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Abstract— For a robot serving in a complex environment
such as in a restaurant, it is difficult to perform a task like
tabletop object manipulation completely by itself, in that some
information may be missing. An approach to deal with this is
to use a tele-control system and method to control the robot or
demonstrate. In this paper, a LeapMotion sensor based non-
contact tele-control method is developed for a robot to perform
tabletop object manipulation tasks. A coordinate system for
mapping from the operation space of the LeapMotion sensor to
the workspace of the robot is established. A gesture recognition
and action generating algorithm is proposed for control or to
demonstrate the motion to the robot. To evaluate the perfor-
mance of the LeapMotion sensor and proposed method for
tele-control of a robot, a comprehensive assessment index based
on entropy weighting is proposed. Three common tele-control
modes, including demonstration mode, teleoperation mode and
semi-teleoperation mode, are developed on a PR2 robot. The
experimental results show that the proposed tele-control system
is more appropriate for use in task demonstration.

Index Terms— LeapMotion sensor, tele-control, gesture
recognition, action generating, comprehensive assessment index

I. INTRODUCTION

Object manipulation may be a difficult task for a robot
serving in a complex environment. For example, some vi-
sual information or manipulative skills may be lacking. In
these cases, some human-robot cooperative methods such as
teleoperation or demonstration are efficient for dealing with
the problems [1], [2]. Through the cooperation with humans,
additional information can be provide for a robotic system
to execute the task and even acquire some experience and
even learn something].

The most traditional and common way to control a robot
is based on programming methods which have already been
widely used with industrial robots. A demonstration con-
troller with buttons or a six-dimensional mouse is used as
the interface [3]. However, the interface is not intuitive and
efficient. And in most such systems, the robot only records
positions and orientations without interpreting gestures, so
these systems are not applicable to more complex pick-and-
place tasks. A more natural method based on a kinesthetic
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interface is used for demonstration. A human can drag the
robotic arm to follow his actions, for example in research by
Hersch et al [4] on a humanoid robot and by Hwang et al [5].
But this method also focuses on the trajectory tracking rather
than on gesture recognition. Furthermore, this is a typical
contact control method in which a human works within the
same space as the robot. As a result, it cannot be used in
human-unfriendly environments.

Therefore, some non-contact tele-control approaches are
more suitable for these cases, such as robotic systems based
on a mechanical master-slave device [6], [7], [8], and some
optically and visually based hand tracking systems [9], [10],
[11]. These methods directly track the movement of the hand
and record the trajectory; the robot performs the actions
based on this recorded information.

For more complex pick-and-place tasks, hand gestures
are another important input to action planning. An highly
efficient method for tracking hand gestures is based on a data
glove that can record the motion of each finger [12], [13];
some haptic systems can even measure the contact force of
a grasping or pinching action [14]. However, a data glove
has no ability to track the hand trajectory, so other sensors
are added to track hand positions [15]. Some visually based
methods are also used for gesture recognition [16]. For ex-
ample, the Kinect, which is popular for body tracking, is used
to detect the motion of fingers and the palm. However, the
tracking accuracy is unsatisfactory [17]. The LeapMotion1

sensor, developed by Leap Motion Inc., is a new non-contact
finger/hand tracking sensor. It has a high tracking accuracy
and provides an interface for pose and gesture recognition,
shown in Fig. 1.

In this paper, a non-contact tele-control system based on a
LeapMotion sensor is developed for a robot to perform table-
top object manipulation tasks. Considering the characteristics
of the LeapMotion sensor, a gesture recognition and action
generating algorithm is proposed. The coordinate system is
established to combine the operation space of LeapMotion
sensor and the work-visual space of the robot. To evaluate
the performance of the LeapMotion sensor and the proposed
method in tele-control for robots, an entropy weighting

1http://www.leapmotion.com



Fig. 1. Hand Tracking by Leap Motion sensor

based comprehensive assessment index is proposed, which
combines several different criteria such as operation time
and accuracy. Three groups of experiments are performed
with different tele-control modes implemented on a PR2
with ROS2 (Robot Operation System). The discussion and
analysis of the experimental result are based on the proposed
assessment index and the failure mode of the experiments.

The rest of this paper is organized as follows: the main
methodology for gesture recognition and action generating
based on LeapMoion sensor is introduced in section II; a
comprehensive assessment index for performance evaluation
is shown in section III; the experiments are described and
discussed in section IV; and some conclusions are given in
the last section.

