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Abstract— The quality of crossmodal perception hinges on
two factors: The accuracy of the independent unimodal per-
ception and the ability to enhance this accuracy by crossmodal
integration. In elderly, the ability for crossmodal perception
diminishes. To research to which degree the impediment of
these two abilities in elderly contributes to this diminishment,
we replicate a medical study on visuo-tactile crossmodal pattern
discrimination utilizing state-of-the-art tactile sensing technol-
ogy and artificial neural networks. We explore the perception of
each modality in isolation as well as the crossmodal integration.
We show, that the integration of complex high-level unimodal
features outperforms the comparison of independent unimodal
classifications. Our work creates a bridge between neurological
research and embodied artificial neurocognitive systems.

I. INTRODUCTION

In our daily life, it is crucial to continuously process
simultaneous input from different sensory systems to adapt
to changes in our surrounding [1]. With aging, performance
decreases in several cognitive domains, one primary domain
being the adequate processing of incoming stimuli [2].
Impairments in successfully integrating information from
different sensory systems might be one of the reasons for
the challenges of the elderly in daily life. As the percentage
of older people in the population increases, understanding
of mechanisms of age-related declines and development
of adequate support approaches gain more and more im-
portance. Interestingly, the design of high-performing ar-
tificial systems for crossmodal integration is likewise one
of the most significant challenges in robotics. Adapting
a neurological experiment, aimed to determine difficulties
of elderly in crossmodal integration can help to establish
common grounds in human and robotic research and the
mutual exchange of theory. On the one side, it will allow
for evaluation of performance of artifical systems compared
to humans with different abilities and help to adapt more
biologically plausible and performant artificial neural net-
work (ANN) models. On the other side, network models
might help to understand reasons for poor performance in
elderly humans and can be a basis for the development
of assistive devices. We employ embodied neurocognitive
models to evaluate different hypotheses of the contribution
of unimodal processing and crossmodal integration for a
specific visuo-tactile crossmodal differentiation task.
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Fig. 1. The original human visuo-tactile discrimination experiment. The
participant looks for a (four-dot) visual pattern on the monitor and feels
a haptic pattern generated by a Braille actuator on the index finger of the
right hand. The participant then decides whether both patterns are the same
or different, and presses the green or red button accordingly. The task is
made more difficult by blending the visual pattern in the background noise
and by reducing the actuated pin height of the tactile display.

II. VISUO-TACTILE DISCRIMINATION IN HUMANS

In our human-participant experiment, 20 young (aged
20-28) and 20 healthy elderly participants (aged 65-79)
performed a visuo-tactile pattern discrimination task (adapted
from [4]). In this task, participants had to compare Braille
patterns presented tactilely to the right index fingertip with
visual patterns presented on a computer screen (Fig. 1). A
set of four clearly distinct patterns was used in the study
because the untrained elderly participants had problems to
distinguish more complex Braille patterns (Fig. 2).

During the experiment, stimulus intensity was adjusted
individually based on an adaptive-staircase procedure with a
target detection accuracy of approximately 80%, to ensure
comparable detection performance across modalities and
between elderly and young participants (Table I). Tactile
stimulus intensity was adjusted by changing the height of

TABLE I

Tactile threshold (Braille pin height in µm) and visual threshold (grey
level) for 80% detection accuracy, and performance on the match-
ing/discremination task, for young and elderly human participants.



Fig. 2. (Left) The four visual braille patterns that were used for all
experiments. (Right) One example input for pattern 3 with 100% intensity
(i.e. full black).

the braille pattern, visual stimulus intensity by changing
the patterns’ contrast against a noisy background. Finally,
participants performed the visuo-tactile discrimination task
at the afore defined unimodal thresholds of 80% accuracy.

III. ROBOTIC ADAPTATION

The setup described above was realized in a robotic
experiment (Fig. 3). The Braille stimuli were applied to the
fingertips of a Shadow C6 Dexterous Hand [5] equipped
with BioTac tactile sensors [6], [7]. The sensor surface of
the BioTac closely matches the size and shape of a human
finger and it was possible to align and center the sensor onto
the Braille actuator without modifying the setup.

