
Integration of pseudo-Boolean constraint
learning in a state-of-the-art Conflict-Driven

Answer Set Solver

Bachelor’s Thesis

by

Michael Görner

Potsdam University
Institute of Computer Science

Knowledge Processing and Information Systems

Supervisors:
Prof. Dr. Torsten Schaub

Benjamin Kaufmann

Potsdam, September 25, 2012

Görner, Michael
v4hn@cs.uni-potsdam.de
Integration of pseudo-Boolean constraint learning in a state-of-the-art Conflict-Driven Answer Set
Solver
Bachelor’s Thesis, Institute of Computer Science
Potsdam University, October 2014

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt, nicht anderweitig zu
Prüfungszwecken vorgelegt und keine anderen als die angegebenen Hilfsmittel verwendet habe.
Sämtliche wissentlich verwendeten Textausschnitte, Zitate oder Inhalte anderer Verfasser wurden
ausdrücklich als solche gekennzeichnet.

Potsdam, September 25, 2012

Michael Görner

Zusammenfassung

Antwortmengenprogrammierung (engl. Answer Set Programming/ASP) beschäf-
tigt sich mit der Modellierung von Problemstellungen durch Mengen logischer Regeln
und der Suche nach stabilen Modellen(Antwortmengen) der modellierten Problem-
instanzen. Um solche Modelle effizient zu finden, nutzen aktuelle Suchverfahren
den Resolutionskalkül und lernen aus einmal erkannten Konflikten durch Konflikt-
analyse neue Einschränkungen für mögliche Modelle. Allerdings lassen sich in ASP-
Modellierungen auch komplexere Strukturen wie Kardinalitäts- und Gewichtsbedin-
gungen nutzen, die sich ähnlich wie Pseudo-Boolesche Ungleichungen verhalten.
Da mit dem Cutting Planes System ein für diese Art von Bedingungen leistungs-
fähigerer Inferenzkalkül bekannt ist, liegt es nahe diesen Kalkül bei der Analyse
von Problemen, die solche Konstrukte enthalten, einzusetzen und die resultierende
Pseudo-Boolsche Ungleichung zu lernen. Die vorliegende Arbeit beschäftigt sich mit
den Möglichkeiten eines solchen Einsatzes, stellt eine Implementierung in den ASP-
Solver clasp vor und diskutiert Benchmark-Resultate.

Abstract

In Answer Set Programming (ASP) one models problems by sets of logical rules
and afterwards looks for stable models (i.e. answer sets) of the modeled problem
instances. In order to find such models efficiently state-of-the-art ASP-solvers uti-
lize the resolution calculus to learn new valid constraints from each conflict they hit
(Conflict Driven Clause Learning). However, ASP also allows for a number of more
complex structures like cardinality and weight constraints, which are essentially sim-
ilar to linear pseudo-Boolean constraints. While these structures can be weakened
to clauses so as to apply resolution to them, a more powerful inference calculus (i.e.
the cutting planes system) is known for pseudo-Boolean problems. Therefore, it’s
worth a try to utilize this calculus in conflict analysis when dealing with these more
complex constraints. The resulting pseudo-Boolean constraint can then be learnt just
like a normal conflict resolvent. This thesis discusses possible applications of the
cutting planes system in conflict analysis, describes an implementation based on the
ASP-solver clasp and presents benchmarks.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 1

2 Linear Pseudo-Boolean Constraints 2
2.1 Valid Operations . 3
2.2 Constraint Propagation with PBCs . 3
2.3 Weight Constraints in clasp . 5

3 Cutting Planes Inference 6
3.1 CP Conflict Analysis . 6
3.2 Problems to Overcome . 8

3.2.1 Keeping Constraints Violated . 8
3.2.2 Overhead . 9
3.2.3 When to Stop the Analysis . 10
3.2.4 Learnt Constraint(s) and Backjumping . 11

4 Implementation 13

5 Experimental Analysis 17
5.1 Benchmarks . 17
5.2 Evaluation . 17

6 Conclusion 19

A Interaction between PBConstraint and Solver 20

List of Figures 22

List of Tables 22

List of Algorithms 22

Abbreviations 23

Bibliography 24

i

1 Introduction

1.1 Motivation

In the field of satisfiability testing, i.e. “SAT solving”, there have been a lot of major improve-
ments in recent years. Some of these are the 2 watched literals scheme, variable state independent
decaying sum(VSIDS) heuristics and conflict clause minimization [9, 14]. Because solving prob-
lems modelled with Answer Set Programming (ASP) is in many aspects similar to SAT solving,
most of these techniques can be used profitably with ASP solvers as well. One highly optimized
solver which implements all mentioned techniques (and many others) is clasp, the solver of the
open-source ASP suite potassco [7].

Another subfield of SAT solving which was a subject of research lately is pseudo-Boolean
problem solving and the related technique of pseudo-Boolean Constraint (PBC) learning [5, 1,
2, 6, 11]. Because ASP also includes structures which behave similar to such pseudo-Boolean
constraints, it is of interest to see whether or not the corresponding learning technique improves
the overall performance of an ASP solver.

1.2 Objective

The objective of this thesis is to extend clasp to learn valid pseudo-Boolean constraints in the
context of decision problems, i.e. finding one solution of a given problem instance or proving it
unsatisfiable, and to evaluate whether or not it is feasible to add PBC learning capabilities to a
conflict driven ASP solver. In order to do so, the next chapter first of all formally introduces linear
PBCs and reviews a number of relevant properties. It also explains where PBCs can appear when
modelling problems with ASP. The following chapter then discusses the cutting planes system
and variable elimination and their usability in conflict analysis. It also discusses problems that
arise with this usage. Chapter 4 afterwards describes the actual implementation of this learning
mechanism. Finally chapter 5 presents and evaluates benchmarks of this implementation.

1

2 Linear Pseudo-Boolean Constraints

Pseudo-Boolean constraint problems are also referred to as 0-1 integer programming problems,
as they are a special case of Integer Linear Programming (ILP) problems. An ILP constraint is
normally defined for constants n,a1, . . . ,an and a bound b as follows

∑
0≤i≤n

aixi&b , ai,b ∈Z,xi ∈N0

where& is one of <,≤,=,≥ and >. However, due to the integral nature of all involved variables
and the possibility to multiply the equation by −1 it is enough to restrict the relational operator to
≥1. Also note that all variables xi range over all natural numbers.

A linear pseudo-Boolean constraint on the other hand restricts these values to {0,1} so as to
parallel the range {�,⊺} of Boolean variables. Because we work with literals2 instead of just
variables, we also need to define the negation x of a variable x in this setting. Easily enough, the
definition x = (1− x) works fine, even though we need to keep the additional 1 in mind later on.
Using this definition we can now observe −ax ≥ b⇔ −a(1− x) ≥ b⇔ −a+ax ≥ b⇔ ax ≥ b+a.
This enables us to further restrict the form of the constraint to allow only positive coefficients on
the left-hand side, because we can simply invert all negative coefficients, switch the sign of the
corresponding literal and add the new coefficient to the bound. Also, if the right-hand side of a
PBC is negative and all coefficients on the left are positive, then this constraint is trivially satisfied
and we can replace it by 0. For ease of implementation we also sort the left-hand side products
by the size of their coefficients in decreasing order. The rest of this thesis assumes the following
form of PBCs and any new constraint that doesn’t fit this definition will be normalized.

