
Integrating Physics-Based Prediction with
Semantic Plan Execution Monitoring*

Sebastian Rockel1, Štefan Konečný2, Sebastian Stock3,4,
Joachim Hertzberg3,4, Federico Pecora2, Jianwei Zhang1

Abstract— Real-world robotic systems have to perform reli-
ably in uncertain and dynamic environments. State-of-the-art
cognitive robotic systems use an abstract symbolic representa-
tion of the real world for high-level reasoning. Some aspects of
the world, such as object dynamics, are inherently difficult to
capture in an abstract symbolic form, yet they influence whether
the executed action will succeed or fail. This paper presents
an integrated system that uses a physics-based simulation to
predict robot action results and durations, combined with
a Hierarchical Task Network (HTN) planner and semantic
execution monitoring. We describe a fully integrated system in
which a Semantic Execution Monitor (SEM) uses information
from the planning domain to perform functional imagination.
Based on information obtained from functional imagination, the
robot control system decides whether it is necessary to adapt
the plan currently being executed. As a proof of concept, we
demonstrate a PR2 able to carry tall objects on a tray without
the objects toppling. Our approach achieves this by simulating
robot and object dynamics. A validation shows that robot action
results in simulation can be transferred to the real world. The
system improves on state-of-the-art AI plan-based systems by
feeding simulated prediction results back into the execution
system.

I. INTRODUCTION

Robots are set to move from well-structured factory floors
to a much more chaotic environment: private homes occupied
by naive users with little understanding of the strengths and
limitations of robotic systems. To operate safely (for all in-
volved parties) and efficiently in such adverse circumstances,
the robot needs to understand the environment.

To illustrate some of these problems, we employ the
following example throughout the paper. A robot has to
deliver a pepper mill. It can place the pepper mill on a tray,
but the mill might topple over during driving. One solution to
this problem is to drive ‘slowly’. But how does the abstract
qualitative term ‘slow’ translate into precise velocity and
acceleration values that the robot can process? What are the
odds of the pepper mill toppling nonetheless? How much
more likely is toppling when driving ‘fast’? How should the
‘drive’ action be parametrized to bring an object safely to its
destination? These questions are hard to answer in general
terms as they depend upon the platform and environment.

Any approach employing symbolic abstraction to capture
the real world is likely to require discretization of inherently

*This work was supported by the EC Seventh Framework Program theme
FP7-ICT-2011-7, grant agreement no. 287752 and no. 288899.

1University of Hamburg, Germany, {rockel,zhang}@
informatik.uni-hamburg.de

2Örebro University, Sweden, {sky,fpa}@aass.oru.se
3Osnabrück Univ., Germany, {sestock,jhertzbe}@uos.de
4DFKI Robotics Innovation Center, Osnabrück Branch, Germany

continuous domains (time, space) and will reduce the amount
of detail considered. But how much detail can be omitted
before the representation becomes unrealistic in the target
application? The same issues are relevant for research into
realistic physics simulation.

In this work, we propose to combine a realistic physical
simulation with symbolic reasoning. The main focus is on
how to integrate functional imagination [1] using the HIRES
framework [2] with an off-the-shelf task planner and using
Semantic Execution Monitoring (SEM) to simulate an action
before it is executed. A plan created by the task planner
determines which actions are to be simulated and provides
a causal precondition-effect relation for each action. These
plan action relations will be used by a SEM to generate
the context of the action relevant for imagination – the
initial state imagined. From functional imagination we obtain
approximate information about expected action duration and
toppling likelihood. To use imagination, we must decide how
to express abstract qualitative terms (i.e. ‘slow’, ‘topple’) in
sufficient detail for simulation and how the simulation is to
be performed. The SEM uses the expected duration obtained
from imagination for temporal reasoning and scheduling –
both beyond the scope of this paper.

Next we introduce the evaluation scenario and discuss
related work; we then describe the integrated system and
the experimental results before ending with a summary.

A. Scenario

In our demonstration scenario, the robot fetches an object
from a counter and carries it on a tray to the destination. Task
planning and symbolic reasoning consider only an abstract
description of the world state and the expected changes
resulting from the execution of a task such as ‘carry object’.
Task execution is atomic – it may succeed or fail. In contrast,
the parametrization of physical aspects of the transition
between abstract symbolic states is typically the domain of
a physical simulation. By considering the trajectory, velocity
and acceleration, a simulation can accurately model the
carrying of an object and can determine the parameters
required to prevent toppling.