To classify the haptic stimuli of the Braille actuator
correctly, the sensor can detect multiple contacts through
indirect measurement. The turquoise rubber shell is filled
with a conductive liquid and held in place around an inner
rigid “bone”. When contacting an object, the rubber deforms,
changing the overall pressure of the liquid (1 channel) and
also the impedance between a set of electrodes patterned on
the bone (19 channels). At the same time, liquid temperature
changes due to the contact (2 channels). Raw data from
the sensor combines the measured pressure, temperature
and impedances, but is notoriously difficult to interpret [8],
[9]. Because the temperature conditions during recording
remained stable, we omitted the respective sensor readings
and feed the 20 other channels into an ANN to learn the
mapping from raw data to applied Braille stimuli.

As visual stimuli, we use the same visual stimuli employed
in the human experiment. These stimuli are directly fed
into the neural architecture without an intermediate sensor
like a camera. As detailed below, the comparison with the
human experiments relies on the exact gray values used in
the stimuli; direct input of the images to the network avoids
any level-shifts due to inconsistent camera exposure control.

As the detection and classification of the tactile and
visual stimuli require offline learning, the adaptive staircase
procedure could not be used. Instead, we recorded enough
patterns of different complexity so that the required stimuli
(corresponding to about 80% single-channel accuracy) could

Fig. 3. Robot experiment setup using a Shadow C6 Dexterous Hand. The
BioTac tactile fingertip of the first finger of the hand is placed on the Braille
actuator.

be presented to the trained ANNs after learning. In total, we
recorded several hours of raw sensor data from the robot,
labeled with the presented tactile and visual patterns.

IV. COMPUTATIONAL MODELS

To evaluate the influence of the actual crossmodal inte-
gration of high-level unimodal features in contrast to just
comparing unimodal classification we propose two neu-
ral architectures: The V-architecture, see Fig. 5, statically
compares unimodal classification results. It consists of two
separate networks that perform unimodal classification of the
tactile and haptic input pattern, respectively. Eventually, both
classification results are compared in the final layer.

The Y-architecture, see Fig. 6, instead integrates high-
level feature representations of both modalities. It also has
two separate columns for unimodal feature extraction on
the visual and tactile data. However, instead of performing
a unimodal pattern classification, the extracted features are
concatenated and further integrated by a series of dense lay-
ers, the stem of the Y-architecture. This network performs a
late integration of crossmodal information. (Early integration
models and unified processing of both modalities will be
adressed in future work.)

Empirical and automated optimization resulted in the
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Fig. 4. Mean classification accuracy for visual channel over 1000 images
with varying pattern intensity 47% - 100%



Fig. 5. Structure of the unimodal V-architecture. Visual stimuli (left
column) and tactile data (right column) are processed separately and
statically compared in the end.

following hyperparameters: For the visual columns, two
convolution layers L1 and L2 after a batch-normalization
step, are followed by a pooling layer each (max-pool after
L1, global max-pool after L2). Kernel regularization was
used for both CNN layers. For L1, the squared sum of
the weights was used to force the network to focus on
differences of grayscale rather than absolute values. For L2,
L1 regularization with a factor of 0.01 was used to enforce
a high level of sparsity. For the V-architecture, a final dense
layer with soft-max activation with four patterns performs
classification. In the Y-architecture the extracted high-level
features are directly propagated. For the haptic modality, we
use an MLP with three hidden layers (20 inputs from the
BioTac sensor, three layers with 256 neurons each, followed
by one softmax output layer with 4 neurons, corresponding
to the 4 Braille patterns). Again, the last layer follows for the
V-architecture only. Finally, the crossmodal integration in the
Y-architecture is performed by a series of dense layers with a
decreasing number of hidden units (48, 32, 32, 16) followed
by a binary softmax layer for same or different patterns.

V. UNIMODAL AND CROSSMODAL TRAINING

Assuming random selection of the visual and tactile stim-
uli for the discrimination task (one out of four possible
patterns each), always predicting a mismatch will already
achieve an accuracy of 75%. This is the baseline that more
complex models must surpass.