∑
0≤i≤n

aili ≥ b , ai ∈N+,b ∈N0, li ∈ {xi,xi}, i > j⇒ (ai ≤ a j ∧ li ≠ l j)

where all xi are valid binary variables.
One more interesting thing to mention is that this form is an obvious generalization of Boolean

clauses, which emerge when forcing all constants to 1 (or actually any fixed number):

∑
0≤i≤n

li ≥ 1 ⇔ ⋁
0≤i≤n

li

However, general linear PBCs are exponentially stronger than clauses. That is to say, in order to
represent one PBC an exponential number of clauses is needed relative to the number of involved
variables (See section 2.2).

1
∑0≤i≤n[aili] > b ⇔ ∑0≤i≤n[aili] ≥ b−1
∑0≤i≤n[aili] < b ⇔ ∑0≤i≤n[−aili] > −b
∑0≤i≤n[aili] = b ⇔ ∑0≤i≤n[aili] ≥ b ∧ ∑0≤i≤n[aili] ≤ b

2A Boolean variable or its negation

2

2.1 Valid Operations

2.1 Valid Operations

This section presents some well known ([2, 11, 1]) correct operations on PBCs that are used later
on.

Saturation This operation is also named Coefficient Reduction in some literature. Presume there
is a PBC with ai > b for some i. Because the corresponding binary factor can only either add ai

to the overall sum - so the constraint is satisfied even if all other literals are false - or make it
completely irrelevant for the constraint, it is appropriate to reduce ai to b. This way the behaviour
of the constraint does not change, but the coefficients are always smaller than or equal to the bound
of the constraint.

SAT

∑
i∈I

ai ⋅ li ≥ b ∃ j ∈ I.a j > b

b ⋅ l j + ∑
i∈I/{ j}

ai ⋅ li ≥ b

This irreversibly changes the constraint and therefore removes some information. But take
a look at the loss: Even if li is mapped to 1 and all other literals of the unchanged constraint
remain undecided, the constraint is not just satisfied, but is oversatisfied by a j−b. After applying
saturation the clause will be satisfied exactly in this case without being oversatisfied. As we’ll see
in 3.2 oversatisfied constraints cause problems with the conflict analysis, so we’ll try to circumvent
as many of these problems as possible.

Multiplication and Rounding We are obviously free to multiply and divide the constraint by
any constant without a loss of information as long as all resulting constants remain integers. But it
is also correct to multiply by any factor as long as we round all constants up afterwards. Round-
ing the constants of a PBC may drop valuable information, but is still correct and can be used
effectively in some cases (e.g. saturation actually is a special case of rounding [2]):

MUL(λ)

∑
i∈I

ai ⋅ li ≥ b λ ∈R

∑
i∈I

⌈λ ⋅ai⌉ ⋅ li ≥ ⌈λ ⋅b⌉

Reduction One more useful operation is to simply forget about a literal of a constraint. This
way the resulting constraint tells us what remains to be checked if this particular literal is mapped
to 1.

RED(l j)

∑
i∈I

ai ⋅ li ≥ b j ∈ I

∑
i∈I
i≠ j

ai ⋅ li ≥ b−a j

2.2 Constraint Propagation with PBCs

When applying conflict driven clause learning (CDCL) as described in [12] and unit propagation
two of the most important properties an involved constraint must exhibit are the following:

3

2 Linear Pseudo-Boolean Constraints

1. Given any partial non-conflicting assignment of involved variables (represented by a set A
of all currently true literals) the constraint needs to be able to specify (i.e. propagate) any
literals which has to be true in order to make the constraint remain satisfiable and non-
conflicting.

2. It needs to provide a reason, that is to say a number of currently true literals, why it implies
a specific literal.

For normal clauses this is quite easy. Given a clause ⋁i∈I li and a partial assignment A, this
clause is said to be unit if and only if there is exactly one j ∈ I such that neither l j nor l j is in A
and ∀k ∈ I/{ j}. lk ∈ A. That is to say, all but one literals of the clause are false w.r.t. A. In this case
the clause can propagate the remaining undecided literal l j, because there would be no way left
to make the clause true if l j would be set to true. The reason for this propagation is the fact that
all other literals of the clause are false, which can be represented by the set {lk ∣ k ∈ I/{ j}} ⊆ A.
Note that each clause can become unit only once, because it is satisfied after the unit literal is
propagated.

Now this is not as simple for PBCs. As already mentioned, a PBC can subsum a large number of
clauses and more than one of these can become unit over time. Consider the following constraint:

c1 ∶ 2x1+1x2+1x3 ≥ 3

Given the empty partial assignment A =∅ the constraint can propagate x1 because the inequality
would be violated in any case if x1 would be mapped to 0 (i.e. x1 would be mapped to 1). If we
then also add x2 to the assignment (so A = {x1,x2}), the constraint implies yet another assignment:
x3, because again there would be no way left to satisfy the constraint if x3 would be mapped to 0.
Now the constraint actually is satisfied and can’t propagate any more literals w.r.t. A = {x1,x2,x3}

(or any non-conflicting extension of it).
In order to formalize this behaviour, people came up with the following value (called slack or

poss [1, 11]) associated with a partial assignment A and a constraint c ∶∑i∈I aili ≥ b.

sA
c =∑

i∈I
li∉A

ai−b

This value represents the amount by which c is oversatisfied if all undecided literals in this
constraint would be mapped to 1. This way a literal assignment is implied for an undecided literal
l j if and only if a j > sA

c for the corresponding coefficient a j. This is, as already mentioned above,
because if l j would be mapped to 0 there would be no way left to satisfy the constraint. Also it is
important to see that a negative slack marks a constraint as violated under the current assignment.
Using this knowledge we can exactly specify the set of clauses that represent a PBC c.

c ∶ ∑
0≤i≤n

aili ≥ b ⇔ {⋁
i∈I

li ∣ I ⊆ {0, . . . ,n}, s
{li∣ i∈I}
c < 0}

Now that we know how to detect whether a literal is propagated by the constraint (i.e. one
of the subsumed clauses is unit), we still need to provide a reason for this propagation. A valid

4

2.3 Weight Constraints in clasp

reason that is easy to compute is the set of all currently false literals of the constraint. Because
the coefficient of each of these literals was subtracted from the initial slack of the constraint, the
current slack is smaller than the coefficient of the propagated literal. However, note that this is
not necessarily the strongest (in the sense of smallest) reason for this propagation as the following
example illustrates: Given the constraint c ∶ 3x1 + 2x2 + 1x3 + 1x4 ≥ 3 and the partial assignment
A = {x4,x1} the constraint propagates x2 (as well as x3 later on) with the reasonset A. The strongest
reason for propagating x2 is only {x1} though. Nevertheless, for ease of computation, clasp as
well as the implementation in this thesis uses the first way to compute the reason.

