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Abstract— A sensor-based model of a service robot’s en-
vironment is a prerequisite for interaction. Such a model
should contain the positions of the robot’s interaction partners.
Many reasonable applications require this knowledge in real-
time. It could for example be used to realize efficient path
planning for delivery tasks. Additionally to the actual positions
of the partners it is important for the service robot to predict
their possible future positions. In this paper we propose an
extensible framework that combines different sensor modalities
in a general real-time tracking system. Exemplarily, a tracking
system is implemented that fuses tracking algorithms in laser
range scans as well as in camera images by a particle filter.
Furthermore, human trajectories are predicted by deducing
them from learned motion patterns. The observed trajectories
are generalized to trajectory patterns by a novel method
which uses Self Organizing Maps. Those patterns are used to
predict trajectories of the currently observed persons. Practical
experiments show that multimodality increases the system’s
robustness to incorrect measurements of single sensors. It is
also demonstrated that a Self Organizing Map is suitable for
learning and generalizing trajectories. Convenient predictions
of future trajectories are presented which are deduced from
these generalizations.

I. INTRODUCTION

Service robots will increasingly support everyday work in
business or home environments in the near future. Possible
services are delivery tasks, cleaning services or home care.
Recent developments in mobile robotics emphasize this [1],
[2], [3]. However, the distribution and thus further develop-
ment of mobile robots is mainly dependent on the acceptance
of society. An important criteria for this acceptance is the
robot’s ability to interact with the environment. Therefore
it is essential to give the robot a detailed model of its
environment, i. e. the location of its interaction partners. In
general, this knowledge can only be generated using sensory
input. An explicit specification of a dynamic environment is
usually impossible.

The generation of such an environment model is a nontri-
vial task since the sensor calibration and measurements are
susceptible to errors. In addition, the observed objects may be
occluded and therefore not detectable by some sensors. We
argue that this uncertainty about the environment decreases
if different sensor-modalities with diverse qualities are used.
The advantages of the different sensors can complement one
another using appropriate fusing methods. In the following
we present a scalable robust system that fuses arbitrary
multimodal data containing trajectories of moving objects

using a particle filter. Furthermore we describe the different
sensors’ preprocessing algorithms and explain their real-time
capabilities.

Besides the interaction partner’s actual position, another
important ability for a service robot is to predict people’s
future positions. For example, the robot could intercept peo-
ple for delivery tasks. Predictions about motions of dynamic
objects are based on a motion model, which can be specified
explicitly or learned from previous observed motions. As a
reasonable application of our tracking system we developed
a novel approach to predict people’s motion based on motion
patterns learned by a Self Organizing Map (SOM).

The remainder of this paper is organized as follows: In
section II an overview of existing research on trajectory
prediction and multimodal tracking is given. Section III
introduces the proposed framework for multimodal tracking.
The laser- and camera-based tracking algorithms used in our
implementation of the framework are presented. Preliminary
experiments show the usefulness of the framework. The
results of the experiments are used in section IV to explain
the generalization of motion patterns and the experience-
based prediction. Section V gives a conclusion.

II. RELATED RESEARCH

The research related to the proposed system for people
tracking and trajectory prediction falls into three areas:
people tracking in different sensor modalities, filtering and
fusion of multimodal tracking data and motion prediction.

A. People Tracking

To increase the quality of the robot’s observations it is
possible to fuse data of multiple sensor modalities. Two
frequently used sensors for tracking applications are came-
ras and laser range finders. Due to the great amount of
publications this paper cannot give a complete overview.
We exemplarily present some selected papers which describe
frequently used methods.

1) Camera Tracking: 1If static cameras are used, back-
ground subtraction is a common technique to separate fore-
ground objects. In [12] every pixel is assigned a statistical
color probability of the observed background by a mixture of
gaussians. This probability is used to determine the pixel’s
background membership in each frame. In [13] an occurrence
model is used to track certain objects. This model contains



the color appearance and a probability mask, which repres-
ents the probability of each pixel to be part of the object.
Another approach to track certain objects is presented in [14]:
Here a color histogram represents the model. This approach
uses no background subtraction, it is suitable for tracking
people in images recorded by mobile cameras. Since this
approach provides real-time tracking capabilities for non-
stationary cameras it is applied in our system and described
in section III in detail.

