
Evaluation Metrics for an
Experience-based Mobile Artificial Cognitive System*

Liwei Zhang1, Sebastian Rockel1, Alessandro Saffiotti2, Federico Pecora2,
Lothar Hotz3, Zhenli Lu4, Denis Klimentjew1, Jianwei Zhang1

Abstract— In this paper, an experience based mobile artificial
cognitive system architecture is briefly described and adopted
by a PR2 service robot for the purpose of carrying out tasks
within the EU-FP7 funded project RACE. To measure the
benefit of learning from experience to improve the robustness
of the robot’s behavior, an FIM (Fitness to Ideal Model) and a
DLen (Description Length) based evaluation approach has been
developed. In a restaurant domain where the robot conducts
typical tasks of a waiter, a serve coffee to a guest and a clean
table task have been implemented to demonstrate the system
and the former one is being used in this work to apply the
proposed evaluation metrics, validate it on a real robot system
and present the evaluation results. They support the co-relation
of a reduced fitness when decreasing the description length. This
work presents a sound way to evaluate cognitive systems which
may take benefit of learning to increase their performance.

I. INTRODUCTION

The ability to conceptualize stored experiences and to
adapt plans and behavior according to experiences is clearly
a desirable asset of intelligent robots. It can help robots to
expand their knowledge about a complex world, to adapt
to changes, and to cope with new situations. Unfortunately,
in current robot architectures, experience-based learning has
mainly been realized at sub-symbolic levels. RACE (Ro-
bustness by Autonomous Competence Enhancement) faces
this problem. Nevertheless having an even more advanced
system raises the question of how to evaluate this as tra-
ditional methods may not be sufficient to do this. There is
still a lack of systematic method for performance of using
knowledge and experience. In this work, we give an overview
of the current state of evaluating complex systems and the
evaluation results of the RACE cognitive system.

The main goal of RACE is to develop a framework and
methods for learning from experiences in order to facilitate
an cognitive intelligent system. A detailed account on what
an experience is in computer science as well as how it is
represented within RACE is given in section III. To achieve
this goal, experiences are recorded as semantic spatio-
temporal structures connecting high-level representations,

*This work was supported by the EC Seventh Framework Program
theme FP7-ICT-2011-7, grant agreement no. 287752. 1L. Zhang,
S. Rockel, D. Klimentjew, J. Zhang are with the Department
of Informatics, University of Hamburg, Germany {lzhang,
rockel,klimentj,zhang}@informatik.uni-hamburg.de
2A. Saffiotti, F. Pecora are with the AASS Cognitive Robotic Systems
Lab, Örebro University, Sweden {asaffio,fpa}@aass.oru.se
3L. Hotz is with the HITeC e.V., University of Hamburg,
Germany hotz@informatik.uni-hamburg.de 4Z. Lu is with
the Institute of Electronics and Telematics Engineering of Aveiro,
University of Aveiro, Portugal zhenli.lu@ua.pt

including tasks and behaviors, via their constituents at lower
levels down to the sensory and actuator level. In this way,
experiences provide a detailed account of how the robot has
achieved past goals or how it has failed, and what sensory
events have accompanied the activities.

The work in RACE therefore combines research from
several communities: (1) an ontology-based multi-level
knowledge-representation framework has been devised con-
necting actuator and sensory experiences with higher-level
semantic structures, (2) reasoning facilities for both sym-
bolic and quantitative knowledge are in place to deal with
hybrid and diverse knowledge, (3) scene descriptions are
enriched by high-level semantic interpretations, (4) learning
procedures are being devised exploiting all levels of recorded
experiences, and – last, but not least – (5) all this is integrated
with a state-of-the-art robot platform (PR2).

The experimental and evaluation domain used in RACE
is a restaurant environment where the robot serves guests as
a waiter. A typical task may be is to fetch a mug from a
counter, bring it to a table and place it in front of the guest
on the table. After several experiences, the robot learns how
to deal with guests at tables and positions not encountered
before. The robot has to deal with different categories of
objects known to the robot, i.e. tables, chairs, mugs etc.
Furthermore it has to deal with humans which can involve
the robot encountering previously unknown objects such as
things left on the table like mobile phones, books etc. and
the robot has to be prepared with obstacles in his way while
driving such as chairs or guests and other waiters passing
its way. As such the presented system has to deal with an
open-ended world.

Based on the integrated system this work focuses on a
new benchmarking and evaluation approach for intelligent
robotics which is applied to the described system which
integrates the generalization and learning framework devel-
oped in the context of the EU project RACE to measure
its performance. The presented approach combines a FIM
and DLen [1] founded metric applied to multiple runs of
scenarios. The results show a strong co-relation between the
two. The used definition of FIM is loosely based on [2].