The training for both networks follows the same pattern:
First, each unimodal column of the network is trained.
In the case of the non-integrating V-architecture a static
comparator follows. For the crossmodally integrating Y-
architecture, a third training phase follows where the com-
plete Y-architecture is trained. Both architectures are trained

Fig. 6. Structure of the crossmodal integration network (Y-architecture).
Both columns are first trained separately on visual and tactile data. After-
wards, a number of densely connected layers and a softmax output layer are
added, and the network is trained again on the combined visual and tactile
data.

for a total of 100 epochs; in the case of the crossmodal
integrating Y-architecture, 50 of these epochs were used for
unimodal pretraining and 50 epochs for training the whole
network. For all training phases, the Adam optimizer with a
learning rate of 0.001 and a batch size of 32 was used.

The noisy visual input images are generated by placing one
of four target Braille patterns (43x104px, see Fig. 2 left) ran-
domly on one of 48 randomly generated background images
(1024x768px) to generate 5000 images each for training and
validation (Fig. 2 right). The background consists of a Perlis
noise pattern with a gray range of between 40% and 60%
(mean 53.7%). The stimulus intensity (i.e., gray level) of the
pattern was selected to be between 47% and 100% (black).

The Braille patterns become increasingly difficult to see
for humans as the gray levels of the patterns blend with the
gray levels of the background. On the robot, it might be
possible to achieve even higher classification accuracy using
classical computer vision algorithms and prior knowledge
about how the data was generated. This would, however,
undermine the goal to create controllable unimodal classifica-
tion performances. Similar to the visual modality, a sufficient
number of haptic samples with different pin heights were
collected. Depending on the pin height and the unimodal
network, different classification results can be achieved.

VI. RESULTS

To test the individual classification accuracy of both
channels, and to compare them to the performance of the
human participants in the original experiment, both models
were fed inputs of varying difficulty (pattern intensity for
the visual channel, pin height for haptic channel). The



Fig. 7. Performance of the unimodal processing of the V-architecture on
the discrimination task. Parameters are the grey level (% of black) of the
visual pattern and the active pin height (µm) of the Braille actuator. Two
separate networks are trained for the visual and tactile data, followed by a
static comparison (compare Fig 5).

results for the visual channel can be seen in Fig. 4. The
classification accuracy was on average 98.43% and started
dropping once the gray value of the pattern also appeared
in the background image (values between 40% and 60%).
The results of the unimodal processing V-architecture on the
discrimination task are shown in Fig. 7. As expected, the
performance of the network degrades when the channels are
too noisy, but accuracy improves quickly as the signal quality
(gray level, Braille actuator pin height) becomes better. The
corresponding results for the Y-architecture that performs late
crossmodal integration are shown in Fig. 8. As expected, this
more complex network outperforms the unimodal network
over the whole parameter range. More interestingly, it already
surpasses the trivial (75% level) classifier when both the
visual and tactile stimuli are very noisy.

Our results are also interesting in the context of the human
experiment: Elderly showed significant higher thresholds for
unimodal pattern detection compared to young (see Table 1).
While young showed a stable performance in the crossmodal
task at the unimodal thresholds, elderly showed a significant
weaker performance, suggesting an impaired crossmodal in-
tegration in the aged brain which corresponds to independent
unimodal classification (V-architecture).

VII. DISCUSSION

In the unimodal visual condition, the performance of the
ANN and young participants was comparable, whereas, in
the unimodal tactile condition, young outperformed the ANN.
In both conditions, the ANN performed distinctively better
than elderly participants. Crossmodal performance, however,
depends not only on unimodal pattern recognition but also
on integration mechanisms. Interestingly, only young partici-
pants showed a stable performance in the visuo-tactile match-
ing task at the unimodal thresholds. This result suggests a

Fig. 8. Performance of the late-integration crossmodal network on the
discrimination task. Parameters are the grey level (% of black) of the visual
pattern and the active pin height (µm) of the Braille actuator. See the text
for details (compare Fig 6).

superior mechanism for crossmodal stimulus processing in
the human brain. This finding is mirrored in our result, that
the crossmodal integrating neural architecture outperforms
the non-integration unimodal neural architecture even though
the unimodal processing columns are identical.

It has been suggested that efficient stimulus processing in
the human brain depends on recurrent neural networks and
early sensory integration [3]. Adapting such approaches in
future work might, on the one hand, improve the performance
of artificial devices, but on the other hand, also give insights
into the question which disturbances of the system lead to
suboptimal functioning in the aged brain. Further research
is needed, to answer the question of how young brains
successfully integrate crossmodal information and which of
these mechanisms can be adapted in artificial systems.
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