2) Laser Tracking: In [15], [16] and [17] background
subtraction is used with laser range scans for object tracking.
The systems differ in the way they generate the background.
They all have in common that the background is modeled as
a probability density function over the range measurements.
For laser range finders mounted on a mobile robot it is not
suitable to use such background models since the background
measurements are changing permanently. Therefore, in [18]
human legs are registered only via their size and shape.

B. Filtering and Fusion of Multimodal Tracking Data

Both the tracking algorithms in laser range scanners and
in camera images mostly include filtering of the position
estimates. This is reasonable since all measurements contain
errors. The filtering becomes more important if several sen-
sors are used. The integration and weighting of the different
sensors is mostly included in the filtering algorithm. In [18] a
Kalman filter is used to integrate tracking algorithms in laser
range scans and camera images. A particle filter is presented
in [19] which fuses audio and video information. [20]
applies another approach which deals with multimodality.
The different tracks gained by different sensor modalities
are connected via an anchoring method.

C. Motion Prediction

Predicting the motion of objects is commonly used to
avoid collisions in path planning tasks. There are numerous
approaches present in the literature to predict obstacle motion
in this context. Until a few years ago motion prediction was
synonymous with the prediction of the object’s position at the
immediately following time step. This short-term prediction
was mainly approached by modeling the object motion by a
statistical process [4], [5], [6]. In [7] a Kalman filter is used
to predict immediate following positions.

Even though several of these approaches might give ac-
curate predictions, thire actual benefit in relation to collision
avoidance is questionable [8]. Short term predictions are
also not sufficient to be used by higher level task planning
processes. To predict object motions in a longer period of
time, it is assumed that the motions are following determinate
motion patterns.

Based on this idea of observable motion patterns, [9]
clusters similar trajectories to trajectory prototypes by an
expectation maximization algorithm. Partially observed tra-
jectories are compared with these prototypes, to predict
future motions of objects. It is assumed that the object is
moving on the prototype trajectory which is most similar to
the partially observed trajectory. Other methods [10], [11]
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Fig. 1. Implemented components of the tracking system. The black dots
symbolize the common interface described in section III-A.

use comparable techniques. The main difference lies in the
method which is used to generate the trajectory prototypes.
In [10] a pairwise clustering process is used. In [11] the
target of the observed object’s motion is estimated and the
predicted path is generated by a path planning algorithm. The
major drawback of that kind of systems is the impossibility
to predict unusual trajectories.

III. PEOPLE TRACKING AND SENSOR FUSION

Both camera tracking as well as laser tracking have their
own specific advantages and drawbacks. To build a robust
and accurate tracking system, it is necessary to integrate
several independent tracking algorithms working on the
different sensors. With an appropriate fusion algorithm the
specific advantages of the sensors could complement one
another to decrease the overall error.

In the following, we introduce a conceptual framework
that is able to deal with an arbitrary number of sensors.
Subsequently, we describe how a particle filter algorithm is
applied to fuse and filter data of different sensor modalities.
Finally, the tracking algorithms for the measurements of laser
range scanners as well as for camera images are presented.
To provide the results in real-time both the filter algorithm
and all used tracking algorithms need to be real-time capable.

A. Conceptual Framework for Multimodal Tracking

A typical multiple target tracking system consists of
four blocks: sensor hardware, sensor processing and single
sensor tracking, track fusion and association and track life
management. A tracking system should be modular to allow
the addition, removal and exchange of sensors and sensor
processing algorithms. Therefore, the most important aspect
of a tracking system is its ability to filter and fuse the results
from individual sensors.