In the next section, we present the architecture of the
integrated robot system. The robot memory is a central
component for storing multi-level factual knowledge in a co-
herent way, in particular experiences comprising instructions,
plans, activities, perceptions, and failures. The OWL-based
ontology structure is designed to connect to a constraint
system for temporal, spatial and resource reasoning. The



representation of concrete scenarios and experience setup are
provided in details. Finally, the proposed evaluation approach
including a well defined metric is demonstrated on simulation
environment and the physical robot platform.

II. RELATED WORK

Artificial Cognitive Systems (ACS), as compared in [3],
enabled autonomous robots not only to realize fast and robust
motion control in the dynamic environment, examples are
[4]–[7], but also to learn from experience and to improve
its performance [8]. In order to evaluate the performance of
behavior spaces of the autonomous robot, Mali and Mukerjee
[9] firstly defined a behavior metric. A detailed theoretical
analysis together with the “WashDish” task carried out by
a robot simulator was discussed to illustrate the significance
of the proposed metrics.

The International Electrotechnical Commission (IEC) pub-
lished a performance evaluation method for applications
in a household-like environment [10]. In this performance
evaluation method, the authors aim at formulating general
standard terms for robot capabilities and how to measure
them. The methods are bound to a service robots in a
household environment. Many performance terms like pose
and carrying capability are defined. But there is no evaluation
metrics for knowledge and experience based systems since
these robot platforms for household usually have no learning
facility.

RoboCup@Home [11] is the largest international annual
competition for autonomous domestic service robots. It de-
signs several benchmark tests where the robots’ abilities and
performance are tested in a realistic non-standardized home
environment setting. A statistical analysis of the benchmarks
from recent years was also given. However, most of these
tests focus on physical capabilities, the evaluation of high-
level learning and abstract capabilities is missing.

The Performance Metrics for Intelligent Systems (Per-
MIS) aims towards defining measures and methodologies for
evaluating the performance of intelligent systems. It focuses
on robotic applications concerning practical problems with
respect to performance measures. The book [12] consists
of results collected from the past workshops. It includes a
collection of related work rather than defining a common
benchmark.

In the scientific field of mobile manipulation, the “Mobile
Manipulation Challenge” aims to provide a snapshot of the
state of the art autonomous mobile manipulation applica-
tions. In 2010, the challenge focus on a constrained pick-
and-place task, e.g., object retrieval, loading a dishwasher.
The ICRA 2012 Mobile Manipulation Challenge is similar:
clearing a table, setting a table, and serving from a rotating
table in a “sushi boat” restaurant environment. The ICRA
2013 Mobile Manipulation Challenge held in a kitchen
environment, where the robots can operate the objects in the
kitchen. Two tasks are assigned and performance is evaluated
by scoring. This challenge focuses on manipulating objects
in the kitchen, like cutlery and bowels. It is unconcerned
with knowledge and experience based systems.

!Fluent
Class Instance: [MoveArmToSide, moveArmToSide1]
StartTime: [61.142, 61.142]
FinishTime: [66.306, 66.306]
Properties:
- [hasArm, RobotArm, leftArm]
- [hasResult, ActivityResult, succeeded]

Fig. 1. An example Fluent.

In this emerging and challenging field of performance
evaluation, an important development has been made. How-
ever, until now, little research has been done about evaluating
the experience-based artificial cognitive system with the
service behaviors of a real mobile robot. There is currently
no accepted standard for quantitatively measuring the perfor-
mance of using a knowledge base and experiences in an ACS.
In this paper, we propose an evaluation approach which bases
on FIM and DLen metrics. The former method is derived
from the work of [13].

III. RACE ARCHITECTURE

In this section, we present the main components of the
modular RACE architecture and describe important features
of the knowledge representation and reasoning (KR&R)
framework. The components have been implemented as ROS
packages and integrate to a running system on the physical
and simulated PR2 robot platform.

The basic data type is a Fluent. Fluents are exchanged
through ROS messages with the blackboard. All Fluents
are instances of concepts from the ontology. An example
Fluent is depicted in Fig. 1. Its semantics is a robot activity
or an event and can also represent an experience. A Fluent
consists of a concept from the ontology, two time intervals
for start and end and can have certain properties. This work
references the term Experience frequently and defines it
as follows [14]:

Definition An experience in this work is defined as an
execution trace that integrates subsymbolic and symbolic
representations and provides a detailed account of success
or failure.

