regarding the robot, what are the things you would change?”, many in-
terviewees gave answers such as: “I would reduce the size of the robot” or “bulky size” or
“smaller dimensions” or even “change appearance, it looks obese (bottom part)”.
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Figure 4: Photos of Domestic Robot for the first experimental loop (left) and sketch of the
updated design for the second experimental loop with the new arm position and changed
iPad tablet orientation highlighted (right).

Since it is not possible to decrease the overall size of the robot for technical reasons (it
would be impossible to change or reduce the size of the mobile base or the arm of Domestic
Robot), we tried to lighten its outer face. For example, to the question: “Do you have any
doubt about the look of the robot?” one interviewee said “I do not like the cover below, the
material is an ugly dress”. To this effect, the covers of both robots have been redesigned
with more rounded and enveloping shapes, in order to mitigate the sense of dissimilarity
shown by the interviewees between the lower and the upper part of the two robots. We tried
to achieve this by reducing the use of soft parts and to realise the two covers in a single shell
front and rear by the process of thermoforming plastic (ABS and PMMA) with specially
shaped wooden mold. In this way, as shown in figure 4 the robot has a more linear and
compact appearance, in agreement with the feedback detected by interviews with users.

Also, the internal structure of the robot has been changed in order to succeed in what has
been explained so far. The middle plate of Condominium Robot has been redesigned ac-
cording to the shape of the mechanical system of objects exchange (see figure 5); the Do-
mestic Robot has adopted the same new form of plate, to simplify the production and stan-
dardisation of the various components of the two robots. The central pillar of the frame
of the Domestic Robot has been moved to the back, the same as it is currently shaped the
Condominium Robot. In this way we obtained a tray (removable and washable as in the first
version of the robot) with a form more congenial to the movements of the arm, see figure 4.

In the user evaluations, the Condominium Robot received the better feedback probably be-
cause of its more linear and symmetrical appearance. Some interviewees considered the
arm size of the Domestic Robot too big and the colour too dark; they also pointed out that
two arms would have been better than one. For example, to the question: “If you were a
technical developer and you could change anything you want regarding the robot, what are
the things you would change?” two users answered “arm more stable and not black, two
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Figure 5: New and lighter colour scheme based on RAL 5012 (right).

arms, because it seems amputee” and “tablet front, put both arms”. To the question: “Do
you have any doubt about the look of the robot?” some answers were: “arm too dark” or
“arm bulky” or even “better for Doro two arms and front screen”. We contemplated the idea
to colour the arm of a lighter colour but this is very difficult from a technical and economic
point of view; we also discarded the idea of inserting a second arm without functions on the
opposite side of the robot. Finally we were able to redesign the new cover only trying to
incorporate the arm in a better way. Moreover, as in the first version of the robot, we tried to
balance the figure with the presence of the tablet on the other side of the robot, but rotated
90 degrees and, therefore, with the interface visible from the front (see figure 4).

Another reason that explains some preference for the Condominium Robot is probably the
yellow colour of the tie and of the tray, namely a warmer colour and garish rather than
the blue used for same parts of Domestic Robot. Regarding this fact, during interviews
some respondents made statements like: “Doro colours too gloomy” and ‘´Doro should
have brightest colours”. For this reason, we decided to keep the grey colour for the main
cover and for the head, the yellow colour for the tie and the tray of Condominium Robot
and change the colour of the tie and the tray of Domestic Robot: according to all partners,
the final choice was a brighter and lively colour like light blue (figure 5).

Finally, the Asus XtionPro camera has been fixed better than before (figure 6). We also cre-
ated a sort of coloured headgear. We thought this additional accessory to better characterise
the Domestic Robot. In the design of the first version of the robot we tried to combine form
and function deciding to dress it up with a uniform: the housemaid. Despite our best efforts,
during the trial, the users who participated have not jumped at these aspects. For this reason
and because it is important that the appearance of the robot communicates its basic nature to
reach the highest degree of acceptability, we thought to develop one headgear ad hoc with
soft materials (figure 6).
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Figure 6: Photos of the redesigned robot head with improved Asus XtionPro camera holder
and the soft-cloth headgear.

2.2.2 Tilting handle

While the original design concept already included a tilting handle (see figure 3), a simple
fixed handle was used during the first experimental loop. The handle is designed to helping
users when trying to get up from a chair or the bed, and is the means to grasp and control
the robot during the indoor walking-support scenario, see figure 3.

While the fixed handle provided a simple and very robust solution, the handle reduced the
ability of the robot to navigate in narrow spaces and increased the risk of collisions or
accidents when the handle was not used for walking-support.

Therefore, a new handle was designed and implemented that is aesthetically and function-
ally compatible with the rest of the covers of the Domestic Robot. The handle remains in
vertical position when now used, thanks to a specially designed return spring (figure 7). The
main components of the handle are square aluminium rods (20x20 mm2) which are clothed
with removable, washable and customisable foam and fabric.

Figure 7: Design sketch and two photos of the redesigned tilting handle of Domestic Robot.
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Fully autonomous operation of the robot is not planned for the walking-support scenario.
Instead, switches or strain-gauges are installed on the handle, allowing the user to drive the
robot around. The sensors for moving the robot by the user are inserted within the foam.
Pushing the buttons, the user can drive the robot forward, left and right. During driving,
the robot software checks the laser-scans from the robot sensors and automatically stops the
robot to avoid collisions.

2.2.3 Updated sensors and computers

In addition to the changes of the outer appearance of the Domestic Robot, three minor
functional changes have been applied.

• A gyroscope sensor was added to the Scitos-G5 platform to continuously measure and
correct the robot orientation. The sensor drastically improves the localisation preci-
sion of the robot since most of the localisation errors are caused by wrong rotation
readings caused by drift and wheel-spin on slippery floor.

• Two additional computers (Intel NUC D5250WYK) were installed on the robot to
provide extra CPUs and memory for the complex robot software. The overall sys-
tem performance is increased roughly 3× over the original (single-PC) design. The
NUC computers also provide USB3 and USB2 connections for additional peripheral
devices.

• An additional camera has been installed on the side of the robot, looking towards the
floor. The camera is used for precise docking and manipulation tasks, e.g. detection
and localisation of objects on the floor and for the Garbage Transportation scenario.

Figure 8: Updated Scitos-G5 robot platform with gyroscope sensor and two compact Intel
NUC modules to increase processing power.
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2.3 SCITOS G5 platform

2.3.1 SCITOS-G5 mobile advanced

Differential-drive robot base:

• 582 mm x 7537 mm x 617 mm (H x L x W)
• two driving wheels, one caster wheel
• high-torque EC gear motors
• 24 ultrasonic range finders, range 15..300 cm,

100 ms sampling time
• gyroscope sensor
• bumper ring with mechanical emergency stop
• tools and slot nuts for fast mounting of additional devices

Batteries and power-supply:

• lead-acid gel batteries, 24 V, 1.008 Watt-hrs
• integrated battery charger
• floor-contacts for automatic recharging
• on-board power supply: 2x 24 VDC (unregulated), 2x 12 VDC, 2x 5 VDC

Main Computer:

• Industrial embedded PC, Intel QM57 Express chip-set
• CPU: Intel Core-i7-620M (2 x 2,66 GHz, max. 3.333 GHz, 4 MB Cache)
• RAM: 1 x 2 GB PC8300 SODIMM, HDD: at least 250 GB, SATA II
• WiFi IEEE 802.11a/b/g, 4x SATA (3 free)
• 1x PCI (occupied), 1x Mini-PCI-E (occupied), 1x PCI-E(x1)(free)
• 1x VGA, 2x DVI/DVI-D, 1x 18/24 bit LVDS
• 2x 1000 BaseT Ethernet, 7x USB 2.0, 3x Firewire
• 1x PS/2, 1x LineOut, 1x Line-In, 1x Microphone, 2x RS232
• 15” touch-screen TFT display, 1024x768 pixels (unused in Y3 robot setup)
• Linux Ubuntu 12.04 / Fedora 14 (pre-installed and configured)
• MIRA and CogniDrive for navigation and localisation

Additional Computers:

• 2x Intel NUC D5250WYK
• CPU: Intel® Core™ i5-4250(2 x 1.3 GHz, max. 2.6 GHz).
• RAM: 8 GB, HDD: 80 GB, infrared sensor
• 1x VGA, 1x DP/HDMI, 2x USB 3.0, 2x USB 2.0
• Linux Ubuntu 12.04
• ROS software for perception and manipulation planning
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2.3.2 Sick S300 safety laser-scanner

• scanning range 270deg (reduced to 180deg by the cover)
• angular resolution 0.5deg
• distance measuring range up to 30 m
• support for user-defined safety zones
• Linux driver

2.3.3 Hokuyo URG-04LX laser-scanner

• scanning range 270deg (reduced to 180deg by the cover)
• angular resolution 0.35deg
• distance measuring range from 0.2 m to 6 m
• USB connection, Linux driver

2.3.4 Ultrasonic sensor ring

• scanning range 360deg
• distance measuring range from 0.15 m to about 3 m
• data more noisy and less reliable than laser-scanner data
• sensors are disabled for the 2nd experimental loop

2.3.5 Platform mounted camera

• standard, small high-res web-cam (Logitech C910)
• 5 MPixel @ 10 Hz, USB-2 connection
• object detection on the floor (especially boxes)
• used for manipulation scenarios

14



D4.3 - Domestic Robot Handbook 2014

2.4 Kinova Jaco manipulator

Figure 9: The 6-DOF Jaco arm with integrated 3-finger gripper, and a close-up of the three-
finger gripper.

• 6-DOF robot arm
• 3-DOF robot gripper
• 9 high-torque DC motors, planetary gears
• max. payload 1.5 kg, 50 W power
• cartesian speed limited to 20 cm/sec. for safety
• underactuated fingers close around small objects
• user-specified home and retract positions
• no-brakes, robot falls down on power-loss
• USB connection
• Windows .NET drivers and application code
• Linux Mono wrapper for Kinova DLLs

2.4.1 Kinova Joystick

• robust 3-axis joystick (x,y,twist)
• 2-axis or 3-axis control modes
• intuitive cartesian (x,y,z) hand translation
• intuitive cartesian (φ ,ψ,θ) hand rotation
• drinking mode, user-specified IK params
• 2-finger and 3-finger grasping

15



D4.3 - Domestic Robot Handbook 2014

2.5 Sensor head

2.5.1 Asus XtionPro

• PrimeSense RGB-D projector and

• 640x480 RGB

• 640x480 depth-image

• 30fps (colour)

• USB connection

• OpenNI driver

2.5.2 Camera DFK 31BF03

• 1/3” CCD
• 1024x768
• 30fps (mono), 15fps (colour), Progressive Scan
• IEEE1394 (DCAM 1.31)
• C/CS-mount

2.5.3 Camera DFK 21BF04

• 1/4” CCD
• 640x480 Progressive Scan
• 30fps (colour)
• IEEE1394 (DCAM 1.31)
• C/CS-mount

2.5.4 Directed Perception D46 pan-tilt unit

• payload 1.5 kg
• pan-range
• tilt-range
• RS-232 connection, 19200 b/s
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2.6 Human-Robot interface

2.6.1 Tablet-based Interface

• Apple iPad3 tablet
• 2048x1536 pixel RGB touch-screen
• WIFI 802.11a/b/g
• menu-based selection of Robot-Era services
• image and video playback from robot cameras
• emergency stop for the robot(s)

2.6.2 Teleoperation Interface

Sony PS3-Sixaxis controller

• 2 analog joysticks
• 4 analog buttons (trigger)
• 3-axis accelerometer
• 10 buttons
• wireless (Bluetooth) or cable (USB)
• ps3joy ROS stack

2.6.3 Tilting Handle for Walking Support

• custom design
• Tilting handle
• help the user to sit-down or get-up
• walking support
• integrated drive switches
• stop, forward, left, right
• ROS software checks laser-scanners
• robot stops in front of obstacles
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2.7 Safety Features

2.7.1 Emergency-stop switches

A red emergency switch button is located on right
side of the Domestic Robot, under the tablet loca-
tion. The switches currently only stops the SCITOS
platform, not the PTU nor the Jaco.

2.7.2 Bumper ring

The bumper ring is located on the base of SCITOS
platform. When the bumper is hit, the motor stops.

2.7.3 Safety laser scanner

The SICK S300 Safety Laser Range Finder (described in 2.3.2) is certified to detect obsta-
cles including lying-down humans inside its working range.
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Figure 10: Left: The robot arms evaluated for the Domestic Robot due their combination of
weight, payload, reach, mobile use, and costs. (a) Schunk Powerball arm, (b) Kinova Jaco,
(c) Schunk modular arm, (d) BioRob arm. Images courtesy of the vendors.
Right: Overall workspace of the Jaco arm on the Domestic Robot (ROS rviz). The arm is
mounted so that the fingers can just reach the floor.

2.8 Workspace analysis

The robot workspace analysis performed during 2013 (figure 10) was repeated during 2014
to take the changed mount-position of the arm and the new robot cover into account. See fig-
ure 11 for a few examples. As the arm was moved backwards by about 15 cm with respect to
the Scitos-G5 platform, the workspace in front of the robot has decreased correspondingly.
The best reach is just to the right of the robot, and the figure shows the reachable workspace
when trying to grasp objects from the floor and an example scenario suggested by project
partner YOUSE.

Figure 11: Examples of arm workspace analysis from the updated arm position.
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3 Software

This chapter summarises the overall software architecture for the Domestic Robot and pro-
vides tutorial information about all key software components. For detailed information
including the complete API and implementation notes, please refer to the Robot-Era wiki
and the SVN repository. See chapter 5 for detailed instruction on how to download, install,
and set-up the major components of the Domestic Robot software.

First, section 3.1 presents an overview of the software architecture, which is built around the
ROS robot operating system [35] framework and communication model. A short introduc-
tion of the major aspects of ROS is given in section 3.1.1 while section 3.1.2 summarises
the URDF robot model created for the Domestic Robot.

Next, section 3.2 explains the main software components for localisation and navigation of
the mobile robot, which uses a combination of ROS and the MIRA/CogniDrive software.
A MIRA-ROS bridge developed within the project creates the seamless interface between
CogniDrive and ROS.

Section 3.3 describes the sensing and perception architecture, including the low-level in-
terfaces to the cameras and the XtionPro RGB-D camera, camera calibration, and image
processing and the planned object-recognition and object pose tracking modules.

Section 3.4 sketches the overall concept for object manipulation and the core software mod-
ules available within the ROS framework. The Kinova Jaco robot arm is then presented in
section 3.5, including a short description of the hardware, the original Windows-based soft-
ware, and the details of the current ROS interface for the Jaco arm. For more advanced
manipulation tasks, collision- and context-aware motion planning is required. An overview
of the Domestic Robot manipulation action server and the MoveIt! framework is sketched in
sections 3.7 and 3.6. The next section 3.10 describes the simulation model of the Domestic
Robot created for the Gazebo [24] simulator.

Last but not least, section 3.11 explains the interface layer between the PEIS ambient in-
telligence network and the Domestic Robot software. The interface is based on dedicated
exekutor ROS nodes (previously known as tuplehandler) that register themselves with the
PEIS network, listening for incoming commands and parameters and providing feedback
and execution monitoring.

3.1 Overview

As explained in the previous project report Domestic Robot Specification [57], the overall
software consists of three major modules, with the PEIS ecology managing the whole multi-
robot system and sensor network. The ROS framework was chosen as the core of the robot
control while MIRA/CogniDrive is used for 2D-navigation and localisation. See Fig. 12 for
a block diagram that highlights the main components of the software.
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Figure 12: Software architecture of the Domestic Robot with the five main layers and key
modules. The topmost layer consists of the user-interface and the PEIS infrastructure, which
provides access to the ambient sensor network and other robots. It also includes the multi-
robot planner.
A collection of services implemented as PEIS-ROS exekutors forms the software interface
between PEIS and the Domestic Robot; see chapter 4 for a list of the implemented services.
All perception, navigation, and manipulation planning for the Domestic Robot is performed
by a large number of ROS software modules. A set of device drivers encapsulates the ac-
tual hardware actuators (SCITOS drive-train, PTU, JACO arm) and sensors (laser-scanners,
Kinect, Xtion-Pro, cameras).
The modules on the left show the different user-interfaces, where HRI indicates the main
human-robot interface for the end-user, while the rviz and MIRA-Center modules are tar-
geted towards expert-users and software developers.
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On the conceptual level, the architecture can be divided into five main layers:

1. the PEIS framework manages the complete Robot-Era system, including the different
robots and the sensor network in the smart home. It also provides the multi-robot
planner and interfaces with the main user-interface (HRI) which allows the end-users
to request services from the system.

2. the second layer consists of the Robot-Era services provided by the robots. They
correspond to and implement the abstract services that were extracted from the user-
questionnaires and are described in detail in the project scenario reports.

For each service, an exekutor process is created that listens to PEIS messages and
triggers the required robot skills. Note that new services can be added to the system
very easily, and existing services can be improved by corresponding changes in the
ROS layer, but without changes to either the PEIS nor the device-driver layers. See
chapter 4 for a list and description of the services planned and implemented so far.

3. the ROS framework is at the heart of the actual robot control. Our concept is heavily
based on the ROS setup for the PR2 robot, where the main changes are due to the
different control of the Jaco arm. Among others, we will share OpenCV and PCL
for image and depth-image processing, and the manipulation stack and OMPL for
pick-and-place tasks.

4. a set of device-drives that control the actuators and sensors of the robot. Several
drivers are available within ROS or the standard Linux installation, while the Mono
run time is used to wrap the Windows DLLs required for the Kinova Jaco. The MI-
RA/CogniDrive [43] software manages navigation and localisation of the SCITOS-
G5 mobile platform.

5. the fifth layer in the diagram consists of the hardware devices installed on the robot,
including the motors and odometry sensors on the SCITOS-G5, the front and rear
laser scanners, the camera-head with pan-tilt unit, and the Kinova Jaco arm.

The figure also sketches the different user-interfaces, namely the green blocks on the left
part of the diagram. The topmost block labelled HRI (human-robot-interface) summarises
the main end-user interface, which of course includes the interface to the PEIS system and
sensor-network as well as the service-request interface to the robots. This interface includes
speech in addition to the graphical user interfaces and is described in detail in a separate
technical report [54].

The three blocks below are targeted towards expert-users and software developers rather
than towards the end-user. The ROS nodes in the doro_control_gui and doro_teleop pack-
ages provide a simple dashboard-style user-interface and the joystick-based teleoperation
interface for remote control of the robot and debugging of the software. The RViz and
MIRA-Center modules are the standard user-interface for the ROS and MIRA/CogniDrive
frameworks.
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3.1.1 ROS

Within just five years since its introduction, the ROS framework or robot operating system
has established itself as one of the favourite middleware solutions for robot integration [35].
Due to the flexibility of the software and the liberal open-source licensing, ROS has also
been selected by several vendors of robot hardware and sensors for their own products. Visit
the ROS website at www.ros.org for an overview and the ROS Wiki at www.ros.org/wiki for
the list of currently supported software, documentation, and tutorials. By now, literally hun-
dreds of software modules are available, ranging from low-level device-drivers via sensor
data processing up to software for symbolic planning and human-robot interaction. This
includes several key software libraries, for example, the OpenCV computer vision library,
the PCL point-cloud processing library, and the OpenRAVE and OMPL motion-planning
frameworks.

Regarding the context of Robot-Era, ROS has been chosen as the core control framework
for several leading service robots, notably the PR2 from WillowGarage and the Care-o-bot
series designed by Fraunhofer. Additionally, the so-called MoveIt manipulation platform
integrates a large set of open-source software for constraints- and collision-aware motion-
planning and grasping, with optional back-ends supporting tactile-sensor based grasping.
For details, see section 3.6 below. This provides a unique base for the complex manipulation
tasks targeted by the Robot-Era services. As UHAM owns one PR2 robot and has long used
ROS for several other projects, the selection of ROS as the main control framework for the
Domestic Robot was an easy choice.

Despite the catchy name, ROS is not an operating system itself, but rather creates an easy-
to-use communication middleware on top of existing operating systems. However, ROS
provides a set of tools to manage large software projects, including a file-system structure
consisting of stacks and packages, a build-system capable of tracking and resolving software
dependencies. The software can be built and installed on several operating systems, with
Ubuntu Linux as the main developer platform, but other variants of Linux are supported as
well. There is also (partial) support on Microsoft Windows and on top of Android. However,
due to the large number of software packages and dependencies, building the framework on
the less well supported platforms is a huge task, and for now only Ubuntu Linux (12.04 LTS)
can be used for the Domestic Robot.

ROS nodes The central paradigm underlying ROS software development is a system of
largely independent but interacting software processes, called ROS nodes. That is, there
is no centralised single control level or monolithic master process. Instead, ROS nodes
can be added to a system at any time, allowing for the easy integration of new hardware
components and software modules.

Unlike some other frameworks, ROS is mostly language-neutral, and bindings are provided
for C/C++, Python, LISP. Additional language bindings are available as third-party soft-
ware, including the Ros-Java interface.

Roscore and parameter server In a typical ROS system, there are only two centralised
processes, namely the ROS core process and the parameter server. The roscore process acts
are the central registry for all software nodes, either on the local system or distributed over a
local network. It provides a look-up-service that allows other nodes to query the existing list
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of processes and to establish point-to-point communication between nodes. The parameter
server is used as the central repository of node parameters; it supports different namespaces
and provides an easy means to store and retrieve software parameters without having to
change (and recompile) code.

ROS topics and services There are two basic paradigms for communication between
ROS nodes, namely topics and services. The so-called ROS topics provide a unidirec-
tional communication channel between one or many publishers and an arbitrary number of
subscribers. A newly created ROS node advertises all topics it wants to publish with the
roscore lookup service. Clients that want to subscribe to a topic first query the roscore, than
negotiate a point-to-point communication with the corresponding publisher.

The base ROS system already defines a large set of standard messages, but one of the real
strengths of ROS is the ability to define a hierarchy of user-defined messages on top of
the available messages. The ROS build infrastructure automatically resolves the dependen-
cies and creates the header/class files required for easy access to message contents from
within the ROS nodes. For example, to specify the 6D-pose of an object, the geome-
try_msgs/PoseStamped message is used, which consists of a std_msgs/Header and a ge-
ometry_msgs/Pose. The header in turn is built up from a uint32 sequence number, a time
timestamp, and a string for the name of the coordinate frame (if any). The Pose consist
of one Point with three float64 (x,y,z) coordinates and one Quaternion with four float64
(x,y,z,w) values. This mechanism is very powerful and significantly reduces the effort to
define structured data-exchange between different nodes.

The second communication mechanism in ROS are the so-called services, which imple-
ment the request-response paradigm for communication between clients and a single server.
Again, the messages to be exchanged between the client and the server are defined using
the hierarchical ROS message format. Once a request has been sent, the client must wait
until the server responds, without any control of timeouts. This is also a frequent source
of deadlocks, as clients may wait indefinitely for a service not yet started or crashed. The
newer actionlib infrastructure provides a way around this problem, as an actionlib-service
goal request can be cancelled by the client at any time. Also, the server can provide a pe-
riodic feedback to indicate progress to the client before the original service goal has been
reached.

Stacks and packages Apart from the core run-time functionality, ROS also suggests a
specific file-system structure for its components, organised into stacks and packages. This
is backed up with a set of command-line tools for navigation and a complex build infras-
tructure that automatically traverses the inter-package dependencies declared in the mani-
fest.xml files and recompiles missing or outdated packages and messages. The overall setup
of the Robot-Era ROS software is shown in Fig. 13. There are several stacks, with one
stack for the Domestic and the Condominium Robot each, while the common perception
and navigation functions are collected in the robot_common stack.

Build system To manage the compilation of hundreds of software packages, ROS pro-
vides its own build system, with the catkin and rosmake tools. When configured accord-
ingly, rosmake can detect, download, and install missing system dependencies automatically
with help from the rosinstall tools. The search path for the different stacks and packages is
configured using the all-important ROS_PACKAGE_PATH environment variable. However,
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catkin_ws catkin (Hydro) root of the project repository
domestic_robot ROS stack for the Domestic Robot

doro_description Domestic Robot model and launch files
doro_gazebo_plugins Gazebo simulation utilities
doro_handbook_Y3 robot documentation (Y3 version)
doro_msgs robot specific messages
doro_teleop joystick/tele-operation tools
doro_peis PEIS services for the Domestic Robot
...

JacoROS alternative Kinova Jaco arm ROS stack
jaco_api Kinova API and CSharp-wrapper
jaco_description Jaco arm model and launch files
jaco_driver Jaco joint-level control node
...

condominium_robot ROS stack for Condominium
condo_description robot model and launch files
...

robot_common common robot software
cognidrive_ros MIRA-ROS interface
peis_ros Y1+Y2 PEIS services
...

exekutor Y3 PEIS interface
action_exekutor actionlib interface
look_exekutor pan-tilt unit interface
moveit_hand_exekutor Jaco Moveit PEIS
...

peis PEIS kernel and tools
...

Figure 13: Robot-Era software repository structure with ROS stacks and packages.

the implementation and details of the build system have changed with every major release
of ROS so far. This is one major obstacle when trying to upgrade existing ROS software to a
new release. For the second experimental loop, the Robot-Era Domestic Robot software has
been tested with version Hydro of ROS. All software components have been ported from
the deprecated rosbuild system to the newer catkin build system.