II. METHODOLOGY FOR GESTURE RECOGNITION AND
ACTION GENERATING

To perform a non-contact tele-control for a robotic system,
the gestures of the operator should first be recognized.
With different gestures and trajectory tracked by LeapMotion
sensor, an array of actions are defined and generated, which
actually can be considered as mapping the actions from the
operator’s hand to the robot’s gripper.

A. Cooperative Action Coordinate Transforming

In the control method developed in this paper, the action
planning process is shared between the human and the robot.
The key operational positions and gestures are given by
the human through LeapMotion sensor. This information
provides an array of actions to carry out the tasks. While
for planning the trajectories of the actions and avoiding
collisions in detail, the packages of Object Recognition
Kitchen (ORK) and Open Motion Planning Library (OMPL)
are implemented on the PR2 to share the planning process.
To combine these two components into one operational
space, a coordinate system is built, as Fig. 2 shows. The EO
and LO are the visual and manipulative coordinates of the
human operation; V O and RO are the visual and manipulative
coordinates of the PR2; the coordinate T O, which represents
the observing space and shown on screen, is the connection
between the human and PR2 coordinates. Visual information

2http://www.ros.org

provided by the Kinect, mounted on the head of the PR2, is
shown in rviz (a visualization tool in ROS) on the screen
and allows the human to share the PR2’s view. And with the
transformation Equation 1, the manipulation coordinates of
PR2 and human are matched so that the position and gesture
of the palm in the human operational space is mapped into
the PR2 workspace. A LeapMotion sensor is used to collect
hand motion and the gesture of the human palm. The sensing
range (with maximum range 200×325×200 mm3) [17] of
the LeapMotion sensor is much smaller than the workspace
of the PR2, so a scale coefficient k is used to scale the
operational space of the human to an appropriate range.

LTR = k · T T−1
L · T TR (1)
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Fig. 2. Coordinate system of the cooperative grasp planning.

B. Gesture Recognition

The tabletop object manipulation action consists of a
sequence of positions and gestures of the palm. The gestures
can also be seen as the combination of basic data, such as
the orientation, direction and pose of palm and fingers. The
LeapMotion sensor is used to obtain these basic data from
the human hand. It provides the position and orientation
of the palm and the position and direction of each finger.
Moreover, it also provides APIs through which the status of
each finger (extended or not) and the strength of the grasp
and pinch, which depend on the closure degree of fingers,
can be obtained easily.

In this paper, the combination of palm orientation, finger
extension status and grasp/pinch strength together define
the gestures, as shown in Fig. 3. Some gestures that apply
to common pick-and-place tasks are defined and listed in
Table I. The orientation of the palm is described using the
Euler angle (α , β , γ along x, y, z axes). To describe the
extension status of the thumb and fingers, a five-bit binary
number is used (0 for non-extended, 1 for extended); grasp
and pinch strengths are between 0 and 1, with 1 indicating
a stronger grasp or pinch. The Algorithm 1 is used to guar-
antee stable recognition of gestures. When an instantaneous
gesture is recognized, the corresponding gesture counter is
incremented. Every two seconds, the gesture counters are
ordered according to their values. With a LeapMotion sensor



sampling frequency of 10 Hz, a gesture counter value above
15 indicates that the corresponding gesture is stable in this
two-second period.
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Fig. 3. Framework for action and gesture recognition

Algorithm 1 STABLE RECOGNITION OF GESTURE
1: while (sampling count < 20) do
2: Comment: Sampling basic data via Leap Motion sensor
3: basic data ← SamplingBasicData( )
4: sampling count ++
5: gesture state← RecognizeInstantaneousGesture(basic data)
6: Comment: Count the number of PH, PL, PR, PF, PB, HG,

LG, RG, HP and HpP
7: if gesture state == PH then
8: PH count ++
9: end if

10: . . .
11: if gesture state == H pP then
12: H pP count ++
13: end if
14: end while
15: Comment: Order the gesture counts (PH count, PL count, . . . ,

HpP count), and put the maximal count gesture on the top
16: stable count← MaxOfCounts(PH count, . . . ,H pP count)
17: if stable count > 15 then
18: Comment: The top gesture is the stably recognized gesture
19: stable gesture← GetTopGesture( )
20: end if
21: return