To evaluate our approach, we used the following scenario:
the robot must carry a pepper mill from a restaurant counter
to a table (cf. Fig. 1). To prevent the pepper mill from
toppling, a working parametrization (velocity and acceler-
ation settings) for the move_base robot action must be
‘imagined’ in simulation. This action parametrization, in
combination with the time the action takes in simulation, is

Fig. 1: Left: PR2 approaching pre-manipulation area left of table1
in the simulation. Center: Trace marker thickness indicates speed,
color indicates acceleration (green: positive; red: negative); the red
circle indicates the actual rotation center and radius of the tray
object., red squares represent obstacles. Right: PR2 placing the
pepper mill on its tray.

used by the reasoning modules to take appropriate measures.
If a simulated action parameterization is more likely to
succeed than that chosen by the planner, the SEM will adapt
the plan. Thus functional imagination is used to predict
action outcomes and allow adaption prior to execution.

II. RELATED WORK

Prior work has attempted to integrate physics-based simu-
lation into plan based robot control and to integrate dedicated
arm motion planning into task planning. For example, [3] in-
tegrates a physics-based simulation for object classification.
[4] employs a physics engine to efficiently re-plan in chang-
ing environments. [5], [6] use physics-based simulations for
manipulation in cluttered environments.

[7] evaluates qualitatively a number of freely available
physics engines for simulation systems and game develop-
ment. Among the ten physics engines evaluated, our work
mainly uses the Open Dynamics Engine (ODE), on which
the Gazebo simulator used here is based. The accuracy and
performance of physics engines when calculating friction,
collisions and constraints are important for predicting robot
action results in a typical domestic domain. To handle po-
tential variations in system behavior, the proposed prediction
model has to take even minor variations and deviations from
’true’ into account.

[8] used the term robot imagination for a system gen-
erating models of objects prior to their perception. Robot
imagination is defined here as the robot’s capability to
generate feature parameter values of unknown objects by
generalizing characteristics from previously presented ob-
jects. [9] describes functional imagination as the purposeful
manipulation of information that is not directly available to
the senses (of the robot) and states that imagination always
relates to something that in reality is not there. In order to be
useful, imagination also needs to provide information about
the likely consequences of actions. This is then to be used
by a mechanism for translating imagined motor actions into
sensory-based representations of their consequences. In [1],
the authors propose a framework for modeling functional
imagination: an embodied agent that simulates its own behav-
iors, predicts their sensory-based consequences and extracts

behavioral benefit from doing so. The system is based on the
physics-based humanoid simulator SIMNOS [10].

Recently much work has been done to extend robots’
understanding of their environments. Feeding this infor-
mation into the planning process is beneficial for many
reasons. Symbolic planners such as HTN planners [11] were
combined with geometric or motion planners to obtain more
detailed and executable plans. [12] interleave geometric and
HTN-based task planning. A hybrid planning approach that
jointly reasons about temporal, spatial and resource knowl-
edge is presented in [13]. There the goal is to model spatio-
temporal relations between objects in a table-top setting and
reason about this information to execute actions to produce
the desired table layout.

Another approach is to learn robot action parametrization
a-priori and offline [14], [15]. However, our approach has an
advantage in that rather than attempting to learn a model for
action parametrization in general, imagination replicates the
specific context of the considered action.

III. APPROACH

The following assumptions are made for the approach
presented below: A toppling threshold is empirically defined,
together with a discrete motion-parameter-set. The standard
simulation friction coefficient is kept. Furthermore, discrete
topple thresholds are chosen for computational efficiency.

A. Architecture

Before detailing the modules involved, we will sketch how
functional imagination is integrated into the robot control
architecture developed in the RACE1 project (for details,
cf. [16]). Fig. 2 shows an excerpt, including the integration
of our additional modules. All our modules query a common
exchange medium, employed in this architecture, called the
Blackboard.