Real-time robot control ROS also includes support for real-time robot control, based on
the control architecture designed for the PR2 service-robot. The pr2_controller_manager
architecture defines the interface between higher-layer software and low-level controllers,
for example joint-position controllers with their PID parameters loaded from YAML config-
uration files. This architecture is expected by several ROS packages, including manipulation
stack. On the PR2, the controllers access the hardware via the EtherCAT bus at 1 kHz sam-
ple rate. This is not possible on the Domestic Robot, where the default cycle time of the
Jaco arm is just 10 Hz.
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Domestic robot

Scitos G5 platform

left wheel
right wheel
caster wheel

Sick S300  
Hokuyo URG
24x Sonar

Kinova Jaco arm

joints 1...6

finger 1..3

Camera head

DP PTU-46

Xtion-pro 

Camera

/base_odom

/cmd_vel

/base_scan

/sonar_XY

/base_scan_rear

/joint_states

/joint_states

/ptu/pan|tilt

/kinect_*

/camera_*

Figure 14: The basic structure of the URDF robot description for the Domestic Robot,
consisting of the SCITOS-G5 mobile platform with the wheels and navigation sensors, the
Kinova Jaco arm, and the camera head.

3.1.2 Domestic Robot URDF

A full URDF or universal robot description format model is the first step to integrate a
robot into the ROS framework. The model specifies the kinematics structure of the robot
parts (called links) and describes the joints, actuators, and sensors of the robot. To simplify
the description, the xacro preprocessor can be used to code parts of the robot with macros,
which can also simplify the geometric description by calculation of simple mathematical
equations in the macros.

Fortunately, individual URDF/Xacro descriptions already existed for several parts of the
Domestic Robot, including the Kinova Jaco arm and several sensors (XtionPro, cameras,
laser-scanners). A model of the SCITOS-G5 robot was converted from the existing MIRA
description and the datasheets. The resulting URDF model of the Domestic Robot is shown
in Fig 14. It consists of a modular structure that mirrors the main parts of the robot, namely
the SCITOS-G5 platform with motors and sensors, the Kinova Jaco arm, the Directed Per-
ception PTU-46 pan-tilt unit, and the Asus XtionPro and Firewire cameras on the sensor
head.

In addition to the geometry, the full URDF model of the robot also includes the weight
and the inertia properties of all components. The weight of the main platform was taken
from the SCITOS-G5 datasheets, while the inertia parameters were estimated based on a
cylindrical model of the mobile base. For the other parts of the robot, realistic estimates of
the components masses are used, but the inertial terms are only simplified. In particular, the
inertial parameters of the distal joints of the Jaco arm and fingers are larger than in reality,
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which does no harm on the real robot but helps to keep the simulation model stable.

Regarding the sensor setup of the robot, the existing models of the Sick S-300 and Hokuyo
URG-04LX laser-scanners provided by ROS were used, with the mounting position on the
mobile base taken from the SCITOS-G5 datasheet. For use in simulation, the ray geometry
and deadband settings were adapted to the current mounting positions as well. The sonar
sensors are also included, with the sensor model backported from the Gazebo ray_sensor
plugin. The sensor model should be accurate enough for single sensors, but does not model
the inevitable crosstalk when running a ring of 24 sonar sensors at the same time. ROS also
includes the URDF models for the Asus XtionPro depth-camera and the standard cameras
mounted on the sensor-head of the Domestic Robot.

So far, the default parameters are used for the intrinsic calibration of the cameras in the
URDF model; actual calibration data for the cameras is stored in external files as required
by the ROS camera drivers (openni2, gstreamer).

3.1.3 Coordinate-systems and tf

All geometry calculations in ROS are based on a right-handed coordinate system. For the
Domestic Robot, the base coordinate system was chosen according to the usual convention,
with the x-direction towards the front, y to the left, and z upwards. The actual origin is at
the floor (z = 0) and halfway between the two driving wheels. While this coordinate system
is difficult to measure from the outside, the choice of origin is typical for differential-drive
robots and simplifies the 2D-navigation calculations.

Managed by the ROS tf transformation library, a separate coordinate system is attached to
every part (link) of the robot as defined in the robot URDF model. See Fig. 15 for a screen-
shot of the robot in the rviz visualisation tool, with the tf coordinate-system markers enabled
and overlaid on the semi-transparent robot model. For each marker, the red, green, and blue
arrows correspond to the x,y,z directions respectively.

See Fig. 17 for a cut-out of the whole coordinate frame graph showing the most relevant
coordinate systems, including the wheels, Jaco arm with hand and fingers, and the sensor
head. The tf graph can be visualised at runtime using the tf view_frames command,

rosrun tf view_frames

which generates a snapshot of the tf graph, and saves the result in a file called frames.pdf.
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Figure 15: Coordinate frames of the Domestic Robot. The figure shows the rviz visualisa-
tion of all tf coordinate frames used in the Domestic Robot URDF model (red: x, green:
y, blue: z). The main coordinate system of the platform has positive x towards the front, y
to the left, and z upwards. In the default orientation, the pan-tilt angles are both 0, and the
x-axes of the Kinect/Xtion and the cameras point forward.
Also note the coordinate systems for the segments of the Jaco arm in the current mount posi-
tion. As shown, the jaco_shoulder_yaw_joint is at−π/2 radians. Moving the shoulder-yaw
joint of the arm to its zero position results in a self-collision with the central pillar of the
robot, and must be avoided. The ring of coordinate system indicators around the platform
base corresponds to the sonar sensors.

29



D4.3 - Domestic Robot Handbook 2014

Figure 16: Base coordinate frames of the Domestic Robot. The figure shows the base
coordinate system base_link, halfway between the driving wheels, and the two coordinate
systems for the front and rear laserscanners.

Figure 17: Coordinate frame graph of the Domestic Robot. The figure shows a zoomed-in
region of the total graph with the most relevant tf coordinate frames of the robot, including
the wheels, the Jaco arm with hand and fingers, and the sensor head with pan-tilt unit and
the cameras.
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3.1.4 Launching the Domestic Robot

To simplify operation of the Domestic Robot, the start up of the different required device
drivers and ROS nodes is managed by a set of ROS launch files. At the moment, the start
up files do not include all required nodes. It is recommended to run the launch files and
programs in different terminals for easier control and debugging:

shell-1> roslaunch doro_description domestic_bringup.launch
shell-2> rosrun rviz rviz
shell-3> roslaunch doro_moveit_config move_group.launch
shell-4> roslaunch visionhub start_perception.launch
shell-5> roslaunch doro_peis domestic_services.launch

Domestic Robot bringup The first step required for robot startup is running the domes-
tic_bringup.launch launch file. This file starts the different essential low-level processes
that are needed for robot operation. Therefore, this launch file is required, while the other
launch files are optional and may be skipped. For example, manipulation is not available on
the Condominium Robot, but the platform navigation and other Robot-Era services can be
started exactly as on the Domestic Robot.

In the current version, the bringup launch file integrates the following functions:

• uploads the Domestic Robot URDF to the robot_description parameter onto the pa-
rameter server.

• starts the MIRA software for control of the SCITOS platform, powering up the dif-
ferent sensors and the pan-tilt-unit, and enabling the front and rear laser-scanners.

• starts the cognidrive_ros bridge to interface the MIRA localisation and navigation
functions.

• starts the jaco_node for joint-level control of the Kinova Jaco arm and hand.

• starts the doro_ptu46 node for controlling the pan-tilt unit.

• runs the cameras.launch file which in turn starts the ROS nodes for the XtionPro
RGB-D camera and the firewire cameras.

• starts a set of utility nodes. This includes the doro_joint_state_merger node and the
robot_state_publisher required for providing the tf transformation library with up-to-
date robot joint-state data.

• starts the joy nodes for ROS tele-operation.

• starts the mjpeg_server webserver that allows clients to access the camera-images as
an MJPEG-format stream from any web-browser.

The Jaco arm should be powered-on and in its retract position (see section 3.5 on page 63
for details) before running the launch script. If initialisation of the Jaco arm fails, or if
the Jaco node needs to be restarted, it is possible to restart the arm using the provided
jaco_node.launch file:
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rosnode kill jaco_node
roslaunch doro_description jaco_node.launch

Do not launch the original Kinova jaco_node/jaco_node.launch file, which loads a wrong
robot configuration.

Depending on the system- and MIRA-configuration, several devices (e.g. laser-scanners,
PTU) may only be powered-up when MIRA is started, and it takes some time until the
devices have completed their own initialisation sequence. In particular, the PTU node is
known to crash sometimes, when the PTU initialisation is triggered and takes too long. You
can restart the PTU node easily,

rosnode kill ptu
roslaunch doro_ptu46 doro_ptu.launch

but this will not restart the PTU calibration sequence. If necessary, power-cycle the PTU
using the small power-switch on the PTU controller, to ensure that the PTU is in its zero
position before restarting the PTU node.

To visualise the current ROS node graph, including the interconnections via ROS topics
(but not services), run the rxgraph utility,

rxgraph -o rxgraph.dot
dot -T png -o output.png rxgraph.dot
dot -T pdf -o output.pdf rxgraph.dot

ROS nodes started during bringup The following list documents the key ROS nodes
started as part of the above launch sequence,

rosnode list
/cognidrive_ros
/diag_agg
/doro_joint_state_merger
/doro_telnet_server
/jaco_node
/left_camera
/right_camera
/floor_camera
/mjpeg_server
/ptu
/ptu_action_server
/robot_state_publisher_full_pos
/rosout
/rossink_1365097477302051982
/xtion_camera/depth/metric_rect
/xtion_camera/depth/points
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/xtion_camera/depth/rectify_depth
/xtion_camera/depth_registered/metric_rect
/xtion_camera/disparity_depth_registered
/xtion_camera/driver
/xtion_camera/ir/rectify_ir
/xtion_camera/points_xyzrgb_depth_rgb
/xtion_camera/register_depth_rgb
/xtion_camera/rgb/debayer
/xtion_camera/rgb/rectify_color
/xtion_camera/rgb/rectify_mono
/xtion_camera_nodelet_manager

where the /cognidrive_ros node provides the platform control and navigation, while
/jaco_node controls the arm, and /ptu controls the PTU. The laser-scanner data and
localisation is published by /cognidrive_ros, while /left_camera, /right_camera,
/floor_camera and /xtion_camera/* are the controller nodes for the RGB- and Xtion-
Pro RGB-D cameras.

ROS topics published after bringup Once the basic robot bringup-sequence has been
completed, almost 100 ROS topics are active on the Domestic Robot. The following list
documents the key ROS topics published as part of the robot-bringup launch sequence,
sorted alphabetically,

rostopic list

/base_odometry/odom
/base_scan
/base_scan_rear
/battery/server2
/cmd_abs_finger
/cmd_abs_joint
/cmd_rel_cart
/cmd_vel
/diagnostics
/diagnostics_agg
/doro/scitos/wheel_states
/hand_goal
/hand_pose
/initialpose
/jaco/joint_states
/jaco_finger_1_joint_controller/command
/jaco_finger_2_joint_controller/command
/jaco_finger_3_joint_controller/command
/jaco_joint_trajectory_action_controller/joint_trajectory_action/goal
/jaco_kinematic_chain_controller/follow_joint_trajectory/cancel
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/jaco_node/cur_goal
/joint_states
/left_camera/camera_info
/left_camera/image_raw
/left_camera/...
/right_camera/...
/floor_camera/...
...
/map
/map_metadata
/move_base/cancel
/move_base/feedback
/move_base/goal
/move_base/result
/move_base/status
/move_base_simple/goal

/ptu/ResetPtu/goal
/ptu/SetPTUState/goal
/ptu/cmd
/ptu/joint_states
/rosout
/rosout_agg
/tf
/xtion_camera/depth/camera_info
/xtion_camera/depth/disparity
/xtion_camera/depth/image
/xtion_camera/depth/image/compressed
...
/xtion_camera/depth/image_rect_raw
/xtion_camera/depth/points
/xtion_camera/depth/rectify_depth/parameter_descriptions
/xtion_camera/depth/rectify_depth/parameter_updates
/xtion_camera/depth_registered/camera_info
/xtion_camera/depth_registered/disparity
/xtion_camera/depth_registered/image
/xtion_camera/depth_registered/image_rect/compressed
/xtion_camera/depth_registered/points
...
/xtion_camera/driver/parameter_descriptions
/xtion_camera/driver/parameter_updates
/xtion_camera/ir/camera_info
/xtion_camera/ir/image_rect/compressed
/xtion_camera/rgb/image_color/compressed
...
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Figure 18: An example rviz configuration for control of the Domestic Robot. The
robot_description and tf topics should be selected, with map as the fixed-frame and
base_link as the root link of the robot. The 3D view in the centre shows the robot lo-
calised on the map, with overlaid laser-scans and coloured point-cloud from the XtionPro
on xtion_camera/depth_registered. Initial pose-estimates are provided on initialpose and
interactive 2D navigation via publishing to move_base_simple/goal.

rviz configuration The ROS rviz visualisation tool provides the main user interface for
the Domestic Robot software developer. The 3D-View included in the tool generates an
integrated view of the environment and map, the robot state including its position in the en-
vironment and the pose of the robot arm and pan-tilt-unit, and visualisation of the incoming
sensor-data overlaid onto the 3D world model.

Depending on the developers’ needs, different sensor-data and plugins can be selected,
enabled, and configured. A default rviz configuration file is provided as part of the
doro_description ROS stack. This selects the robot-description, tf frames, the environ-
ment map, laser-scanner and camera data, and 2D-navigation topics to control the SCITOS
2D-motions. See Fig. 18 for a screen-shot of rviz using this configuration.

Alternatively, the MIRA-Center software provides an easy-to-use interface for the naviga-
tion and localisation tasks on both the Condominium and the Domestic Robot (see Fig. 20
on page 44 for a screen-shot).

Launching manipulation To start the ROS/MoveIt manipulation stack adapted for the
Domestic Robot and Kinova Jaco arm, please check that the robot bringup launch was
successful, and that the Jaco arm is in the home position. Then start the move_group.launch
file,
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roslaunch doro_moveit_config move_group.launch

and wait until all nodes and services have been started (The Arm in RViz matches the actual
position and OMPL is displayed as the planning library).

See section 3.6 below for an overview of the ROS manipulation implementation and a
detailed description of the different ROS nodes and services that provide the robot with
collision-aware motion planning.

Launching Robot-Era services See chapter 4 for an overview of the Robot-Era service
architecture and a list of the services. To connect the robot to the PEIS ambient intelligence
network, including the multi-robot planner and human-robot interface, just launch the do-
mestic_services.launch file. This assumes that the robot bringup and manipulation launch
files have been started and all services are running,

roslaunch doro_peis domestic_services.launch

3.1.5 Running ROS on Multiple Computers

In many cases, the raw compute power provided by a single computer will not be sufficient
to run advanced algorithms with many nodes. Fortunately, ROS provides a very simple and
convenient way to distribute computation across multiple machines, because nodes running
on different computers can communicate seamlessly using ROS messages and services.
The key idea is to start the roscore lookup-service process on one selected machine, which
then acts as the master and provides the node, topic, and service lookup for all machines
in the network. The master returns the hostnames and ports used for communication on
the requested topics and services, and the nodes establish the direct network connection to
exchange data between them. Typically, either the on-board computer of the mobile robot
or a fast machine is acting as the ROS master. Note that there is also ongoing work on
multi-master ROS systems, but this is beyond the scope of the handbook.

In some cases, the communication with the roscore process is possible, while actual data-
transfer between nodes on different computers is not working. A typical situation is that
rostopic list returns the full list of topics managed by the roscore process, while running
rostopic echo on one of the listed topics does not return any data. This occurs when the
hostname lookup on the different machines in the network is not working properly. How-
ever, ROS requires the mutual hostname lookup to work in order to exchange data between
different machines. The easiest solution is to check the /etc/hosts files and to explicitly add
the names of all required computers:

cat /etc/hosts
127.0.0.1 localhost
192.168.0.33 scitos scitos.informatik.uni-hamburg.de
192.168.0.44 laptop
...
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9: Wrist and Fingers

8: Shoulder and Elbow

10: Driving

11: Camera-head pan-tilt

Figure 19: The Sony Sixaxis joystick used in the doro_sixaxis_teleop node. The labels
indicate the axes and button numbers used by the ps3joy joystick driver for ROS.

Once the network and hostnames have been set-up on all participating computers, the
roscore process is started on the machine that should act as the master. On all other ma-
chines, the ROS_MASTER_URI environment variable is set to point to the master machine,
and subsequent attempts to launch or contact ROS nodes will then be redirected to the given
master:

export ROS_MASTER_URI=http://scitos:11311
roslaunch ...

3.1.6 Teleoperation interface

The ROS nodes in the doro_teleop package provide a basic tele-operation interface for in-
teractive robot control. Apart from basic maintenance and test, the tele-operation command
interface can be used by expert users to recover from situations where the autonomous robot
control software is stuck (e.g. backing up from an obstacle). As the moment, three ROS
nodes are available:

• doro_keyboard_teleop

• doro_sixaxis_teleop

• doro_telnet_server

The doro_keyboard_teleop node allows us to drive the robot around via the keyboard
(a,s,d,w) keys. It directly publishes to the /cmd_vel topic. Additional commands for con-
trolling the arm and PUT are planned, but not implemented yet.

The doro_sixaxis_teleop node reacts to user input on a Sony Sixaxis joystick, either con-
nected via USB cable or wireless via Bluetooth. This requires the ps3joy package. As the
code is based on the PR2 joystick tele-operation node from WillowGarage, the installation
instructions on www.ros.org/wiki/pr2_teleop may be helpful to set the software up.
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motion activation execution

driving: hold button 10 use left stick

pan-tilt: hold button 11 use right stick

shoulder: hold button 8 use left stick

elbow: hold button 8 use right stick

wrist: hold button 9 use left stick

fingers: hole button 9 use right stick

Table 1: Default mapping of the joystick buttons to robot motions.

The usage of the Sixaxis joystick is illustrated in Fig 19. For safety reasons, the user has to
hold down one of the trigger-buttons to enable the corresponding motions via the left- and
right joysticks.

The doro_telnet_server node starts a simple telnet-style server that subscribes to the
joint_states topic and connects to the various ROS nodes for execution of joint-level trajec-
tories, PTU motions, and cmd_vel for moving the platform. Once started, the server accepts
connections from telnet-style clients, for either interactive use via the command-line or for
use by user-written scripts and programs.

telnet localhost 7790
telnet> help % list of commands
telnet> get-joint-angles % current joint angles
telnet> get-min-angles % lower joint limits
telnet> movej to -90 0 0 10 20 30 % joint-space motion
telnet> movej by 0 0 0 0 -5 0 % relative joint motion
telnet> fingers to 0 30 45 % Jaco finger motion
telnet> ptu to 90 -45 % pan-tilt unit motion
telnet> ...
telnet> disconnect

3.1.7 Control Center teleoperation interface

One key aspect of the upcoming second experimental loop of the project is the testing of
the whole Robot-Era system in realistic and real settings. In particular, no researchers or
programmers will be close to the robot during the experiments. Instead, the robot control
and any attempts at error recovery will be performed by non-expert people in the remote
control center that supervises the experiments.
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3.1.8 Robot calibration

No calibration is required for the SCITOS base platform. The location of the driving wheels
is fixed and the gear-ratios of the differential drive are known. Any errors in wheel odometry
(e.g. due to wheel slip) are handled by the AMCL localisation when fusing the laser-scanner
and odometry data in MIRA. The front and rear laser-scanners and the sonar sensors are
mounted fixed onto the platform, and their positions are documented in the SCITOS robot
descriptions (MIRA XML and ROS URDF). However, any systematic modelling errors are
hard to check, because Metralabs does not define reference points on the platform. Note
that the curved outer shape of the SCITOS platform makes it rather difficult to estimate the
base_link and mount positions of the sensors precisely.

For the Jaco arm, no calibration tools are provided by Kinova, and the factory calibration is
assumed to be correct. Automatic full-robot calibration by matching camera images to arm
movements is possible, but has not yet been implemented on the Domestic Robot. Also,
there is no accuracy data available for the Jaco arm from the vendor. While the human user
automatically compensates small errors when tele-operating the arm, any such errors may
compromise the manipulation capabilities under autonomous control. Experience gained
throughout the project experimental phases will show whether any additional modelling is
required.

Regarding the base position of the arm, the documentation from Kinova seems to be inaccu-
rate, but corrected positions are used in the robot URDF model. Note that the base position
used in the URDF should be checked carefully against the actual mount point of the arm.
A set of calibration jigs might be useful to verify arm poses, but so far neither Kinova nor
Metralabs do provide any such objects.

The pan-tilt unit is driven by stepper-motors and performs an automatic self-calibration
sequence when powered up. Afterwards, position is tracked by counting motor steps, which
is highly accurate. Note that the PTU ROS node should be started when the PTU is in its
zero position.

Camera calibration, file formats, calibration file locations, etc., see section 3.3 below.
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3.2 Robot localisation and navigation

This section summarises the localisation, collision-avoidance, and navigation algorithms
implemented on the Domestic Robot. The robot acts in a known indoor environment with
level floors, which greatly simplifies the problem because well-known 2D localisation and
path-planning methods and a static map of the environment can be used. See [37] for a
review of the relevant basic algorithms.

As explained in the earlier project report D4.1 Domestic Robot platform specification [57],
the MIRA framework with the CogniDrive module will be used for the control and sensor-
interface of the SCITOS-G5 mobile platform, while a simple MIRA-ROS bridge interfaces
to the ROS framework. This architecture was decided on after careful evaluation of the ROS
navigation_stack, which basically provides the same functionality as the pair of MIRA and
Cognidrive. However, using ROS here instead of MIRA would require us to rewrite the
low-level drivers to the SCITOS platform with little other benefit.

See Fig. 12 on page 22 for the main software blocks of the Domestic Robot. The compo-
nents concerned with navigation are located in the lower-left corner of the diagram, namely
the MIRA framework with the hardware drivers for the SCITOS-G5 motors and odome-
try sensors, and the interfaces to the Sick and Hokuyo laserscanners. Robust localisation,
collision-avoidance and path-planning is performed by the CogniDrive software, and the
MIRA-Center user-interface allows the expert user to control the robot motions. The nav-
igation combines a static map of the environment with a dynamic occupancy grid map
generated from the laser-scanner data.

The material in the next two sections of this chapter is a shorted summary of the MIRA de-
scription already provided in [57] (chapter 4). It is repeated here to make this handbook self-
contained and to motivate the design of the MIRA-ROS bridge explained in section 3.2.3.

3.2.1 MIRA

The MIRA framework is a robot middleware that targets a modular software development
process built around a set of communicating processes or modules. See the webpage
at www.mira-project.org/MIRA-doc-devel/index.html for documentation. The overall ap-
proach and goals are therefore similar to ROS, but several design decisions have resulted in
a rather different implementation. For communication, the MIRA framework offers mes-
sage passing by implementing the publisher/subscriber pattern as well as Remote Procedure
Calls (RPC). Beside this communication, the MIRA base and framework provide much
more functionality, including visualisation of the data flow and the data passed between
modules, error monitoring and tracking and identifying problems with the modular applica-
tion.

MIRA provides a middleware that handles the communication between the modules, or
respectively the units, and ties these units together to compose a complex application. The
MIRA core is divided into the following software components:

• base: commonly used classes, algorithms, and helpers.

• framework: publisher/subscriber communication.
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• GUI: classes, widgets and tools for visualisation, Rich Client Platform for modular
GUI design.

• packages: collection of components, dependency information.

• toolboxes: algorithms and classes used by other components.

• domains: one or more units to be used by other components.

Similar to ROS, the MIRA system supports the robot developer on several levels.

• component level: managing executables and shared libraries, with dependency infor-
mation encoded in manifest files.

• computation graph level: managing units communicating via typed and named chan-
nels, support for remote procedure calls (RPC).

• runtime level: executables and share libraries.

• filesystem level: package, toolboxes, and domains.

• repository level: support for SVN and FTP repositories, source- and binary-code
distribution, and software packages.

MIRA is designed to allow for fast and easy creation and testing of new distributed software
modules. The interface is very lightweight and fully transparent and it hides implementation
details like data-locking, usage of threads and cyclic processes, and the location of senders
and receivers within the same process, a different process, or a remote process.

A detailed comparison between MIRA and ROS was included in the previous project re-
port D4.1 [57], where MIRA was shown to have significant advantages in several important
areas. On the other hand, ROS has a larger user-community and many more software pack-
ages are available for ROS.

3.2.2 Cognidrive

The CogniDrive software from Metralabs has been selected for the navigation and locali-
sation capabilities of both the Domestic and Condominium Robots. See chapter 5 of the
previous report D4.1 [57] for a detailed description of the CogniDrive software.

Instead of providing only the standard drive-to command, the motion-planning in Cogni-
Drive is based on a set of objectives, which enable a fine-grained control over the robot
motion. Several objectives can be active at the same time, with different weight factors
adjustable from the high-level (application or user) interface.

Motion requests are scheduled as tasks which can be subdivided into several sub-tasks,
each of which is then guided by the active objectives. Additionally, CogniDrive explicitly
provides one of the key functions required by the Robot-Era services, namely the capability
to navigate in a multi-map environment, e.g. several floors in a building that are connected
by an elevator.
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CogniDrive supports a variety of different requirements such as:

• support for non-holonomic robots of different sizes

• navigation with high precision (e.g. Docking, handling of narrow passages)

• fast path planning and online dynamic replanning

• taking moving obstacles into account

• consideration of traffic rules (e.g. forbidden areas and speed limits)

For task processing, the motion planner and the objectives play a major role. Each objective
is a separate software module specialised for certain tasks like following a person, driving at
a certain speed or direction, etc. The objectives are realised as software plugins. This allows
us to add new objectives easily when new tasks are necessary without changing other parts
of the navigator. The output of the objectives is then used by the motion planner to generate
motion commands that are then sent to the robot motor controllers. Some objectives require
additional information from other navigational modules such as localisation and mapping
algorithms or modules for user interaction like person trackers.

Each sub-task can be parametrised by numerous tasks specific options, including: goal point
to drive to, map to drive to preferred driving direction of the robot (backward, forward or
both), accuracy for reaching a goal point, accuracy for the orientation angle at a goal point,
maximum allowed driving distance (e.g. during exploration). By specifying a combination
of sub-tasks and their parameters the robots navigational behaviour can be completely mod-
ified at runtime. For example the complex task "Drive backward to the destination (10, 0) in
map Floor2 with an accuracy of±0.5 m and turn to the orientation of 70° with an accuracy
of ±15°" is easily handled by CogniDrive.