The central component of the RACE system is the
Blackboard as depicted in the architecture (Fig. 2). Its
contents can be seen analogous to what can be found in an
ABox in Description Logics. Its main goal is, like in tradi-
tional blackboard architectures, to keep track of updates of
other system components. Basically, the robot’s internal and
external sensed state is reflected here for further processing.
This is done by other modules for perception, reasoning,
planning and execution in order to eventually write their
results back into the Blackboard. It will be exploited in
the RACE system to maintain a consistent representation of
Fluents (executed actions, world state propositions, etc.),
that include a begin and end timestamp each and to store
a complete experience record (e.g., execution of a coffee
serving task) to be conceptualized later. From the Fluents,
the current state and the past state information can be derived.



Conceptualiz
er

OWL 
Ontology

High-level 
Scene 

Interpretation 

DL Reasoner 

Temporal 
Reasoner 

Spatial 
Reasoner 

Conceptualizer

HTN Planner

Blackboard

Experience 
Extractor/
Annotator

Plan Execution 
Manager

Scheduler

ROBOT

Capabilities

Symbolic 
Perception

Symbolic 
Proprioception

ROS 
actions

action 
results

new 
concepts

expe-
riences

plan, 
goal

initial state, 
goal

plan fluents, 
schedule

fluents

OWL
concepts

OWL
concepts

continuous 
data

fluents

fluents
expe-

riences

User 
Interface

instructions

Fig. 2. The RACE Architecture contains a Blackboard as the robot’s
central memory. Other components mainly communicate with it in order to
exchange and process Fluents.

Details of the experience representation format can be found
in [14].

Through the user interface a planning goal is entered
into the blackboard which triggers the HTN (Hierarchical
Task Network) Planner [15]. The Planner creates then its
initial planning state and writes a generated plan back
to the Blackboard. Pre- and post-conditions to opera-
tors within the plan and a hierarchy of expanded HTN
methods are included. The plan triggers furthermore the
Plan Execution Manager which has the task to dis-
patch the planned actions and execute the appropriate
robot actions. Before any robot capabilities, e.g. grasp-
ing, are triggered the Scheduler will paralyze robot
actions where possible according to a resource based ap-
proach. Robot actions at this level are executed at a cer-
tain level of reactivity when necessary. While executing,
the Plan Execution Manager will log the success
and failure information at planning operator level to the
Blackboard.

Within this project a PR2 robot, running ROS (Robot
Operating System) [16] is being used. Basic capabilities, e.g.
for manipulation or navigation, are already part of ROS and
can be accessed in the form of ROS actions. Others needed
within the RACE system have been added. Robot capabilities
are tightly coupled to planning operators in the planning
domain specification. Thus, an operator can be executed
directly. Typically, capabilities run in a tight perception-
action loop and some failure cases can be handled locally.
Nevertheless, if an action permanently fails this is escalated
to the Plan Execution Manager, which will in turn
trigger re-planning.

Not all plan failures can be detected locally by the capabil-
ities itself. For instance, if a bottle is picked up, but slips from
the gripper on the way to another table, the pick-up action has
already terminated successfully. However, the plan execution
manager can infer that the bottle has slipped by using
proprioception (since the gripper fully closes). By checking
the current world state against the operator preconditions,
this kind of plan failure can be detected. More generally, the

detection of failures requires inference by which the robot’s
own expectations are checked for consistency with respect to
the observed state of the world. In RACE, this is achieved by
invoking ontological and constraint-based reasoning services
(described in [14]).

The robot provides continuous data about its own status
(such as joint angles) as well as data from its various sensors.
Then, the symbolic perception/proprioception
modules discretize this information into symbolic times-
tamped Fluents; example outputs of these modules indi-
cate whether the robot’s gripper is open, closed, or moving,
or the qualitative spatial location of a piece of cutlery
observed by the robot’s RGB-D camera. While the outputs
refer to discrete symbolic entities (such as “servingArea1”),
these entities may have quantitative properties (such as the
spatial polygon that “servingArea1” represents).

The robot’s conceptual knowledge is stored in the
OWL Ontology [14]. The ontology provides a common
representation format from which the domain knowledge
of all other reasoners is generated. For instance, the HTN
planning domain is extracted from the conceptual knowledge
about robot activities. Similarly, the OWL Ontology feeds
the spatial, temporal and ontological reasoners as well as
the high-level scene interpretation. These reasoners enrich
the basic experiences in the Blackboard with higher-
level semantic information and can also be queried directly
by other modules. For instance, if the robot’s task is to
serve coffees, temporal inference may tell it that the act
of delivering coffees must be scheduled before the coffees
become cold. Similarly, metric spatial reasoning can endow
the robot with the ability to discern exactly where to place
a dish when serving (between the fork and the knife of a
well-set table).