Without imagination, the nominal system workflow is as
follows. When a new task is given to the task planner, the
planner generates a plan based on the current state retrieved
from the Blackboard. This plan, which consists of actions
representing basic capabilities of the robot, is sent to the
SEM (Fig. 2 combines the planner and execution monitor).
The SEM monitors preconditions and effects of plan actions
and dispatches actions when appropriate. It also maintains
a temporal network, which represents temporal expectations
about execution [17], e.g., an action’s earliest possible start
or finish time. This network is updated with observations
and information resulting from functional imagination. This
allows for the seamless integration of imagination with
reasoning about temporal constraints and with rescheduling.

Actions are dispatched by sending them to the Execution
Middlelayer, which calls the appropriate Robot Operating
System (ROS) actions implementing the basic robot capabil-
ities.

To allow the use of functional imagination, this workflow
needed several extensions. Some planned actions should be

1http://project-race.eu

Translator

BlackboardPlanning and
Execution Monitoring

Execution
Middlelayer

Robot

Imagination
Functional

Simulation 3Simulation 2

discrete

symbolic

fluents

action

world state

action

Simulation 1

fluents

Functional Imagination

Simulation 3

board 3
Black−Execution

Middlelayer

Imagination Client 3

Black−
board 2

Imagination Client 2

Simulation 2

Execution
Middlelayer

Simulation 1

Middlelayer
Execution

board 1
Black−

Imagination Client 1

Fig. 2: Left: integration of functional imagination (highlighted) into
the RACE architecture (excerpt). Right: functional imagination:
detailed view of the modules running on external computers for
improved performance.

simulated with a variety of parameters before being executed
on the real robot. The plan therefore needs to specify the
actions to be simulated, at which step this should be done
and the parameters that should be tested. To this end, we
introduce a dedicated imagine action, to be discussed in
Sec. III-D.

The SEM has to analyze the plan and send each action to
be tested to the Imagination Client instead of the Execution
Middlelayer. As we wish to simulate action execution at a
later plan stage, the current robot and environment states are
not appropriate; the SEM must send the Imagination Client
the states projected to exist at that later plan stage.

Furthermore, the Imagination Client needs to know the
poses of all objects and of the robot, together with the robot’s
configuration, in order to initialize the simulation accord-
ingly. This is achieved by the Translator module, which gets
the projected symbolic world state and returns it in a format
suitable for input to the simulation. We let the SEM generate
the expected states and call the Translator to decouple the
Imagination Client from the symbolic representation; in this
way, imagination can be integrated more easily into other
systems.

The Imagination Client is provided with possible param-
eters that should be tested. For each parameter combination,
the Imagination Client starts a separate subset of the robot
control system on a different machine, i.e., each with an
independent ROS system, as presented in Fig. 2.

B. Functional Imagination

The prediction system used in this work is based on
our previously developed HIRES framework [2]. It was
integrated into the RACE framework and extended to predict
common-sense physics events and to handle uncertainty.

Model and scenario related definitions will now be intro-
duced.
α is the smallest angle between the perpendicular up-axis

(z) of the global reference frame and the principal axis of the
tray object, as shown in Fig. 3. A topple state is a tuple of
topple events, st : {notopple, topple, shaking}, which are
defined in Eq. 1. The thresholds are defined as follows: αn =
0.01 rad (≈ 0.5°), αt = 0.5 rad (≈ 29°). The threshold
angles were defined empirically and are automatically and
continuously measured during experiments. Furthermore, any
toppling is automatically detected, and the tray object is
returned to its start position to detect more potential topple

z
α

Fig. 3: (left) Object deviation angle α. (right) Visualization of the
tray object, its current orientation and the robot (from simulation).

θfast θslow

vlinear [m·s−1] 0.55 0.30
vangular [rad·s−1] 1.00 1.00
alinear [m·s−2] 2.50 1.40

aangular [rad·s−2] 3.20 2.00

TABLE I: Experimental results: motion parameter sets (θ).

events. For the experimental scenario, a cylindrical model
(the pepper mill) of height 27.4cm and radius 3.7cm with a
point mass of 140g was modeled to match the real object.
The object inertia was defined appropriately.

x =

notopple,

topple,

shaking,

if α ≤ αn

if α ≥ αt

if αn < α < αt

(1)

To run the scenario, two sets of motion parameters θfast
and θslow were defined, as shown in Table I. The parameter
set elements are needed in the local motion planner; the
individual elements are defined by the standard values for
fast and by empirical minimum values for slow. The latter
were chosen to allow a maximal difference from the fast
set, while still allowing the local path planning algorithm and
motion controller to execute a trajectory smoothly. Whereas
lower and upper limits are constrained by physics, it would
be possible to use continuous motion parameters provided by
an optimization scheme to determine the most appropriate
parameter values for a given task.