Internally, CogniDrive manages a grid map of the environment, where cell covers a certain
area of the velocity space and corresponds to a certain velocity command. For motion
planning in CogniDrive, a cost function is computed for each cell and therefore the velocity
command that yields the smallest cost is chosen. In the original Dynamic Window Approach
[33] that cost function is composed of three different functions, called objectives. One
objective yields large costs when the robot would get too close to obstacles by choosing
that certain action. The second objective prefers actions that lead to high speeds and the
third one takes care of the robots orientation. Additionally, each objective can forbid a
certain action completely by marking it as "not admissible" when a certain requirement,
like the minimal distance to an obstacle, is not met. If at least one objective marks an action
as "not admissible", the action is excluded from the set of allowed actions.

After all active objective were processed for all cells in the dynamic window and the costs of
all cells were computed based on the weighted sum, from all admissible cells, the cell with
the lowest cost value is chosen and the corresponding action is sent to the motor controllers
in terms of a velocity command. Afterwards, the whole processing cycle is repeated until
the current task and the specified goal is reached. Several different objectives are supported:

• distance objective: responsible for avoiding collisions by calculating the distance
between the robot and obstacles along the predicted trajectory. The objective also
takes the braking distance of the robot into account.
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• path objective: the default objective when trying to reach a given target pose. The
algorithm is based on a Global Dynamic Window Approach [34], where the cost
value for the objective is taken from the navigation function of the path planner. This
map contains a value that resembles the distance to the goal, and the path objective
there prefers actions that lead the robot closer to the specified target. The standard
E*-algorithm is used for the actual path planning process.

• speed and no-go objective: allows the application-level to request a speed-limit for the
motion, and to avoid forbidden areas. The speed-limit can be encoded in a separate
grid-based map, so that different speed-limits are possible along the robot path.

• heading objective: used to control the orientation of the object once the final position
has been reached. Typically given a small weight, so that intermediate poses along
the robot path are not influenced by the final heading.

• person follow objective: this implements one of the key requirements and tasks for
the Domestic Robot. It can be parametrised to follow a person while taking privacy
into account by keeping a given minimum distance between the robot and the users.
The object will turn the robot to face the user.

• user objective: manual remote control of the robot motion.

• additional objectives: can be added easily due to the modularity of the CogniDrive
system. For example, an explore objective could reward actions that explore the given
map.

3.2.3 MIRA-ROS bridge

The block diagram of the interface software is sketched in Fig 21. The MIRA/Cognidrive
framework and the ROS navigation-stack use very similar internal representations for the
environment map, the robot pose and pose-updates, and the laser-scan data used for locali-
sation.

When running on the real robot, MIRA controls the SCITOS-G5 platform including the
front and rear laserscanners, the sonar sensors, and the wheel-odometry and motors. It
forwards the laserscan and wheel data directly to Cognidrive, which is then responsible for
localisation and robot path-planning. The MIRA-ROS bridge in turn converts the laserscan
data and the calculated robot pose estimation and covariance data into the message formats
used by the ROS navigation-stack, and then publishes the data on the corresponding ROS
messages. Incoming goal-pose requests are converted into the MIRA data-format and given
to Cognidrive for execution of the motion request.

When running in the Gazebo simulator, the trajectories received from Cognidrive are used to
drive the robot around in the simulated world, and the reached robot-pose and wheel-angles
are calculated by the simulation engine. Additionally, the laserscan and sonar sensor data
are estimated by calculating the distance between the robot and the nearest objects in the
virtual world. The laserscan data is then taken by the MIRA-ROS bridge, converted into the
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Figure 20: The user-interface of the MIRA-Center software with visualisation of the robot
and laser-scanner data inside the map.

data format used by MIRA, and Cognidrive is then able to calculate the robot localisation
base on the simulated laser scans.

To summarise, connecting MIRA/CogniDrive with ROS comes down to:

• subscribing MIRA channels and publishing that data using ROS topics.

• subscribing ROS topics and publishing that data using MIRA channels.

• forwarding transforms from one framework to the other.

• offering an actionlib-interface like move_base to MIRA’s task-based navigation.

• allowing direct driving (bypassing CogniDrive) by subscribing to the ROS /cmd_vel
topic and forwarding the geometry_msgs/Twist to the robot’s wheels.

On the Domestic Robot, the laserscanners, drives, encoders and battery are connected to
MIRA, so their data needs to be forwarded into the ROS world when the robot is used in real
application. During simulation, however, the virtual devices are created in Gazebo (ROS),
so their data needs to be forwarded to MIRA to embed cognidrive into the simulation. So,
the direction in which cognidrive_ros converts between the frameworks is determined by
setting a –simulation flag on startup. The code was developed and tested on a Metralabs
Scitos G5 robot running Ubuntu 12.04 LTS 32bit and ROS Fuerte.
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Figure 21: Architecture of the ROS-Cognidrive bridge. See the text for details.

When cognidrive_ros starts (as a ROS node), it also starts a complete MIRA framework,
forwarding all command-line arguments. If you pass

• -c | --config miraconfig.xml, the contained MIRA framework will start in-
process, loading all other MIRA units.

• -k | --known-fw host:port, the contained MIRA framework will connect to an
already-running MIRA-framework on the given host:port.

Right now, the -c argument is disabled, because running MIRA and ROS in the same pro-
cess leads to crashes. This is because MIRA uses the system’s version of opencv (2.3) and
ROS uses its own (2.4), but these versions are not binary compatible.

A typical way to use ROS with CogniDrive on the robot is as follows:

• change to the directory containing the MIRA configuration file (e.g. DomesticNavi-
gation.xml),
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• then start mira -c DomesticNavigation.xml. In this file, MIRA is instructed to
listen on xml:root -> communication -> port (e.g. port 1234).

• start cognidrive_ros -k 127.0.0.1:1234, so that the MIRA functions in cogni-
drive_ros will connect to the instance of MIRA you started above.

• start cognidrive_ros -k 127.0.0.1:1234 --simulation when running in the
Gazebo simulator, so that MIRA is getting data from the simulator.

• start rosrun rviz rviz to visualise laser scans and transforms, set pose estimates
or 2D navigation goals.

• start miracenter and connect to the MIRA framework at address 127.0.0.1:1234 to
see the same things in MIRA.

Setting the initial robot pose When the robot is first started, it may not be localised
correctly. While the AMCL algorithm is capable of localising the robot after some move-
ments, it is usually safer to specify the (approximate) initial robot pose. This can be done by
publishing a pose to the /initialpose topic, for example when starting from a fixed, known
position of the robot.

Alternatively, start rviz, then enable both the /map and the laser-scanner data /base_scan and
optionally /basescan_rear. Press the 2D Pose Estimate button from the button bar, click-
and-hold the mouse at the approximate (x,y)-position of the robot, then drag the mouse to
specify the robot orientation Θ, and release the mouse to adopt this position. Repeat, until
the laserscan data matches the map.

Setting the navigation goal To move the robot to a given position and orientation, simply
publish a pose goal to the /move_base_simple/goal topic. Again, this can also be done
interactively in rviz via the 2D Nav Goal button in the button bar, then using click-and-hold
to specify the (x,y) position of the target position, and finally using mouse-drag to select
the Θ orientation of the robot. The robot motion will start as soon as the MIRA planner has
calculated an obstacle-avoiding motion plan, which can take a few seconds.

Creating the map The map required for localisation can be drawn by hand, or can be
created by driving the robot around and using SLAM to build the map incrementally. See
the MIRA tutorials and reference manual for details. When updating the map file in the
MIRA configuration xml file, also check to adjust the offset and orientation of the map.

46



D4.3 - Domestic Robot Handbook 2014

3.3 Sensing and Perception

3.3.1 Overview

The Domestic Robot platform provides several different sensor systems.

• two laser range finders

• sonar sensors

• Asus Xtion Pro (RGB-D camera, comparable to Microsoft Kinect)

• RGB camera with tele-lens (firewire)

All different sensor systems are integrated in ROS in order to achieve:

• unified interface

• sharing devices between multiple subscribers.

3.3.2 Pan-Tilt Unit

The pan-tilt unit itself is an actuator system, but closely related to the sensory systems of
the Domestic Robot, as it is used to change the direction of the Kinect- and RGB-cameras.

• ptu/cmd

• ptu/joint_states

rostopic pub -1 ptu/cmd sensor_msgs/JointState
"{ header: { stamp: now },

name: [’ptu_pan_joint’, ’ptu_tilt_joint’],
position: [1.57, 0], velocity: [0.5, 0.5] }"

3.3.3 Camera System and Image Processing

GStreamer-ROS-Adapter Due to several drawbacks in the gscam-node, we imple-
mented an advanced ROS-GStreamer adapter

The open-source multimedia framework GStreamer [44] is used by many multimedia appli-
cations under Linux. Many functions needed for these applications are already implemented
in GStreamer, like format conversion, image resizing, encoding, decoding, timing and net-
work data transmission. The GStreamer framework is plugin-based, so the functionality
can be expanded by new elements that can also define their own data types. The elements
are connected to a processing pipeline, so that many operations can manipulate image data
consecutively.

There are several reasons why we consider GStreamer as a suitable framework for handling
high bandwidth multimedia data on a robot system. These are mainly:
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Figure 22: Overview of the updated perception pipeline. The data from the cameras on
the robot including the Xtion sensor is forwarded to the SIFT-based recognition of known
objects and a marker-based pose-recognition algorithm. In parallel, depth-images and point-
cloud data from the Xtion sensor is processed using the tabletop_object_recognition stack to
find clusters that correspond to (graspable) objects. The recognition results of the different
pipelines are then fed into the multi-modal vision-hub note that performs data fusion and
outputs a list of detected objects together with the object pose information and covariance
estimates.

• efficiency of implementation

• large amount of available functions

• flexibility in the setup of pipelines

One important development objective of GStreamer is to generate as little overhead as pos-
sible. The most important principle applied is the “zero-copy” paradigm. The elements
mainly exchange pointers to buffers containing the actual data. But GStreamer goes a step
beyond this paradigm and allows downstream buffer allocation. This technique allows to
“ask” the next element for a buffer (e.g. a mapped memory region from the video card)
where the frame is directly rendered into. Exactly this technique makes GStreamer ideally
suitable for developing adapters to arbitrary frameworks like ROS, as it allows GStreamer
components to directly access the memory regions of these frameworks.

GStreamer allows the construction of various types of pipelines. Beside standard lin-
ear pipelines that consecutively apply filters to the sensor data, it is possible to construct
branched pipeline graphs. Even in this case, no unnecessary copies of data are made. Only
if an element wants to apply “in-place” data manipulation, a copy is created automatically if
other elements also use this data buffer (i.e. copy on write). It is possible to implement dif-
ferent types of elements for data transfer. For the previous element in the pipeline, it makes
no difference whether the following element for example writes the data to disk, sends it
via TCP or transmits it via a framework like ROS.

Timing issues can be analysed by the so-called timestamps that every unit of data (e.g. one
image of a video-stream) provides. We set this value to the current NTP timestamp directly
after the image was captured. In different stages of the processing pipeline, the latency can
be determined by comparing the timestamp to the current system time. Therefore, we have
to synchronise all systems to an NTP timeserver. In a local area network, the achievable
accuracy is better than 1 ms.
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The "rossink"-element will act as a sink for image data inside the GStreamer framework.
During the start sequence of a pipeline, this element will advertise a camera in the ROS-
framework. Usually, the following sequence of actions is performed for each frame:

• An upstream element requests a buffer.

• "rossink" creates a ROS "sensor_msgs/Image"-message and provides the pointer to
its payload to the upstream element.

• The upstream element renders the image into the buffer and passes it to the "rossink".

• The "rossink" will look up and publish the "sensor_msgs/Image" based on the pointer
address

The "rossrc"-element acts as a source inside the GStreamer framework. It behaves like
elements that allow access to camera hardware and provides a sequence of image buffers.
At the start of a pipeline, this element will subscribe to an arbitrary ROS-topic. This element
performs the following sequence of actions:

• When a new message is received, a callback function is called.

• In the callback function, a GStreamer buffer is created and the memory address is
pointed to the payload of the "sensor_msgs/Image"

• The GStreamer buffer is sent to the next element.

The "rossrc"-element will store properties of certain GStreamer elements on the ROS pa-
rameter server. These parameters can be chosen manually. During runtime the element
watches the parameters for changes on the parameter server and propagates them to the
corresponding element. This check is also performed vice versa.

One feature of our implementation is that it becomes possible to access cameras that are in-
tegrated in ROS. Even simulated cameras (e.g. from Gazebo) can be use and the video
stream can be handled in different ways (published via an RTSP server, recorded, dis-
played).

Installation of the GStreamer-ROS libraries While for the first evaluation loop the
Gstreamer libraries had to be compiled separately from the ROS workspace, they are now
included in the catkin workspace, are built within the catkin_make procedure and do not
need to be installed in the systems’ lib directories.

Usage The pipelines are started with the launch files, located in the gstreamer_pipelines
directory. They contain methods to run GStreamer Pipelines, for example the launch file
doro_right_camera.launch starts the following pipeline:

gst-launch dc1394src
! queue leaky=2 max-size-buffers=1 ! ffmpegcolorspace
! "video/x-raw-rgb , bpp=24, framerate=15/4"
! timestamper t1=-1 t2=1
! rossink topic=right_camera frame_id=RightCameraLens_link

camerafile=/etc/rightcamera.txt sync=0 peeralloc=1
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It is possible to adapt the frame-rate by changing the value 15/4 (=3.75 fps) to 15/2 (=7.5
fps) or 15/1 (=15 fps). The camera calibration file is /etc/right_camera.txt. Also, it is
configured that the images will be published on the topic right_camera and the frame_id is
RightCameraLens_link (the latter parameter matches the URDF file)

Calibrating the Camera In order to (re-) calibrate the camera, first the camera needs to
be started.

Terminal1: roscore
Terminal2: domestic_bringup
Configure the file-name where the camera calibration files will be stored, you need to have
write access it they should be updated automatically.

(on startup, the system may complain that it did not find the calibration file)

Type: "rostopic list"

gives you something like /left_camera/image_raw

You can check this by running:

rosrun image\_view image\_view image:=/left\_camera/image\_raw

With the calibration pattern found in Örebro living lab:

rosrun camera\_calibration cameracalibrator.py
--size 8x6 --square 0.02986
image:=/left\_camera/image\_raw transport:=compressed
camera:=/left_camera

With the PR2 calibration pattern pattern:

rosrun camera\_calibration cameracalibrator.py
--size 5x4 --square 0.0245
image:=/left\_camera/image\_raw camera:=/left_camera

Run/rerun the command from above:

• Move the checkerboard to all corners, turn it around, until about 50 images are cap-
tured.

• The green "Calibrate" button will be available - press it

• Be patient - window will hang for about 30 seconds, but it is NOT crashed !!

• Adjust the image size with the slider

• either save - saves raw data to /tmp - look at the console output (you manually have
to copy the txt file to /etc/left_camera.txt)
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• or commit: advises the camera node to store the value internally - overwrites the
camera config file /etc/left_camera.txt

• if you get an error message, probably the Gstreamer-ROS has no write access to the
file (see note from above)

For additional info, see http://www.ros.org/wiki/camera_calibration

In the current OpenCV libraries from ROS Groovy, there is a bug leading to a crash in the
calibration routine. Here is a workaround: NOTE: This Only needs to be done once, and
only, if camera_calibration crashes. It may be necessary to reinstall OpenCV after an update
of the OpenCV libs (e.g. after "sudo apt-get upgrade")

Install OpenCV from the scratch... overwriting the previous...

• find out which OpenCV version is installed

– cd /opt/ros/groovy

– find . | grep libopencv

– the output is something like 2.4.4

• get the 2.4.4 Source...(in case you have installed the latest groovy updates, otherwise
2.4.3)

• unpack the sources

• backup your ROS folder:

– cd /opt/ros

– tar czf groovy_backup.tar.gz groovy/

• cmake -DCMAKE_INSTALL_PREFIX:PATH=/opt/ros/groovy .

• sudo make install

This will overwrite the OpenCV libs installed from the ROS repository.

Publishing Rectified Images In order to use publish rectified image, the "image_proc"
node is started in the cameras.launch file with the call:

ROS_NAMESPACE="/left_camera" rosrun image_proc image_proc

Check "rostopic list" in order to see the additional topics.

Example: Display the Rectified image:
rosrun image_view image_view image:=/left_camera/image_rect_color

For additional info, see http://www.ros.org/wiki/image_proc
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3.3.4 XtionPro RGB-D Camera and Point-Clouds

If

roslaunch openni\_launch openni.launch

can not be executed, we have to re-install it separately. sudo apt-get install ros-hydro-
openni-launch

Starting the tabletop segmentation:

roslaunch tabletop\_object\_detector tabletop\_segmentation.launch
tabletop\_segmentation\_points\_in:=/xtion\_camera/depth/points

Check whether the object detector works:

roscd tabletop_object_detector
bin/ping_tabletop_node

The return values have the following meanings:

• Error 1: No cloud received

• Error 2: No Table detected

• Error 3: Other Error (see console output of tabletop_segmentation.launch console,
problems with TF are always a hot candidate for errors)

• Return Value 4: No error

3.3.5 MJPEG-Server 2

ROS provides the possibility to stream arbitrary video topics directly to a browser (includ-
ing mobile devices). The MJPEG-Server has been extended in order to support modern
browsers and to save and load snapshots of the current scene. The package is called
’"mjpeg_server2’" and is located in the Catkin-Workspace of the Robot-Era software repos-
itory.

Manual start:

rosrun mjpeg_server2 mjpeg_server2 in order to start the Webserver on port 8080.

In order to start it on a different port, run:
rosrun mjpeg_server2 mjpeg_server2 _port:=8081

You can connect to the video streams using your web-browser and opening the address:
http://$ROBOT:8080/stream?topic=/left_camera/image_raw

Where $ROBOT has to be replaced with the hostname or IP of the robot (“doro”).

The command above will make the webserver subscribe to the Topic
/left_camera/image_raw, you can use it the same way for other topics. In order to
change the resolution or quality (in order to save bandwidth), you can use

http://$ROBOT:8080/stream?topic=/left_camera
/image_raw?width=320?height=240?quality=40

Quality can be chosen from 1 (lowest) to 100 (highest).

doro.informatik.uni-hamburg.de:8081/stream?topic=/xtion_camera/depth/image
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MJPEG-Server2 - Additional Features Due to a long-standing bug in Firefox (https:
//bugzilla.mozilla.org/show_bug.cgi?id=984362) and due to a regression of not supporting
raw MJPEG streams any longer in Webkit based browsers (https://productforums.google.
com/forum/#!topic/chrome/PslmTeeM8Fo), the MJPEG-server had to be adapted. If the
stream is embedded into a web page, it is displayed correctly with both browsers. When
accessing the address

http://$ROBOT:8080/embeddedstream?topic=/left_camera/image_raw

a simple HTML-website is delivered with an embedded stream. The parameters to configure
the image topic and resolution is exactly the same as explained on the project website.
Internally, from this website the browser will then call

http://$ROBOT:8080/stream?topic=/left_camera/image_raw

while passing through all your parameters.

Additional functions:

Sometimes it might be useful to store and load images, for example when detecting an event
like an intruder. There are two different options how the images can be saved: in RAM using
slot 0..9 or persistently to files.

Saving a snapshot to slots (RAM):
http://$ROBOT:8080/store?slot=1?topic=/left_camera/image_raw

Saving snapshot to a file:
http://$ROBOT:8080/store?topic=/left_camera/image_raw?file=/path/to/filename.jpg

Loading images stored on a slot (If no image has been saved on this port you will get a 404
error page.):

http://$ROBOT:8080/load?slot=1
Loading images from a file:
http://$ROBOT:8080/load?file=/path/to/filename.jpg

It is possible to adjust the width and height of the delivered image, append these parameters
to the request, separated by ’"?’" (default: native image size, only valid if both width and
height are specified) It is also possible to adjust the image quality this way (quality)

Example:
http://tams115:8080/embeddedstream?topic=/leftcamera/image_raw
?width=100?height=80?quality=40

Embedding the stream into a web page: It is possible to embed one or multiple (some
browsers limit the number) streams into a web page, for example the UI for the robot.
Sample HTML code:
<html><body>
<img src="http://$ROBOT/stream?topic=/camera/image_raw">
</body></html>
Of course, the image size can be adapted like described above.

Note: It is only necessary to start one instance of the MJPEG-server to publish all available
ROS-integrated cameras.
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3.3.6 Object Detection and Pose Estimation

The Domestic Robot platform provides three main object detection and localisation algo-
rithms:

• SIFT-based object detection

• PCL-based object detection (including SIFT based classification). In this case SIFT
is only used to classify the defected point cloud by finding the best match in the object
database.

• AprilTag Markers

The different methods and their results are managed by a component called Visionhub. The
concept of this ROS node is shown in figure 22.

3.3.7 Visionhub

This is a ROS node that acts as an interface between nodes for image processing (currently
AprilTags and SIFT is supported), manipulation/planning nodes. It has been built in order
to interface to an ontology or context awareness module that defines certain objects, but
has also built in functionality. The reason why this node has been implemented is that on
a higher level (grasping/planning) you just want to know which objects have been detected
and what pose they have, but you want to hide the complexity of the underlying detection
process. So it is irrelevant for the action-planning-nodes doing manipulation whether the
detection has been done using SIFT or other algorithms or which cameras have taken the
image.

Basically the Visionhub node provides the following function to publish which objects are
detected and how they can be grasped. Therefore this node reads from a database, that
contains the following information about objects:

• dimensions of the bounding box

• surfaces (image files) and their exact position

• AprilTag Markers and their size and position

• information on grasps (grasp-points maximum force)

Visionhub: Defining Objects The long term plan is to support different types of
databases. Currently the objects need to be specified by an XML file. The file format
should be self-explaining, a commented sample file is provided in the repository under:

The top level entity is object. This is usually an object (including other robots), or also a
room (in order to implement initial self localisation). Beside the robot name, a box can be
defined. This can be either used as a bounding box for collisions aware motion planning or
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also for calculation of grasps. When defining this box, one should be aware of the coordinate
systems attached to objects.

The selected orientation of the coordinate system complies with the coordinate system that
has been chosen for the robots: -X axis pointing in the forward driving direction -Z axis
pointing to the sky (given that the robot/object is in a upright position) -Y axis according to
a right handed coordinate system (pointing to the left side from the looking forward view of
the robot)

Surfaces: It is possible to support an arbitrary number of (sub-) surfaces, each with its own
pose and size. In usual cases one might want to specify exactly the six surfaces of a box
(front, back, left, right, top, bottom) or possibly only the front surface. For modelling/de-
tecting the six surfaces, it is sufficient to generate border-less images of the surfaces, ori-
entation according to figure 23, and use the <side>front</side> syntax. This will internally
define the transformation from a coordinate system of the surface to the coordinate system
in the centre of the object. Tags poses can also be described this way when attached accord-
ing to figure 23. After <side> has been specified, it is still possible to overwrite the position
(in order to describe offsets). When manually defining the transformation, it is important to
know the coordinate attached to surfaces (and tags). For surface coordinate systems the X
and Y axis comply with the x-pixel-value-axis (width) and the y-pixel-value-axis (height),
but the origin is in the centre of the image (pixel coordinates {(width/2.0),(height/2.0)}
while the image CS has the origin in the top left corner.

Figure 23: The orientation of the coordinate system that we assign to objects.
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Visionhub Services

• get_detected_objects()

Returns a vector of string elements containing the name of the detected objects

• get_possible_grasps(objectname, max_gripper_opening, min_object_width)

For a certain object, this function provides a list of grasp points, that may be auto-generated
based on the geometry of the object, manually defined or learned ones. If the maximum
applicable force is defined in the XML-file/database, this value will be also be provided.

In addition to each Grasp Pose the Transformation of that Grasp Pose to the ground surface
is stored. This information can be used when a manipulator needs to place an object onto
another surface.

• place_announce:

With this service it is possible to notify visionhub, that an object has be placed somewhere
in the environment or on the robot (or even on a different robot). The main intention of
this service is that at the new pose the object may probably not be detected anymore by the
robots camera systems, but it shall still be able to grasp it from the tray, drop objects into
a bin that it currently cannot see (maybe currently placed on the tray) or suggest to drive
the robot to a place where a desired object may be detected again (if the robot has seen it
before)

• last_known_pose:

The "’last_known_pose"’ principally acts as the "’get"’ operation for the list of the known
objects. It is possible to ask visionhub, where the object has been detected the last time.
The client to query certain coordinate systems of the object, that will not be published on
the /tf topic in order to save bandwidth. This can be used to drive to the object in order to
grasp it, or to drop something in/onto the object.

3.3.8 SIFT-based object recognition

This function will detect objects and publish visualisation markers and stamped poses con-
taining detected objects. It works well for bigger boxes, and may also work for other shapes.
For latter, better rely on point clouds for pose and take the result of this algorithm only for
classification. The SIFT-based object detection works the following way: All the images
of the objects can either be placed in a folder or can be loaded using a query to the vision-
hub node. The images should be taken from a perpendicular angle. The border should be
cropped, or the width number should be adjusted accordingly.

In order to calculate the pose, the calibration of the camera needs to be considered. Cur-
rently only the file-format of OpenCV is supported. The calibration is already ready and
does not need to be repeated.
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Figure 24: Object manipulation test in the DomoCasa living lab, Peccioli. Doro is looking at
a cluttered table scene with objects that have been trained with the SIFT object recognition
back-end. Note that the Jaco arm is still in the safe home position used for driving around
and as a start position for manipulation. The arm is just outside the camera image.

Figure 25: This screen-shot shown the object detection using visionhub and the SIFT back-
end. All four objects visible in the camera image have been detected on the cluttered table
scene, and their 6-DOF poses are estimated correctly. The objects are modelled in the
database with their dimensions. Based on the object markers, grasps can be calculated.
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The node publishes on the topic "siftobjects", type <visualisation_msgs::Marker> that puts
out ALL detected objects for visualisation in Rviz. If an object is no longer detected, it
publishes one "DELETE"-message according to the specification of the message type.