2.3 Weight Constraints in clasp

Normally ASP does not directly relate to pseudo-Boolean problem solving or pseudo-Boolean
constraints. Even so, the authors of [8] use PBCs to capture the behaviour of weight constraints
(as defined by [13]) in clasp. An ASP weight constraint is actually very similar to a linear PBC with
one crucial difference: The constraint itself is handled like a Boolean variable and can become
false. A weight constraint consists of a lower bound `, a number of atoms a0, . . . ,an and weights
w0, . . . ,wn associated with the atoms:

`{a0 =w0, . . . ,am =wm,not am+1 =wm+1, . . . ,not an =wn}

The literal W , which represents the truth value of this weight constraint, has to be mapped to 1
if the sum of weights of true atoms and false negated atoms reaches the lower bound ` and has to
be mapped to 0 otherwise. clasp represents this logical connection by the following dual PBCs.

PBω ∶ ` ⋅ W +w0 ⋅a0+ . . . +wm ⋅am+wm+1 ⋅am+1+ . . . +wn ⋅an ≥ `

PBω ∶ (s{W}PBω
+1) ⋅ W +w0 ⋅a0+ . . . +wm ⋅am+wm+1 ⋅am+1+ . . . +wn ⋅an ≥ (s{W}PBω

+1)

These constraints restrict the possible assignments of W,a0, . . . ,an such that W has to be mapped
to 1 if the sum of weights of true literals does not exceed the lower bound ` (PBω) and W has to
be mapped to 1 if the sum of false literals of the weight constraint does not exceed the maximum
slack of the weight constraint (PBω). Once the value of W is known, they also assure the sum of
true literals in the weight constraint is greater or equal or respectively less than the bound `.

Therefore, propagations because of weight constraints in clasp are actually propagations be-
cause of one of these two associated pseudo-Boolean constraints and the reasons provided are
reasons computed from these constraints.

By forcing the literal W to 1, this concept degenerates to a normal pseudo-Boolean constraint
and clasp uses this to solve pseudo-Boolean problems using CDCL technology as well.

5

3 Cutting Planes Inference

Just as linear pseudo-Boolean constraints are a proper generalization of Boolean clauses the cor-
responding inference system (i.e. the cutting planes system [3]) is a proper generalization of the
resolution calculus ([10]). Let’s take the following resolution inference in propositional logic as
an example:

RES(l)
(a∨b∨ l) (c∨b∨ l)

(a∨b∨c)

This inference is isomorphic to simply adding the inequalities corresponding to these clauses
and saturating the result.

SAT

ADD
1a+1b+1l ≥ 1 1c+1b+1(1− l) ≥ 1

2b+1a+1c ≥ 1

1b+1a+1c ≥ 1

A linear combination of a number of PBCs is called a cutting plane, as it “cuts off” a part of the
reachable search space without removing any 0-1 solution of the overall set of constraints. This
also gives rise to the primary inference rule for PBCs:

CP(α,β)

∑
i∈I

[aili] ≥ b1 ∑
j∈J

[c jl′j] ≥ b2 α,β ∈N

∑
i∈I

[α ⋅aili]+∑
j∈J

[β ⋅c jl′j] ≥ b1+b2

Keep in mind that the resulting constraint probably has to be renormalized and potentially satu-
rated, because if for some i ∈ I, j ∈ J there is li = l′ j then negation as defined in the previous chapter
leaves an amount of min(ai,ci) on the left-hand side after adding the summands, that needs to be
subtracted.

This thesis only uses CP so as to remove a literal from a PBC. Therefore we will always use
CP(α,β) with two PBCs which contain summands c1 ⋅ l and c2 ⋅ l respectively such that c1 ⋅α = c2 ⋅β.
This usage is also dubbed variable elimination (VE) [11].

3.1 CP Conflict Analysis

Let’s consider a simple search conflict involving these two constraints:

(c1) 3x1 +2x2 +2x3 +1x4 ≥ 3
(c2) 3x2 +2x5 +1x1 +1x3 +1x6 ≥ 3

Figure 3.1 demonstrates a possible search path leading to a conflict and gives the reasons for
the propagated literals as described in section 2.2. At first the decision is made to propagate x6

6

3.1 CP Conflict Analysis

constraint reason literal decision level
decision ∅ → x6 @1
decision ∅ → x2 @2

c2 {x6,x2} → x5 @2
decision ∅ → x3 @3

c1 {x2,x3} → x1 @3
c2 {x6,x2,x3} → x1 @3
☇

Figure 3.1: search history leading to a conflict

(thus entering the first decision level1). This does not trigger any further propagation, so the next
decision is made on the next decision level and forces x2. This time the current slack of (c2)

reduces to 1 and therefore the constraint propagates x5. Because again no conflict was found and
no further literal is propagated yet another decision is made on the next level and this time forces
x3. Because of this the slacks of (c1) and (c2) reduce to 1 and 0 resp. and both constraints
propagate complementary literals leading to a conflict.

A normal CDCL conflict analysis now proceeds by converting the conflicting implication (x6∧

x2 ∧ x3 → x1) to a clause (x6 ∨ x2 ∨ x3 ∨ x1) and resolves out literals in reverse order of propaga-
tion. To do so resolution is applied to the conflict clause and the clauses which correspond to the
particular implications until only one literal on the current decision level is left:

RES(x1)
(x6∨x2∨x3∨x1) (x2∨x3∨x1)

(x6∨x2∨x3)

The resulting clause is called the first unique implication point (First-UIP) clause [12]. This
clause is then learnt and the search jumps back to the first level the clause is unit (i.e. the First-UIP
level) and propagates the unit literal (in this case the search jumps back to the second decision
level and the clause propagates x3).

What happens if we apply CP to the actual PBCs instead of just RES to their weakened impli-
cations?

SAT

CP(3,1)
3x2+2x5+1x1+1x3+1x6 ≥ 3 3x1+2x2+2x3+1x4 ≥ 3

11x2+6x5+5x3+3x6+1x4 ≥ 9

9x2+6x5+5x3+3x6+1x4 ≥ 9

The produced constraint also is unit on decision level 2 and also propagates x3 there. However,
it is strictly stronger than the First-UIP clause because it actually subsums four clauses:

9x2+6x5+5x3+3x6+1x4 ≥ 9⇔ {
x2∨x3∨x5, x2∨x5∨x6,
x2∨x4∨x5, x2∨x3∨x6

}

Especially note the clauses x2∨x3∨x6 and x2∨x4∨x5. Whereas resolution based conflict analy-
sis yields one of the four clauses and another one is subsumed by (c2), the search didn’t know

1the number of a decision level simply represents the amount of uninformed decisions propagated up to this point

7

3 Cutting Planes Inference

(c′1) 2x3 +1x1 +1x2 ≥ 2
(c′2) 2x3 +1x1 +1x2 ≥ 2

constraint reason literal decision level
decision ∅ → x1 @1
decision ∅ → x2 @2

c′1 {x2} → x3 @2
c′2 {x2} → x3 @3
☇

Figure 3.2: search history leading to a conflict with oversatisfied constraints

about these two clauses before and the analyzed conflict has nothing to do with them. In fact,
learning this new PBC which the CP analysis produced enables the search to avoid conflicts it
never actually hit. This is a tremendous advantage of CP based analysis over resolution based
analysis. Also [3] proofs that there exists at least one class of unsatisfiable problem instances
(i.e. the well known pigeonhole problems) which resolution based algorithms can’t refute in a
polynomial number of steps, but which CP based algorithms can refute polynomially.