The Dynamic Window Approach (DWA, [18]) is used for
local path planning. It considers current and projected veloc-
ity and acceleration settings for linear and angular directions.
One important property of the ROS implementation is its
support for dynamic changes to parameters such as velocity
and acceleration.

Arbitration between the competing simulations is based
on several factors. If the action itself returns a failure, the
simulation is eliminated. If it is successful, the confidence
measure c is evaluated (cf. confidence definition in Eq. 2);
higher confidence c wins. Finally, the duration measure
Taction is taken into account to favor faster execution.

c =

(
at · ct + as · cs + an · cn

at + as + an

)−1

(2a)

c = (0, 1] := {c ∈ R+|0 < c ≤ 1}, at + as + an > 0 (2b)

θfast θslow

all events 179054 171717
notopple 165906 165596
shaking 12735 6031
topple 413 90

duration [s] 18090 (∼5h) 17350 (∼4.9h)

TABLE II: Experimental results: simulated toppling scenario mea-
suring topple events for fast and slow parameter sets.

The coefficients are: ct (topple), cs (shaking), cn (no
event); the variables are: at-topple, as-shaking, an-no event.
To keep the confidence between 0 and 1 and to scale well
between the three possible events, the following coefficient
values were defined empirically from the data of Table II
and Table III: ct = 100, cs = 10, cn = 1. The duration of
an action is defined simply as Taction = tend − tstart with
Taction_max := 300s.

The Simulation Client monitors toppling events by query-
ing the object’s deviation angle at a rate of approximately
20 Hz. Depending on the measured angle, the counter of one
of the three possible events is increased. If an action fails,
its corresponding confidence value is set to 0. If no action
(parametrization) was successful or if imagination failed to
complete in time (either because of a predefined deadline or
because the SEM can wait no longer and must execute the
action), a standard value, i.e., fast, is inserted to instantiate
the complete plan.

C. Simulation Validation

Based on the previous definitions, the following validation
experiments were executed in simulation: the robot had to
drive between fixed positions, repeatedly accelerating and
stopping. Fig. 5 visualizes these positions, which correspond
to pre-manipulation areas (PMAs) at pieces of furniture
in the environment: tables (T1, T2) and a counter (C1).
Multiple PMAs belonging to the same piece of furniture are
distinguished by respective cardinal directions, e.g., ST1 for
south and NT1 for north. The nearStartArea1 (NSA1) robot
starting area was not included in the testing.

The robot’s velocity and acceleration and the tray object’s
deviation were continuously tracked. As expected, moving
slowly resulted in significantly fewer topple events, as Ta-
ble II shows. In this experiment, the robot approached every
PMA (Fig. 5) in the simulation using both fast and slow
parameter sets while tracking the topple-state.

Based on these results, the likelihood of the three distinct
events is given by L(θ|x) = P (X = x; θ). Here, x is defined
by the three distinct values and θ is the (motion) parameter-
set. Table III shows the likelihoods, which are calculated as
L(θ|x) = x·(

∑N
i=1θi)

−1. Although the topple ratio between
fast and slow results is ≈ 5, toppling is not guaranteed
to happen in any time period. Its probability by time of
occurrence is once every ≈ 44s, whereas a shaking occurs
every ≈ 1.4s with θfast.

X L(θfast|x) L(θslow|x) ratio (f/s)

notopple 0.9266 0.9644 ≈1
shaking 0.0711 0.0351 ≈2
topple 0.0023 0.0005 ≈5

TABLE III: Experimental results: simulated toppling likelihood L
for fast and slow parameter sets and the relation between them:
ratio (f/s).

D. Planning

For plan generation, we used the off-the-shelf HTN plan-
ner SHOP2 [19]. The planner was integrated into the RACE
system as described in [20], which also describes how the
domain is modeled. HTN planning [11] is a hierarchical
planning approach that works by decomposing compound
tasks into sub-tasks. Decomposition continues until only so-
called ‘primitive’ tasks are left - those that the robot can
execute directly. These primitive robot capabilities are given
to the planner as operators representing action preconditions
and effects, as in classical planning. HTN planning also
employs methods to decompose compound tasks into sub-
tasks. The operators and methods are given to the planner in
a planning domain.