C. Action Generating

With these gestures and palm positions, several actions
are defined to connect the movement of the human hand
and the PR2 gripper. Each action is defined as a sequence
consisting of two gestures and positions, and corresponds
to a movement of the human hand and the PR2 gripper.
However, because of the different structure of the human
hand and the two-finger PR2 gripper, there is no one-to-
one correspondence between the actions of the human hand
and those of the PR2 gripper. For example, to grasp a cup
from the right side, a human action (gesture sequence) would
locate the palm on the right side (PL) of the cup and grasp
(LG). To safely perform the next action, a pick up movement
is also added to the PR2 grasping action. Therefore, the PR2
action (gesture sequence) should be to locate the gripper on
the right side of the cup, open the gripper, move towards the
cup, close the gripper and lift it a short distance. Table II lists
in detail all actions defined for the scenarios in this paper.

In the table, Pp(Ppx,Ppy,Ppz) and Pc(Pcx,Pcy,Pcz) are
the previous and current positions of the gesture, re-
spectively. Note that the gesture-switch actions, e.g. the
grasp/pinch/release actions, are executed at the previous po-
sition in that the position of the palm drifts when the gesture
changes; the push and drag actions are only performed in the
horizontal plane so that the gripper can avoid pressing down
on the table or rising over the edge of the dish.

III. PERFORMANCE EVALUATION BASED ON
COMPREHENSIVE ASSESSMENT INDEX

Based on the LeapMotion sensor and the proposed method
introduced in section II, several tele-control methods for
robotic systems can be implemented, including the demon-
stration mode, teleoperation mode and semi-teleoperation
mode. A comprehensive assessment index to compare these
control methods and evaluate the performance of the Leap-
Motion sensor in non-contact robot controlling is introduced
in this section.

A. Description of Control Modes

The concrete adjustments of the teleoperation, semi-
teleoperation and demonstration modes for adapting the
characteristics of the LeapMotion sensor and the proposed
action recognition method are described as follows:
• Demonstration mode In this mode, the operator will

perform the demonstration actions, and the desired
positions and gestures are recorded by manually sent
command. (wildfire-fuel) The action array is generated
by these recorded information and shown in rviz. After
demonstration, if the action array is appropriate for
performing the task, the execution command will be
sent and the robot performs the desired action array.

• Teleoperation mode In this mode, the method described
in section II is used, and the robot performs the actions
at the time of gesture recognition. The operator can
see the markers of his/her hand and the action of the
robot in the rviz, and adjusts the his/her operations.
To increase the stability of the gesture recognition, the
above-mentioned Algorithm 1 is used. Therefore, the
control process is not an actual “real-time” process, with
a recognition frequency 20Hz, the teleoperation action
frequency of the control process is 1Hz.

• Semi-teleoperation mode In this mode, the robot
moves following the current action performed by the
operator. But different from the teleoperation mode, the
action execution command is sent manually instead of
being automatically triggered by the recognized ges-
tures.

B. Comprehensive Assessment Index

To evaluate the performance of the LeapMotion sensor
and the proposed tele-control method, the assessment indexes
we selected include the average value t̄i and variance t̄vi
of execution time, the average value ēi and variance ēvi of
grasping accuracy, and the success rate rsi. A comprehensive



TABLE I
GESTURE LIST FOR HUMAN HAND AND PR2 GRIPPER

Gesture Pose of Palm Finger Extension Finger Strength Human’s Hand PR2’s Gripper
Grasp Pinch

Palm Horizontal (PH) −40◦ ≤ α ≤ 40◦,−40◦ ≤ β ≤ 40◦ B11111 [0, 0.5) [0, 0.5)

Palm to Left (PL) 40◦ < α < 130◦, −40◦ ≤ β ≤ 40◦ B11111 [0, 0.5) [0, 0.5)

Palm to Right (PR) −130◦ < α <−40◦,−40◦ ≤ β ≤ 40◦ B11111 [0, 0.5) [0, 0.5)

Palm Forward (PF) −40◦ ≤ α ≤ 40◦,−130◦ < β <−30◦ B11111 [0, 0.5) [0, 0.5)

Palm Backward (PB) −40◦ ≤ α ≤ 40◦,30◦ < β < 130◦ B11111 [0, 0.5) [0, 0.5)