Background processes, responsible for experience extrac-
tion and conceptualization support a long-term learning
loop. The history of Fluents in the Blackboard is con-
tinuously observed by the Experience Extractor to
detect and extract potential relevant experiences, based on
plan structure, user feedback, pauses, similarity with stored
experiences, and conceptualizations and novelty.

Experiences are then used to improve future perfor-
mance by employing several learning methods. Taking
the experiences from the Blackboard as input, the
Conceptualizer [14] modifies the ontology, resulting in
more robust and flexible future plans.

IV. EVALUATION APPROACH

To measure success for a given task in a given scenario,
we use an approach inspired by model-based validation
techniques [13]; namely, we measure the compliance of the
actual robot’s behavior to the intended ideal behavior for
that task in that scenario. Fig. 3 graphically illustrates this
principle: the trace of a given execution of the RACE system
is compared against a specification of what the ideal behavior
should be, resulting in a “Fitness to Ideal Model” (FIM)
measure. These specifications will be formulated in a way



Specification of

ideal behavior

Environment

RACE 

System

trace

execution

compare

Fitness to Ideal Model

Fig. 3. Principle of evaluation in RACE: the system’s behavior is compared
to a model of the ideal behavior for the specific scenario.

that facilitates the task of automatically computing the FIM
measure, as discussed in [17] and presented below.

Discrepancies between the observed behavior and the ideal
behavior can originate from errors of four different types:

• Conceptual errors — e.g., the robot places a mug
outside of the guest’s reach because it does not know
that all objects should be served within the guest’s
placing area.

• Perceptual errors — e.g., the robot fails in perceiving
a mug.

• Navigation and/or localization errors — e.g., the robot
places a mug on the wrong table because it is wrongly
localized.

• Manipulation errors — e.g., the robot fails to pick up
a mug from the table because it slips from the gripper.

The latter three types of errors – perceptual, navigation
and manipulation errors – are platform specific. They do not
indicate problems with the intended behavior of the robot,
but with its physical execution. As the RACE project ad-
dresses the learning and use of knowledge for increasing the
robot performance, our metrics mainly focus on quantifying
conceptual errors.

Conceptual errors arise from discrepancies between the
knowledge used by the robot and the one encoded in the
specification of the ideal behavior. We call these discrepancy
inconsistencies. Specifically, inconsistencies can be of four
types:

• Temporal inconsistencies, that is, inconsistencies that
are due to not adhering to a temporal constraint — e.g.,
the robot fails to serve coffee within a given deadline.

• Spatial inconsistencies, that is, inconsistencies caused
by not adhering to a spatial constraint — e.g., the robot
places a mug on the wrong side of the table.

• Taxonomical inconsistencies, that is, inconsistencies
that derive from a wrong conceptual taxonomy — e.g.,
the robot serves wine in a coffee mug rather than a wine
glass.

• Compositional inconsistencies, that is, inconsistencies
deriving from the lack of causal support and/or wrong
hierarchical decomposition — e.g., the robot does not
clear all mugs from a table.

Fig. 4. Overall view of the RACE aim: to develop tools for autonomously
learning knowledge that allows to specify the robot’s task by as few as
possible instructions (low DLen) to achieve correct behavior (low FIM).

Accordingly, we will adopt the following four metrics to
quantify performance of the robot in relevant tasks:

pt = τt · #temporal inconsistencies
ps = τs · #spatial inconsistencies
px = τx · #taxonomical inconsistencies
pc = τc · #compositional inconsistencies

where τ(·) ∈ [0, 1] are weights which determine the impor-
tance of the four types of inconsistency. Together, the four
above define the FIM metric:

FIM =
∑

i∈{t,s,x,c}

pi (1)

If the ideal robot behavior is specified using a formal
model that allows to “count” inconsistencies, then this FIM
metric is operational. If that formal model even allows to
detecting and counting inconsistencies automatically, then
the FIM metric can be computed automatically. In the case of
temporal inconsistencies, for instance, we will employ con-
sistency checking procedures in temporal constraint networks
representing the temporal aspect of ideal robot behavior —
e.g., a Fluent [18] representing the task of serving coffee and
a temporal constraint representing the deadline for serving
the coffee can be checked against the execution trace of
the robot through simple temporal constraint propagation
procedures. Clearly, other formalisms could be used to
specify the ideal behavior [19]. In this project, we will
preferably use the formalisms which are used to represent
Fluents inside the RACE system, since we expect that
having the same formalism inside the system and on the
external reference model will be convenient when evaluating
the effect of learning.