However, there are a number of disadvantages as well and some of them are discussed in the
next section.

3.2 Problems to Overcome

3.2.1 Keeping Constraints Violated

Let’s take a look at another example presented in figure 3.2. The search decides to force x1 and
x2 and hits a conflict involving x3. As explained in the previous section we can now analyze this
conflict with the CP method:

CP(1,1)
2x3+1x1+1x2 ≥ 2 2x3+1x1+1x2 ≥ 2

2x1+2x2 ≥ 2

However, the resulting constraint doesn’t conflict with the current assignment and does not
propagate literals on any earlier decision level. Therefore we can’t use it to continue the search
on an earlier decision level and remove the current assignment from the search space. What
happened? Taking another look at the definition of slack in 2.2 it becomes clear that when adding
two PBCs which do not contain unassigned complementary literals, the corresponding slacks add
up as well. Because the constraint implying x3 is oversatisfied (s{x1,x2,x3}

c′1
= 1) and the conflicting

constraint is only violated by one (s{x1,x2,x3}
c′2

=−1) the resulting slack of the resolvent is 0 and hence
it is not violated. To keep the resolvents violated in conflict analysis the authors of [2] propose to
use the reduction operation defined earlier to reduce the slack of the implying constraint. To do
so, they apply the reduce operation to remove non-false (and non-implied) literals until the sum
of slacks of both constraints remains negative. This is guaranteed to suffice, because the repeated
application of the reduction operation eventually results in the unit clause which implied the literal

8

3.2 Problems to Overcome

and unit clauses by definition can’t have a slack greater than 0. The following is an analysis which
includes such a weakening:

SAT

CP(1,2)
2x3+1x1+1x2 ≥ 2

2x3+1x1+1x2 ≥ 2

2x3+1x2 ≥ 1
RED(x1)

1x3+1x2 ≥ 1
SAT

3x2+x1 ≥ 2

2x2+x1 ≥ 2

The resulting constraint is still violated on the current decision level and implies x2 on the pre-
vious level. However, note that without further restrictions the resulting constraint might remain
violated, but does not need to be implicative on an earlier level [11].

Instead of iteratively weaken the constraint it is also sound to simply replace it by the implying
clause and this is the approach used in the implementation presented in this thesis. In order to de-
tect whether weakening is needed, different approaches were used in the past. [5] checks whether
or not one of the coefficients is equal to 1 and if not calculates a weakened version together with the
original constraint. [11] applies CP and reverts it if a non-negative slack is detected afterwards.
The implementation described here checks if the sum of the slacks is non-negative and applies
weakening if it is not. This is conservative though, because if there are unassigned complementary
literals in the involved constraints, the smaller of both coefficients is counted twice as indicated
above. So the actual slack of the resolvent is always smaller or equal the sum of the slacks of the
CP operands.

3.2.2 Overhead

An obvious disadvantage of the cutting planes analysis is the additional overhead that is needed
to save and process the coefficients of the literals. Normal resolution based analysis only needs to
mark literals in order to find the First-UIP clause, but CP analysis requires the multiplication and
addition of coefficients and space to save them. This is the nature of cutting planes and there’s no
way to change these requirements.

A much bigger problem is assignment propagation taking longer. Whereas propagation on
clauses exploits the highly efficient 2-watched-literals scheme [9], there is no real equivalent for
PBCs. In order to find out whether or not a PBC c is implicative, we need to calculate the current
slack sA

c and check if for some coefficient ai of an undecided literal in c there is ai > sA
c - this is

simplified by sorting the literals by their coefficient. The most basic approach just watches all
literals in c and subtracts the respective coefficient from the slack, whenever one of them is set to
false. It remains to check each time, if there’s an undecided literal with a greater coefficient. This
technique is labelled the “counted” approach and is implemented in clasp as well as this thesis.
Profiling reveals that this technique uses between 10-40% of the overall runtime of the solver,
which really is a lot. Therefore it is advisable to look for alternatives here.

Also, watching all literals of a constraint results in strongly growing watch lists and contradicts
the idea of a watched literals scheme. Watch schemes rely on watching always just enough literals
to be sure that the constraint can’t be implicative.

In order to be sure that a PBC is not implicative, one needs to watch a set of true or undecided

9

3 Cutting Planes Inference

literals W , such that the sum of coefficients of these literals (let’s call this SW) is greater or equal
to the sum of the bound and the largest coefficient of an undecided literal aU

max =max{ai ∣ li ∉ A}.

SW ≥ b+aU
max (3.1)

Techniques based on this idea are labelled “watched” approaches.

This theoretically sounds fine, but it was found to be mostly inferior to the counted approach
by the authors of [1] and [2]. One big problem with this approach is that the value of aU

max might
change between each propagation and one therefore needs to look it up each time. In effect this
technique needs to look at all (undecided) literals each time a watched literal is propagated.

A possible improvement concerning this problem is proposed by [11]. Instead of watching just
enough literals to satisfy (3.1), they relax this requirement and use the largest coefficient of c
instead of the largest one of an undecided literal.

SW ≥ b+amax (3.2)

This way they most likely end up watching more literals than needed, but they don’t need to
calculate aU

max anymore. As a result propagation became “considerably faster” as the authors
mention, though they do not compare it to an implementation of the counted approach. Also
this scheme possibly degenerates into a counted approach for a large number of constraints as
described in section 2.3, because these contain exactly one coefficient equal to the lower bound. It
therefore still needs to be evaluated whether such a scheme proofs superior.

Another issue is that PBCs produced by CP analysis tend to include a number of clauses that
are also subsumed by the operands (e.g. in 3.1 the clause x2∨x3∨x5 is subsumed by (c2)). Hence,
the constraint database becomes highly redundant instead of storing only distinct clauses and a
lot of constraints quickly become obsolete and remain pure overhead in propagation. Therefore
people proposed to drop learnt PBCs after a rather short time period ([11]) or don’t even learn the
derived PBC but only an extracted violated cardinality constraint ([2]). Because of this redundancy
another deletion scheme which might reveal itself profitable is to drop learnt PBCs after they where
involved in a set number of conflicts, because the new learnt constraints probably subsum a high
number of clauses of the old constraint.