"siftobjects/objectname", type <geometry_msgs::PoseStamped> one topic for each object.
NOTE: only advertised if the object is detected the first time. No delete message is sent, so
please look at the timestamp.

"tf" type <tf/tf Message> This type of message describes the transformation between the
camera- and the object-coordinate frame.

Using the tf-system of ROS it is easy to obtain other transformations like robot_base to
object or gripper to object.

The SIFT implementation is included in the catkinized gstreamer_pipeline directory, inter-
nally for example the start_siftserver_right.launch file starts the following pipeline:

LD_PRELOAD=/opt/ros/groovy/lib/libimage_transport.so
gst-launch rossrc topic=right_camera/image_raw

! queue leaky=2 max-size-buffers=1 ! ffmpegcolorspace
! siftextractor
! rossiftserver

caminfotopic=right_camera/camera_info
imdbsrv=/get_image_sizes

! fakesink

This node can be configured as follows:

• imdbsrv=/get_image_sizes
specifies a ROS-service (Visionhub) to look up which image files should be used for
matching and what physical size the surfaces have.

• caminfotopic=right_camera/camera_info
specifies the camera-info topic to retrieve the calibration parameters for the selected
camera automatically.

• alternatively, you can specify the directory where the calibration parameters (Distor-
tions.xml and Intrinsics.xml) are stored via this parameter:
unddirectory=/localhome/demo/camera_calib_data/cal_April2013

3.3.9 AprilTag Marker detection

The integration of AprilTags has been done using an existing ROS node that has been ex-
tended in many ways. The following additional features have been implemented:

• automatically read out camera calibration from the corresponding topic

• support for markers with different sizes (configured through the “visionhub” node)

• high performance tracking of detected markers

• performance improvements and bug fixes
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Figure 26: Object manipulation test in Angen, Örebro. Doro is grasping the prototype box
for the garbage and laundry scenarios. As the wood lacks any visual texture suitable for
SIFT feature matching, an AprilTag fiducial marker has been placed on box. Despite the
small size of the marker tag, marker detection and identification are very reliable, and pose
estimation errors are usually well below 1 mm position error.

3.3.10 Tabletop segmentation

In the first step of the perception pipeline, the table (dominant flat surface) is identified
from the incoming sensor data using the RANSAC algorithm, listening on the /cloud_in
(sensor_msgs/PointCloud2) topic. The Table message contains the pose and convex-hull of
the detected table.

Before performing the tabletop segmentation step, the robot should be close to the table,
with the sensor head oriented so that a large part of the table and all interesting objects are
in view. If possible, the robot arm should be moved sideways, to minimise the impact by
self-occlusion of the table and objects.

Once the table is known, all point-cloud points above the table are assumed to belong to
graspable objects, and a clustering step is applied to combine multiple points into larger
clusters, which are then considered as the individual objects. The minimum inter-object dis-
tance used for the clustering is specified via the clustering_distance parameter, and defaults
to 3 cm. To speed-up the table-detection and clustering process, additional parameters are
provided by the software; default values are set in the launch files for the Domestic Robot.
The point-cloud clusters found by the TabletopSegmentation service are indexed and re-
turned in the result value of the service. Additionally, markers corresponding to the clusters
are published on the markers_out topic and can be visualised in rviz.
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3.3.11 Human Detection and Recognition

For the second experimental loop, human detection and recognition software will be tested
on the Domestic and Condominium Robots. The detection modules have be encapsulated
as PEIS exekutor services, and the information can be merged with the ambient sensor data
(e.g. chair switches, wearable sensors) by the configuration planner. See section 4.2.15 on
page 130 for details and the tuple definitions.

As people tracking is a common tasks, several independent ROS packages are available and
have been evaluated:

• The person_detection stack uses functions from the PCL library and a pre-trained
SVM to detect people in the pointclouds generated by the Kinect/Xtion sensor. The
algorithm publishes the head positions of detected persons as well as their estimated
motion with respect to the robot. The stack has been tuned and refined by UHAM to
improve robustness and the detection of sitting people.

This algorithm is currently used on Domestic Robot for the find_user service. Work
has been started to also include face detection and face recognition algorithms to
further improve recognition rates.

• The openni_tracker package is based on the people movement tracking originally
developed for the Microsoft Kinect sensor. The current implementation is based on
the NiTE tracking library from PrimeSense, and ready-to-run installers exist for ROS
Hydro. The software directly accesses the depth-image from a Kinect/Xtion sensors
and detects and tracks up to six persons simultaneously. Once the so-called Psi-pose
is detected for a person (standing with the upper arms extended and the lower arms
pointing upwards), a calibration sequence starts and afterwards the library tracks the
users’ head, arms, and legs. The corresponding poses are published as individual
transformations to the ROS tf system.

The tracking detects standing and sitting people, and can track moving people even
with occlusions. However, the tracker is not suitable for people that are lying on
a bed or on the floor. The ROS node only publishes arm and leg information after
calibration has been performed for a person.

Unfortunately, the original (openni) software is not compatible with the XtionPro sen-
sor mounted on the Domestic Robot. While a replacement library (NiTE2, openni2)
is available, the new library requires exclusive access to the sensor, so that image and
point-cloud data is no longer available to other ROS nodes.

• The ROS people detection stack consists of several independent modules optimised
for different usage scenarios. The leg_detector searches for legs in 2D laser scans,
and people_tracking_filter in turn uses the candidate legs to identify and track moving
people. The face_detector uses OpenCV image processing to find faces in 2D camera
images. See wiki.ros.org/people for details. Unfortunately, little documentation is
available for the different software modules.

• The cob_people_detection stack combines the OpenNI person tracking with face-
detection and face-recognition (Eigenfaces, Fisherfaces) to identify known persons.
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To add new persons to the databases, the robot simply looks at a person and then
performs the steps to generate and managed the Eigenface data required by the recog-
nition algorithm. See wiki.ros.org/cob_people_detection for details. At the time of
writing, the stack was not available for ROS Hydro.

Figure 27: Typical output of the ROS person_detector module. The algorithm first performs
a ground-plane detection to identify the floor and then searches for people-sized clusters in
the point-cloud generated from the Kinect/Xtion camera. A pre-trained SVM is used to
classify the clusters, and the estimated head position (x,y,z) and motion are published to
ROS. The algorithm detects standing as well as sitting people. [12].

Figure 28: Main ROS nodes in the cob_people_detection module for people detection and
face recognition. (Image from wiki.ros.org/cob_people_detection).
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3.4 Manipulation

Object manipulation with robots is standard industry practice by today, but the typical fac-
tory solution is characterised by a strictly controlled environment and highly regular tasks.
The robots are equipped with grippers and tools matched to the particular target objects,
robot and object positions are known, and trajectories may be hard-coded. Sensor feed-
back, if used at all, is only required for slight corrections and adaptations to initial object
positions.

In the context of service robots, however, manipulation is still unsolved and remains one
of the key research challenges. Even for apparently simple tasks like picking up an object,
several complex sub-problems must be tackled. First, perception algorithms must be able to
detect the object in a potentially cluttered environment, and then to estimate the object pose
in regard to the current robot position. As full scene understanding is far beyond the reach
of computer vision, simplifications are required.

Second, to reach the target object a collision-free robot arm trajectory must be calculated,
leading to complex motion-planning problems depending on the number and complexity of
obstacles. Picking up a single mug from a table is easy, but putting the same mug into a
dishwasher full of other objects is very challenging. Once the object is grasped, the motion-
planning must take the object into account when calculation new trajectories.

Third, to grasp an object the robot gripper or hand must be configured to reach suitable con-
tact points on the object, and to apply forces that allow to lift the object against gravity and
stabilise the grasp against disturbances in free space. Fourth, manipulation often involves
moving an object in contact to other objects, applying forces depending on the task context.
For example, swiping a table, opening a door, or turning a screw requires highly precise
motions that take the kinematic structure of the environment into account.

According to the tasks described in the Robot-Era scenario storybooks, all of the above
problems need to be tackled and implemented on the Domestic Robot. As explained in
chapter 4 below, an incremental approach is taken. First, simple reach and grasp motions re
implemented for the robot, which are then refined and integrated with perception to more
complex tasks. As force-control is not available on the Kinova Jaco arm, it remains to be
seen to which extent actual manipulation motions can be realised.

The next section 3.5 first summarises the key features of the Kinova Jaco robot and the
software architecture to control the arm and gripper. Next, section 3.6 sketches the recent
MoveIt! framework, that is used for the manipulation tasks in the second experimental
loop and has completely replaced the previously used manipulation stack on the Domestic
Robot. MoveIt! is under heavy development, but we expect to track the progress and use the
advanced manipulation capabilities, adapted to the Kinova gripper, for the Domestic Robot.

In section 3.7 the service node is described that actually connects to the MoveIt and Vi-
sionhub and provides higher level services (e.g. grasp object), that are then called by the
executor nodes, which then export the functionality to the PEIS framework.
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3.5 Kinova Jaco API and ROS-node

As explained in the previous project report D4.1 [57], the Kinova Jaco arm was selected
for the Domestic Robot, due to its proven record in wheelchair applications, acceptable
payload, the low-noise operation and pleasing outer appearance, and last but not least the
availability of suitable software including the experimental ROS interface. The nominal
payload of the arm is 1.5 kg at the gripper, but cannot be applied continuously. Depending
on the payload, the arm needs rest periods to avoid overheating of the motors. Fully ex-
tended, the reach of the arm is about 90 cm from the base to the grasp position between the
fingers.

From the mechanical point of view, the Jaco is a fairly standard 6-DOF robot arm with
an integrated 3-finger gripper. The joints are driven by high-performance electrical DC
motors with planetary gears, where the lower three joints use larger motors and gearboxes
for higher torque. All joints are specified for pretty high speed, but are limited in software to
slow motions that are considered safe around humans. Please see the documentation from
Kinova for details and the exact specification of the arm and hand.

Warning: no brakes Unlike most industrial robots, the Jaco arm does not include
brakes on the joints, and the gearboxes are not self-locking. When powered down,

the arm will collapse under its own weight, unless it has been parked in a suitable rest
position. This can damage the arm, any payload carried during power loss, and of course
also objects and humans near the arm.

Warning: no emergency stop There is currently no emergency stop on the Jaco
arm, neither via mechanical emergency buttons nor via software. The current ROS

node allows us to cancel an ongoing movement, and commanding the current position sta-
bilises the robot. Note that the emergency-switches on the SCITOS platform do NOT affect
the Jaco arm in the current version of the robot.

3.5.1 Jaco DH-parameters and specifications

So far, Kinova releases key parameters of the Jaco arm only to licensed customers, includ-
ing the DH-parameters of the arm kinematics and also the joint and motor specifications.
Therefore, this data cannot be included in this (public) report. Please refer to the Kinova
documentation for technical details and specification about the arm geometry, joint-limits
and joint-torques, and operational limits of the motors.

3.5.2 Jaco Joystick and teleoperation

One of the biggest assets of the Jaco arm is the included high-quality Joystick together with
its different operation modes. See page 15 for a photo of the three-axis joystick (left/right,
up/down, twist) with a set of buttons and LEDs for visual feedback of the robot control
mode. Depending on the skills of the user, either 2-axis or 3-axis is possible, with different
modes to move the arm in cartesian space (translation), to orient the hand (orientation),
and to control the fingers. Pressing the yellow-button will move the arm back to its two
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Figure 29: The home (left) and retract (right) positions of the Jaco arm. These are the two
reference positions of the arm which can be reached by pressing (and holding) the yellow
button on the Kinova joystick. Note that the jaco_node ROS node can only be used when
the arm initialises into the Home position.

reference positions, namely the retract and home positions. The drinking mode provides
a specific hand-rotation, where the IK solver keeps the rim of a user-defined glass or cup
stable while rotating the hand.

Please see the Kinova documentation for usage information about the Joystick and the map-
ping between buttons and movements. Also check the Kinova API documentation about
how to change the default retract and home positions used by the arm, and for the definition
of safe-zones for arm movements.

3.5.3 Jaco .NET API

The Jaco arm was originally developed for use in rehabilitation, where the Jaco arm is tele-
operated by the users via the supplied Joystick. This works well and can be done without
any additional software, because the arm controller also includes the built-in IK solver.

However, the arm connects via USB to a PC, and Kinova offers software for arm config-
uration as well as a programming interface for remote control of the arm. The supplied
software is written for the Windows .NET platform and distributed as a set of .NET DLLs.
At the moment, the following libraries are included, which correspond roughly to the .NET
packages defined in the API:

• Kinova.API.Jaco.dll
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• Kinova.DLL.Data.dll
• Kinova.DLL.Tools.dll
• Kinova.DLL.USBManager.dll
• Kinova.DLL.TestData.dll
• Kinova.DLL.CommData.dll
• Kinova.DLL.TcpConnector.dll
• Kinova.DLL.SafeGate.dll

Kinova also supplies a Jaco arm control and configuration program. Its main user-interface
provides access to the arm parameters and allows the user to configure the joystick, the safe
regions to be avoided by the arm during movements, and the maximum speed. There is also
a simple self-test, and a small set of example programs for C# and VBASIC. However, the
example programs only use a very small subset of the API included by the Kinova runtime
libraries.

Fortunately, the mono software environment can be used to wrap the .NET libraries on
Linux. This avoids the additional complexity of using a separate control PC or a virtual ma-
chine for controlling the Jaco arm from the Domestic Robot and its ROS system. You need
to install mono-devel and mono-gmcs software packages and their dependencies. It may
also be required to install the latest version of libusb-devel for reliable USB communication
with the arm controller.

At the moment, Kinova Release 4.0.5 (April 2010) is installed on both Domestic Robot
prototypes; an update to the recently released research version 5.0.1 (February 2013) is
planned. A large part of the Kinova API is dedicated to configuration functions required for
tele-operation via the joystick, in particular the mapping from joystick buttons and axes to
cartesian movements of the arm and gripper. Please see the Kinova Jaco User Guide and
the Jaco API Programming Guide for details.

The CJacoArm structure is the basic abstraction of one arm, and is initialised via a call to the
arm constructor, which expects the license key provided by Kinova as the password. Once
initialised, the CJacoArm structure provides access to several members, namely the Config-
urationsManager, ControlManager, and DiagnosticManager. Before calling any other API
function, the JacoIsReady() checks whether the arm is initialised and running, and should
be called before any other function of the API.

The ConfigurationManager can be queried for the current arm configuration and parame-
ters, e.g. the MaxLinearSpeed of the arm. Most arm parameters can be set by calling the
corresponding Set functions. The ConfigurationManager is also used to define the Con-
trolMappings and events for the joystick and any ProtectionZones that the arm is forbidden
to enter. The DiagnosticManager is used for debugging, maintenance, and allows resetting
the arm configuration to the factory defaults.

The ControlManager provides the functions relevant to autonomous robot control. Only
joint position control and cartesian position control are supported at the moment. There are
no tactile sensors on the arm and fingers, and force control is not supported. However, a
rough estimate of joint-torques is available via measurement of the motor currents.

Important functions calls (and relevant parameters) are:
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• GetAPIVersion Kinova API software version
• GetCodeVersion Jaco DSP software version
• JacoIsReady true if working
• GetClientConfiguration arm parameters
• GetCControlMappingCharts joystick/button mapping
• CreateProfileBackup safe configuration to file
• GetPositionLogLiveFromJaco complete robot readings

• GetCPosition voltage, accelerometer, error status
• GetJointPositions CVectorAngle (joint angles)
• GetHandPosition CVectorEuler (cartesian pose)

• StartControlAPI start software control of the arm
• StopControlAPI stop software control
• Send JoystickFunctionality fake joystick events
• SetAngularControl switch to joint-elvel mode
• GetForceAngularInfo current joint-torques
• GetPositioningAngularInfo current joint-angles
• GetCommandAngularInfo current joint-positions
• GetCurrentAngularInfo motor currents

• SetCartesianControl switch to cartesian mode
• GetCommandCartesianInfo current hand pose and fingers
• GetForceCartesianInfo cartesian forces

• GetActualTrajectoryInfo check current trajectory
• GetInfoFIFOTrajectory check current trajectory
• SendBasicTrajectory CPointsTrajectory
• EraseTrajectories stops ongoing motion
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Kinova does not specify the maximum rate allowed for calling the different functions, but
the provided examples typically sample the joint-positions at 10 Hz. This should be suffi-
cient for the first experiments in pure position control, but a much higher sample-rate and
command-update rate will be required for fine motions and pseudo-force control imple-
mented on top of a position-control loop.

Note that the software control of the arm is considered the lowest priority of all control
methods of the Jaco. If the USB connection is lost, or if the Joystick is used, the software
control is disabled similar to a call to StopControlAPI.

The CPosition structure includes some low-level information that can be useful for improved
control. It contains the age of the robot since manufacture, the error status flag, the laterality
flag (right-handed or left-handed arm), the retract state, the current supply voltage, built-in
accelerometer readings, and several overload detection flags.

The default coordinate system used for Jaco cartesian control is right-handed with the x-axis
to the left, y-axis to the rear (negative y is to the front), and z-axis upwards. This has been
deduced experimentally when commanding poses with respect to the jaco_base_link link.

Therefore, the orientation of the coordinate system is different from the basic ROS coordi-
nate system, and care must be taken when converting between (x,y,z) and (XΘ,Y Θ,ZΘ)
angles for the Jaco GetHandPosition, GetCommandCartesianInfo and SetCartesianControl
functions and ROS.

3.5.4 Jaco ROS integration

Despite its beta-status, the Kinova ROS stack already provides all major components for
use of the Jaco arm in ROS. The jaco_description package contains the URDF model of the
arm, the jaco_api package builds a C++ library that wraps the Kinova .NET DLLS, and the
jaco_node package defines the jaco_node ROS node that communicates with the arm for
real-time control. The stack also includes a set of launch and configuration files for ROS
manipulation stack.

The jaco_node is the most important component. At the moment, the node initialises the
following subscribers and publishers.

Subscribers:

• jaco_node/cur_goal (geometry_msgs/PoseStamped)
• hand_pose (geometry_msgs/PoseStamped)
• joint_states (sensor_msgs/JointState)
• jaco_kinematic_chain_controller/follow_joint_trajectory/result
• jaco_kinematic_chain_controller/follow_joint_trajectory/feedback
• jaco_kinematic_chain_controller/follow_joint_trajectory/status

Publishers:

• hand_pose (geometry_msgs/PoseStamped)
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• cmd_abs_finger (jaco_node/FingerPose)
• cmd_abs_joint (jaco_node/JointPose)
• cmd_rel_cart (geometry_msgs/Twist)
• jaco_kinematic_chain_controller/follow_joint_trajectory/goal

(control_msgs/FollowJointTrajectoryActionGoal.msg) Note that the current imple-
mentation of this publisher ignores the velocity, acceleration and time values infor-
mation.

• jaco_kinematic_chain_controller/follow_joint_trajectory/cancel
This publisher is not working (no implementation)

To move the arm to a joint-space position via the command line, just publish the correspond-
ing joint angles (in radians, starting from the shoulder_yaw joint) the /cmd_abs_joint/
topic:

rostopic pub -1 cmd_abs_joint jaco_node/JointPose
"joints: [-1.7, -1.5, 0.8,-0.6, 1.5,-2.8]"

The joint-pose is published on /jaco/joint_states and is also available as part of the global
/joint_states message,

rostopic echo /jaco/joint_states

To move the fingers to a given position (in radians):

rostopic pub -1 cmd_abs_finger jaco_node/FingerPose
"fingers: [0.5, 0.5, 0.5]"

To move the Jaco arm to an absolute position in cartesian space (using the given ROS
coordinate system, e.g. the arm base jaco_base_link or the robot base base_link):

rostopic pub -1 hand_goal geometry_msgs/PoseStamped
’{ header: { frame_id: "base_link" },

pose: { position: { x: 0.23, y: -0.23, z: 0.45},
orientation: { x: -0.62, y: -0.3, z: -0.3, w: -0.65 }}}’

The absolute position of the arm is published on the hand_pose topic, but this seems not to
be reliable in the current software version:

rostopic echo /hand_pose

Setting the relative position in cartesian space is also documented, but does not yet work:

rostopic pub -1 cmd_rel_cart geometry_msgs/Twist
"{linear: {x: 10.0, y: 0.0, z: 0.0},

angular: { x: 0.0, y: 0.0, z: 0.0} }"
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The doro_description/scripts directory collects a set of small utility shell-scripts that encap-
sulate the verbose rostopic pub messages documented above. For example,

rosrun doro_description jaco_home.sh
rosrun doro_description jaco_retract.sh
rosrun doro_description jaco_fingers.sh 0 0 0
rosrun doro_description jaco_joints.sh -1.57 0.04 -1.1 -0.84 1.3 3.0
rosrun doro_description jaco_xyz.sh 1.45 -0.40 0.38

will move the arm to the home position using joint-space interpolation, open the fingers,
move the arm to the given joint-level position, move the arm to the given (x,y,z) pose
keeping current orientation using Kinova inverse-kinematics.
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Figure 30: Jaco finger positions as a function of object size. The plot shows the joint-
angle in radians for the fingers of the Jaco hand when grasping objects of known diameter
using either the power grasp (solid lines) between the proximal links of the fingers, or
the fingertip grasp (dash-dotted lines) between the distal links. Note that power grasps
can only be performed for objects of medium diameter, with a nonlinear behaviour due to
the underactuated distal links wrapping around the objects. The data is from human tele-
operation using symmetric three-finger grasp positions with finger 1 acting as the thumb.

3.5.5 Jaco gripper

The Jaco gripper has three identical fingers which are actuated by one motor each. Each
finger has two joints and two degrees of freedom, where the proximal joint is moved directly
by the motor and the joint position is measured by the software. To allow stable grasping
of medium sized objects, a second underactuated distal finger joint is provided on each
finger with a spring-mechanism inside the finger. When the proximal link of the finger
touches the grasped object, the distal link can continue to close, thereby wrapping the object.
Unfortunately, the mechanism is not documented by Kinova at all. Also, the underactuated
spring-driven joint is not modelled in the current ROS URDF model of the Jaco arm, which
uses rigid fingers without the distal joint. This also implies that wrapping grasps can not be
simulated in the Gazebo simulator.

The fingers are made from plastic, with a concave part covered by black rubber material
on each of the proximal and distal links. This provides two suitable stable grasp positions
for either power grasps between the proximal parts of the fingers with optional touching
the palm and wrapping of the object via the distal joints, and also fingertip grasps between
the concave parts of the distal links. When trying to pick up very small objects, it is also
possible to use the outer ends of the fingertips for grasping. The numbering scheme is
as follows. Finger #1 corresponds to the thumb, while Finger #2 is the index finger, and
Finger #3 the remaining (ring) finger.

The relation between finger joint position and grasp is not specified by Kinova. When using
the Jaco arm in tele-operation mode, the human user selects the grasp and closes the fingers
until the object is grasped. To avoid overly high grasp-forces, a mapping from estimated
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object-size to finger position is required. We performed a set of experiments under human
tele-operation control, with both the power-grasps (proximal links) and fingertip grasps
(distal links) on a set of objects of known size. The first results are shown in Fig. 30, which
provides a first approximation to the grasp-planning for given target objects.

3.5.6 Inverse Kinematics

So far, Kinova does not provide a standalone software function to calculate forward- or
inverse-kinematics of the Jaco arm. When using the Kinova joystick to control cartesian
motions, an iterative IK-solver running directly on the arm controller is used. According to
discussions with Kinova, the algorithm is considered valuable IP by the company and will
not be released or implemented as a library function soon [41].

As described above, it is possible to request cartesian motions via the Kinova API, but any
such function call will directly start the corresponding arm motion. The newest release of
the Kinova API also includes a function to check the requested goal position for singular-
ities, but in general it is impossible to predict whether the requested motion will execute
properly or will be too close to a kinematics singularity.

On the other hand, the ROS manipulation stack requires both and forward- and inverse-
kinematics (FK and IK) solver as prerequisite for the collision-aware arm-motion and grasp
planning. The ROS interface expects the following four services:

• get_fk (kinematics_msgs/GetPositionFK)
• get_ik (kinematics_msgs/GetPositionIK)
• get_fk_solver_info (kinematics_msgs/KinematicSolverInfo)
• get_ik_solver_info (kinematics_msgs/KinematicSolverInfo)

where the info services provide the client with information about the solvers, namely the
supported base and target coordinate frames. Here, the forward kinematics can be calcu-
lated easily from the robot URDF model and the given joint-angles. As described in the
above section, the Jaco gripper has two preferred grasp positions, corresponding to the in-
ner ("power") and outer ("fingertip") rubber covers of the fingers. The final IK solver for
the Domestic Robot will be designed to solve for both positions.

The well-known analytical solvers for typical 6-DOF robot arms (e.g. PUMA, Mitsubishi
PA10-6C) cannot be used on the Jaco, because the wrist design is not based on the stan-
dard approach with three intersecting orthogonal wrist-axes. The current release of the
OpenRave motion planning software [27] includes the FastIK module, which is claimed
to generate inverse-kinematics solvers for any given robot arm. The tool operates in sev-
eral steps. It first parses an XML-description of the robot kinematics structure including
joint-limits, and then derives symbolic equations for the given kinematics. In the third step,
those equations are simplified based on a set of heuristics. Next, the resulting equations are
converted and written to a C/C++ source file that implements those equations. The result-
ing file is then compiled and can be used either standalone or as a library function. While
OpenRave 0.8.2 succeeded to generate a FastIK source-code for the Jaco arm, the resulting
function seems to be invalid and does not find solutions.
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Without an analytical solver and without a working FastIK module, the current backup is
to rely on the common slower iterative inverse kinematics solvers. Note that the forward
kinematics is directly available in ROS based on the tf-library and the existing URDF model
of the Jaco arm.