We developed a framework that contains the above-
mentioned blocks. The schematic block diagram for this
framework is shown in figure 1. Our implementation of the
data association block includes filtering and data fusion using
a particle filter. To ensure the extensibility of our system, we
defined a general interface that has to be implemented by the
modules for low-level sensor processing as well as higher-
level modules. Through this interface an arbitrary number of
tracks is provided where each track consists of

« the current position and velocity of the tracked object,

« the uncertainty about the position and velocity and

« a unique identity number.



The structure of this framework is mainly motivated by
software technical encapsulation, substitutability of algo-
rithms and extensibility concerning further sensor modalities.
This structure provides efficient development, maintenance
and testing capabilities.

B. Sensor Fusion and Filtering

We consider the problem of tracking as the detection of
a state of a target. Therefore, we model the state x; of
a tracked person at time ¢ as a four-dimensional vector
(x,y,8x,8y)T. This vector describes not only the position
on the ground plain but also the velocity of the person.
Since measurements of sensors contain errors it is impossible
to derive the actual state of observed persons in a non-
probabilistic way. Generally, a probability density function
(pdf) is used to represent the state. Nonlinear Bayesian
filtering can be applied to determine this pdf taking every
previous measurement into account. The Bayesian solution to
deriving a belief about the current state is a recursive discrete
time approach. Since optimal solutions for nonlinear Baye-
sian tracking can only be applied when certain constraints
hold we used the particle filter in our implementation. The
particle filter is an approximate nonlinear Bayesian filter.

The particle filter is used in two stages of our tracking
system. At first, it is used in the tracking algorithms applied
on the data of a single sensor. After that, it is used for the
fusion of tracking results made on different sensors. Other
nonlinear filters like the extended Kalman filter can replace
the individual particle filters in our system since each module
is encapsulated and does not demand a particular algorithm.

The basis of the particle filter is the importance sampling.
A multidimensional function g(x) is factorized into two
functions g(x) = f(x)m(x), where m(x) is interpreted as a
probability density function with m(x) >0 and [ w(x)dx=1.

If a set of samples {x|i=1,...,i =N} with N>> 1 and
distributed according to 7(x) is generated, the integral of the
function g(x) can numerically be approximated as
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When the density function 7(x) is unknown, g(x) will be
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For each new measurement the pdf describing the state
of a tracked person is approximated by displacing each
sample according to a probability function 7(xi|xi_,,Z). It
is incidental that 7(x{|Z;) = ©(x]_,|Z—1)T(x{|x]_,,Z;). The
approximation is defined recursive as
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The normalizing factor p(z|Z,—1) is constant and can be
precalculated for each measurement.

The use of measurements gathered on multiple sensors
results in different measurement models. This affects p(z; |x!)
and p(z|Z,_,) for each sensor.

See [21] and [22] for more detailed descriptions on Baye-
sian filtering.

C. Laser-based Tracking

As presented in section II, tracking algorithms which use
laser range finders are often divided into two steps. In the
first instance they generate a background model and then
they determine whether the measurement belongs to the
background. The background model is often represented by
a histogram over the range measurements at each angle. It
is assumed that the maximum of the histogram is caused by
the background. This model is usually calculated in advance.
The range measurements similar to the background distance
are classified as background and discarded. This has the
following drawbacks:

o The prior generation of the background model is time-
consuming.

« If there are foreground objects present during the cal-
culation of the background they are included in the
background.

« These systems are unable to handle alterations of the
background.

We developed a novel method to calculate the back-
ground’s distances which is updated with each measurement.



The background distance 5;(¢) at time ¢ and angle i is given
by the following recursive equation:

€ if hi(r—1) <my(t)
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The values of the increments & and & determine the
adaptivity of the background model.

After background measurements are removed, groups of
foreground measurements are tracked with a particle filter.
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D. Camera-based Tracking

An overview of common methods for camera-based
tracking is given in [23]. In our system we use the approach
presented in [14] since it is suitable for cameras mounted on
a mobile robot. In future work this property will be used.