3.2.3 When to Stop the Analysis

The conflict analysis should stop as soon as the resolved constraint becomes implicative on an
earlier (in the best case the earliest possible) decision level. While a resolution based analysis
exploits that the First-UIP is easy to recognize (only one literal in the resolvent is assigned on the
conflict level), there is no such easy test known for PBCs. So in order to check whether or not the
constraint is implicative, the solver needs to compute the slack of the constraint on each earlier
decision level after each cutting plane step. This is computationally expensive and the authors of
[1] mention their solver spends as much as about 50% of its running time here.

10

3.2 Problems to Overcome

3.2.4 Learnt Constraint(s) and Backjumping

As explained above, because learning one PBC for each conflict adds an immense overhead to
propagation and uses a lot of space, one might prefer to remove these constraints again after a
short period of time or not even learn them at all but learn only a weakened cardinality constraint
instead. However, when discarding constraints which were produced in conflict analysis the solver
risks to hit the same conflict again later in the search and it is not guaranteed that the search will
eventually terminate2.

That’s one reason why the SAT solver Pueblo ([11]) learns not only a PBC, but the relevant
conflicting clause as well. Therefore the analysed conflict is still avoided after the PBC is dropped.
Based on the insight that the set of false literals in a PBC derived in CP analysis corresponds to
the currently derived conflicting clause it can also be avoided to run both analyses separately. It
is enough to extend the resolution analysis such that it also applies CP inference steps as needed.
Because such an analysis ends when the First-UIP clause is found, the generated PBC is not
necessarily implicative on any earlier decision level as mentioned in section 3.2.1. Hence, a couple
of different scenarios are possible when the solver tries to continue the search after the analysis.
Examples of these different scenarios can be found in [11].

If the derived PBC is implicative on some decision level then the solver can jump back to the
earlier of this level and the First-UIP level and continue the search by propagating the respective
literal(s).

If, however, the constraint is not implicative, then two more scenarios are possible: Either the
constraint is satisfiable but not unit on the First-UIP level, in this case the search can continue on
this level using the conflict clause, or the constraint is still violated. Pueblo handles this later case
by jumping back to the last level where both constraints are satisfied and taking a new uninformed
decision.

The implementation presented in this thesis uses the above approach with one significant change:
In case the derived PBC is still violated on the First-UIP level, but is not implicative on an earlier
level, this is handled as a conflict on the First-UIP level which again is analyzed. Note that this
scenario seems to happen only rarely though.

2Due to hardware limitations solvers normally have to discard learnt conflict clauses as well. However, PBCs would
have to be discarded much faster in order to keep the overhead low.

11

3 Cutting Planes Inference

Algorithm 1 PBConstraint interface

c l a s s P B C o n s t r a i n t : L e a r n t C o n s t r a i n t {
P B C o n s t r a i n t (So lv er& s , L i t e r a l p , Antecedent& a , bool c o n f l i c t) ;

/ / p was j u s t s e t t o t r u e − p r o p a g a t e c o n s e q u e n c e s
bool p r o p a g a t e (So lv er &, L i t e r a l p) ;

/ / Wr i t e r e a s o n f o r p r o p a g a t i n g p e a r l i e r t o l i t s
void r e a s o n (So lv er &, L i t e r a l p , LitVec& l i t s) ;

/ / E l i m i n a t e v a r i a b l e from c o n s t r a i n t u s i n g VE
void v a r E l i m i n a t i o n (So lv er& s , L i t e r a l l i t) ;

/ / Normal i ze & S a t u r a t e c o n s t r a i n t
i n t 6 4 c a n o n i c a l i z e (So lv er& s) ;

/ / Weaken c o n s t r a i n t t o r e l e v a n t c l a u s e
void weaken (So lv er& s) ;

/ / I n t e g r a t e i n t o c u r r e n t s e a r c h
bool i n t e g r a t e (So lv er& s) ;

/ / I s l i t e r a l a t p o s i t i o n i d x known t o be f a l s e
bool l i t S e e n (ui n t32 i d x) ;
void t o g g l e L i t S e e n (ui n t32 i d x) ;

/ / u p d a t e s l a c k + wa tches + undo s t a c k
void u p d a t e C o n s t r a i n t (So lv er& s , L i t e r a l p) ;

WeightLitVec l i t s _ ; / / l i t e r a l s o f c o n s t r a i n t
i n t 6 4 bound_ ; / / l ower bound
i n t 6 4 s l a c k _ ; / / s l a c k o f PB c o n s t r a i n t

ui n t32 up_ ; / / s i z e o f undo s t a c k
UndoInfo * undo_ ; / / undo s t a c k

}

12

4 Implementation

First of all please note that this chapter discusses only a part of the implementation and omits/
simplifies a number of less relevant details/optimizations for ease of understanding. If you are
interested in the full implementation please read the actual source code.

In order to extent clasp to use pseudo-Boolean constraint learning the most important thing
to add was a new class of learnt constraints which represents pseudo-Boolean constraints. The
previous page presents an outline of the implemented class PBConstraint. In many ways this
class mimics the already existing class WeightConstraint which is used for weight constraints
as discussed in section 2.3, though a number of adjustments were required because this class does
not implement the LearntConstraint interface. An instance of the class consists of a vector of
weight literals lits_ (i.e. pairs of a literal and a weight), a lower bound bound_ and the current
slack slack_. In order to provide reasons as discussed in section 2.2, each instance also maintains
a stack undo_ of UndoInfo objects. Each of these provides the local index (via a method idx())
of a literal propagated as false during search.

The first interesting thing about this design is the argument list of the constructor. Whereas
one would probably expect the lower bound and a list of literals, a PBConstraint is constructed
from a Literal and an Antecedent, which is the clasp abstraction for objects providing reasons.
However, because PBCs are only created from conflicts and in conflict analysis and this imple-
mentation does not make use of an additional builder class, it is justified to construct a PBC from
a forced literal and its reason. The additional flag conflict is required, because conflicts are de-
tected the moment a false literal is forced to true and the conflicting constraint did not yet update
its slack accordingly. The conflicting PBC needs to have a negative slack though.

Algorithm 2 PBConstraint::propagate() and PBConstraint::reason()

1 bool P B C o n s t r a i n t : : p r o p a g a t e (So lv er& s , L i t e r a l p) {
2 u p d a t e C o n s t r a i n t (s , p) ;
3 ui n t32 r e a s o n D a t a = up_ ;
4 f o r (ui n t32 n= 0 ; n < s i z e () && wei gh t (n) > s l a c k _ ; ++n) {
5 i f (! l i t S e e n (n) && ! s . f o r c e (l i t (n) , t h i s , r e a s o n D a t a)) {
6 re turn f a l s e ;
7 }
8 }
9 re turn true ;

10 }
11

12 void P B C o n s t r a i n t : : r e a s o n (So lv er& s , L i t e r a l p , LitVec& l i t s) {
13 ui n t32 s t o p = s . r e a s o n D a t a (p) ;
14 f o r (ui n t32 i = 0 ; i != s t o p ; ++ i) {
15 l i t s . push_back (~ l i t (undo_ [i] . i d x ())) ;
16 }
17 }

13

4 Implementation

The algorithms for propagation and computation of valid reasons for resolution are listed in
algorithm 2. Because the PBC watches all negations of literals it contains, the solver calls propa-
gate with the respective literal whenever one of these becomes true (i.e. the corresponding literal
of the constraint becomes false). updateConstraint then removes the coefficient of that literal
from the current slack, calls toggleLitSeen and adds an UndoInfo for that literal to the undo
stack. Because the slack decreased, the code now checks whether some coefficient of a non-false
literal is greater than the new slack and forces (i.e. schedules for propagation) all such literals
(force simply ignores all requests to force literals which are already true). When forcing some
literal, the solver notes down the current size of the undo stack in reasonData, so the constraint
can look up that value when it is requested to provide a reason for the implication via reason. The
reason is then build up from the lower part of the undo stack up to this size.