3.5.7 Traps and Pitfalls

Mixing ROS and Kinova joystick operation This is not possible. Whenever the Kinova
Joystick is used while the Jaco ROS node is running, the ROS node is disabled. You need
to restart the jaco_node in order to regain control via ROS.

Bugs in jaco_node Unfortunately, the current Jaco ROS node is not very robust, and first-
time initialisation may fail. Also, during initialisation, the node toggles between the Jaco
arm rest position and the home position. Manipulation is only possible if the arm initialises
into the home position. If necessary, kill and restart the node until the arm initialises into
the correct position.

Finger position The finger position is not correctly reported after Jaco node startup. A
work-around is to send a suitable finger pose to the /cmd_abs_finger topic.

jaco_node initialisation and re-start When starting the ROS node, the Jaco arm moves
to either its home or the rest position, using joint-space motion with default velocity. De-
pending on the current position of the arm, this can result in collision of the arm and hand
with other parts of the robot. It is recommended to use the Kinova Joystick to carefully
move the arm to its rest position before (re-) starting the Jaco ROS node.

3.5.8 Collision map processing

When operating in real-world environments, the robot must be aware of potential collisions
between itself and objects in the environment. In addition, when carrying or manipulating
objects, the object(s) must be included in the collision checks. Within the ROS manipulation
stack, the TabletopCollisionMapProcessing service performs the following tasks:

• managing a collision environment using an Oct-tree representation.
• adding the objects (point-cloud clusters or 3D-meshes) identified by the table-

top_object_detector to the collision environment. For un-identified objects the
bounding-box of the point-cluster is added to the collision environment.

• combining multiple sensor data (e.g. Kinect, stereo-camera, tilting laser) into the
common collision environment.

• performing self-filtering to avoid adding moving parts of the robot to the collision
environment.

The TabletopCollisionMapProcessing service returns a list of GraspableObjects, which can
then be sent to the object pickup action. Check the ROS wiki for a complete example
about how to use the perception part of the object manipulation pipeline: www.ros.org/wiki/-
pr2_tabletop_manipulation_apps/Tutorials/Writing a Simple Pick and Place Application.
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3.6 MoveIt! framework

The MoveIt! framework is set to replace the original manipulation stack and has been the
main motion-planning tool for the Domestic Robot since 2013. The software is under very
active development, please check the website and Wiki at moveit.ros.org/wiki for docu-
mentation and recent updates. The block-diagram in Fig. 31 presents an overview of the
planning architecture and the interface to ROS. Currently, the ROS Hydro version of the
MoveIt! toolchain is used on the Domestic Robot.

One of the key ideas of MoveIt! is to enrich the existing kinematics description (URDF
files) with semantic information using a new file format called Semantic Robot Descrip-
tion Format or SRDF. The SRDF describes the links of the robot used for robot motion
and grasping objects, labels groups of joints belonging to the robot arm vs. the hand, and
includes information about self-collisions between parts of the robot.

After the MoveIt! tools have been installed, the MoveIt Setup Assistant is run once to create
the configuration files for a given robot. It provides a simple step-by-step user-interface,
where the user first selects the URDF for the target robot, then selects the base and target
coordinate systems, selects grasp and approach directions for the gripper, and configures
the robot self-collision checks:

1. export LANG=en_US
2. roscd doro_description/urdf
3. rosrun xacro xacro.py DomesticRobot.urdf.xacro > doro.urdf
4. roslaunch moveit_setup_assistant setup_assistant.launch
5. choose mode: create new MoveIt Configuration Package
6. select the doro.urdf created in step 2
7. self-collisions: select high sampling density
8. virtual-joints: select base_link as the child link and planar as the joint-type, corre-

sponding to the SCITOS base moving on the floor of the Peccioli/Lansgarden labs.
Choose suitable names, e.g. virtual_joint and virtual_frame.

9. planning-group, and the following steps: select the six Jaco arm links as one planning
group called arm, and the three Jaco fingers as another planning group called gripper.

10. robot-pose: enter the Jaco home position.
11. end-effectors: create a group called gripper that is a child of the jaco_hand_link

parent and the arm parent group.
12. passive-joints: leave blank
13. select the output-directory and create the configuration files.
14. add the output-directory to your ROS_PACKAGE_PATH.

When successful, the assistant creates a bunch of configuration files in the given output-
directory. Depending on your default locale, some files may be damaged due to invalid
number formatting. If necessary, repeat the process with your LOCALE/LANG environ-
ment variables set to English (EN_US). Otherwise, use a text editor to replace invalid
floating-point values with the syntax acceptable for C/C++/YAML files.
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Figure 31: Block diagram of the main components in the MoveIt! framework. Copied from
http://moveit.ros.org/doxygen/pdfs/moveit_api_diagram.pdf.
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For each planning group, MoveIt! expects controllers that offer the FollowJointTrajecto-
ryAction actionlib interface. Therefore, a configuration file controllers.yaml needs to be
created which defines the corresponding controllers:

controller_manager_ns: jaco_controller_manager
controller_list:

- name: jaco_arm_controller
ns: follow_joint_trajectory

default: true
joints:

- jaco_wrist_roll_joint
- jaco_elbow_roll_joint
- jaco_elbow_pitch_joint
- jaco_shoulder_pitch_joint
- jaco_shoulder_yaw_joint
- jaco_hand_roll_joint

The required launch file has been auto-generated by the assistant, but in the current software
version ends up empty. Edit the file jaco_moveit_controller_manager.launch, where the last
line must be adapted so that the parameter references the configuration file created in the
last step above:

<launch>
<arg name="moveit_controller_manager"

default="jaco_moveit_controller_manager/MoveItControllerManager" />
<param name="moveit_controller_manager"

value="$(arg moveit_controller_manager)"/>

<arg name="controller_manager_name" default="jaco_controller_manager" />
<param name="controller_manager_name"

value="$(arg controller_manager_name)" />

<arg name="use_controller_manager" default="true" />
<param name="use_controller_manager"

value="$(arg use_controller_manager)" />

<rosparam file="$(find moveit)/config/controllers.yaml"/>
</launch>

In the current software version, the generated moveit_controller_manager.launch file refer-
ences a MoveItControllerManager which is not included in the default ROS installation.

The following example program demonstrates a simple ROS node that subscribes to the
/move_group/result topic. Every time that the MoveIt! planner has generated a motion,
the chatterCallback function is called with a MoveGroupActionResult object as the param-
eter. The code than fills a FollowJointTrajectoryActionGoal object and publishes this on
the Jaco follow_joint_trajectory/goal topic, which starts the corresponding Jaco joint-level
trajectory:
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#include <sstream>
#include <ros/ros.h>
#include <std_msgs/String.h>
#include <geometry_msgs/PoseStamped.h>
#include <control_msgs/FollowJointTrajectoryActionGoal.h>
#include <moveit_msgs/MoveGroupActionResult.h>
#include <jaco_api/jaco_api.hpp>

class trajectoryForwarding {
private:

ros::NodeHandle nh_; ros::Subscriber sub_ ; ros::Publisher pub_;
public:

trajectoryForwarding(ros::NodeHandle &nh)
{

nh_ = nh;
pub_ = nh_.advertise<control_msgs::FollowJointTrajectoryActionGoal>(

"/jaco_kinematic_chain_controller/follow_joint_trajectory/goal",10);
sub_ = nh_.subscribe("/move_group/result", 10,

&trajectoryForwarding::chatterCallback, this);
}

void
chatterCallback(const moveit_msgs::MoveGroupActionResult::ConstPtr& msg)
{

// ------FollowJointTrajectoryActionGoal------
control_msgs::FollowJointTrajectoryActionGoal fJTAG_msg;
fJTAG_msg.header.stamp = ros::Time::now();
fJTAG_msg.header.frame_id = "/jaco_base_link";
fJTAG_msg.goal_id.stamp = ros::Time::now();
fJTAG_msg.goal_id.id = "goalID";

// read planned_trajectory from MoveGroupActionResult and fill
// control_msgs::FollowJointTrajectoryActionGoal with it.
fJTAG_msg.goal.trajectory

= msg->result.planned_trajectory.joint_trajectory;

// at current state Kinova jaco ignores JointTolerance[] path_tolerance
// and JointTolerance[] goal_tolerance
// duration goal_time_tolerance
fJTAG_msg.goal.goal_time_tolerance = ros::Duration(10.0);
pub_.publish(fJTAG_msg);

}
};

int main(int argc, char** argv)
{

ros::init(argc, argv, "jaco_trajectory_forwarder");
ros::NodeHandle n;
trajectoryForwarding trajFor(n);
ros::spin();

}
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<launch>
<arg name="planning_plugin" value="ompl_interface_ros/OMPLPlanner" />
<arg name="planning_adapters" value="

default_planner_request_adapters/AddTimeParameterization
default_planner_request_adapters/FixWorkspaceBounds
default_planner_request_adapters/FixStartStateBounds
default_planner_request_adapters/FixStartStateCollision
default_planner_request_adapters/FixStartStatePathConstraints" />

<param name="planning_plugin" value="$(arg planning_plugin)" />
<param name="request_adapters" value="$(arg planning_adapters)" />
<param name="start_state_max_bounds_error" value="0.1" />

<rosparam command="load"
file="$(find moveitDomestic)/config/kinematics.yaml"/>

<rosparam command="load"
file="$(find moveitDomestic)/config/ompl_planning.yaml"/>

</launch>

3.7 Manipulation Action Server

The Manipulation Action Server server provides a ROS node, that is specific to the Domes-
tic Robot and provides the higher level actions that need to be carried out by the platform. It
requires both MoveIt and Visionhub to be started on the robot system. Depending on their
complexity and duration the functions are provided either as ROS services or as Actionlib
servers.

Like the name says, the main purpose of this node is to provide services to grasp or han-
dover objects. The services are exposed using the ROS Actionlib library and therefore sup-
port cancellation of actions and feedback messages. When a manipulation action is called,
this nodes retrieves a list of possible grasp poses from the Visionhub node and uses ROS
Moveit in order to calculate the collision aware trajectory. Object handover to the user is
implemented featuring force controlled handover procedure. The robot uses its force sen-
sors to detect when the user applies a stable grasp and then releases the object. A simple
state machine ensures that only actions can be carried out that currently make sense (e.g.
handover is only possible when an object is grasped).

A "place" service is also implemented, allowing the caller to specify how the currently
grasped object is treated:

• drop at a defined place (the most simple operation), can also be defined relatively to
another object (e.g. a bin)

• place operation, where the footprint of the currently grasped object is put on top of a
surface specified in the call (on top of another object, on the tray of the robot)

• optionally the constraint can be defined to keep the object upright
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3.8 Manipulation Tasks in Robot-Era Scenarios

3.8.1 Domestic to Condominium Object Exchange

In the overall Robot-Era system, the Domestic Robot stays in the users’ apartment, while
the Condominium Robot takes care of transportation tasks within the different floors of the
building. Therefore, object exchange between the Domestic and Condominium Robots is a
necessary part of several Robot-Era scenarios, notably the shopping, laundry, and garbage
scenarios.

The object exchange between the Outdoor and the Condominium Robots is performed by
moving the objects using the motorised roller trays on both robots. This only works for
objects with a clean planar bottom and requires a precise alignment of both robots, see D5.3
and D6.3 for details [60,61]. Therefore, a cardboard box of size 0.2×0.2×0.2m3 has been
selected as the reference object and will be used during the second experimental loop.

The same cardboard box is also used for object exchange between the Domestic and the
Condominium Robot. AprilTags markers have been put onto the box, and the pose recog-
nition accuracy is usually better than 1 mm position error (see section 3.3.9). The box has
been equipped with a cylindrical handle on the inner sidewall of the box. The handle nicely
fits the rubberised parts of the Jaco thumb, so that the fully loaded box can be lifted without
problems. This allows the Domestic Robot to grasp the box precisely with the Jaco arm,
where localisation errors of about 10 cm and several degrees between the Domestic and
the Condominium Robots can easily be tolerated. See figure 33 for photos of the object-
exchange process.

Figure 32: The picture shows the reference box that will be used for the object-exchange
between the three robots. The cylindrical handle placed on the side wall of the box allows
a stable grasp with the Jaco hand (left). Prototype of the lunch-box object to be used in the
table cleaning scenario with a centered cylindrical handle.
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Figure 33: Autonomous object exchange between the Domestic and the Condominium
Robot. The Condominium Robot has a passive role. One or both robots move until they
are close together, where position and alignment errors of several centimetres can be com-
pensated by arm movements. The object is detected using either AprilTag markers or SIFT-
features, and collision-aware grasp and place motions are planned by Moveit. The photos
also show the prototype cardboard box that fits all three Robot-Era robots.
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3.8.2 Basket objects

To improve the realism of the garbage scenario, basket-like objects of different sizes have
also been designed. AprilTag markers are used to provide the robot with accurate object
identification and pose estimation. To avoid payload torque limitations on the Jaco fingers,
a central cylindrical handle is used on the basket objects. Different handle diameters have
been tested, and a rather large handle diameter (approx. 5 cm) works best for power-grasps
(closing the underactuated finger-joints) on the Jaco gripper. See figure 34 for a photo of
Domestic Robot taking the prototype basket. In this setup, the basket is detected by the new
camera added on the robot side, so that the head can point straight ahead.

Figure 34: The photo shows grasping the prototype basket that will be used for the garbage
scenario (left). AprilTag markers are put onto the object to improve object identification
and pose estimation. In this case, the new side camera is used for detection, and the head is
idle and can point straight ahead. Closeup of a soft cylindrical handle that is a good fit for
power-grasps with the Jaco hand (right).

3.8.3 Cleaning Tasks

Given the clear user demand, cleaning tasks will be a key capability of future service robots.
This in turn requires robot motion that keeps contact with the surfaces to clean and main-
tains adequate force and torque constraints throughout the motion. Unfortunately, neither
cartesian- nor joint-space force-control is available on the Jaco arm yet. While measuring
the motor-currents provides a rough estimate of applied force, the values are plagued by fric-
tion and hysteresis, and the sensor sample-rate is too low for maintaining controlled contact.
Also, the Jaco arm is not waterproof, and the use of water and cleaning fluids is considered
to dangerous for autonomous operation close to end users in the real experimental tests.

Therefore, only simplified cleaning tasks will be demonstrated and evaluated during the
second experimental loop. In particular, dry brushing and swiping tasks have been defined
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and implemented. For details and the service interface to the planner, see section 4.3.2.
Using a set of carefully selected brushes and sponges, robust grasps can be executed using
the Jaco gripper, while the elasticity of the tool provides the compliance to protect the Jaco
arm and the surfaces during position-controlled motions. Despite the simplification, the task
is still state-of-the-art and demonstrates that the robot can recognise, grasp, and use tools
to perform meaningful motions and tasks. Where necessary, a custom tool interface similar
to [4] will be used for robust tool grasping.

While the Moveit! framework provides functions for Cartesian motions, the combination
of sampling-based planners with the slow iterative inverse-kinematics solver results in long
planning times and low success rates for typical cleaning motions. The proposed solution
combines collision-aware reach and retract motions planned by MoveIt! with fast local
motions generated by the Reflexxes type-II library [5, 6]. The planned motions are then
sent to Jaco for trajectory-execution, while a watchdog process monitors the position errors
and motor-torques of the arm. The underlying assumption is that the surfaces to clean
are smooth and free of large obstacles. The tool compliance ensures that small motion
deviations can be tolerated.

Figure 35: Selected tools will be used to demonstrate cleaning tasks during the second ex-
perimental loop. In particular, the elasticity of hand-brushes and sponges provide the com-
pliance to safely execute swiping and brushing tasks using position-control on the Jaco arm.
Motion-planning combines collision-aware Moveit planning with fast trajectory execution
using the Reflexxes library.

3.8.4 Object Handover Tasks

The object transportation tray allows the Domestic Robot to carry several small objects or
one of the large reference object (object-exchange box, lunchbox, basket), where the user
can pick them up as needed. However, direct robot to human object handover is desirable
in some scenarios, e.g. the drug reminding or drug delivery, when the user is sitting down
or lying on a bed.

Several handover strategies have been tested and implemented. As full tracking of the users’
hand is not yet available, the handover sequence uses pre-defined fixes handover poses.
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Assuming that the Jaco has grasped an object, the robot-to-human handover consists of the
following steps:

• the planner drives the robot to a position close to the human,

• the planner selects a suitable pre-defined handover pose and executes a (collision-
aware) Jaco arm motion,

• the robot speaks to ask the user to take the object,

• the robot samples the Jaco motor-torques to detect when the user has touched and
grasped the object,

• the robot opens the Jaco fingers and lets the user take the object,

• the arm is retracted to a safe position.

Figure 36: Robot-to-human object handover using the Jaco arm. Using the updated Ja-
coROS driver, motor torque information is available from the arm and can be used to trigger
object handover from the robot to the human. Experiments were conducted to match force
thresholds to object size and weight for best user acceptance.
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For the second experimental loop, this quasi-static handover will be tested, where the force
thresholds are adapted to the size and weight of the object to ensure that the handover feels
natural for the users [8,9]. Typical joint torques recorded by the Jaco are shown in figure 36.

Alternatively, the arm forces can also be sampled continuously, allowing the user to take
the object while the robot arm is still moving. This has been validated using the KuKA
LWR available in Hamburg, which has suitable torque-sensors and fast reactive motions
(figure 37).

Figure 37: Flow diagram for robot-to-human object handover using the Jaco arm.
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3.9 Robot Watchdog

While the hardware of the Domestic Robot performed as expected and no component fail-
ure occurred during the first experimental loop, several minor problems and a few design
issues were identified in the overall Robot-Era architecture and the robot software. Some
failure mechanisms were easy to track down, with flooded Wifi connections to the robots
one of the obvious causes. When running all Robot-Era components, significant packet loss
and latencies of up to 30 secs have been observed. This triggers message retransmissions,
which in turn worsens the issue, and the long delay often invalidates timestamped ROS
messages, making the received data useless for further processing. Better wireless network
infrastructure will be installed in Angen-Lab and DomoCasa for the second experimental
loop.

The simple problem of an overloaded main robot computer was addressed by installing
additional processors connected by an on-board network. Two Intel NUC modules were se-
lected due to good processor speed and their compact size, increasing the available on-board
performance by about a factor of three. In particular, the very high amount of data streamed
by the XtionPro camera is now handled by one of the Intel NUC modules, with a corre-
sponding significant reduction in processor load and USB bandwidth on the main Scitos-
G5 computer. While the main computer is still heavily loaded due to running MIRA and
Cognidrive (platform sensors, localisation and navigation) as well as running the roscore
ROS master process and the JacoROS arm driver, the load is significantly reduced and is
expected to stay below 100%, so that some spare CPU cycles are available when needed.

Regarding the robot software, the situation is more difficult. Given the complexity of the
distributed ROS software running on each of the three robots, and the intentional lack of
synchronisation in the roslaunch tool, it was not always easy for the experimenters to re-
cover from failures. For example, a single crashed ROS node will stop sending messages or
service replies expected by other nodes, and small failures can therefore quickly spread to
the whole network of interconnected ROS nodes. Even identifying the source of the prob-
lem can be difficult, but once the failed ROS node has been pinpointed, restarting single
nodes may be impossible due to interdependencies and parameters set by complex chains
of nested roslaunch-files.

In this situation, a complete shutdown and reboot of the whole robot system was often
the quickest solution. Of course, this is unacceptable from a reliability and service-up-
time point of view, and must be avoided for the second experimental loop. Therefore, the
roslaunch files used for robot bringup have been re-factored for better modularity, allowing
the operator to restart parts of the ROS and MIRA/Cognidrive system at runtime.

Work has been started to implement a watchdog program that monitors key components of
the overall ROS system to help with the detection and analysis of problems and failures. As
implemented now, the watchdog node simply subscribes to a set of key messages, keeping
track of timestamps and cross-checking selected message data against expectations. Func-
tions and safety checks include:

• periodically querying the roscore master process for the list of running nodes and
services, to check both the health of the roscore process and the status of all required
ROS nodes.
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• periodically executing a system command (ps -auxwww) via ssh on all three on-board
computers to query the Linux kernel for a list of running processes, again checking
status of all required ROS nodes and comparing processor load and memory usage
against a set of (currently hand-coded) thresholds.

• periodically running the iftop command to monitor network load, packet losses, and
latencies.

• subscribing to all sensor messages (front and rear laser-scanners, cameras, XtionPro,
gyro, battery, arm) and checking expected data-rate and timestamps on incoming
messages.

• checking battery status.

• reading front and rear laser-scan data and checking for collisions.

• reading PTU data and checking position error to detect possible collisions with envi-
ronment and self-collision with the arm.

• reading Jaco data and checking driver status, joint torque estimations, and joint tem-
peratures.

• so far, only diagnostic messages are generated, but it would be straightforward to also
restart nodes automatically or to shutdown the PTU or Jaco driver in case of detected
collisions.

A list of additional useful watchdog functions has been compiled and will be implemented
during the experimental phase. Also, the processor and network load and the relative im-
portance of ROS nodes changes according to the current service performed by the robot,
and this should be respected in the analysis. For example, navigation and localisation are
most important while the robot platform is driving, while motion planning and arm con-
trol are key components during manipulation. As the watchdog already logs process status
and load, this can be correlated with ongoing service requests and will be used to build the
expected activity patterns to be checked in future runs.
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3.10 Simulation

The Gazebo multi-robot simulator is capable of simulation a population of robots, sensors,
and objects in a 3D world. Based on the ODE [45] physics engine, it generates both realistic
sensor feedback and physically plausible interactions between objects, at least for rigid-
bodies. See www.gazebosim.org for details and documentation.

A block-diagram of the Gazebo simulation framework is shown in Fig. 40 on the next
page. The simulation kernel gzserver maintains the whole world model and the simulation
time, updating the positions and motions of all objects based on the rigid-body physics
calculated by the ODE physics engine. The key parameters for the physics engine are
specified as part of the world-model specified when starting the server, but can also be
changed during a simulation. Using a plugin-mechanism, additional code can be integrated
into the simulation process, with full access to the data-structures of the simulator. This
approach is currently used to implement the various sensor models, including distance-
sensors, cameras, and tactile sensors. Additional user-provided plugins can be used, but
must be recompiled for the specific version of Gazebo used.

The gzclient program provides a 3D-viewer onto the simulated world and also allows basic
interactions, including pausing and restarting an ongoing simulation, adding new objects
into the world, and interactively updating the pose of objects. Alternatively, the ROS rviz
tool can be used to watch and control the simulated world. Both tools use the Gazebo
network interface to communicate with the simulation engine.

Figure 38: Realistic multi-robot simulation in Gazebo. Using the robot simulation models
developed during Y3, realistic physics simulation of the whole Robot-Era system is possible
(except for the speech interface). The Domestic, Condominium, and Outdoor Robots are
simulated with all their sensors and actuators. The simplified human models can move and
allow testing person detection as well as robot obstacle avoidance and evasive behaviours.
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Figure 39: Screenshot of the ROS rviz visualisation tool for the setup shown in figure 38.
All sensor data (laser-scanners, cameras, Xtion/Kinect) as well as the robot navigation and
manipulation plans can be visualised. The areas on the floor indicate the obstacle cost-maps
built by the robot navigation from the robot laser-scanner data.

3.10.1 Domestic Robot in Gazebo

Due to the support of the URDF file format, any robot model from ROS can be loaded into
a running Gazebo simulation with a simple spawn_object call, either interactively from the
command-line or from programs or launch-files. The easiest way is to first start Gazebo
with an empty-world or any of the predefined world files, and then to add objects and robots
into the world. This can also be done from the user-interface, where pauseing the simulation
during interactive placement and alignment of new objects is recommended. Multiple robots
are supported by Gazebo from the start, but care must be taken to use namespaces in order
to keep the joint- and sensor-data from different robots separate.

To experiment with the Domestic Robot in Gazebo, please check-out the latest version of the
ROS/Gazebo robot models and simulation interfaces from the Robot-Era SVN repository.
Both the doro_description and the doro_gazebo_plugins packages are required, but you may
want to also download, install, and rosbuild the remaining packages in the domestic_robot
stack. In particular, the doro_teleop package provides a telnet-based server for joint-level
motions and the joystick interface for interactive control of the robot.

Assuming that Gazebo and ROS are installed correctly, just run rosmake in the Domestic
Robot stack, then launch the simulation server gzserver, optionally run the Gazebo 3D
viewer gzclient, optionally load a world model with walls and furniture, and then spawn the
robot and any other objects. In addition to the Gazebo 3D viewer, the ROS rviz tool is also
a great help to watch and control the simulation.
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Figure 40: Block diagram of the main components of the Gazebo multi-robot simulator and
the integration into the ROS framework. The gzserver process maintains the world model
and calculates object motion based on the ODE physics engine. The server can load models
described in its native SDF file format, but also from ROS URDF robot descriptions. Sev-
eral plugins are available to model typical robot sensors, including cameras, depth-cameras,
laser-scanners, sonar sensors, as well as tactile- and force/torque sensors. Additional plug-
ins can be loaded into the simulator, where the controller_manager provides the interface to
real-time controllers running within ROS. Either the ROS rviz tool or the Gazebo 3D viewer
gzclient can be used to watch and control the simulation interactively. A network interface
provides program calls that allow to query and modify the world state and to control the
simulation engine.

3.10.2 Notes and version compatibility

Please note that the Gazebo simulator is under very active development right now, as a
special version of Gazebo has been selected by DARPA for the drcsim project. Unfortu-
nately, the main SDF (simulation description format) file format has undergone several in-
compatible changes, improving functionality and fixing severe shortcomings, but breaking
simulation models developed for older versions of the simulator.

In the transition from ROS Fuerte to ROS Hydro, the interface from ROS to Gazebo was
redesigned completely. In particular, the special version of Gazebo 1.02 updated for use
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in ROS was dropped. Instead, ROS interfaces are provided to the standalone installation
versions of Gazebo.