The planner is given a goal task and generates a plan
as a sequence of ground instances of operators (actions)
according to the planning domain and the current state of the
Blackboard. Listing 1 shows an example of a ground opera-
tor for !pick_up_object peppermill1 leftarm1
with preconditions and effects. It can be executed if
peppermill1 is on counter C1 and the robot is at an
area near this counter (line 2). If the action is successful,
peppermill1 is removed from C1 (line4) and ends up in
the robot’s arm (line 4).

1 !pick_up_object peppermill1 leftarm1
2 prec: robotAt(PMA C1), on(peppermill1, C1)
3 add: holding(peppermill1, leftarm1)
4 del: on(peppermill1, C1)

Listing 1: Ground instance of an operator for picking up a
pepper mill with the left arm.

In our approach the planner itself does not need to
be modified. Only the planning domain is extended to
integrate functional imagination. We add a new operator
!imagine ?task ?arg1 ?arg2 to the domain; its
arguments represent a task to be tested in simulation.
It has no preconditions or effects. In addition, methods
are required that make use of this operator. For our
demonstration scenario, we modified an existing method for
planning the task of moving an object by adding the task
!imagine !move_base_param ?area slow/fast
to the beginning of its decomposition. With the action
!move_base_param the robot drives to a specified area
with a given speed, e.g., slow or fast. For the !imagine
operator, however, we can define multiple parameter values
that should be simulated. In the given example slow and
fast will be simulated by functional imagination.

...

execute: <action1> <arg2>
<arg2>
<arg3>

imagine: <action1><arg1>

Fig. 4: Parameter instantiation in principle: during action execution
(circles), the result of an imagine action may alter the parameter of
another action consecutively.

E. Execution

The SEM generates the expected world state for each
action a given as an argument of an !imagine oper-
ator (in our case move_base). To this end, it has to
consider the current state of the Blackboard and the se-
quence of actions seq executed before a. We essentially
collect all effects added A = ∪ai∈seqadd(ai) and deleted
D = ∪ai∈seqdel(ai). Then A \ D and D \ A repre-
sent how the world state is expected to be changed by
the executiion of seq. In our scenario, the robot moves
(robotAt(PMAEC1) ∈ A \ D, robotAt(NSA1) ∈ D \
A) and the location of peppermill1 changes as well
(on(peppermill1, tray) ∈ A\D, on(peppermill1, EC1) ∈
D \ A). Therefore, functional imagination is initiated with
robotAt(PMA EC1) and on(peppermill1, tray).

The altered world state, the action and its argument can-
didates are then sent to the Imagination Client. Meanwhile,
all operators other than !imagine are physically executed
as usual, including operators to be imagined for which the
plan prescribes a set of default parameters. These defaults are
used if the action has to be dispatched before the Imagination
Client returns the outcome of the action.

The Imagination Client produces an ordered list of action
parameterizations together with the expected durations of
actions. If the most desirable action parameterization differs
from the default specified in the current plan, the SEM mod-
ifies the plan by adapting the action parameters, as shown
in Fig. 4. In addition, the SEM adds the expected duration
of the actions to the temporal network. This improves the
estimate of start and finish times of all actions planned after
move_base.

IV. EXPERIMENTAL RESULTS

All experiments were performed in simulation (Gazebo)
or on the real robot (PR2). Fig. 5 shows the demo restaurant
environment in the ROS visualization.

We will now present the results of validating simulated
actions against reality, before giving the results of executing
the proposed system on a PR2.

A. Simulation Validation

A physics-based simulation usually has no inherent noise,
except for the minor noise introduced by the underlying
hardware and by operating system scheduling. An obvious
exception is explicitly modeled noise, such as Gaussian
noise, as used in the Gazebo laser simulation. Action dura-
tions measured in the simulated restaurant environment are
consistent with small variance. Table IV shows the mean

counter1 PMA SouthTable1
PMA EastCounter1

PMA WestTable2
table1 table2

PMA EastTable2

nearStartArea1

PMA NorthTable1
North

Fig. 5: Restaurant floor map with markers for the counter and the
two tables (filled blue boxes) and for all pre-manipulation areas:
two for each table (on opposite sides), one for the counter and one
for the start area (near the right hand door). North is defined here
upwards.