Horizontal Grasp (HG) −40◦ ≤ α ≤ 40◦,−40◦ ≤ β ≤ 40◦ N/A (0.5, 1] [0, 0.5)

Left Grasp (LG) 40◦ < α < 130◦,−40◦ ≤ β ≤ 40◦ N/A (0.5, 1] [0, 0.5)

Right Grasp (RG) −130◦ < α <−40◦,−40◦ ≤ β ≤ 40◦ N/A (0.5, 1] [0, 0.5)

Horizontal Pinch (HP) −40◦ ≤ α ≤ 40◦,−40◦ ≤ β ≤ 40◦ N/A [0, 0.5) (0.5, 1]

Horizontal Pre-pinch (HpP) −40◦ ≤ α ≤ 40◦,−40◦ ≤ β ≤ 40◦ B11100 or [0, 0.5) [0, 0.5)

B11000

TABLE II
ACTION LIST OF HUMAN HAND AND PR2 GRIPPER

Action of Human
Actions of Human

Previous Current Change in Position Action of PR2

To locate on the PH/PR/PL/PF/PB PH/PR/PL/PF/PB N/A move to Pc with PH/PR/PL/PF/PB
top/right/left/front/back side

To grasp on the top PH HG |Pp−Pc|< 20mm PF→move down→HG→move up
To release from top HG PH |Pp−Pc|< 20mm PF→move up
To grasp toward right side PR RG |Pp−Pc|< 20mm PR→move right→RG→move up
To release from right side RG PR |Pp−Pc|< 20mm PR→move left
To grasp toward left side PL LG |Pp−Pc|< 20mm PL→move left→LG→ move up
To release from left side LG PL |Pp−Pc|< 20mm PL→move right
To locate with pinch pose HpP HpP |Pp−Pc|< 20mm Moving with HpP
To pinch HpP HP |Pp−Pc|< 20mm HpP→move forward→HP→move up
To release pinch PH HpP |Pp−Pc|< 20mm HpP→move backward
To push forward PF PF |Pp z−Pc z|< 20mm move to P(pcx, pcy, ppz) with PF
To drag backward PB PB |Pp z−Pc z|< 20mm move to P(pcx, pcy, ppz) with PB

assessment index is calculated using these five criteria and
based on a linear weighting method. It is represented as

[yi]3×4 = [xi j]3×5 · [ω j]5×1 (2)

where yi is the assessment index of the three control mode
groups and xi j is the normalized assessment criteria shown
in (3).
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where the subscripts i = 1,2,3 represent the experiments
in the demonstration mode, the teleoperation mode and the
semi-teleoperation mode, respectively; and N(•) represents
the normalization function of the criteria. The weight param-
eter ω j is calculated by the entropy weight method shown
in (4).

ω j =
(1−S j)

∑
5
j=1 (1−S j)

(4)

where S j is the entropy value of the jth criterion, which
measures the disorder of the information provided by the
criterion and calculated by (5).

S j =−
3

∑
i=1

pi j ln(pi j) , pi j =
xi j

∑
3
i=1 xi j

(5)

IV. EXPERIMENTS AND DISCUSSION

The experimental scenario is shown in Fig. 4. The robot
should grasp a pepper shaker from the tabletop and put it on
a tray. The operation duration starts from the first action and
finishes with the release action of the robot’s gripper. The
initial positions have been marked in the table. Each time the
robot’s gripper grasps the pepper shaker, the position of the
pepper shaker will shift to the grasping center. This position
shifting is measured to be the grasping error, as shown in
Fig. 5. When the pepper shaker is put on the tray, the task
is marked as successfully performed.

Pepper shaker

Target tray
Point cloud of the 

pepper shaker

Point cloud of 
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Fig. 4. Experimental scenario

For each control mode, the experiments will be repeated
20 times. The original data of each criterion are shown
in Table III. In the process of the experiments, two main
factors influence the result. One is the stability of gesture
recognition, the other is the occlusion of the view in the
observing space shown in rviz.