In order to run the CP analysis in addition to the normal resolution based analysis, the solver
keeps the current CP resolvent in the property aggregator_ which just points to a PBConstraint
object. This property is initialized with a PBC derived from the conflicting constraint whenever a
conflict is found in setConflict(). During the resolution based conflict analysis analyzeCon-
flict() calls aggregator_->varElimination() for each literal that is about to be resolved out
and that is present in the aggregator. The latter condition is due to the fact that a single CP step
can actually remove more than one literal, and therefore can remove literals from the aggregator
which are still present in the corresponding resolution resolvent.

Algorithm 3 PBConstraint::varElimination()

1 void P B C o n s t r a i n t : : v a r E l i m i n a t i o n (So lv er& s , L i t e r a l l i t) {
2 P B C o n s t r a i n t e l i m i n a t o r (s , l i t , s . r e a s o n (l i t)) ;
3

4 w e i g h t _ t mel , mag ;
5

6 g e t _ m u l t i p l i e r s (l i t , * t h i s , e l i m i n a t o r , mel , mag) ;
7 weaken_on_over f low (mel , * t h i s) ;
8 weaken_on_over f low (mag , e l i m i n a t o r) ;
9 g e t _ m u l t i p l i e r s (l i t , * t h i s , e l i m i n a t o r , mel , mag) ;

10

11 i f (mag* e l i m i n a t o r . s l a c k _ + mel * t h i s −> s l a c k _ >= 0) {
12 e l i m i n a t o r . weaken (s) ; mel= 1 ; mag= t h i s −> w e i gh t (~ l i t) ;
13 }
14

15 m u l t i p l y (mel) ;
16 e l i m i n a t o r . m u l t i p l y (mag) ;
17

18 / / t h i s might be o v e r e s t i m a t e d and i s a d j u s t e d v i a c a n o n i c a l i z e
19 s l a c k _ = e l i m i n a t o r . s l a c k _ + s l a c k _ ;
20 bound_= e l i m i n a t o r . bound_ + bound_ ;
21

22 l i t s _ . append (e l i m i n a t o r . l i t s _) ;
23 s l a c k _ −= c a n o n i c a l i z e (s) ;
24 }

14

After the conflict analysis is finished, the solver jumps back to the First-UIP level of the de-
rived conflict clause and learns this clause in resolveConflict(). If the derived PBC possibly
subsums more than this conflict clause (i.e. the bound of the aggregator is greater 1), it then calls
aggregator_->integrate(), which adds the aggregator to the solver as well. This can trigger
a new conflict though and therefore resolveConflict() repeats the conflict analysis until no
further conflict is found or the problem is proven to be unsatisfiable. The particular algorithms
are (simplified) listed in Appendix A and the rest of this section concentrates on the procedures
implementing variable elimination and constraint integration.

varElimination() (listed in algorithm 3) first of all builds a new PBConstraint object called
eliminator from the literal lit that is supposed to be eliminated and its Antecedent. If the
propagating constraint already is a acPBC, that constraint is copied, if it is a weight constraint,
the relevant PBC is extracted and else a pseudo-Boolean representation of the implying clause is
used.1 Next the required multipliers for eliminating lit are calculated. If the multiplication or
the addition of the constraints could possibly cause an integer overflow, the respective constraint
is weakened to the relevant clause.

This is a very primitive overflow handling though, because in many cases it should be possible
to apply the multiplication and/or weakening operations defined in section 2.1 and keep most of
the information of the constraint.

However, applying multiplication with a multiplier 0 < λ < 1 is only possible if the implicit
rounding does not significantly change the slack of the constraint and weakening involves more
computation and might still produce the relevant clause. Also the eliminator is weakened if the
slack of the resulting constraint could become non-negative. The relevant logic was already dis-
cussed in section 3.2.1.

At last the constraints are multiplied and added up together. To do so, the slacks and bounds are
added up and the weighted literals of the eliminator are appended to the weighted literals of this
constraint. The following call to canonicalize() renormalizes and saturates the constraint and
adjusts the slack by the amount described in 3.2.1.

The integrate() function listed on the next page in algorithm 4 is called for aggregator_
once the conflict analysis finished and the solver integrated the conflict clause on the First-UIP
level. The key idea of this function is to initialize the constraint as if all literals were currently
undecided and then manually propagate all false literals. In order to do so the first loop calculates
the maximal slack of the constraint, sets up all required watches and notes down all false literals.
Afterwards the constraint is added to clasps constraint database.

The crucial part of the integration is to get the UndoInfo objects corresponding to false liter-
als in the right order so as to propagate them in the same way the solver originally propagated
them. Because sorting the literals by their appearance in the propagation trail of the solver is com-
putationally expensive and cache intense, the code takes advantage of the facts that clasp always
undoes whole decision levels instead of single assignments and that reasons stay valid if additional
true literals are added to them.

1Be aware of the fact that this actually allocates memory which is really time consuming and should be avoided if
possible.

15

4 Implementation

Keeping these things in mind, it is enough to sort the objects by the decision level of their
respective literals. At last the false literals are propagated one by one and if the constraint is found
to be implicative at some point, the relevant literals are forced on the level of the last propagated
false literal. This might undo further decision levels and can even produce a new conflict as
explained earlier.

When either all currently false literals are propagated or the search jumped back to an earlier
level to force some implied literal the constraint is fully integrated and the function returns true
unless a new conflict was found.