At the time of writing, Gazebo 1.9 is the official version for ROS Hydro, and this ver-
sion has been used for the development and test of the Robot-Era robot simulations models
during 2014. Later versions of Gazebo should work when the corresponding plugins are
installed, but this has not been tested. All sensors and actuators are modelled on the Do-
mestic, Condominium, and Outdoor Robots, including the laser-scanners, all cameras, the
Xtion/Kinect RGB-D sensors, as well as the wheel odometry. The sonar-sensors on the
Scitos-G5 platform are modelled as well, but are currently not used on either the real robot
nor the simulation models. However, as Gazebo does not support sound, neither the mi-
crophones nor the speakers for the Robot-Era speech interface are modelled. The updated
version of Gazebo and the use of updated 3D meshes for all three robot also fixes the bug
with undetected self-collisions, that was documented in D4.2.

Unfortunately, not all race-conditions in simulator startup have been fixed yet. Instead, a
new C++ class called doro_coro_gazebo_launcher is provided as part of the doro_utilities
package. The launcher serialises the spawning of robot simulation models in the Gazebo
world and takes care to start navigation and manipulation plugins in the correct order. The
launcher also includes utility functions to populate the simulated world with the simulated
humans and static simulation objects in either ROS (URDF) or Gazebo (SDF) file format.

The best way to launch the multi-robot simulation is therefore to rely on the provided pre-
defined launch files, e.g.

roslaunch doro_utilities Y3_doro_coro_hamburg.launch
roslaunch doro_utilities Y3_doro_moveit.launch
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3.11 PEIS Integration

This section describes the interface between the PEIS ecology layer and the several ROS
software components on the Domestic Robot. As described above (see Fig. 12 on page 22),
the interface layer consists of a set of largely independent modules, each of which provides
one specific service from the Robot-Era storyboards. During Y3 of the project, the use
of PEIS meta-tuples was suggested to simplify the task of the Robot-Era planner. A short
overview of the corresponding exekutor class hierarchy is given in section 3.11.6.

3.11.1 PEIS-ROS TupleHandler architecture

The basic idea of the PEIS-ROS interface is very simple. It consists of a set of ROS nodes,
called TupleHandlers, which first register themselves with ROS, subscribing and publishing
topics, and announcing their ROS services. Next, every TupleHandler registers itself in the
PEIS network with a naming pattern that matches the required tuple-names. Whenever one
of the matching tuples is created or changed, a callback function is called and the TupleHan-
dler analyses the tuple and performs the corresponding action. For upstream information
exchange, the TupleHandler will modify the data field of the relevant tuples, and may also
create new tuples.

While a TupleHandler will be called on all tuple-changes matching its tuple-name pattern,
most of those changes will be silently ignored. The TupleHandler is only triggered when
the command=ON change arrives, at which time the corresponding service is started. Most
TupleHandlers will wait until this time to access the remaining tuples and read the com-
mand parameters. It is expected that the value of all required parameters is valid at the
time of the command=ON change. Of course, it is also possible to write a TupleHandler
that updates its internal state (e.g. parameters) on every subscribed tuple-change, but this
requires the management of internal state and may be more complex than simply deferring
reading parameters until the start of the activity.

3.11.2 Using actionlib and feedback functions

The basic ROS services are very useful for fire-and-forget tasks, where a request is submit-
ted to the server and the client can wait (and must wait) until the reply arrives. However,
this architecture is not suitable for the high-level control of the Domestic Robot, because
several services are long-running tasks, and PEIS and the multi-robot planner cannot be
blocked until the tasks finishes. Also, it may be necessary to cancel an ongoing action.
This is exactly the functionality provided by the ROS actionlib architecture, which provides
service-calls that send period feedback message about their progress until the action has
completed and the final reply is returned. Also, actionlib services can be cancelled. See
www.ros.org/wiki/actionlib for details and documentation.

Therefore, most PEIS-ROS TupleHandlers will support an actionlib interface to their ser-
vices, including definition of the required ROS messages for the goal, status, feedback, and
result of the action. Technically, the corresponding feedback() and result() callback func-
tions need to be implemented in the TupleHandler class. At runtime, the TupleHandler
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Figure 41: The interface between actionlib clients and servers. The PEIS-ROS TupleHan-
dler classes are written as action clients, where incoming PEIS commands are converted to
action goals. Corresponding PEIS tuples are created and/or updated when the action server
sends new status and feedback data. The actual robot service is provided on the ROS server
application side.

node will subscribe to the goal and cancel topics, and publish the feedback, status, and re-
sult messages. In addition to publishing the progress to ROS, the TupleHandler will also
update the values of the corresponding PEIS tuples.

In addition to the geometry, the full URDF model of the robot also includes the weight and
the inertia properties of all components. The weight of the main platform was taken from

See Fig. 42 for a state-machine diagram that shows the common states for the PEIS-ROS
actionlib implementation. When starting the corresponding ROS node, the service initialises
itself connecting to topics and ROS services, and registers itself with PEIS. It then enters the
SLEEP state, waiting to be started. Once triggered, the service enters the ACTIVE state, and
will provide periodic feedback about its completion status. Once the service has completed
its goal, the state changes to COMPLETED (either SUCCEEDED or ABORTED) and PEIS
is notified. Should the service receive a cancel-request, the state changes from ACTIVE to
PREEMPTING, and then to PREEMPTED. Actual state and progress from the service is
sent back to PEIS via the corresponding STATUS-tuples.

3.11.3 Synchronisation

The PEIS configuration planner (CPM) is responsible for the scheduling of actions in the
PEIS network, including the synchronisation of service requests to the Domestic Robot.
As described above, whenever the CPM wants to start a service, it changes the value of
the command tuple to command=ON, which triggers the corresponding TupleHandler and
starts the requested action.

At the moment, no robust mechanism for pre-empting active services exists. Triggering
the emergency-stop service will stop all ongoing activity, but the robot may not be able to
continue with the interrupted task.

For all services implemented via actionlib, the CPM planner is expected to poll the periodic
feedback callbacks from the ongoing service and to wait until the service has sent its result
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Figure 42: The server and client states for the ROS actionlib stack. Those states are also
used in the PEIS-ROS bridge. See the text for an explanation. (Used with permission from
www.ros.org/wiki).
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message. Sending the cancel request should be acknowledged by the ongoing service, but
the CPM planner still has to wait for the result. A new service can only be requested after
the previous action has completed. Even short running tasks will be converted to actionlib,
so that the high-level interface to the services looks the same from PEIS.

3.11.4 Structured data

In the PEIS framework, the payload of a tuple is supposed to be just an array of bytes.
Optionally, the MIME-type and character encoding of the payload can be specified. Helper
functions are provided to create tuples from null-terminated C-style strings. Unlike ROS
and MIRA, the system has no support for multimedia data like JPEG images or complex
structured messages, e.g. Quaternion, JointTrajectory, PointCloud. While such data can be
passed into and transported via PEIS as an opaque array of bytes of the required length, the
system itself has no notion of the data-type, and application/octet-stream should be used as
the MIME-type. All respective tuple users are therefore responsible to encode and decode
the data themselves.

Within PEIS-ROS, whenever the transport of complex messages is necessary, an additional
tuple will be created with key=*.*.*.ROS_MESSAGE_TYPE and the ROS message class
name as the value, e.g. value=geometry_msgs/PoseStamped. A client can first query PEIS
for the existence of the ros_message_type tuple, which marks a ROS-based data-type, and
then read the corresponding type from the tuple payload. Next, the client reads the param-
eter tuple, and retrieves the binary data. Finally, the client uses the ROS API and helper
functions to decode the binary data.

Alternatively, some services on the Domestic Robot will simply use URLs or URIs (unique
resource identifiers) as their return values. Strings are handled easily in PEIS and the tuple-
view tool, and the client can then use a webbrowser or other tool to retrieve the information
from the Domestic Robot. See the service descriptions in chapter 4 below for the documen-
tation of any URL/URI messages used by the Domestic Robot.

3.11.5 Writing a new TupleHandler

The API for writing the TupleHandlers is still not stable, but the main ideas are highlighted
in the following short code sequences. The basic idea is to have ROS nodes which also reg-
ister themselves with the PEIS ecology. See Fig. 43 for the C/C++ header file that describes
the base class of the TupleHandler/Service hierarchy. The base class contains a reference to
a ROS NodeHandle and a PeisSubscriberHandler each. The registerCallback functions are
called from the init-method and register a user-written callback method for a given tuple key
with PEIS, where the pure virtual getPattern-method returns the tuple pattern (or key) that
is registered with PEIS. For example, robotname.MoveTo.*.COMMAND would ask PEIS to
call the given callback function whenever the value/state of the COMMAND tuple changes
in the ecology. A separate init-method is required, as class initialisation in C++ forbids to
call derived methods from a superclass constructor.

The processTuple method is the place where the actual processing of incoming tuples is per-
formed. In reaction to a COMMAND=ON change, the service would then read the contents
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of the corresponding PARAMETERS tuple, parse the given parameters, and start execution
of the corresponding activity.

A very simple example of a derived class is shown in Fig. 44 and 46. Here, the service
class inherits from TupleHandler and provides the actual implementation of the getPattern()
method as well as the processTutple() method. The main method first calls ros::init and
then the service constructor, which in turn initialises PEIS and the ROS subscriptions and
publisher for the newly created ROS node. The next call to init registers the ROS node
callback with PEIS, and then enters the endless spin-loop, where the ROS node reacts to
incoming PEIS tuples as well as its own ROS subscriptions.

3.11.6 ActionExekutor

While the PEIS-ROS interface described above works fine, the use of hard-coded tuple-
names also implies that the overall system is rather inflexible. In particular, restarting a
service requires to reuse and modify existing tuples, with the corresponding need to lock
and synchronise tuple access between multiple nodes on the PEIS network.

Therefore, the use of PEIS meta-tuples was suggested by ORU during Y3. A meta-tuple
retains the normal key attribute, but the tuple payload is linked at runtime to the value
attribute of another (normal) PEIS tuple. This basically doubles the number of active tuples
on the system, but increases flexibility, as the planner or other nodes can dynamically update
and change the payload of existing meta-tuples. This also simplifies online testing of the
system using the tupleview tool.

To reduce the implementation and re-factoring effort required to introduce meta-tuples, the
exekutor class library encapsulates the core functionality of accessing meta-tuples from
ROS software. To implement a new service on the robot, a subclass of exekutor is created.
When instantiated, the class will automatically create and subscribe to a set of input and
output meta-tuples with standardised names given to the constructor of the exekutor sub-
class. The current setup uses the command and parameters input tuples on every exekutor,
while output tuples include the state (idle, running, success, failed), result, and progress
(percentage of completion). The exekutor than subscribes to any ROS topics it needs for its
tasks. Once activated (by receiving command=ON), the exekutor processes the incoming
ROS data, calls ROS services and publishes data to ROS as required. To simplify access to
actionlib service calls, the action_exekutor base class already provides most of the neces-
sary interface code. The concept is very similar to the PEIS-ROS bridge described above.

Please refer to deliverable D3.4 for details about meta-tuples and see section 4 for a list and
documentation of the different exekutor services implemented for the second experimental
loop of project Robot-Era. See figure 47 for a screenshot of the tupleview tool during a test
of the Robot-Era shopping scenario.
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#ifndef TUPLE_HANDLER_H
#define TUPLE_HANDLER_H

#include <string>
#include <boost/thread/mutex.hpp>
#include <ros/ros.h>
extern "C"{
#include <peiskernel/peiskernel_mt.h>
#include <peiskernel/peiskernel.h>
}

class TupleHandler
{
protected:

ros::NodeHandle nodeHandle;
PeisSubscriberHandle peisSubscriberHandle;
std::string tuplePattern; // robotName.MoveTo.*.COMMAND
std::map<std::string,PeisTuple*> cachedTuples;
boost::mutex mutex;

public:
TupleHandler( int argc, char ** argv ); // initialises ROS and PEIS
~TupleHandler( void );
virtual void init(); // registers the callback function

// return the PeisTuple-Key-Pattern you’re interested in processing,
// for example, "doro1.MoveTo.*.COMMAND".
virtual std::string getPattern() = 0;

// processTuple() will be called with incoming PeisTuples with keys
// matching your getPattern().
virtual bool processTuple(PeisTuple* t) = 0;

// register the callback function used to process incoming tuples.
// Signature is "void callbackFunction(PeisTuple* t, void* arg)"
PeisSubscriberHandle registerCallback(const int owner,

const std::string& key,
void *userData, PeisTupleCallback *callbackFunction);

PeisSubscriberHandle registerCallbackAbstract(const int owner,
const std::string& key,
void* userData, PeisTupleCallback *callbackFunction);

// You can only getTuple()s that you have subscribe()d beforehand.
PeisTuple* getTuple(const int owner, const std::string& key,

const bool subscribeBeforeReading=false,
const int timeoutMillis = 1000);

...
virtual int getID(); // the Peis ID of this TupleHandler

};
#endif

Figure 43: tuple_handler.h
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#ifndef DEMO_SERVICE_H
#define DEMO_SERVICE_H

#include <doro_peis/tuple_handler.h>

class DemoService : public TupleHandler
{
private:

// add variables for your service here

public:
DemoService( int argc, char ** argv ); // initializes both ROS and PEIS

~DemoService( void );

std::string getPattern(); // doro.demo_service.*.COMMAND

bool processTuple( PeisTuple * t );
};
#endif

Figure 44: DemoService.h

#include <doro_peis/demo_service.h>
#include <std_msgs/Float64.h>
#include <std_msgs/String.h>
#include <sstream>

static int ID = 777;

DemoService::DemoService( int argc, char ** argv ) :
TupleHandler::TupleHandler( argc, argv )

{
robotName = "doro";
ROS_INFO( "DemoService: pattern is ’%s’", getPattern().c_str() );

}

DemoService::~DemoService() {
// empty

}

std::string DemoService::getPattern() {
return robot_name + ".demo_service.*.COMMAND";

}

Figure 45: DemoService.cc (1/2)
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bool DemoService::processTuple( PeisTuple* t ) {
const std::string fullyQualifiedTupleKey = getTupleKey( t );
const std::string payload = t->data;

ROS_INFO( "processTuple: <%s,%s>",
fullyQualifiedTupleKey.c_str(), payload.c_str() );

if (payload == "ON") { // create a new tuple with inremented ID
std::stringstream ss;
ss << "doro.demo_service." << (++ID) << ".COMMAND";
publishTupleRemote( 995, ss.str(), "OFF" );

}
return true;

}

int main(int argc, char **argv)
{

// ros init, PEIS-ROS init, register tuple callback
ros::init(argc, argv, "peis_ros_demo_service");
DemoService tupleHandlerDemo( argc, argv );
tupleHandlerDemo.init();

ros::Rate loop_rate(10); // ros::Time::init();
while( ros::ok() ) {

ros::spinOnce();
loop_rate.sleep();

}
}

Figure 46: DemoService.cc (2/2)
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Figure 47: Screenshot of the PEIS tupleview tool showing a set of active exekutor instances
corresponding to different services of the Domestic Robot. Using the meta-tuples handler,
the configuration planner can simply create and link to new tuples instead of modifying
existing tuples with hard coded names.
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4 Services

This chapter documents the abstract services provided by the Robot-Era Domestic Robot
and specifies the PEIS tuples used to configure and start the corresponding service. Follow-
ing the project decision to switch the PEIS planning interface to the meta-tuples architecture,
most Domestic Robot services were updated correspondingly during the end of 2014. The
re-implementation effort was acceptable, as most of the changes on the PEIS side are en-
capsulated in the action_exekutor class. Only small changes were required on our existing
ROS robot code, because both PEIS-ROS and exekutor interface to ROS via actionlib.

Note that the service descriptions in this handbook are not auto-generated from the actual
source-code, but are simplified a bit to improve readability. Before using any services on the
real robot or in simulation, we recommend to browse and download the latest documentation
available on the project website www.robot-era.eu, the ROS wiki at www.ros.org/wiki/robot-
era, and the Robot-Era software repository.

The robot services are and grouped by function in this handbook. First, subsection 4.1 lists
a set of low-level basic skills of the robot, giving access to sensor data or triggering simple
motions. Typically, each PEIS service in this group corresponds to one specific ROS node
and service, so that the skills can be triggered from either PEIS or ROS.

The next group of services, described in subsection 4.2 on page 115 lists the intermediate
skills that can be considered useful building blocks for the construction of typical robot
tasks, for example, detecting and grasping an object.

The third group of high-level services is sketched in subsection 4.3 on page 133. These
are the services used in the user-driven scenario descriptions developed within WP2 of the
Robot-Era project.

Please refer to the website and software repository for the full list of implemented services,
including all parameters and state/feedback options.
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4.1 Low-Level Services

The services in this group encapsulate the basic skills of the Doro robot, typically targeting
only a single sensor or actuator of the robot. While the services provide the basic sensing
and motion infrastructure of the robot, most of the Robot-Era scenarios will not use the low-
level services directly. Instead, the scenarios are designed to rely on the intermediate- and
high-level skills described in subsections 4.2 and 4.3 starting on pages 115 and 133 below.

Of course, the higher-level skills are implemented internally from a suitable set of basic
skills triggered in the required sequence. Exposing the low-level services via their individual
tuple-handlers provides the Robot-Era system with better flexibility, because the individual
skills can also be called by the planner and combined in new ways not implemented by
intermediate- or high-level skills. The skills also provide a very useful means for robot
software debugging and error-recovery, for example by allowing an expert user to move
the arm around obstacles not handled by the OMPL motion planners, or by retracting the
mobile base from a collision.

Note that most of the services described in this section correspond directly to one specific
ROS service or actionlib service. In addition to being callable via PEIS, all skills can also
be triggered via ROS messages, and several skills are accessible for interactive use via the
software in the doro_teleop package.

During robot startup, one PEIS-ROS or exekutor tuple-handler is created and started for ev-
ery low-level service. Each tuple-handler connects to the ROS topics and services required
for the particular skill, and then monitors the PEIS network for tuples matching its own pat-
tern. Once a tuple with matching key is received, the corresponding data is extracted from
the value field(s) of the tuples, and stored internally. The skill is triggered as soon as the
command=ON tuple is received, and executes until completed or until an error condition is
detected. All long-running skills are expected to also provide an actionlib cancel operation,
in order to pre-empt the task execution whenever necessary.

For every service, a short overview description is given, followed by the name of the soft-
ware modules (tuple-handlers) implementing the service and the specification of the PEIS
tuples defined to trigger the service and to monitor its execution progress. Where applicable,
the implementation status of the service is also described.
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4.1.1 EmergencyStop

Synopsis This service requests an emergency-stop of the Doro robot. The SCITOS-G5
mobile platform is stopped immediately, while the laser-scanners and sonars (when enabled)
are kept running for obstacle monitoring and localisation. The service is activated by pub-
lishing to the request_emergency_stop topic, or by pushing the emergency-stop switch on
the robot.

Any ongoing movements of the PTU and manipulator are stopped and the brakes of the
arm are activated. As the Kinova Jaco arm has no hardware brakes, any ongoing motion is
instead cancelled and the current robot position is sent as the new set-point. The arm is kept
powered, because a switch-off results in the arm falling down and potentially harming the
user and equipment.

To restart the robot, a message must be published to the reset_emergency_stop topic.

Handler doro_peis/emergency_stop_handler.cpp

Tuples
in.doro.emergency_stop.command= OFF ‖ ON
in.doro.emergency_stop.parameters= none
out.doro.emergency_stop.state= IDLE | ACTIVE
out.doro.emergency_stop.result= unused
out.doro.emergency_stop.progress= unused

Status Implemented and tested.

101



D4.3 - Domestic Robot Handbook 2014

4.1.2 GetCameraImage

Synopsis Requests to return the current image from one of the cameras on the robot
sensor-head. This service bypasses the PEIS layer, because PEIS lacks support for struc-
tured image data and the Robot-Era planner currently does not use or process image data at
all.

Instead, a client can directly request either single images or a MJPEG-encoded image stream
from the mjpeg_server2 running on the robot using standard http requests. This way, the
images can also be shown on the table graphical user interface, e.g. to display the robot
camera image of a unknown person in the surveillance scenario.

The mjpeg-server node is started at robot start-up time and keeps running continuously.
However, images are only processed and published when a client requests an image or
image-stream.

Handler mjpeg_server2
The service uses http or https requests directly instead of PEIS encapsulation. The service
can also be run on the Condominium Robot.

Tuples
http://doro:8080/embeddedstream?topic=/left_camera/image_raw
?width=320?height=240?quality=40
Quality can be chosen from 1 (lowest) to 100 (highest).

Example
http://doro:8080/embeddedstream?topic=/left_camera/image_raw?width=640

Status Implemented and tested.
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4.1.3 GetKinectImage

Synopsis Requests to return the current RGB or depth image from the Kinect/XtionPro
depth-camera on the robot head. This service bypasses the PEIS layer, because PEIS lacks
support for structured image data and the Robot-Era planner currently does not use or pro-
cess image data at all.

Instead, a client can directly request either single images or a MJPEG-encoded image stream
from the mjpeg_server2 running on the robot. The mjpeg-server node is started at robot
start-up time and keeps running continuously. However, images are only processed and
published when a client requests an image or image-stream.

The mjpeg_server2 node is started at robot start-up time and keeps running continuously.
Images are only processed and published when a client requests an image or image-stream.

Note: When accessing non-RGB data, the server only transmits the raw stream of image
data. The client is in charge of demultiplexing and decoding the image. Most nodes access-
ing depth image data should subscribe directly to the corresponding ROS topic.

Handler mjpeg_server2
The service uses http or https requests directly instead of PEIS encapsulation. The service
can also be run on the Condominium Robot.

Tuples
http://doro:8080/stream?topic=/xtion_camera/depth_registered/
image_raw?width=320?height=240?quality=40

Example
doro:8080/stream?topic=/xtion_camera/depth/image_raw

Status Implemented and tested.
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4.1.4 GetLaserScan

Synopsis Requests to return the current scan data from either the front (Sick S300) or
rear (Hokuyo-URG) laser-scanners. This returns a string (char-stream) representation of
the ROS sensor_msgs/LaserScan message, including timestamp, reference frame, and an
array of distances in meters. We also return the m distance to the nearest obstacle, which
may be useful to the high-level planner for re-planning when the on-board navigation is
stuck and might need a changed high-level plan.

Handler get_laser_scan_exekutor.cpp

Tuples
in.doro.get_laser_scan.parameters = base_scan ‖ base_scan_rear
in.doro.get_laser_scan.command= OFF ‖ ON
out.doro.get_laser_scan.state= IDLE ‖ RUNNING ‖ COMPLETED ‖ FAILED
out.doro.get_laser_scan.result=

timestamp reference-frame number-of-distances [distance]* min_distance
out.doro.get_laser_scan.progress= completion-percentage ‖ error-description

Status The service is currently not used by the Robot-Era planner or the HRI modules.
All ROS-nodes on the robot should simply subscribe to the /base_scan or /base_scan_rear
topics directly.
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4.1.5 GetSonarScan

Synopsis A Requests to return the latest distance data from the ring of 24 sonar sensors
on the SCITOS base. Returns an array with 24 float values, each one giving the minimum
distance to an obstacle reported by the corresponding sonar sensor.

Handler get_sonar_scan_exekutor.cpp

Tuples
in.doro.get_sonar_scan.parameters = base_scan ‖ base_scan_rear
in.doro.get_sonar_scan.command= OFF ‖ ON
out.doro.get_sonar_scan.state= IDLE ‖ RUNNING ‖ COMPLETED ‖ FAILED
out.doro.get_sonar_scan.result=

timestamp reference-frame number-of-distances [distance]*
out.doro.get_sonar_scan.progress= completion-percentage ‖ error-description

Status Not implemented. The project decided to rely on the much more robust and
precise laser-scanner data for navigation and obstacle detection. The sonar-sensors are cur-
rently disabled on the robot.
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4.1.6 MoveTo

Synopsis Requests the robot to drive to a goal position. The position is specified as a 2D-
pose (x,y,Φ) consisting of the x and y coordinates (in meters) and an optional yaw-angle (in
radians). The orientation and origin of the coordinate system are based on the current /map
system of the robot. Optionally, the xy- and yaw-goal-tolerances for the final robot position
can be specified in the parameter tuple. Otherwise, the ROS param server is queried to
specify the goal tolerances of the driving motion:

• /move_base/TrajectoryPlannerROS/xy_goal_tolerance

• /move_base/TrajectoryPlannerROS/yaw_goal_tolerance

Mira/Cognidrive is used for controlling the SCITOS-G5 platform [43], while the ROS-
MIRA bridge software interfaces MIRA to ROS. Robot localisation, motion planning and
trajectory replanning to avoid dynamic obstacles are available and are considered stable.
See section 3.2.2 for an overview of the ROS-MIRA bridge.

As a motion command will typically take many seconds before the robot has reached the
goal position, the service relies on a ROS actionlib interface. When necessary, an active
MoveTo service can be cancelled. Feedback about the robot position is not published to
PEIS, but is easily available via the ROS tf topic.

Handler moveto_exekutor.cpp

Handler moveto_simple_exekutor.cpp

Tuples
in.doro.moveto.parameters = x y yaw (xy-tolerance (yaw-tolerance))
in.doro.moveto.command= OFF ‖ ON
out.doro.moveto.state= IDLE ‖ RUNNING ‖ COMPLETED ‖ FAILED
out.doro.moveto.result= unused
out.doro.moveto.progress= unused

Status Implemented and tested.
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4.1.7 Dock and Undock

Synopsis Requests a robot motion to dock to a given object, or to retract (undock) from
the object. The reference pose (x,y,Θ) of the target object is retrieved from the AmI CAM
module, where Θ specifies the preferred approach/retract direction to and from the object.
Coordinates are interpreted relative to the /map system.

The default action is to dock to the object specified as the single parameter in the parameter
tuple. If undock is specified, this automatically refers to the previous dock-operation and
target-object, so that no object needs to be specified.

Driving the robot is performed using calls to the move-to-simple exekutor.