In addition to estimating the effectiveness of learned
knowledge by counting the number of inconsistencies, we are
also interested in measuring the Description Length
(DLen) of the instructions that should be given to the robot
to achieve a goal. It is important to include this dimension
into the evaluation, as flawless behavior can always be
achieved by over-specifying the task, e.g. tele-operating the
robot. We conjecture that the FIM measure for a given task
in a given scenario will proportionally decrease with the
description length of the instructions increasing, as shown by
the solid line in Fig. 4. Successful behavior following shorter



Mug

Mug

Fig. 5. PlacingArea and ManipulationArea of the table1

instruction descriptions is indicative of the effectiveness of
the learned knowledge. Also, this may indirectly provide a
measure of how general the knowledge is if applied to a wide
range of scenarios and initial conditions.

Overall, our aim in RACE is to develop a system of
learning and reasoning tools that will allow the robot to
autonomously and effectively increase its competence. This
overall aim is related to the FIM and DLen metrics as
indicated in Fig. 4, which summarizes the final objective
of RACE: to make long specifications unnecessary for the
achievement of highly fitting behavior (i.e. behavior which
generates few temporal, spatial, taxonomical and composi-
tional inconsistencies). Graphically, this increase in compe-
tence is indicated by the transition from the solid line to the
dash line.

V. SCENARIO SET-UP AND EXPERIMENTS

We will demonstrate robot behavior in an experimental
restaurant domain. To collect experiences, the robot will
carry out tasks of a waiter, bringing food and beverages
to any of several tables, placing dishes properly in front of
guests, clearing tables, etc. In this work, two demonstrations
named “ServeACoffee” and “ClearTable” have been defined
and performed on the physical PR2 platform in a restaurant
environment. The results are presented and evaluated with
respect to the metrics defined in Section IV and described
in [17], [20].

A. Scenario Set-up

In the restaurant environment, the robot must transport
food and drinks to a specified area. Hence, we predefine the
PlacingArea. The PlacingArea is the part of the table where
mugs and dishes should be placed. It is a rectangle area
with length of 350 mm and width of 300 mm. The distance
from the edge of the table to the PlacingArea is 50 mm.
The mugs, dishes and spoons can be placed anywhere in
the PlacingArea. The PlacingArea of the counter is slightly
different. The PlacingArea definition of table is shown in
Fig. 5.

robot

Fig. 6. Initial floor plan of the restaurant environment

We first present three scenarios in the restaurant domain
which will be used for the “ServeACoffee”. The idea is to
let the robot discover a generalization of the “ServeGuest”
experiences in Scenarios A and B which will subsume the
task in Scenario C. Then two scenarios are set up for the
demonstration “ClearTable”. In the first scenario, the robot is
taught to clear the table by several instructions. After learning
the experience of “ClearTable”, the robot will execute the
“ClearTable” activity by one instruction.

B. ServeACoffee Demonstration

Scenario A: The restaurant floor plan is as shown in
Fig. 6, where the robot knows the position (pae) of mug1
on counter1, the position of table1, the position of guest1
west of table1, and the regions for manipulation, sitting and
placing. The user successively instructs the robot to move
to counter1, grasp mug1, move to the manipulation region
(mas1) south of table1, and place mug1 at the placement
region (pawr1) west of table1. The robot is told that this is
a “ServeGuest” activity.

Scenario B: The same as Scenario A, except a new guest
(guest2) is sitting east of table1 and the robot is instructed
to move to the north of table1 and place mug1 at the east of
table1. Again, the robot is told that this is a “ServeGuest”
activity.

Scenario C: Guest3 is sitting south of table2 and the robot
is simply instructed: Do a “ServeGuest” to guest3.

Schedule for “ServeACoffee” scenario A is list as follows.
There are 13 steps to accomplish the task. The 4 concrete
instructions are included in the schedule.

1) robot gets the environment model with world coor-
dinates, including coordinates of corresponding areas
(like instances of PlacingAreaSouth) and initial-
izes its own position (position1). The guest sits at
west of table1.

2) user1 instructs robot to move to mae3, the eastern
manipulation area of counter1.

3) robot plans a sequence of actions with an HTN
planner, based on a pre-existing model, to reach mae3.
This involves actions tuck arms, move torso and
move base.

4) robot moves to mae3 as planned.



5) user1 instructs robot to grasp mug1 from pae3,
the eastern placing area of the counter1.

6) robot plans a sequence of actions with an
HTN planner, based on a pre-existing model, to
grasp mug1 from pae3. This involves actions
move torso, tuck arms, move arm to side
and pickup object.