From the result in Table III, one can see that in the tele-
operation mode, the average execution time is the shortest.
Nonetheless, the variance of execution time is larger than in
the other modes. Moreover, the success rate of the teleoper-
ation mode is also lower. This is caused by the low stability
of the gesture recognition, especially during the transform
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Fig. 5. Measurement of grasping accuracy

TABLE III
ORIGINAL DATA OF EXPERIMENTS

Demonstration Teleoperation Semi-teleoperation
mode mode mode

t(s) e(mm) s t(s) e(mm) s t(s) e(mm) s
1 168 -2.4 1 105 -6.9 0** 106 -9.6 1
2 129 4.0 1 119 -5.7 0* 98 -3.8 1
3 121 -1.9 1 147 8.9 1 134 -6.5 1
4 131 -3.5 1 80 -15.9 1 89 3.5 1
5 126 -3.1 1 68 -8.7 1 94 -7.8 1
6 108 3.7 1 73 9.5 1 117 -6.7 1
7 110 3.0 1 97 0.0 1 83 6.4 1
8 126 -6.9 1 84 -4.6 1 126 3.9 1
9 136 -3.3 0* 60 2.0 1 99 1.7 1

10 129 5.0 0* 73 -3.5 0** 130 -5.6 1
11 105 -1.0 1 89 15.0 0** 151 3.4 0*
12 126 -4.8 1 79 -3.6 1 109 -1.9 1
13 123 -0.5 1 86 -20.7 0** 89 -3.0 1
14 106 -4.5 1 97 -11.6 1 119 -6.7 1
15 115 3.0 1 71 -27.7 1 94 6.4 1
16 110 -5.7 1 69 -16.1 1 139 4.2 1
17 131 -2.4 1 80 0.5 0** 120 -1.2 1
18 120 2.5 1 91 -2.4 1 101 4.5 1
19 117 1.9 1 83 3.7 1 93 14.5 1
20 126 -8.8 1 73 -15 1 97 -13.5 1

Average 123 -1.3 0.9 86 -5.2 0.7 109 -1.9 0.95
Variance 196 15.7 400 113.6 196 41.1

Note: t – execution time; e – grasping error; s – success mark, “0”
for fail and “1” for success.
* caused by incorrect trajectory.
** caused by misrecognition of gesture.

between two different gestures. The mis-recognition happens
and generates some undesired actions, which significantly
prolong the execution time and may cause a failure in
performing the task. Table IV shows the experimental result
of gesture recognition, which compares the recognition rate
between “Palm Horizontal (PH)”, “Horizontal Pinch (HP)”,
“Palm to Right (PR)” and “Right Grasp (RG)”. The most
stable recognized gesture is PH; and when the gesture is PR
or RG, some fingers are occluded and the recognition rate
is decreased in that the feature of the hand is less in these
situations.

Comparing the grasping accuracy, the most accurate and
stable grasping occurs in the demonstration mode, which is
just a little higher than in semi-teleoperation mode but signif-
icantly better than in teleoperation mode. This phenomenon
is caused by the view occlusion, as shown in Fig. 6. Although
the experimental scene can be observed by the operator



TABLE IV
GESTURE RECOGNITION RATE

PH HP PR RG
PH 98.5% 8.2% 6.3% 0
HP 1.3% 84.4% 0 4.8%
PR 0 0 82.5% 6.2%
RG 0 0 0 73.3%

others 0.2% 7.4% 11.2% 15.7%

through the depth camera of the robot, the view shown on
screen is in 2D. Therefore, the operator needs to switch the
view in the rviz. In demonstration mode, the actions are
marked in visualized space with small markers, which will
not affect the observation of the scene; by contrast, in the
teleoperation and semi-teleoperation modes, the gripper of
the robot will move close to the target object, so that the view
of the operator is partly occluded and accurate positioning
becomes more difficult.
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Fig. 6. Observing view in rviz during grasping; a) In demonstration mode;
b) In teleoperation and semi-teleoperation modes

Considering both the execution time and operation accu-
racy, Figure 7 shows the result based on the comprehensive
assessment index. The lines in the chart represent different
criteria. One can see that performance in demonstration mode
is better than in the others. Moreover, from the experimental
process, the failure modes in the different control modes are
also different. In demonstration mode and semi-teleoperation
mode, the failures are all caused by incorrect trajectories;
while in teleoperation mode, most of the failures are caused
by undesired action, which is caused by mis-recognition
of the gestures. Therefore, with the current LeapMotion
sensor and action recognition method, the demonstration
mode is better to perform robot control for a tabletop object
manipulation task.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a non-contact tele-control method is de-
veloped for a robotic system to perform tabletop object
manipulation tasks. With a LeapMotion sensor, an algorithm
for recognizing gestures and generating actions is proposed.
Typical gestures were defined with reference to the orienta-
tion of the palm, the extension status of each finger and the
strength of the grasp and pinch. The combinations of palm
positions and gestures generate the actions for tabletop object
manipulation. And with these typical actions, the robot could
cooperatively execute the tasks with tele-control by a human.
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Fig. 7. Assessment index of the three control modes