Handler dock_exekutor.cpp

Tuples
in.doro.dock.parameters = object-name ‖ undock
in.doro.dockmoveto.command= OFF ‖ ON
out.doro.dockmoveto.state= IDLE ‖ RUNNING ‖ COMPLETED ‖ FAILED
out.doro.dockmoveto.result= unused
out.doro.dockmoveto.progress= unused

Status Implemented and tested.
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4.1.8 MovePtu

Synopsis Requests the robot to move the pan-tilt unit and therefore the sensor-head to a
given goal position specified by the pan- and tilt-angles (radians) with respect to either the
robot base coordinate system or the world-coordinate system.

With the current mount position of the PTU46 pan-tilt unit and the doro_ptu46 ROS node,
the orientation of the camera head is as follows:

• pan,tilt zero: cameras point straight forward

• pan: positive values are left, negative values are to the right. For example, 0.78 means
45◦ to the left, −1.57 means 90◦ to the right.

• tilt: positive values are upwards, negative values downwards. For example, 0.5 is 30◦

upwards, 0 is level, −0.5 is 30◦ down, −0.8 is 46◦ down.

Handler move_ptu_exekutor.cpp

Tuples

in.doro.move_ptu.parameters = pan-angle tilt-angle [coordinate-system]
in.doro..move_ptu.command= OFF ‖ ON
out.doro.move_ptu.state= IDLE ‖ RUNNING ‖ COMPLETED ‖ ERROR
out.doro.move_ptu.result= pan-angle tilt-angle
out.doro.move_ptu.progress= completion-percentage ‖ error-description

Status Implemented and tested.
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4.1.9 RetractJacoArm

Synopsis Requests a joint-level motion of the Jaco arm back to its retract (home) position.
This service enables the PEIS layer to request moving the arm back to its initial position.
This is required because several Kinova API functions can only be called after the arm has
been retracted to its home position. Without this service, the robot-planner would not be
able to initialise (or re-initialise) the Jaco arm.

Handler peis_ros/RetractJacoTupleHandler.cpp

Tuples

Status Implemented. Replaced by MoveJacoArm with corresponding joint-angles.
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4.1.10 ParkJacoArm

Synopsis Requests a joint-level motion of the Jaco arm back to its park (safe) position.
The Jaco arm lacks brakes on its joints, and the planetary gears have little friction and are
not self-locking. As such, the arm needs to be parked in specific positions in order to avoid
the arm falling down under the effects of gravity when the arm is switched off. This service
enables the PEIS layer to request moving the arm back to a safe parking position.

Handler peis_ros/ParkJacoTupleHandler.cpp

Tuples

Status Implemented. Replaced by MoveJacoArm with corresponding joint-angles.
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4.1.11 MoveJacoArm

Synopsis Requests a cartesian or joint-level motion of the Jaco arm, using either absolute
values or values relative to the current hand position.

For cartesian movements, the coordinates are specified as six double values interpreted as
(x,y,z) position and (R,P,Y ) Euler angles. If absolute is specified, values are interpreted
in respect to the jaco_link_base frame of the arm (arm mount), while relative values are
relative to the current hand position.

For joint-level movements, the target is also specified as six double values. If absolute is
specified, values are interpreted as absolute joint-angles ( j1, j2, j3, j4, j5, j6), while relative
specifies the per-joint offset to the current arm position.

Handler move_hand_exekutor.cpp

Tuples
in.doro.movehand.parameters =

cartesian ‖ joints
absolute ‖ relative
x y z R P Y ‖ j1 j2 j3 j4 j5 j6

in.doro.movehand.command= OFF ‖ ON
out.doro.movehand.state= IDLE ‖ RUNNING ‖ COMPLETED ‖ FAILED
out.doro.movehand.result= unused out.doro.movehand.progress= unused

Example
in.doro.movehand.parameters = joints absolute -1.5 0.2 0.3 0.4 3.14 0.6

Status Implemented and tested.
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4.1.12 MoveJacoCartesian

Synopsis Requests a joint-level motion of the Jaco arm to the given cartesian pose
(x,y,z,R,P,Y ). Note that the current implementation takes coordinates with reference to
the Kinova Jaco coordinate system.

Handler move_hand_exekutor.cpp

Tuples See MoveJacoArm.

Status Implemented and tested.
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4.1.13 MoveitJacoCartesian

Synopsis Requests a collision-aware joint-level motion of the Jaco arm to the given carte-
sian pose (x,y,z,qx,qy,qz,qw) (position, quaternion) with respect to the base_link coordi-
nate system of the robot. The motion trajectory is planned by MoveIt with default parame-
ters for goal position and orientation constraints.

Handler moveit_hand_exekutor.cpp

Tuples
in.doro.plan_and_move_arm.parameters =

x y z qx qy qz qw
in.doro.plan_and_move_arm.command= OFF ‖ ON
out.doro.plan_and_move_arm.state= IDLE ‖ RUNNING ‖ COMPLETED ‖ FAILED
out.doro.plan_and_move_arm.result= unused
out.doro.plan_and_move_arm.progress= unused

Status Implemented and tested.
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4.1.14 MoveJacoFingers

Synopsis Requests to move the fingers to the given joint-angles. While Jaco finger mo-
tions are fast and usually complete in less than one second, the current implementation still
uses actionlib calls based on the jaco/finger_action interface of the JacoROS arm driver
node.

The actual motion is selected by the open, close, or absolute command keyword in the PEIS
parameter tuple, where absolute is followed by three numerical values for the target finger
positions for fingers F1, F2, and F3. The useful range is [−1,+1], where positive values
indicate closed fingers, 0 is open, and -1 is required sometimes to reset the hand.

Handler fiddle_exekutor

Tuples
in.doro.fiddle.command= OFF | ON
in.doro.fiddle.parameters= open ‖ close ‖ absolute f1 f2 f3
out.doro.fiddle.state= IDLE | ACTIVE
out.doro.fiddle.result= SUCCESS ‖ FAILED
out.doro.fiddle.progress= unused

Status Implemented and tested.
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4.2 Intermediate Services

According to the terminology introduced above, the Intermediate Services collect multi-
modal perception tasks and manipulation actions that form the building blocks to construct
meaningful robot tasks and the actual Robot-Era services.

On the sensing level, the intermediate services encapsulate perception tasks that use infor-
mation from more than one sensor or include significant pre-processing. Typical examples
object detection using markers or the sensor-fusion from point-cloud and image-feature
data.

For manipulation tasks, most grasping actions fall in this category, because coordinated
hand and finger motions must be executed in combination with environment perception to
avoid collisions.
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4.2.1 DetectKnownObject

Synopsis Known objects can be detected using one of the following methods.

• SIFT-based object detection

• PCL-based object detection (including SIFT based classification)1

• AprilTag Markers

In this step only the appearance of the object is detected, not the exact grasp points.

Handler get_detected_objects_exekutor

Tuples
in.doro.visionhub_detection.command= OFF | ON
in.doro.visionhub_detection.parameters= unused
out.doro.visionhub_detection.state= IDLE | ACTIVE
out.doro.visionhub_detection.result= SUCCESS ‖ FAILED
out.doro.visionhub_detection.detections= object_list, comma separated+

Status
Implemented, final tuple format definition may need to be modified.

1In this case SIFT is only used to classify the defected point cloud by finding the best match in the object
database
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4.2.2 DetectUnknownObject

Synopsis Unknown objects can be detected using the Xtion sensor and the tabletop-
segmentation stack from ROS. Internally, the detection first calculates the position/orienta-
tion of a table-top surface and then searches for point-cloud clusters on top of this surface.
For each cluster, the bounding-box, predominant colour, and centroid are calculated and
used for object matching against known objects. Otherwise, the bounding-box can be used
for approximate object grasping. Information about detected objects is forwarded to the
AmI CAM-module.

Handler acquire_exekutor.cpp

Tuples
in.doro.acquire_tabletop.command= OFF | ON
in.doro.acquire_tabletop.parameters=

all tolerance ‖ known tolerance ‖ signature id tolerance

CAM_peis_id = 9898
CAM_peis_id.object_name.pos.geo.update= estimated-object-position x y z
CAM_peis_id.object_name.color.rgb.update= estimated-object-colour r g b
CAM_peis_id.object_name.boundingbox.update= estimated-object-colour r g b

Example
in.doro.acquire_tabletop.parameters= all 0.8
in.doro.acquire_tabletop.parameters= signature nespresso-1 0.7

Status
Implemented and tested.
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4.2.3 GraspAndLiftKnownObject

Synopsis This service implements grasping and lifting a known object, referring to an
object whose properties are known to the system. Object geometry will be based on a small
set of known basic shapes (sphere, cylinder, box) or the full 3D-mesh of the object.

Once triggered, the service will try to move to the given location, try to detect the object
via image- and depth-image processing, and estimate the object pose. The database is then
queried for the set of possible grasps, and the constraints- and collision-aware motion plan-
ners will try to find a suitable arm trajectory. The trajectory is then executed to grasp the
object, with visual servoing as possible and force-feedback from the Jaco arm to check the
grasp result.

Handler grasp_exekutor

Tuples
in.doro.grasp_exekutor.command= OFF | ON
in.doro.grasp_exekutor.parameters= OBJECT_NAME, optional comma separated list
of arguments: top, side
out.doro.grasp_exekutor.state= IDLE | ACTIVE
out.doro.grasp_exekutor.result= IDLE ‖ RUNNING ‖ SUCCESS ‖ FAILED
out.doro.grasp_exekutor.progress= unused

Status
Implemented for box-shaped objects, arbitrary shapes are supported when manually defin-
ing the grasppoints. Database structure and setup to be decided: reuse household-objects
from ROS, or start with something in PEIS?
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4.2.4 SideGraspAndLiftObject

Synopsis The side grasp service previously defined as a standalone-service is now in-
cluded in the grasp_exekutor, where the calling client can restrict the grasps to side-grasps.

Handler grasp_exekutor

Tuples
in.doro.grasp_exekutor.command= OFF | ON
in.doro.grasp_exekutor.parameters= OBJECT_NAME, optional comma separated list
of arguments: top, side
out.doro.grasp_exekutor.state= IDLE | ACTIVE
out.doro.grasp_exekutor.result= IDLE ‖ RUNNING ‖ SUCCESS ‖ FAILED
out.doro.grasp_exekutor.progress= unused

Status
Implemented.
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4.2.5 TopGraspAndLiftObject

Synopsis The top grasp service previously defined as a standalone-service is now in-
cluded in the grasp_exekutor, where the calling client can restrict the grasps to top-grasps.

Handler grasp_exekutor

Tuples
in.doro.grasp_exekutor.command= OFF | ON
in.doro.grasp_exekutor.parameters= OBJECT_NAME, optional list of arguments: top,
side
out.doro.grasp_exekutor.state= IDLE | ACTIVE
out.doro.grasp_exekutor.result= IDLE ‖ RUNNING ‖ SUCCESS ‖ FAILED
out.doro.grasp_exekutor.progress= unused

Status Implemented.
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4.2.6 PlaceObjectOnTray

Synopsis After an object has been grasped, place it on the tray of the robot. The caller can
either use one of three predefined positions (leftcenterright) or specify the exact pose of the
object base. The transformation endeffector to object base will be calculated automatically.

Handler place_exekutor

Tuples
in.doro.place_exekutor.command= OFF ‖ ON
in.doro.place_exekutor.parameters=

tray,
cartesian-place-pose x y z R P Y ‖
position leftcenterright

out.doro.place_exekutor.state= IDLE ‖ RUNNING ‖ SUCCESS ‖ FAILED
out.doro.place_exekutor.result= SUCCESS ‖ FAILED
out.doro.place_exekutor.progress= unused

Status
Implemented, theoretically working, final tests necessary before beginning of second exper-
imenatation loop.
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4.2.7 PlaceObject

Synopsis After an object has been grasped, place it on either another object or a carte-
sian position. The caller can specify the exact pose of the object base with respect to the
position of another object. The transformation endeffector to object base will be calculated
automatically.

Handler place_exekutor

Tuples
in.doro.place_exekutor.command= OFF ‖ ON
in.doro.place_exekutor.parameters=

object to place currently grasped object on,
cartesian-place-pose x y z R P Y

out.doro.place_exekutor.state= IDLE ‖ RUNNING ‖ SUCCESS ‖ FAILED
out.doro.place_exekutor.result= SUCCESS ‖ FAILED
out.doro.place_exekutor.progress= unused

Status
Implemented, theoretically working, final tests necessary before beginning of second exper-
imenatation loop.
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4.2.8 DropObject

Synopsis After an object has been grasped, drop it into another object or a at a cartesian
position. The caller can specify the exact pose of the object base with respect to the po-
sition of another object. The transformation endeffector to object base will be calculated
automatically.

Handler drop_exekutor

Tuples
in.doro.drop_exekutor.command= OFF ‖ ON
in.doro.drop_exekutor.parameters=

object to drop currently grasped object into,
cartesian-place-pose x y z R P Y

out.doro.drop_exekutor.state= IDLE ‖ RUNNING ‖ SUCCESS ‖ FAILED
out.doro.drop_exekutor.result= SUCCESS ‖ FAILED
out.doro.drop_exekutor.progress= unused

Status
Implemented, theoretically working, final tests necessary before beginning of second exper-
imentation loop.
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4.2.9 GraspObjectFromTray

Now implemented in the grasp_exekutor, that can store the exact position where the object
has been placed on the tray by interacting with the Visionhub node. Works similar to the
GraspAndLiftKnownObject service, except that the release-position is used to re-grasp the
object, as currently the tray is not visible with the cameras.

Synopsis

Handler grasp_exekutor

Tuples
in.doro.grasp_exekutor.command= OFF | ON
in.doro.grasp_exekutor.parameters= OBJECT_NAME, optional comma separated list
of arguments: top, side
out.doro.grasp_exekutor.state= IDLE | ACTIVE
out.doro.grasp_exekutor.result= IDLE ‖ RUNNING ‖ SUCCESS ‖ FAILED
out.doro.grasp_exekutor.progress= unused

Status Needs extensive testing.
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4.2.10 HandoverObjectToUser

Synopsis This service executes an object handover from the Domestic Robot to the user,
where the actual handover is triggered by the forces applied by the human when taking the
object.

Prerequisite: The robot has grasped an object and is close to the human. Where neces-
sary, the find-user service followed by a move-to or move-to-simple should be called by the
planner first. Additionally, the planner should ensure that the grasp pose of the Jaco hand
is suitable for the given size, shape, and weight of the object and any additional task con-
straints. For example, a side grasp might be required for successful handover of a cup filled
with liquid. On the other hand, a grasp pose with two fingers below the object increase
success for a heavy object.

The robot now triggers a Jaco arm motion towards the user and stops close to the presumed
user position. The robot than waits until the specified force-threshold is detected on the Jaco
arm, which triggers the open-fingers motion to release the object. Optionally, the handover
pose can be specified using either cartesian coordinates (with respect to robot /base_link)
or using joint-angles. The force-thresholds to trigger the release motion can be specified
individually for each joint of the Jaco arm. See section 3.8.4 and references [8] and [9] for
a description of the state-machine and the algorithms used.

Handler handover_exekutor

Tuples
in.doro.handover.command= OFF ‖ ON
in.doro.handover.parameters=

empty ‖
cartesian-handover-pose x y z R P Y ‖
joints-handover-pose j1 j2 j3 j4 j5 j6
(force-threshold j1 j2 j3 j4 j5 j6)

out.doro.handover.state= IDLE ‖ RUNNING ‖ SUCCESS ‖ FAILED
out.doro.handover.result= SUCCESS ‖ FAILED
out.doro.handover.progress= unused

Status Implemented and tested.
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4.2.11 HandoverObjectFromUser

Synopsis This service executes an object handover from the user to the Domestic Robot,
where the grasping of the object is triggered by the forces applied by the human.

Prerequisite: The robot robot is close to the human and the object presented by the human is
within reach of the Jaco hand. Where necessary, the find-user service followed by a move-
to or move-to-simple should be called by the planner first. Additionally, the planner should
ensure that the grasp pose of the Jaco hand is suitable for the given size, shape, and weight
of the object and any additional task constraints.

The robot now triggers a Jaco arm motion towards the user and stops close to the presumed
handover position. The robot than waits until the specified force-threshold is detected on
the Jaco arm, which triggers the close-fingers motion to grasp the object. The handover
pose can be specified using either cartesian coordinates (with respect to robot /base_link)
or using joint-angles. The force-thresholds to trigger the release motion can be specified
individually for each joint of the Jaco arm.

Handler handover_from_user_exekutor

Tuples
in.doro.handover_from_user.command= OFF ‖ ON
in.doro.handover_from_user.parameters=

empty ‖
cartesian-handover-pose x y z R P Y ‖
joints-handover-pose j1 j2 j3 j4 j5 j6
(force-threshold j1 j2 j3 j4 j5 j6)

out.doro.handover_from_user.state= IDLE ‖ RUNNING ‖ SUCCESS ‖ FAILED
out.doro.handover_from_user.result= SUCCESS ‖ FAILED
out.doro.handover_from_user.progress= unused

Status Implemented.
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4.2.12 PourLiquidMotion

Synopsis This service was documented in the previous version of the robot handbook
[58], because a corresponding function is included in the Kinova Jaco API and driver.
However, the function relies on user-teleoperation and would be very hard to implement
successful using autonomous control. Also, drinking support is not used in any current
Robot-Era scenario.

Handler canceled

Tuples

Status Not used in any Robot-Era scenario for the second experimental loop. Not imple-
mented.
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4.2.13 MoveHingedDoor

Synopsis

Handler peis_ros/MoveDoorTupleHandler.cpp

Tuples

Status Not implemented. Where necessary, automated doors will be used in the second
experimental loop.

Due to the inadequate support of force- and tactile-sensor readout in the Jaco driver, precise
impedance-controlled motions are not possible, and the risk of damage to the Jaco arm or
objects would be very high in position-controlled motions. Implementation will be recon-
sidered for robot arms with adequate sensors and software.
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4.2.14 LookAt

Synopsis This service moves the pan-tilt unit so that the cameras looks at an object known
to the PEIS CAM-module. The CAM in turn returns the corresponding position of the object
as a point (x,y,z) in world coordinates, or optionally any coordinate system known to the
tf-transformation library. Unlike the low-level MovePtu-service, this service allows the user
or planner to request images (or point-clouds) from a given target location without having
to worry about the current position and orientation of the robot.

Handler look_exekutor.cpp

Tuples
in.doro.look.command= OFF ‖ ON
in.doro.look.parameters= object-name (on CAM module)
out.doro.look.state= IDLE ‖ RUNNING ‖ SUCCESS ‖ FAILED
out.doro.look.result= SUCCESS ‖ FAILED
out.doro.look.progress= unused

Status
Implemented and tested.
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4.2.15 DetectPerson

Synopsis This service uses the robot sensors to detect persons near to the robot. Several
sensor modalities and algorithms may be combined, but the actual implementation is not
exported to the PEIS layer. When the move-head flag parameter is included, the robot may
use PTU motions to also detect people not directly in front of the current head position
of the robot. No platform motions are attempted; but the PEIS planner can initiate robot
motions to look for people in different rooms.

The current implementation is based on a pre-trained SVM classifier working on point-
cloud data from the Xtion camera. In the first step, a ground-plane estimation step is used
to find clusters in the point cloud, which are then classified according to their size and
shape. The ground-plane estimation is initialised from the robot PTU pan- and tilt-angles,
and confidence values are calculated for each cluster. Positions of detected persons are
calculated with respect to the given reference frame (usually /map for absolute positions, or
/base_link for positions relative to the robot base).

The result tuple contains the number of detected persons in view of the robot (0 . . .n) and one
tuple consisting of the estimated (x,y,z) position of one person together with a confidence
level (float) for that person. Work is underway to also estimate the relative motion of the
person (direction and velocity) with respect to the robot. Progress info is not published,
because the service completes when a person is detected of after 10 seconds runtime.

Handler find_user_exekutor.cpp

Tuples
in.doro.find_user.command= OFF ‖ ON
in.doro.find_user.parameters = (move-head)

svm ‖ openni (‖ face-detector‖ leg-detector) x y z
out.doro.find_user.result= n (x y z)*n
out.doro.find_user.state= IDLE ‖ RUNNING ‖ COMPLETED ‖ FAILED
out.doro.find_user.progress= unused

Example
in.doro.find_user.parameters= svm 3 1 1.8
out.doro.find_user.result= 0
out.doro.find_user.result= 1 3.14 0.71 1.83 0.84
out.doro.find_user.result= 2 3.14 0.70 1.79 0.66 2.80 -1.6 1.59 0.33

Status
Implemented and tested using the SVM clustering classifier.
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4.2.16 TrackPerson

Synopsis This service uses the robot sensors to detect and track persons near to the robot.
Several sensor modalities and algorithms may be combined, but the actual implementation
is not exported to the PEIS layer. The input (x,y,z) parameters of the service specify which
one of multiple users to track.

Using PTU motion commands, the head of the robot rotates so as to keep the robot looking
straight at the user. If no user is detected or the user is lost, the service returns failed.
Otherwise the service continues until canceled by the planner. The current runtime is sent
back to the planner using the progress tuple.

Handler track_user_exekutor.cpp

Tuples
in.doro.track_user.command= OFF ‖ ON
in.doro.track_user.parameters =

svm ‖ openni ‖ face-detector‖ leg-detector x y z
out.doro.track_user.result= none
out.doro.track_user.state= IDLE ‖ RUNNING ‖ COMPLETED ‖ FAILED
out.doro.track_user.progress= runtime-in-seconds

Example
in.doro.track_user.parameters= svm 3 1 1.8

Status
Prototype implemented (NiTE2 tracker). Needs to be updated for the SVM-cluster detector.
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4.2.17 RecognizePerson

Synopsis Use the robot sensors to recognize a person near to the robot. The current
implementation is based on the Eigenfaces algorithm [23], and requires the corresponding
set of pre-processed images for each of the known persons. The recognition result is either
the name/index of a known person, together with the estimate of the recognition probability,
NOT-RECOGNIZED to indicate that an unknown person was detected, or NO-PERSON to
indicate that no person could be detected in the current robot sensor data.

Handler peis_ros/RecognizePersonTupleHandler.cpp

Tuples
in.doro.recognize_person.command= OFF ‖ ON
in.doro.recognize_person.parameters =

empty ‖ camera-name region-of-interest: xl yt xr yb
doro.recognize_person.state= IDLE ‖ RUNNING ‖ COMPLETED ‖ FAILED
doro.recognize_person.result=

known-person-name‖ unknown-person‖ no-person-detected
doro.recognize_person.progress= unused

Status
Prototype implemented (Eigenfaces algorithm). Not yet integrated or tested, as automatic
detection of persons has legal consequences that have to be clarified before use during the
experimental loop.
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4.3 High-level Services

While the low-level and intermediate robot skills described in the previous sections are
valuable building blocks for the robot programmer, those skills are certainly not useful for
the typical end-user. Instead, the scenario storyboards developed by Robot-Era from the
user studies and questionnaires refer to much more complex actions like clean the dinner
table. This also includes the benchmark task of all service robots, bring me a cup of coffee,
where the robot has to identify the user, find the users’ preferred cup, prepare coffee, carry
the full cup without spilling the liquid, and finally hand-over the cup to the user.

The high-level robot services listed in this section directly correspond to the activities re-
quested by the users and documented in the project storyboards. All of the services require
significant robot autonomy and include complex action sequences, including detection and
identification of objects in cluttered environments, skilled manipulation and transport of ob-
jects, and interaction with the user(s). Some of the requested tasks are clearly beyond the
current state of the art, and only experience will tell whether the Domestic Robot with the
Jaco arm is capable of the tasks at all. For example, the clean the window service involves
the handling and manipulation of tools, possibly even the grasping of a wet soft spoon, and
very difficult perception tasks involving transparent and mirroring objects. Due to the high-
level nature of the services, the command interface from PEIS is very simple. The AmI
just prepares the required parameters (“bathroom window”) and triggers the corresponding
robot service.

In order to keep a clean implementation structure and to be able to switch between tasks
in a reliable way, many of the high level services are composed by the planner by calling
several middle level services consecutively. This way it is more convenient to implement
error handling or cancellation of tasks.

However, given the large number of intermediate and low-level skills required to execute the
service, a lot of things can go wrong and execution-monitoring and error recovery become
very important aspects of the implementation. Whenever the robot cannot execute the active
part of the overall action plan, the service will be canceled and the error reported to PEIS.
The AmI planner is then responsible to handle the error, and to attempt a recovery, for
example by requesting the user to point-and-click on the target object in a camera image of
the robot when the image processing algorithms fail to identify the object.
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4.3.1 WalkingSupport

Synopsis This service requests walking support for the user. The robot first moves to
the given initial position, tries to detect and recognize the user, and rotates so that the user
can easily reach grasp the handle. The robot then slowly moves to the target position, with
careful execution monitoring to ensure that the users keeps up with the robot and maintains
a stable grasp on the handle.

The service has been split into an autonomous platform motion towards the user, followed
by interactive drive control of the robot by the user using the switches in the tilting handle.

Handler moveto_exekutor

Tuples None.

Status To provide a better user experience, this service has been replaced by the direct
tele-operation of the Domestic Robot. Using the switches in the tilting handle, the user
can directly control and drive the robot. Note that the tele-operation software monitors the
laser-scanners to detect and prevent imminent collisions with obstacles in front of the robot.
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4.3.2 SwipeSurfaceService

Synopsis This service provides a simplified prototype version of indoor cleaning tasks
that is matched to the hardware capabilities of the Kinova Jaco arm and the Moveit motion
planning.

The tasks uses a set of pre-defined tools (sponges and brushes) that have been selected
or have been modified to be graspable by the Jaco hand. Due to lack of force-control on
the arm, tool compliance is used to protect the arm and objects during position-controlled
motions. Also, only selected objects will be available for cleaning (e.g. rectangular regions
on tables, windows, and kitchen surfaces), so that location and surface properties can be
modelled in the AmI layer (CAM module).