7) robot grasps mug1 from pae3 as planned.
8) user1 instructs robot to move to mas1, the south-

ern manipulation area of table1.
9) robot plans a sequence of actions with an HTN

planner, based on a pre-existing model, to reach
mas1. This involves actions move base blind,
move torso and move base.

10) robot moves to mas1 as planned, reaching the
destination still holding mug1.

11) user1 instructs robot to place mug1 in pawr1,
the right western placing area of table1, in front of
guest1.

12) robot plans a sequence of actions with an HTN
planner, based on a pre-existing model, to place
mug1 in pawr1. This involves actions move torso,
move base blind and place object.

13) robot (successfully) places mug1 in pawr1, as
planned.

C. ClearTable Demonstration
Scenario A: The robot knows the position of mug1 and

mug2 on the table1 (east of the table1), the position of
counter1. The robot is instructed to move to table1,
grasp mug1, move to the counter, and place mug1 on
the counter1 and then move mug2 from table1 to
counter1. The robot is told that this is a ”ClearTable”
activity.

Scenario B: The same as Scenario A, except mug1 and
mug2 are placed on the opposite sides of the table and the
robot is instructed to clear the table1 and to place mug1 on
the counter. Again, the robot is told that this is a ”ClearTable”
activity.

D. Experimental Results
In this section, the evaluation metrics described in section

IV will be applied to the two demonstrations. To save
space, only ”ServeACoffee” results are shown. The results
of ”ClearTable” are similar.

Let V 0 be the nominal (ideal) condition of the demon-
strator (as described in the scenario A schedule). In V 1
(as described in scenarios B and C), the guest sits on the
opposite side of the table (or leaves the sitting area), other
than specified in the planning domain. Robot still brings the
mug in the same place as before (which is now in front of
an empty seat). Then the compositional inconsistency (the
replanning is needed but not included in the demonstrator)
and the perception error (the guest perception is needed but
not included) occur. That means:

#spatial inconsistencies = 1

#compositional inconsistencies = 1

According to the evaluation metrics defined in the last
section, τ(·) is the weight which determines the importance
of the this type of inconsistency. Here we set weight τ(·) = 1.
The initial value of the four types of inconsistency is assigned
to be 0. Then we have

FIM(V 0) = 0

FIM(V 1) = #spatial inconsistencies (2)
+ #compositional inconsistencies = 2

The evaluation has been tested on the three scenarios of
“ServeACoffee”, respectively. In scenario A, 50 experiments
have been executed to obtain the experimental results. Some
indicators like move to mae3 have been checked from
all the experiments. In Tab. 1, the plan steps are checked
with respect to Scenario A. All the results are judged by
human. There are 43 times executed successfully, which
are shown in the first column of Tab. 1 (only the first
time experiment result is list). The second column shows
the result of the 8th experiment, where the robot failed to
grasp the mug1 because the grasping solution is not feasible.
The third column shows the result of the 13th experiment,
where the robot fail to detect the mug1 on the counter.
The fourth column shows the result of the 27th experiment,
where the robot fail to place the mug1 in the specified area.
The fifth column shows the result of the 42nd experiment,
where the robot fail to move to the mae3 because of the
navigation system error. The latter 4 columns show the errors
caused by other types of errors such as Perceptual errors
and Navigation errors, which will not be counted in the
Conceptual errors.

In Scenarios B and C, the corresponding item of place
mug1 in pawr1 is Failure. The reason of Failure
is that the guest moves to a position at the table other than
the one specified at the start. But the robot would bring the
mug to the old position.

Fig. 7 shows the statistical results of all kinds errors
occurring in three scenarios. In scenario A, there are 43
times successful execution and 7 errors (2 Perceptual errors,
2 Navigation errors and 3 Manipulation errors). In scenario
B, there are 40 times successful execution and 10 errors (3
Perceptual errors, 5 Navigation errors and 2 Manipulation
errors). In scenario C, there are 37 times successful execution
and 13 errors (6 Perceptual errors, 4 Navigation errors and
3 Manipulation errors). All the errors are judged by human
during the process of the experiments.