People tracked in the camera image are represented by
a weighted color histogram. Pixels are weighted with a
monotone decreasing kernel function K : R> — R which
assigns smaller weights to the pixels which are farther from
the center of a detected person. If the size of a person is
denoted by 2h*, the probability of the object’s color u# can
be calculated as follows:

Gu=C Y, K () 8(b)—u), ©)
xex* h
where C denotes a normalization constant. The function b(x)
assigns the pixel to an index of the histogram’s color bin.
Therefore, a person located at the coordinate y in the image
plane is represented by a color histogram:

() =Cn Y K (T) 8 (b(x) —u)
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where h is the size of the target candidate. As a measure
of similarity between two color histograms we chose the
Bhattacharyya coefficient [24].

The goal of the tracking algorithm is to find the location
y with the highest similarity between the color histogram of
a person and a candidate located at y. This is achieved using
the sample mean shift method described in [14].

E. Experimental Results

For our experiments we used two SICK laser range finders
mounted on a mobile service robot and a stationary camera at
the laboratory of the TAMS institute. Due to the uncertainty
of the camera tracking, which is caused by noisy measure-
ments and changing illumination conditions we weighted the
outcome of the laser tracking higher. In figure 2 the observed
person’s true trajectory is assumed as linear. Although the
greater variance of the trajectory computed by the camera
algorithm is obvious, the fused result has improved compared
to the laser tracking result.

The camera-based tracking algorithm runs with the re-
solution of 640x480 pixel to achieve the aspired real-time
capabilities. With a standard pc our implementation achieves
25 fps while tracking 3-4 targets. The laser-based algorithm
reaches up to 30 fps due to the lower amount of data. Since
the used particle filter is an efficient approximation of the
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Fig. 2. Comparison of the sensor modalities: camera tracking (green) and
laser tracking (blue) are fused by a particle filter (red). The greater variance
of the camera tracking is obvious.
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Fig. 3. Comparison of the sensor modalities: camera tracking (green) and
laser tracking (blue) are fused by a particle filter (red). The additional blue
points are the current measurements of the laser range finders.

bayesian filtering our system should be able to ensure real-
time constraints if an appropriate environment i.e. RTLinux
is used.

In a first experiment we used both sensor modalities
to increase the accuracy and robustness of the tracking
algorithm. Figure 3 shows a multimodal tracking of two
persons.

In a second experiment the system observed 31 trajectories
during a two-hour period of time. These trajectories are
shown in figure 4. They will be used in the following section
to explain the prediction with real-world examples.

IV. GENERALIZATION AND PREDICTION OF
TRAJECTORIES

In recent years experience-based long term prediction of
trajectories has become popular [9], [10], [11]. The systems



Fig. 4. The 31 trajectories observed during a two-hours experiment. The
tracking starts when persons become visible to the sensors and ends when
they leave the range of the sensors.

have in common that motions are first generalized to subse-
quently predict future trajectories. To generalize trajectories
completely unsupervised we propose a novel approach using
a SOM.

The following section describes the basics of the SOM
algorithm and extensions needed to learn trajectory patterns.
Afterwards, a prediction algorithm is presented, which is
based on the learned trajectory patterns.

A. Learning of Trajectories using a Self Organizing Map

A SOM is a kind of artificial neuronal net. It is usually
used to map statistical data from a high-dimensional input
space onto a set of reference vectors of a usually lower-
dimensional topological space. A major feature of a SOM is
topology conservation with respect to the neighborhood of
the input set. That means that similar input vectors (IV) are
mapped to the same reference vector (RV).

In our system the SOM is used to learn the observed
trajectories of people. The topology conservation is directly
used to generalize these trajectories to motion patterns. A
subsequent clustering of trajectories is omitted. However, it
is necessary to make the motion patterns which are inherent
in the SOM explicit to be usable for the prediction.

A SOM consists of a set of RV sometimes referred to
as nodes. The RV are ordered in a topological space. In
general, the alignment is arbitrary. We chose a quadratic
structure to permit simple visualization and efficient storage
in a two-dimensional array. The set of RV is depicted by
M = {m'i|m'7 € R}i_ _m, j=1..m,» where my is the width
and m, the height of the map. The dimension d of the RV
and IV is equivalent.