The actual cleaning tasks will consist of task-aware swiping motions which demonstrate
realistic and coordinated arm and tool motions. No water or cleaning liquids will be used,
to reduce the risk of accidents with damage to the robot or furniture. This obviously limits
the efficiency and results of the cleaning, but it is expected that the users will understand
the reasons and rate user acceptance as if the task were executed with liquids.

The elasticity properties of the tools and suitable motion plans (swiping left-to-right and
right-to-left, swiping alternating with free-space return motions, circular motions, handling
of corners) will be encapsulated in the swiping service and are not exposed or exported to
the AmI/CAM or planning layer. Where necessary, AprilTag markers will be placed on or
close to the target surface, in order to guarantee the position accuracy required by successful
task execution.

For the full cleaning scenario, the following action sequence is executed by the planner,
AmI/CAM, and Domestic Robot:

1. user requests the cleaning tasks via speech or GUI,

2. user also selects the room+object to be cleaned,

3. the planner queries the CAM for the appropriate tool and its current location,

4. the planner generates the moveto, look and acquire, and pick-object commands for
Doro to locate and grasp the tool,

5. the planner generates the moveto command to drive the robot to a position in front of
the target surface,

6. the planner generates the parameters for the swipe-surface command, including the
tool-name, surface-name, the four corners or the region-of-interest to be cleaned, and
optionally the exit-position where the swiping motions should converge to,

7. Doro generates motion plans for the given tasks and executes them autonomously.
Progress feedback is periodically sent back to the planner and user interface,

8. Doro retracts the arm into the home position and indicates SUCCESS or FAILED,

9. the planner generates commands to place the tool and informs the CAM about the
new location.
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Handler swipe_surface_exekutor.cpp

Tuples
in.doro.swipe_surface.command= OFF ‖ ON
in.doro.swipe_surface.parameters =

tool-name surface-name
corner1: (x,y,z) corner2: (x,y,z) corner3: (x,y,z) corner4: (x,y,z)
exit-position: (x,y,z)

out.doro.swipe_surface.result= unused
out.doro.swipe_surface.state= IDLE ‖ RUNNING ‖ COMPLETED ‖ FAILED
out.doro.swipe_surface.progress= percentage-of-completion ‖ -1 (FAILED)

Example
in.doro.swipe_surface.parameters =

brush-1 kitchen-table 2 2 0.72 2.5 2 0.72 2.5 2.3 0.72 2 2.3 0.72
in.doro.swipe_surface.parameters =

sponge-3 floor 0.1 0.1 0 0.5 0.1 0.01 0.1 0.5 0.01 0.5 0.5 0.02 0.1 0.1 0

Status Prototype implemented; needs testing. The service will be tested during the sec-
ond experimental loop.
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4.3.3 CleanFloorService

Synopsis Based on analysis of the user studies, the clean floor service consists of two
different tasks, namely picking up objects lying around on the floor, but also sweeping the
floor. This service was included as a placeholder in the first version of the Domestic Robot
handbook, D4.2 [58].

For the second experimental loop, the service will be performed in two steps by calling the
corresponding individual services. The grasp-object service will be used to for searching
and the picking-up of objects on the floor, while the swipe-surface service is used for floor
sweeping. The following limitations apply:

• realistic use of a full-size broom is not possible due to torque limits on the hand and
fingers of the Jaco arm. Smaller brushes or a broom with shorter handle will be used,
limiting the sweeping workspace to a region on the right side of the Domestic Robot.

• due to occlusion, the areas directly in front and to the right of the robot cannot be
observed by the XtionPro sensor and the cameras on the sensor head. Therefore, the
side camera will be used for object/obstacle detection and grasping/sweeping will be
performed on the right of the robot.

• Alternatively, perception of objects on the floor must be performed while the robot is
still about 1 m away from the objects, followed by a platform movements, followed
by (blind) grasping.

Handler
grasp_exekutor, swipe_surface_exekutor

Tuples
Please refer to the corresponding services.

Status
The necessary services are implemented and tested.
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4.3.4 CleanWindowService

Synopsis Requests the robot to clean the specified window. As originally specified, the
robot is expected to remove any obstacles in front of the window, to prepare a bucket with
water and detergent, put the bucket onto the tray, grasp a sponge, move to the window,
perform cleaning motions, bring the dirty water to the kitchen, clean bucket and sponge,
and finally restore any removed objects back to their original places.

Unfortunately, the complexity remains beyond the state-of-the-art of service robotics in
general and the capabilities of the Domestic Robot hardware in particular. Therefore, only
a simplified version will be demonstrated during the second experimental loop, where the
robot performs cleaning motions using a sponge. This can be performed by a corresponding
parametrisation of the swipe-surface service with the sponge specified as the tool object and
the coordinates of the window selected by the planner.

Handler swipe_surface_exekutor

Example
in.doro.swipe_surface.parameters =

sponge-2 window-1 2.0 3.0 1.0 2.0 3.5 1.0 2.0 3.5 1.5 2.0 3.0 1.5 2.0 3.25 1.0

Status Prototype implemented; needs testing.
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4.3.5 CleanTableService

Synopsis As originally specified, the robot moves to the given table, looks for known and
unknown objects, grasps the objects and places them on the transportation tray, drives to the
kitchen, and puts the objects from the tray to the kitchen sink or the dishwasher. The robot
then returns to the table with a wet sponge or cloth, and swipes the table clean. Optionally,
the table is laid again.

The project decided that this service cannot be executed atomically by the robot alone.
Instead, the driving motions, object detection, pick and place, and the cleaning are com-
manded by the planner in combination with the Ami CAM-module. The integrated service
is thereby replaced by the corresponding lower-level services and using known objects.

Handler
moveto_exekutor, dock_exekutor,
look_exekutor, acquire_exekutor,
moveit_hand_exekutor, grasp_exekutor, place_exekutor,
swipe_surface_exekutor.

Tuples
See the corresponding individual services.

Status This service is beyond the state-of-the-art of service robotics (considering un-
known objects are placed on arbitrary positions), and will be very difficult to execute with
the current Doro hardware setup. A simplified version of the service using known objects
is expected to be tested as part of the second experimental loop.
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4.3.6 BringFoodService

Synopsis The BringFoodService is expected to be tested in the second experimental loop.
A special box featuring a handle and an optical marker has been designed, that can be
handed over from the tray of the Condominium Robot to the Domestic Robot, that will fetch
this box from the apartment door and place it on the table. This service calls the docking
executor, the grasp_exekutor and the place executor. In a planned extension of this scenario,
the robot detects (find_user_exekutor) that the user is in front of the robot, and instead of
placing the object on the table it directly starts the handover procedure (handover_exekutor).

Handler
grasp_exekutor, place_exekutor, docking_exekutor,
find_user_exekutor, handover_exekutor

Tuples
Please refer to the corresponding low- and intermediate-level services.

Status
The necessary low and intermediate level services are implemented and tested. Object
handover has been tested during the M38 integration week and works reliably.
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4.3.7 CarryOutGarbage

Synopsis The CarryOutGarbage is expected to be tested in the second experimental loop.
A special bucket featuring a handle and an optical marker has been designed, that can be
grasped by the Domestic Robot and handed over to the Condominium Robot. The garbage
bin is placed on a defined location in the room. The planner drives the robot to a location,
where the marker of the bucket can be detected, then the grasp-service will be called which
calculates a grasp that can be executed. When the bin is grasped, the Domestic Robot docks
to the Condominium Robot and calls the place_exekutor in order to put the bin on the tray
of Coro.

Handler
grasp_exekutor, place_exekutor, docking_exekutor

Tuples
Please refer to the corresponding low- and intermediate-level services.

Status
The necessary low and intermediate level services are implemented and tested.
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4.3.8 LaundryService

Synopsis The LaundryService is expected to be tested in the second experimental loop. A
special box featuring a handle and an optical marker has been designed, that can be grasped
by the Domestic Dobot and handed over to the Condominium Robot. The procedure and
the handlers correspond directly to that of the CarryOutGarbage-scenario.

Handler
grasp_exekutor, place_exekutor, docking_exekutor

Tuples
Please refer to the corresponding low- and intermediate-level services.

Status
The necessary low and intermediate level services are implemented and tested.
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5 Software installation and setup

This chapter summarises installation, setup, and configuration instructions for the different
main software packages required for the Domestic Robot.

5.1 Ubuntu 12.04 and ROS Hydro

While ROS can be compiled on many Linux platforms, the availability of pre-built packages
with regular updates is best for Ubuntu-based platforms. Therefore, Ubuntu 12.04-LTS
was chosen as the operating system of the Domestic Robot. It needs to be installed on
all on-board computers (the main Scitos-G5 computer and the two additional Intel NUC
D5250WYK modules).

The original software documented in D4.2 [58] was based on ROS version Fuerte, but three
new releases (Groovy, Hydro, Indigo) have been introduced since then. In particular, a
robust version of the MoveIt! framework for collision-aware manipulation is only available
for ROS version Hydro and later. Other improvements relevant for the Domestic Robot
include the new catkin build system, a cleaner specification of the URDF robot model, and
the interface to the recent versions of the Gazebo robot simulator. While ROS versions can
be mixed to some extent, it is usually easiest to stay with a single version. As ROS Hydro
is still actively developed and includes most of the recent improvements, but can be used on
Ubuntu 12.04, the decision was taken to switch the Domestic Robot software to the Hydro
version of ROS.

Either version can be started by setting the corresponding binary and library search paths
and the ROS_PACKAGE_PATH environment variables. This is usually done as part of the
users’ setup.bash shell setup files.

PCAN kernel module Note that the PCAN kernel module required by MIRA is not part
of the standard Ubuntu Linux kernels. After updating the Linux kernel, you will have to
recompile the PCAN kernel module and generate the /dev/pcan32 device file. This is
documented in the MIRA installation guide.

5.2 Software Installation Paths

The different software packages are installed according to usual Linux (Debian/Fedo-
ra/Ubuntu) practice, where large non-standard software packages like ROS and MIRA are
installed into the /opt path of the filesystem.

Again according to current practice, the user-developed ROS stacks and packages are in-
stalled into a local ROS workspace managed by the rosws and rosinstall tools, below the
users’ home directory. So far, most of the software development is carried out using the de-
fault demo user account. The default home directory in turn is /home/demo, but this is only
used for the Kinova-specific post-installation stuff, namely the license files created by the
Windows-installer from Kinova. The actual ROS workspace files including the Domestic
Robot stack is installed into /localhome/demo/ros_workspace.
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/home/demo/Kinova/ Kinova license stuff

/localhome/demo/ actual demo user home
/localhome/demo/ros_workspace Robot-Era ROS software
/localhome/demo/ros_workspace/domestic_robot Doro-Software
/localhome/demo/ros_workspace/robot_common PEIS,MIRA bridges

/opt/MIRA/ MIRA framework software
/opt/MIRA-commercial CogniDrive
/opt/MIRA-licenses MIRA license files

/opt/ros ROS software root
/opt/ros/hydro Hydro installation

/usr/local/*/ PEIS installation

Figure 48: Software installation paths

5.3 MIRA and CogniDrive

The Domestic Robot comes with a pre-installed version of MIRA and CogniDrive, includ-
ing the required license and configuration files. For localisation, it will be necessary to
create and provide a map of the robot environment. To re-install or upgrade the MIRA
and CogniDrive components, please follow the instructions from the MIRA homepage at
www.mira-project.org/MIRA-doc-devel/index.html.

PCAN kernel module Note that the PCAN kernel module required by MIRA is not part
of the standard Ubuntu Linux kernels. After updating the Linux kernel, you will have to
recompile the PCAN kernel module and generate the /dev/pcan32 device file. This is
documented in the MIRA installation guide.

2D Nav Goal in rviz To set the doro navigation goal via rviz, you may have to change
the default topic used for the command. Open the too properties window (typically
on the top right panel in rviz), then select 2D Nav Goal, and enter the topic name
/move_base_simple/goal.

5.4 PEIS

The robot comes with a pre-installed version of PEIS, using the default configuration with
installs the files into the /usr/local tree. To upgrade and re-install, follow the instruction
from the PEIS homepage at http://aass.oru.se/~peis/. Note that building version G6 on a
multi-user system can be a bit annoying, as the makefiles fail to set all file permissions. You
may have to set file permissions from the shell in all affected subdirectories, e.g. chmod -R
go+rX /usr/local/include/peiskernel. For tupleview, you may need to install the libglade2-
dev libraries.

144



D4.3 - Domestic Robot Handbook 2014

Once building is complete, simply run tupleview in a terminal to check that the system
works, and to watch the current state of the PEIS tuple-space.

For performance reasons, it is recommended to use known PEIS owner-IDs whenever pos-
sible. The default ID of the configuration planner is 995. Further details about PEIS and the
installation of the configuration planner can be found in deliverable D3.2 [54].

5.5 Kinova Jaco Software

The Kinova Jaco software is pre-installed on the Domestic Robot. When necessary, re-
install from the USB-stick supplied by Kinova. Change to the sub-directory with the Ubuntu
software, and follow the installation instructions from the readme.txt file. For example,

cd /media/kinova_usbstick/Release_2012-02-15/4 - API [4.0.5.7]/Ubuntu

If a first-time installation fails, the license files for the robot may not have been created. A
workaround for this case is to install the software on an Windows PC, and later copy the
created license files to the robot.

When compiling the software, you will need the mono-devel and mono-gmcs packages.
Also install the latest version of libusb-devel.

Note that the Kinova stack is a required dependency for building the Domestic Robot
ROS software. However, when just compiling the software for us in Gazebo simula-
tion, the actual hardware interfaces are not required. Therefore, it is possible to just put
ROS_NOBUILD files in the jaco_node, jaco_test_node and jaco_api nodes, and then run-
ning rosmake in the Domestic Robot stacks.

The two reference positions for the arm are:

• retract : -1.5717 -2.0940 1.0982 -1.5329 3.0482 2.7943

• home : -1.7891 -2.0163 0.7994 -0.8739 1.6888 -3.1031

5.6 ROS Hydro

On Ubuntu 12.04 LTS, simply install the required pre-built packages for ros-hydro-xxx via
apt-get or a GUI-tool like synaptic. This installs all files below the opt/ros/hydro directory
tree.

ROS Hydro is the currently supported version. The different sensor and actuator
systems of the Domestic Robot, as well as the MoveIt-based motion planning are im-
plemented and tested using ROS Hydro.
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5.7 GStreamer Libraries

The necessary GStreamer libraries are installed during the catkin_make procedure, if
necessary the catkin_make asks the user to install necessary dependencies.
The "’gstreamer_pipelines"’ package includes the GStreamer-ROS adapter as well as the
plugins for object detection and pose estimation.

The full list of dependencies can be installed with:

sudo apt-get install libtool automake cvs gettext \
bison flex libglib2.0-dev libxml2-dev liboil0.3-dev \
intltool libgtk2.0-dev libglade2-dev libgoocanvas-dev \
libx11-dev libxv-dev gtk-doc-tools libgstreamer0.10-dev \
libcv-dev libhighgui-dev libcvaux-dev libgsl0-dev \
libgstreamer-plugins-base0.10-dev yasm libgtk-3-dev \
liborc-0.4-dev gstreamer-tools mplayer \
gstreamer0.10-ffmpeg gstreamer0.10-plugins-bad \
gstreamer0.10-plugins-bad-multiverse \
gstreamer0.10-plugins-good gstreamer0.10-plugins-ugly libopencv-dev

While in the first version the Gstreamer libraries had to be compiled seperately from the
ROS workspace, they are now included in the catkin workspace, are build within the
catkin_make procedure and do not need to be installed in the systems’ lib directories.

If plugins are not found, it may be the case that they are blacklisted, as dependencies have
not been found once. In that case remove the .gstreamer0.10 folder in the home directory.

5.8 Robot-Era ROS stack

All software components for the Domestic Robot ROS software are developed and main-
tained in the Robot-ERA SVN repository. The default installation path for the user demo
on the robot PC is /localhome/demo/ros_workspace. Use svn status to check whether the
current local copy is up-to-date, or use svn update to upgraed to the head revision of the
repository.

Creating the runtime ROS node graph

rxgraph -o doro.dot
dot -T png -o doro-rxgraph.png doro.dot
dot -T pdf -o doro-rxgraph.pdf doro.dot

Dependencies For command-line parsing, the Cognidrive-ROS bridge module requires
the libtclap-dev package.

Building for Gazebo without Kinova software See the section about the Kinova soft-
ware above for instructions on how to setup the Domestic Robot software when just building
for Gazebo simulation without the actual Kinova DLLs.
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Figure 49: Block diagram of the Domestic Robot on-board computer network. Currently,
the main Scitos-PC and two Intel NUC modules are installed. Developer PCs and Laptops
can be connected via cable or via WLAN.

5.9 Network Setup and Wired/Wifi Bridge

Due to the installation of the additional Intel NUC computers, the network setup for the
Domestic Robot needs to be configured. A software Ethernet bridge is used to connect the
wireless network with the wired Ethernet network between the three on-board computers.
See figure 49 for a block-diagram of the current design, which consists of the Scitos-G5
main computer, two Intel NUC D5250WYK computers, and a Gigabit Ethernet switch.
External computers or laptops can connect to the on-board network either via cable or a
WiFi connection to the Scitos-G5 computer.

The planned allocation of tasks to the different computers is as follows. The main Scitos-G5
controls the motors and laser-scanners, runs MIRA/Cognidrive and the PEIS AmI interface,
and runs the roscore process and a few other ROS nodes required for the robot navigation.
Other ROS nodes, in particular the Kinect point-cloud processing, the SIFT-based object
detection and matching, and the MoveIt! manipulation planner are started on the Intel NUC
computers. Additional ROS nodes can be launched on external PCs or laptops that connect
to the robot either wirelessly via WiFi or via cabled connection.

The following description assumes that the Ubuntu 12.04 has been installed on all machines,
that the required ROS Hydro stacks are installed, and the user-accounts have been set-up. If
necessary, download and install the Linux Ethernet bridge software and the iftop utility to
trace network load:

apt-get install bridge-utils
apt-get install iftop

The WLAN card on the ScitosPC needs to be configured for the Wifi network as usual,
including address, netmask, gateway, and dns servers. Next, the cabled ethernet interfaces
on the scitosPC and the NUCs must be configured. Using fixed IP addresses is probably the
easiest solution. See figure 50 for an example /etc/network/interfaces file.

After changing the settings in /etc/network/interfaces, restart the Linux network sys-
tem:

147



D4.3 - Domestic Robot Handbook 2014

# /etc/network/interfaces example
auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static

address 192.168.1.10
netmask 255.255.255.0
network 192.168.1.0
gateway 192.168.1.1
dns-nameservers 192.168.1.5
dns-search example.com

auto wlan0
...

# Bridge between eth0 and wlan0
auto br0
iface br0 inet static
# optionally, set address netmask network gateway for the bridge
# address 192.168.1.11
# netmask 255.255.255.0
# network 192.168.1.0
# ...

pre-up ip link set eth0 down
pre-up ip link set wlan0 down
pre-up brctl addbr br0
pre-up brctl addif br0 eth0 wlan0
pre-up ip addr flush dev eth0
pre-up ip addr flush dev wlan0
post-down ip link set eth0 down
post-down ip link set wlan0 down
post-down ip link set br0 down
post-down brctl delif br0 eth0 wlan0
post-down brctl delbr br0

Figure 50: Example network setup file with WiFi/wired Ethernet bridge.
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sudo /etc/init.d/networking restart

For testing, the bridge settings can also be configured on the command-line. For example:

brctl addbr br0
brctl addif br0 eth0
brctl addif br0 wlan0
ifconfig br0 up

The network setup must ensure that all machines are known to each other, so that ROS
nodes can connect to the main roscore process and exchange messages. Therefore, add
the hostnames/IPs of the three on-board computers as well as all external computers that
should connect via ROS to the /etc/hosts files on all computers. Please check that the
ROS_MASTER_URI environment variable is set correctly to point to the main Scitos-G5 con-
trol computer:

export ROS_MASTER_URI=http://scitosPC:11311

5.10 Remote Roslaunch Setup

In order to use the ROS roslaunch machine tags for automatic remote execution of nodes,
additional network configuration is needed. Because the default Ubuntu client installation
only includes the ssh-client software, the first step is to install the openssh-server package
on all machines that are supposed to run ROS nodes.

apt-get install openssh-server

When using a machine tag inside a roslaunch file, the ROS system creates a ssh-connection
to the specified machine, initialises the path and configuration settings according to the
specified environment shell file, and then tries to execute the specified ROS node with any
given parameters. This in turn requires that the user that started the roslaunch file can log-in
to the given machine and executes programs.

There are three different options, namely host-based authorisation, password-based autho-
risation, and public-key authorisation. All mechanisms are documented in detail on the
roslaunch Wiki pages. The password-based mechanism is easy to set-up, but requires to
keep both a valid username and the corresponding password in the plain text launch files.
This can be acceptable on the robot itself if special user accounts are used, but is not rec-
ommended for normal user-accounts.

The better and secure way is to use the public-key authorisation together with an empty
password. The required key files are created by the user, the private keys are kept private,
and only the public keys are copied to the configuration files of the computers that should
be accessed. A good tutorial (in German) is http://www.schlittermann.de/doc/ssh.

The first step is to read the required host-keys for all computers that should be able to con-
nect via ssh. This includes the on-board control PC, the NUC computers, and any developer
laptops or desktop machines. Enter the IP addresses for all machines to the /etc/hosts
file, and enter the host keys to the /etc/ssh/ssh_known_hosts file:
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/usr/bin/ssh-keyscan -t rsa scitosPC
/usr/bin/ssh-keyscan -t rsa nuc1
/usr/bin/ssh-keyscan -t rsa nuc2
/usr/bin/ssh-keyscan -t rsa laptop1
...
gedit /etc/hosts
gedit /etc/ssh/ssh_known_hosts
gedit /etc/ssh/sshd_config

Note that roslaunch uses paramiko to create ssh connections, and paramiko still does not
support the ecdsa algorithm. Any existing ecdsa entries must be removed from the global
and users known_hosts files, or remote roslaunch will fail.

Next, create the RSA private/public key pair for the user. Note that the users’ home-
directory must not writable by other users, and access to the users’ .ssh directory must
be restricted:

chmod go-w /home/user
chmod 700 /home/user/.ssh
ssh-keygen -t rsa
... empty passphrase
ssh-copy-id -i ~/.ssh/id_rsa.pub user@scitosPC
ssh-copy-id -i ~/.ssh/id_rsa.pub user@nuc1
ssh-copy-id -i ~/.ssh/id_rsa.pub user@nuc2
...
ssh user@remote-system
ssh -v user@remote-system (for debugging)

Instead of using the ssh-copy-id tool, the public key can also be added directly to the users’
authorized_keys file. Note that you may have to restart the ssh service on all machines
in order to enable the changes:

slogin -l root@remote-system
service ssh restart

Next, the env-loader shell-script must be adapted to the ROS configuration to be used. The
default script is /opt/ros/hydro/env.sh, but changes are needed to configure the Robot-
Era workspace. See figure 51 for a typical example env.sh environment file.

Once the setup is configured, roslaunch is able to start ROS nodes on remote machines:

For host-based authentication, the following ssh entries might be useful:

/etc/ssh/sshd_conf
IgnoreRhosts no
IgnoreUserKnownHosts yes
RhostsAuthentication no
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#!/usr/bin/env sh
# example remote roslaunch environment loader file.
source /home/demo/catkin_ws/devel/setup.bash
export ROS_PACKAGE_PATH=/localhome/demo/hydro:${ROS_PACKAGE_PATH}
export ROS_PACKAGE_PATH=/localhome/demo/mypackage:${ROS_PACKAGE_PATH}
# Gazebo-1.9 + Hydro
export GAZEBO_MODEL_PATH=/home/demo/.gazebo/models
export ROSLAUNCH_SSH_UNKNOWN=1
export ROS_MASTER_URI=http://scitosPC:11311
exec "$@"

Figure 51: Example env.sh environment file for remote roslaunch.

# export ROSLAUNCH_SSH_UNKNOWN=1
# export ROS_MASTER_URI=http://scitosPC:11311

<!-- password-based authentication, default environment loader -->
<machine name="nuc1"

address="134.100.13.147"
env-loader="/opt/ros/hydro/env.sh"
default="true" user="hendrich" password="secret" >

</machine>

<!-- RSA public-key authentication, custom environment loader
for global ROS Hydro and user-defined packages -->

<machine name="nuc2"
address="134.100.13.148"
env-loader="/home/demo/bin/catkin.env.sh"
default="true" user="demo" >

</machine>
...
node pkg="move_base" type="move_base" respawn="false"

ns="coro"
machine="nuc1"
name="move_base" output="screen">

...

Figure 52: Example roslaunch machine definitions and usage.
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RhostsRSAAuthentication yes

/etc/ssh/ssh_config
RhostsAuthentication no
RhostsRSAAuthentication yes

5.11 Robot calibration

See section 3.1.8 for details.
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6 Summary

This reports describes the hardware and software setup of the Robot-Era Domestic Robot
(Doro) in preparation for the second experimental loop of the project.

Notable updates following analysis of the first experimental phase include a complete re-
design of the outer appearance of the robot to improve user acceptance. The hardware itself
was only slightly changed, with a new mount position of the Jaco arm and the main pillar
resulting in a significantly larger object transportation tray and better observability. A gyro-
scope sensor improves robot localisation, especially on slippery or wet floor. Two compact
on-board computers were added to increase the available processing power.

The overall software architecture developed during 2012 and 2013 was largely unchanged,
but almost all software modules were updated to new versions and compatibility with ROS
Hydro. The PEIS-ROS interface was redesigned completely and is now using PEIS meta-
tuples for easier reconfiguration of the services. Several robot skills were added for the
second experimental loop, and most skills were tuned and updated for better robustness.

The last chapter of this handbook list the main software modules required for robot opera-
tion and includes installation instructions and tips for troubleshooting.
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