To measure the description length of the instructions given
to the robot, step by step instructions are provided to the
robot. In scenarios A and B, a set of instructions were
provided. In the following instructions list of Scenario A,
each achieve command specifies a sub-task to be carried
by the robot and represents an instruction. The last teach
command is the instruction to teach a new task. It is a



A B C
Scenario

RCE (Robot Capability Errors)

0.02

0.04

0.06

0.08

0.10

0.12

2/50 2/50

3/50 3/50

5/50

2/50

6/50

4/50

3/50

Perceptual errors
Navigation errors
Manipulation errors

Fig. 7. RCE (Robot Capability Errors) in the ServeACoffee scenario

A B C

Scenario

FIM (Conceptual Errors)

1

2

0

2 2

A B C

Scenario

DLen

1

2

3

4
4 4

1

Fig. 8. Conceptual errors (left) and the Description Length of the
instructions in ServeACoffee (right)

composition of the given set of sub-tasks, as shown in the
following:

1) achieve drive robot Task preManipulationAreaEastCounter1
2) achieve grasp object w arm Task mug1 rightArm1
3) achieve drive robot Task preManipulationAreaSouthTable1
4) achieve put object Task mug1 placingAreaWestRightTable1
5) teach task ServeACoffee guest1

In Scenario B, similar instructions were provided by the
user. In Scenario C, only a single achieve instruction
is provided as follows. Now the robot can execute the
“ServeACoffee” task with a shorter instruction set:

1) achieve serve coffee to guest Task guest3

Fig. 8 shows there are 4, 4 and 1 instructions in three
scenarios of “ServeACoffee”, respectively. Fig. 9 shows the
relationship between the FIM and DLen. The yellow circle
dot (4,0) and (1,2) means that there are 4 instructions and 0
FIM errors, 1 instruction and 2 FIM errors in the scenario A
and B of “ServeACoffee”, respectively; while the blue square
(3,0) and (1,3) means that there are 3 instructions and 0 FIM
errors, 1 instruction and 3 FIM errors in the scenario A and B

Scenario A Instr. A: ex 1 A: ex 8 A: ex 13 A: ex 27 A: ex 42

move to mae3 1 Success Success Success Success Failure

detect mug1 on pae3 2 Success Success Failure Success /

grasp mug1 from pae3 2 Success Failure / Success /

move to mas1 3 Success / / Success /

place mug1 in pawr1 4 Success / / Failure /

TABLE 1
EXPERIMENTAL RESULTS OF SCENARIO A

of “ClearTable”, respectively. We find that the execution will
close to the ideal situation when the instructions increase.
Theoretically, the best situation will be the point (1,0), which
means there is no inconsistency when the robot triggered by
one instruction.

The restaurant environment is shown in Fig. 10. In Fig. 11,
the PR2 robot tries to grasp mug1 from counter1 during
Scenario A. In Fig. 12, mug1 has been placed in pawr1.
The video attached to this paper shows the execution process
of the Scenario A. The scenarios might be executed in the
physical or the simulated environment, as indicated by the
figures.

1

1
0

2 3 4

2

3

ServeACoffee
Scenario C

ClearTable
Scenario A,B

ServeACoffee
Scenario A,B

ClearTable
Scenario C

Fig. 9. The relationship between FIM and DLen

Fig. 10. The restaurant environment in a typical start condition: the robot
waits for a guest and to be instructed

Fig. 11. In order to serve a guest the robot grasps a mug from the counter
in Scenario A



Fig. 12. The mug is placed in front of a guest. This involves (learned)
concepts of serving the guest from the right side and doing it on a convenient
place for the guest in (Scenario A)

Fig. 13. Visualization of the robot’s knowledge (blackboard contents)
about its environment. Physical entities have a 3D bounding box and and
non-physical, e.g. a placing area on a table, a 2D bounding box.

VI. CONCLUSIONS AND FUTURE WORK

In this work, an experience-based cognitive intelligent
system has been introduced to execute scenarios in an
open-ended world. In order to measure its performance
an evaluation approach was proposed. The FIM and DLen
model were adopted to measure the compliance of the actual
robot’s behavior to the intended ideal behavior for a given
task and scenario, i.e. the demonstrations of “ServeACoffee”
and “ClearTable”. The proposed artificial cognitive system
has been evaluated with the defined metrics and the results
presented. The data obtained indicates an improvement in the
robot’s knowledge and behavior thus the metric is appropriate
to evaluate such a system. The initial assumption in an FIM
and DLen co-relation is supported by the evaluation results.

Future work on new scenarios will show how the bench-
mark copes with different tasks, new objects etc. and will
evaluate the benchmark itself. Work has to be done on
judging errors in an automated manner. This will contribute
to gain more test results by running many more scenarios and
will lead to an even more significant conclusions. Another
aspect worth investigating is the amount of Fluents processed
or created within a specific task which can be collected
automatically and added to the result data. As the importance
of the learning will increase in the future another measure
on how the degree of learning improves the performance has
to be investigated.

REFERENCES

[1] Peter Grünwald. A tutorial introduction to the minimum description
length principle. CoRR, math.ST/0406077, 2004.

[2] H. W. Marsh, K. T. Hau, and Z. Wen. In search of golden rules:
Comment on hypothesis-testing approaches to setting cutoff values for
fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999)
findings. Structural Equation Modeling, 11(3):320–341, 2004.