Action Parameter to/from µsim [s] µpr2 [s]

!MOVE_BASE_PARAM fast EC1/ET2 14.04 16.40
!MOVE_BASE_PARAM slow EC1/ET2 20.22 22.59
!MOVE_BASE_PARAM fast EC1/NT1 15.99 16.85
!MOVE_BASE_PARAM slow EC1/NT1 18.38 19.41
!MOVE_BASE_PARAM fast ET2/EC1 24.08 23.07
!MOVE_BASE_PARAM slow ET2/EC1 27.00 29.86
!MOVE_BASE_PARAM fast NT1/EC1 15.33 16.59
!MOVE_BASE_PARAM slow NT1/EC1 19.06 20.89
!MOVE_TORSO U/D 20.99 23.39
!MOVE_TORSO D/U 21.69 22.19
!TUCK_ARMS U/T 9.25 8.58
!TUCK_ARMS T/U 5.70 5.29

Total mean 17.65 18.76

TABLE IV: Action duration mean µ in [s], of 20 runs per action,
executed in the simulation and on the real PR2.

duration of navigation, torso movement, and arm-tucking
actions both in simulation (µsim) and on the PR2 (µpr2).
In the table, µ is the mean value of an action duration,
while ‘to/from’ lists the acronyms for the starting pose or
posture of the robot. As discussed earlier, for move_base
ET2 corresponds to EastTable2, EC1 is EastCounter1, etc.
For move_torso actions, ‘U’ means up and ‘D’ means
down. The tuck_arms action uses ‘U’ for untucked arms
and ‘T’ for tucked arms.

The validation data was generated by running the robot
capabilities (perception, actuation) and the robot control sys-
tem. Generally the system load on each computer performing
the simulation is close to its limit. Therefore, in addition
to the following conclusions, system load will influence the
measurements slightly. The data shows that µ is slightly
smaller in simulation than on the real robot.

Differences in sensor data may result in µ being smaller in
simulation. Simulated sensor data is almost perfect, whereas
real sensor data contains significant noise. Odometry and
laser sensors, which are used for localization and path
planning, are noisy due to wheel slippage and reflection or
absorption of the laser beams. Furthermore, the laser has
some inherent noise. Friction and laser noise are modeled
in the simulation (as a Gaussian distribution) but perhaps
imperfectly. Arm and torso movements depend on real and

θfast θslow

Duration simulation [s] 32.01 45.27
Duration real [s] 76.24 109.85
Real-time factor 0.42 0.41

Duration scenario [s] 384.0
Relative imagination time 0.08 0.12

TABLE V: Experimental results: time resources used by simulation
during the toppling scenario.

Fig. 6: Topple scenario: robot actions over time in seconds. The
two imagination actions executed in parallel and the affected move
base action are highlighted in red.

modeled joints, springs, and friction. Deviations could result
from slightly inaccurate modeling parameters.

B. System Evaluation

In our experiment the robot was instructed to fetch a
pepper mill from counter1 and carry it safely, i.e., without
toppling, to table1 (cf. Fig. 5). Fig. 6 lists the plan
steps produced by the planner. Note that, except for the
imagination actions, all actions are executed in sequence.
Thus, running imagination actions in parallel does not extend
the overall duration here as the action to be fully instantiated
is executed much later. The figure also shows that both
imagination actions return before the robot picks up the
object from the counter. Therefore, information gained from
imagination can be used to schedule and reschedule any
action after picking up the object. In this scenario, we had
the following results from the imagination actions: c =
0.87 (‘fast’, 12 shaking events) and c = 1.00 (‘slow’, no
shaking) supporting a ‘slow’ motion, preventing possible
object toppling. Table V lists the (temporal) resources used
by imagination in this scenario compared with the total
scenario duration.

The same scenario evaluated with a standard system, i.e.,
without (functional) imagination, instantiates the move-base
action with ‘fast’ motion settings and causes the pepper mill
to topple and fail in 1 out of 4 experiments.