Algorithm 4 PBConstraint::integrate()

1 bool P B C o n s t r a i n t : : i n t e g r a t e (So lv er& s) {
2 ui n t32 t odo = 0 ;
3 s l a c k _ = −bound_ ;
4

5 f o r (i = 0 ; i < l i t s _ . s i z e () ; ++ i) {
6 s l a c k _ += w e i gh t (i) ;
7 s . addWatch (~ l i t (i) , t h i s) ;
8 i f (s . i s F a l s e (l i t (i))) {
9 undo_ [todo ++]= UndoInfo (i) ;

10 }
11 }
12 s . a d d L e a r n t (t h i s , l i t s _ . s i z e ()) ;
13

14 s o r t _ b y _ d e c i s i o n _ l e v e l (undo_ , undo_+ todo) ;
15

16 f o r (ui n t32 n= 0 , th i sDL = 0 ; n < s i z e () ; ++up_) {
17 whi le (n != end && w eig h t (n) > s l a c k _) {
18 / / c o n s t r a i n t i s u n i t on th i sDL
19 i f (! l i t S e e n (n) && ! s . f o r c e (l i t (n) , th isDL , t h i s , up_)) {
20 re turn f a l s e ;
21 }
22 n ++;
23 }
24

25 i f (up_ == todo | | ! s . i s F a l s e (l i t (undo_ [up_] . i d x ()))) {
26 break ;
27 }
28

29 ui n t32 i d x = undo_ [up_] . i d x () ;
30 Var v a r = l i t (i d x) . v a r () ;
31 t h i sDL = s . l e v e l (v a r) ;
32 s l a c k _ −= w e ig h t (i d x) ;
33 t o g g l e L i t S e e n (i d x) ;
34 }
35 re turn true ;
36 }

16

Benchmark Class clasp-default clasp-cp-default
time(to) conflicts choices time(to) conflicts choices

Fastfood 19.0(0) 220,043 253,734 2,873.0(1) 26,084 29,240
WeightBoundDS 5,271.3(2) 144,763,680 230,718,880 23,501.6(16) 285,133 438,468
WireRouting 1,625.2(1) 3,932,646 5,632,039 8,744.5(6) 547,548 841,043
KnightTour 1,010.2(0) 591,340 25,380,012 217.3(0) 77,483 4,405,257
GraphPart 134.4(0) 2,307,040 3,153,471 2552.1(2) 1,086,051 1,254,199
HardwareASP 39,394.1(28) 132,446,099 334,359,106 52,712.5(43) 4,060,163 50,531,961
PBC11 86,342.3(64) 122,475,616 396,239,900 107,423.8(85) 33,748,832 94,916,266
Pigeonhole 4,170.9(3) 430,446,762 456,478,172 0.1(0) 60 335
Benchmark Class clasp-pbc12 clasp-cp-pbc12

time(to) conflicts choices time(to) conflicts choices
Fastfood 9.6(0) 303,202 344,813 808.4(0) 47,577 53,333
WeightBoundDS 14,000.3(11) 440,026,352 767,239,789 26,541.8(20) 168,920 209,592
WireRouting 96.1(0) 365,868 699,240 9,734.6(4) 545,304 865,006
KnightTour 4.7(0) 19,945 423,959 2.9(0) 2,721 281,791
GraphPart 1,255.2(1) 33,294,762 42,493,026 2,308.5(1) 3,574,126 3,973,199
HardwareASP 1,595.3(1) 5,186,675 34,923,926 15,692.1(10) 285,534 20,714,946
PBC11 84,655.5(64) 284,632,309 2,085,980,173 96,682.9(68) 144,304,222 972,595,931
Pigeonhole 4875.3(4) 158,373,919 167,742,662 0.05(0) 60 340

Table 5.1: Benchmarks with default and PBC12 configuration

5 Experimental Analysis

5.1 Benchmarks

In order to benchmark the effects of PBC learning a variety of problem classes were evaluated.
This includes a number of ASP problem classes1 which include many weight or cardinality con-
straints and a sample of 100 (small integer) pseudo-Boolean problems taken from the PB com-
petition 2011. The experiments were conducted on Intel Xeon 2.26GHz machines with 48GB
of RAM running Linux - Kernel 2.6.18. and each run was given up to 3GB of RAM and 1200
seconds before timeout (to).

The measured solver configurations include clasp using its default configuration (-default) and
the configuration which was used in the PB competition 2012 (-pbc12) as well as the correspond-
ing configurations using the described cutting planes conflict analysis. The above table 5.1 lists
for each problem class the summed number of conflicts, choices, the runtime and timeouts, which
are accounted for by the maximal runtime of 1200 seconds.

5.2 Evaluation

First of all it is easy to see that the cutting planes implementation produces many timeouts in
the presented benchmark and hence the reported numbers of conflicts and choices have to be

1most of them taken from the ASP competition 2009 [4]

17

5 Experimental Analysis

evaluated with care2. However, only part of the bad runtime performance of the system is due to
the inherent complexity of the cutting planes analysis. For example profiling revealed, that the CP
solver spends up to 90% of its runtime in the function varElimination described in algorithm
3 when solving instances of FastFood, WeightBoundedDominatingSet or HardwareASP. This is
likely due to the fact that this function (which is run at minimum 100 times per second) actually
allocates memory in order to provide a common interface for the constraint which implies lit.
An implementation using a builder class which keeps the current resolvent in static memory and
a common constraint interface to extract the implying PBC should remove this requirement and
therefore reduce the runtime drastically.

The second most time consuming task in most problem classes is executing propagate() and
updateConstraint() which use 10-40% of the runtime as mentioned earlier. This is due to the
counted propagation approach and the high number of learnt constraints which implement this
approach. The only way to reduce this overhead without implementing a watched scheme is to
remove possibly valuable information. For example the solver could learn only constraints which
force at least one literal, trigger large backjumps or add new literals to decision level 0. Also one
can think of removing true variables with low heuristical values from the constraint before learning
it or learning only extracted cardinality constraints (this last technique was implemented in [2]).

The most astonishing observation about this benchmark though, is the fact that the learnt PBCs
often reduce the number of conflicts and choices by an order of magnitude. This is immense and
if even part of this learning scheme can be implemented to run fast enough, it is definitely worth
the effort.

Also note there are problem classes like KnightTour and Pigeonhole which the solver solves
much faster even with the non-optimized CP analysis implemented in this thesis. This is probably
due to problem structures where a single CP analysis can produce a PBC which subsums a large
number of conflict clauses, whereas a solver using only resolution analysis needs to analyze these
conflicts all separately.

2On timeout the solver reports the current number of conflicts and choices and it remains unknown how many more
conflicts are required to solve the problem

18

6 Conclusion

This thesis discussed a number of possible ways how pseudo-Boolean constraint learning can be
used within an ASP solver and also implemented a simple cutting planes conflict analysis within
the solver clasp. It was shown that such an analysis has the potential to significantly boost the
performance of the search, though one has to find ways of minimizing the additional overhead.
Some possible ways to do so were pointed out.

Many things are still left to do: An efficient cutting planes analysis could be implemented and
a number of different tactics for minimizing the overhead of variable elimination and propagation
should be investigated. It also remains to see whether a watched literals scheme proves useful. In
the end CP analysis still has to be implemented and evaluated for optimization problems because
much more improvements are expected in this category of problems.