[3] David Vernon, Giorgio Metta, and Giulio Sandini. A survey of artificial
cognitive systems: Implications for the autonomous development of
mental capabilities in computational agents. IEEE Transactions
on Evolutionary Computation, special issue on Autonomous Mental
Development, 11:151–180, April 2007.

[4] Yushan Chen, Jana Tumova, and Calin Beltav. Ltl robot motion control
based on automata learning of environmental dynamics. In IEEE
International Conference on Robotics and Automation (ICRA), pages
5177–5182, 2012.

[5] Muhammad Attamimi, Keisuke Ito, Tomoaki Nakamura, and Takayuki
Nagai. A planning method for efficient mobile manipulation consid-
ering ambiguity. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 965–972, 2012.

[6] KangGeon Kim, Dongkyu Choi, Ji-Yong Lee, Jung-Min Park, and
Bum-Jae You. Controlling a humanoid robot in home environment
with a cognitive architecture. In IEEE International Conference on
Robotics and Biomimetics (ROBIO), pages 1754–1759, 2011.

[7] Sebastian Rockel, Denis Klimentjew, and Jianwei Zhang. A multi-
robot platform for mobile robots - a novel evaluation and development
approach with multi-agent technology. In IEEE Multisensor Fusion
and Integration for Intelligent Systems (MFI), pages 470–477, 2012.

[8] Liz Murphy, Steven Martin, and Peter Corke. Creating and using
probabilistic costmaps from vehicle experience. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages
4689–4694, 2012.

[9] Amol Dattatraya Mali and Amitabha Mukerjee. Metrics for evaluation
of behavior-based robotic systems. In IEEE International Conference
on Robotics and Automation (ICRA), pages 1122–1127, 1998.

[10] International Electrotechnical Commission (IEC). Performance eval-
uation method of intelligent mobile robot platform for household and
similar applications. Technical report, International Electrotechnical
Commission (IEC).

[11] RoboCup@Home Rules & Regulations. 2012.
[12] Raj Madhavan, Edward Tunstel, and Elena Messina, editors. Perfor-

mance Evaluation and Benchmarking of Intelligent Systems. Springer,
2009.

[13] P. S. Kaliappan. Model-based verification techniques: State of the art.
Technical report, Brandenburg University of Technology, 2008.

[14] S. Rockel, B. Neumann, J. Zhang, K. S. R. Dubba, A. G. Cohn, S̆.
Konec̆ný, M. Mansouri, F. Pecora, A. Saffiotti, M. Günther, S. Stock,
J. Hertzberg, A. M. Tomé, A. J. Pinho, L. S. Lopes, S. von Riegen, and
L. Hotz. An ontology-based multi-level robot architecture for learning
from experiences. In Designing Intelligent Robots: Reintegrating AI
II, AAAI Spring Symposium, Stanford (USA), March 2013.

[15] Dana Nau, Héctor Mu noz Avila, Yue Cao, Amnon Lotem, and Steven
Mitchell. Total-order planning with partially ordered subtasks. In
Seventeenth International Joint Conference on Artificial Intelligence
(IJCAI-2001), volume 17, pages 425–430, Seattle, 2001.

[16] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-
source Robot Operating System. In ICRA Workshop on Open Source
Software, 2009.

[17] Liwei Zhang, Sebastian Rockel, Federico Pecora, Luı́s Seabra Lopes,
Alessandro Saffiotti, and Bernd Neumann. Deliverable d5.1 - eval-
uation infrastructure. Technical report, European Commission -
Information and Communication Technologies - Seventh Framework
Programme, November 2012.

[18] Jos Lehmann, Bernd Neumann, Stephanie von Riegen, Lothar Hotz,
Masoumeh Mansouri, Federico Pecora, and Sebastian Stock. Deliv-
erable d1.3 - hand-coded non-hybrid knowledge contents. Technical
report, European Commission - Information and Communication Tech-
nologies - Seventh Framework Programme, November 2012.

[19] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT press, 2008.

[20] Liwei Zhang and Sebastian Rockel. Deliverable d5.2 - year-1
demonstrator. Technical report, European Commission - Information
and Communication Technologies - Seventh Framework Programme,
January 2013.


	INTRODUCTION
	RELATED WORK
	RACE ARCHITECTURE
	EVALUATION APPROACH
	SCENARIO SET-UP AND EXPERIMENTS
	Scenario Set-up
	ServeACoffee Demonstration
	ClearTable Demonstration
	Experimental Results

	CONCLUSIONS AND FUTURE WORK
	References