V. CONCLUSION AND FUTURE WORK

We have presented a flexible integrated system combining
high-level symbolic and concrete physics-based reasoning
running in parallel on a PR2 robot and in the Gazebo
simulation. The scenario presented shows how physics-
based common sense knowledge can improve robust plan

execution via action parametrization. Because of the common
simulation character, functional imagination reasoning can
be extended to temporal information about actions as well
as to results from other actions. The computational cost of
simulations limits the sample size and duration of actions
in principle. Nevertheless, our practical scenario shows that
interleaving simulation with execution does not have to come
with extra costs.

In future work we will investigate dynamic plan adap-
tations during execution based on imagination results. We
also plan to enable parallel simulations independent of world
state.

REFERENCES

[1] H. G. Marques, O. Holland, and R. Newcombe, “A modelling frame-
work for functional imagination.” in "Proc. AISB Convention, 2008,
pp. 51–58.

[2] S. Rockel, D. Klimentjew, L. Zhang, and J. Zhang, “An hyperreality
imagination based reasoning and evaluation system (hires),” in Proc.
ICRA, 2014.

[3] L. Hinkle and E. Olson, “Predicting object functionality using physical
simulations,” in Proc. IROS, November 2013.

[4] S. Zickler and M. Veloso, “Variable level-of-detail motion planning in
environments with poorly predictable bodies,” in Proc. ECAI, 2010.

[5] N. Akhtar, A. Küstenmacher, P. Plöger, and G. Lakemeyer,
“Simulation-based approach for avoiding external faults,” in Proc.
ICAR, 2013.

[6] M. Dogar, K. Hsiao, M. Ciocarlie, and S. Srinivasa, “Physics-based
grasp planning through clutter,” in Proc. RSS, 2012.

[7] A. Boeing and T. Bräunl, “Evaluation of real-time physics simulation
systems,” in Proc. of the 5th International Conference on Computer
Graphics and Interactive Techniques in Australia and Southeast Asia,
ser. GRAPHITE ’07. USA: ACM, 2007, pp. 281–288.

[8] J. Victores, S. Morante, A. Jardon, and C. Balaguer, “Towards robot
imagination through object feature inference,” in Proc. IROS, 2013,
pp. 5694–5699.

[9] H. G. Marques, R. Knight, R. Newcombe, and O. Holland, “An
anthropomimetic robot with imagination: one step closer to machine
consciousness?” in Nokia Workshop on Machine Consciousness, 2008.

[10] D. Gamez, R. Newcombe, O. Holland, and R. Knight, “Two simulation
tools for biologically inspired virtual robotics,” Proc. of the IEEE 5th
chapter conference on advances in cybernetic systems, Sheffield, pp.
85–90, 2006.

[11] K. Erol, J. Hendler, and D. Nau, “HTN Planning: Complexity and
expressivity,” in Proc. AAAI. AAAI Press, 1994, pp. 1123–1128.

[12] L. de Silva, A. K. Pandey, and R. Alami, “An interface for interleaved
symbolic-geometric planning and backtracking.” in Proc. IROS, 2013.

[13] M. Mansouri and F. Pecora, “More knowledge on the table: Planning
with space, time and resources for robots,” in Proc. ICRA, 2014.

[14] L. Mösenlechner and M. Beetz, “Using physics- and sensor-based
simulation for high-fidelity temporal projection of realistic robot
behavior,” in Proc. ICAPS, 2009.

[15] L. Kunze, M. E. Dolha, and M. Beetz, “Logic programming with
simulation-based temporal projection for everyday robot object ma-
nipulation,” in Proc. IROS, 2011.

[16] S. Rockel et al., “An ontology-based multi-level robot architecture for
learning from experiences,” in Proc. of Designing Intelligent Robots:
Reintegrating AI II, AAAI Spring Symposium, 2013.

[17] S̆. Konec̆ný, S. Stock, F. Pecora, and A. Saffiotti, “Planning domain
+ execution semantics: a way towards robust execution?” in Proc.
of Qualitative Representations for Robots, AAAI Spring Symposium,
2014.

[18] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” Robotics Automation Magazine, IEEE, vol. 4,
no. 1, pp. 23–33, Mar 1997.

[19] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu,
and F. Yaman, “SHOP2: An HTN planning system,” J. Artificial Intell.
Research, vol. 20, pp. 379–404, 2003.

[20] S. Stock, M. Günther, and J. Hertzberg, “Generating and executing
hierarchical mobile manipulation plans,” in Proc. of ISR/Robotik, 2014.