19

A Interaction between PBConstraint and Solver

Algorithm 5 setConflict()

1 void S o l ver : : s e t C o n f l i c t (L i t e r a l p , c o n s t Antecedent& a , ui n t32 d a t a)
{

2 c o n f l i c t _ . push_back (~ p) ;
3 i f (! a . i s N u l l ()) {
4 i f (d a t a == UINT32_MAX) {
5 a . r e a s o n (* t h i s , p , c o n f l i c t _) ;
6 a g g r e g a t o r _ = new P B C o n s t r a i n t (* t h i s , p , a , t rue) ;
7 }
8 e l s e {
9 ui n t32 saved = a s s i g n _ . d a t a (p . v a r ()) ;

10 a s s i g n _ . s e t D a t a (p . v a r () , d a t a) ;
11 a . r e a s o n (* t h i s , p , c o n f l i c t _) ;
12 a g g r e g a t o r _ = new P B C o n s t r a i n t (* t h i s , p , a , t rue) ;
13 a s s i g n _ . s e t D a t a (p . v a r () , s aved) ;
14 }
15 }
16 }

Algorithm 6 resolveConflict()

1 bool S o l ver : : r e s o l v e C o n f l i c t () {
2 whi le (d e c i s i o n L e v e l () > 0) {
3 ui n t32 u i p L e v e l = a n a l y z e C o n f l i c t () ;
4 u n d o U n t i l (u i p L e v e l) ;
5 i f (a g g r e g a t o r _ −>bound () <= 1) {
6 / / Subsumed by c l a u s e
7 a g g r e g a t o r _ −> d e s t r o y () ;
8 a g g r e g a t o r _ = 0 ;
9 }

10 i f (i n t e g r a t e C l a u s e (cc_) &&
11 (! a g g r e g a t o r _ | | a g g r e g a t o r _ −> i n t e g r a t e (* t h i s))) {
12 re turn true ;
13 }
14 }
15 re turn f a l s e ;
16 }

20

Algorithm 7 analyzeConflict()

1 ui n t3 2 S o l ver : : a n a l y z e C o n f l i c t () {
2 ui n t32 onLeve l = 0 ; / / number o f l i t e r a l s l e f t on l e v e l
3 L i t e r a l p ; / / l i t e r a l t o be r e s o l v e d o u t n e x t
4 cc_ . a s s i g n (1 , p) ; / / p l a c e h o l d e r f o r a s s e r t i n g l i t e r a l
5 f o r (; ;) {
6 f o r (ui n t32 i = 0 ; i != c o n f l i c t _ . s i z e () ; ++ i) {
7 L i t e r a l& q= c o n f l i c t _ [i] ;
8 ui n t32 c l = l e v e l (q . v a r ()) ;
9 i f (! s een (q . v a r ())) {

10 markSeen (q . v a r ()) ;
11 i f (c l == d e c i s i o n L e v e l ()) {
12 ++ onLeve l ;
13 }
14 e l s e {
15 cc_ . push_back (~ q) ;
16 }
17 }
18 }
19 / / f i n d t h e l a s t a s s i g n e d l i t e r a l i n r e s o l v e n t
20 whi le (! s een (a s s i g n _ . l a s t () . v a r ())) {
21 a s s i g n _ . undoLas t () ;
22 }
23 i f (−− onLeve l == 0) {
24 c o n f l i c t _ . push_back (~ p) ;
25 break ;
26 }
27

28 / / p i s r e s o l v e d o u t n e x t
29 p = a s s i g n _ . l a s t () ;
30 c l e a r S e e n (p . v a r ()) ;
31

32 / / an e a r l i e r e l i m i n a t i o n might have removed p a l r e a d y !
33 i f (a g g r e g a t o r _ −> w e i gh t (~ p) > 0) {
34 a g g r e g a t o r _ −> v a r E l i m i n a t i o n (* t h i s , p) ;
35 }
36 r e a s o n (p , c o n f l i c t _) ;
37 }
38

39 cc_ [0] = ~ a s s i g n _ . l a s t () ; / / s t o r e t h e 1−UIP
40 c l e a r S e e n (cc_ [0] . v a r ()) ;
41

42 re turn u i p L e v e l (cc_) ;
43 }

21

List of Figures

3.1 search history leading to a conflict . 7
3.2 search history leading to a conflict with oversatisfied constraints 8

List of Tables

5.1 Benchmarks with default and PBC12 configuration 17

List of Algorithms

1 PBConstraint interface . 12

2 PBConstraint::propagate() and PBConstraint::reason() 13
3 PBConstraint::varElimination() . 14
4 PBConstraint::integrate() . 16

5 setConflict() . 20
6 resolveConflict() . 20
7 analyzeConflict() . 21

22

Abbreviations

ASP Answer Set Programming

CDCL conflict driven clause learning

First-UIP first unique implication point

ILP Integer Linear Programming

PBC pseudo-Boolean Constraint

23

Bibliography

[1] Daniel Le Berre and Anne Parrain. On extending sat solvers for pb problems.

[2] Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint solver, 2003.

[3] W. Cook, C.R. Coullard, and G. Turán. On the complexity of cutting-plane proofs. Discrete
Applied Mathematics, 18(1):25–38, 1987.

[4] Marc Denecker, Joost Vennekens, Stephen Bond, and Martin Gebser. The second answer set
programming competition, 2009.

[5] Heidi E. Dixon and Matthew L. Ginsberg. Inference methods for a pseudo-boolean satisfia-
bility solver, 2002.

[6] Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into sat. Journal
on Satisfiability, Boolean Modeling and Computation, 2:1–26, 2006.

[7] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and M. Schneider.
Potassco: The Potsdam answer set solving collection. AI Communications, 24(2):105–124,
2011.

[8] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. On the implementation of weight
constraint rules in conflict-driven ASP solvers. In P. Hill and D. Warren, editors, Proceedings
of the Twenty-fifth International Conference on Logic Programming (ICLP’09), volume 5649
of Lecture Notes in Computer Science, pages 250–264. Springer-Verlag, 2009.

[9] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: engineering an efficient sat solver. In Proceedings of the 38th annual Design Automa-
tion Conference, DAC ’01, pages 530–535, New York, NY, USA, 2001. ACM.

[10] J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23–41, January 1965.

[11] Hossein M. Sheini and Karem A. Sakallah. Pueblo: A hybrid pseudo-boolean sat solver.
Journal on Satisfiability, Boolean Modeling and Computation, 2:2006, 2006.

[12] Joso L Marques Silva. Grasp - a new search algorithm for satisfiability. pages 220–227,
1996.

[13] Patrik Simons, Ilkka Niemelä, and Timo Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1–2):181 – 234, 2002.

[14] Niklas Sörensson and Niklas Een. Minisat v1.13 - a sat solver with conflict-clause minimiza-
tion. Technical report, 2002.

24

	Introduction
	Motivation
	Objective

	Linear Pseudo-Boolean Constraints
	Valid Operations
	Constraint Propagation with PBCs
	Weight Constraints in clasp

	Cutting Planes Inference
	CP Conflict Analysis
	Problems to Overcome
	Keeping Constraints Violated
	Overhead
	When to Stop the Analysis
	Learnt Constraint(s) and Backjumping

	Implementation
	Experimental Analysis
	Benchmarks
	Evaluation

	Conclusion
	Interaction between PBConstraint and Solver
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Bibliography