To compare and evaluate the performance of the Leap-
Motion sensor and the proposed tele-control method, three
typical tele-control modes–demonstration mode, teleopera-
tion mode and semi-teleoperation mode–are developed and
implemented on a PR2 with ROS. The execution time,
grasping accuracy and success rate are used as the criteria
for evaluation. To combine these different criteria, an en-
tropy weighting based comprehensive assessment index is
proposed(wildfire-fuel(wildfire-fuel)).

With the result of the comprehensive assessment index
and the analysis of the failure mode, we found the most
significant factors influencing the task execution performance
are the gesture misrecognition and the view occlusion in ob-
serving space. Because the stability of the gesture recognition
is relatively low, there is more gesture misrecognition in the
teleoperation mode, which causes more execution failures
in that undesired actions occur. Moreover, due to the view
occlusion, one can hardly carry out a more accurate grasping
positioning in semi-teleoperation mode than in demonstra-
tion mode. Therefore, the current Leapmotion sensor and
the proposed tele-control method are more appropriate for
performing a non-contact demonstration for robotic systems.

Besides improving the stability of gesture recognition,
there ist still lots of further research to be done. For example,
in this paper, the cooperative action plan between the robot
and the human is at a lower level. The demonstration
through the LeapMotion sensor could be combined with
robot learning and abstracted into higher level experiences
for task execution.
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[8] L. Rozo, P. Jiménez, and C. Torras, “A robot learning from demon-
stration framework to perform force-based manipulation tasks,” Intel
Serv Robotics, vol. 6, pp. 33–51, 2013.

[9] A. Vakanski, I. Mantegh, A. Irish, and F. Janabi-Sharifi, “Dynamical
system modulation for robot learning via kinesthetic demonstrations,”
IEEE Transactions on Systems, Man, and Cybernetics - Part B:
Cybernetics, vol. 42, pp. 1039–1052, August 2012.

[10] J.-G. Ge, “Programming by demonstration by optical tracking system
for dual arm robot,” in 2013 44th International Symposium on Robotics
(ISR2013), pp. 1–7, 2013.

[11] A.-L. Vollmer, M. Mhlig, J. J. Steil, K. Pitsch, J. Fritsch, K. J.
Rohlfing, and B. Wrede, “Robots show us how to teach them:
Feedback from robots shapes tutoring behavior during action learning,”
PLoS ONE, vol. 9, p. doi:10.1371/journal.pone.0091349, 2014.

[12] C.-S. Fahn and H. Sun, “Development of a data glove with reducing
sensors based on magnetic induction,” Industrial Electronics, IEEE
Transactions on, vol. 52, pp. 585–594, April 2005.

[13] G. Heumer, H. Ben Amor, M. Weber, and B. Jung, “Grasp recognition
with uncalibrated data gloves - a comparison of classification meth-
ods,” in 2007 IEEE Virtual Reality Conference (VR ’07), pp. 19–26,
March 2007.

[14] H. Du, W. Xiong, Z. Wang, and L. Chen, “Design of a new type of
pneumatic force feedback data glove,” in 2011 International Confer-
ence on Fluid Power and Mechatronics (FPM), pp. 292–296, March
2011.

[15] L. Lukic, J. Santos-Victor, and A. Billard, “Learning robotic eye-arm-
hand coordination from human demonstration: a coupled dynamical
systems approach,” Biological Cybernetics, vol. 108, pp. 223–248,
2014.

[16] H.-I. Lin, C.-H. Cheng, and W.-K. Chen, “Learning a pick-and-place
robot task from human demonstration,” in 2013 CACS International
Automatic Control Conference(CACS), pp. 312–317, 2013.

[17] Y. Kim, P. C. W. Kim, R. Selle, A. Shademan, and A. Krieger, “Ex-
perimental evaluation of contact-less hand tracking systems for tele-
operation of surgical tasks,” in 2014 IEEE International Conference
on Robotics & Automation (ICRA), pp. 3502–3509, 2014.