During the learning phase the SOM is iteratively trained
with the IV x'. The RV m? € M most similar to x' is referred
to as response node. As a degree of similarity we chose the
euclidian distance in the input space. The response node and
nodes in its topological neighborhood adept to the IV. We
chose the Manhattan distance as the distance function for the
topological space.

The learning step for each node m'/(t) at the time ¢ is
defined by the following learning rule:

m(t 4+ 1) =m" (1) +n, (d)I(1) (¥ —m" (1)),

Fig. 5.
on the RV of converged SOM trained with real tracking results (shown in
figure 4). The smaller the MAAR value the darker the color.

This figure shows the distribution of the MAAR values calculated

where [(t) is the learning rate and n,(d) is a neighborhood
function depending on the Manhattan distance between m'/
and the response node m<.

The neighborhood function is a kernel function which
specifies a smoothing factor. To enable local learning it is
necessary that n;(d) — 0 for all d > k;, where k; is the size
of the neighborhood. For the convergence of the SOM it is

necessary that /(1) — 0 or k, — 0 for t — oo,

B. Extraction of learned Motion Patterns

After the SOM has converged the RV approximate the
input data, i.e. the observed trajectories. To characterize
frequently used paths it is self-evident to use a density
estimation of the RV in the input space. Since the SOM
algorithm does not generate new nodes, the environment of
every local density maximum contains a local minimum.
Transferred to the application of tracking, this means that
it is unlikely for a person to stand beside a frequently used
path. Since this does not agree with reality, we developed a
novel method to characterize frequently used paths based
on a SOM. Our method assigns to every node the value
corresponding to the size of the minimum adjacent area
MAAR which is spanned by four adjacent nodes. To provide
the MAAR distribution the values are normalized and bi-
linearly interpolated in the ground plane. The smaller the
MAAR value the more frequently a person was observed
in this area. Figure 5 shows the MAAR distribution on the
SOM trained with the real tracking results shown in figure
4.

To extract the motion patterns from the MAAR distribution
we used non-maxima suppression with hysteresis threshold.
The detected edges are transfered into a graph representation
to permit the prediction described in subsection IV-C.

C. Experience-based Trajectory Prediction

The graph extracted from the MAAR distribution repres-
ents frequently used trajectories in a generalized form. After
that the trajectory prediction assumes that tracked persons
normally move along the graph segments.

1) Mapping Observed Persons to Graph Segments: To de-
cide which motion pattern best matches an observed person
a measure is required which defines a correlation between a



Fig. 6. The generalized motion graph extracted from the MAAR distribu-
tion of figure 5 using non-maxima suppression with hysteresis threshold
(pink) and the prediction (red) of the trajectory of an observed person
(black).

person and graph segment. We chose the euclidian distance
between a person’s position and the graph segments. The
direction of the observed person’s motion is not considered
for mapping but is used later to determine the person’s
direction on the mapped motion pattern.

2) Prediction: Since experiments showed that the map-
ping is suitable, the motion pattern, i.e. the graph segment
which the observed person is moving along, is known. With
this, the long-term prediction is to determine the sequence
of path segments the person will be following subsequently.

To predict this sequence, the probabilities for turns at
graph branchings are learned. The long-term prediction of
a trajectory adds adjacent path segments to the mapped
segment with respect to the probability of a turn at a graph
branching. The prediction terminates if no subsequent path
segment is available or the overall probability, i.e. the product
of the probabilities for each prior turn, comes under a certain
threshold. Figure 6 exemplarily shows a prediction of the
trajectory of an observed person.

V. CONCLUSION

In this paper we presented a framework where different
sensor modalities can be integrated to build a multimodal
tracking system. We implemented this framework for people
tracking algorithms by processing laser range measurements
and camera images. The individual tracking algorithms for
the different sensors as well as the fusion module use
particle filters and provide real-time capabilities. Due to the
modular design other filter algorithms can be used. With
some preliminary experiments we showed that the robustness
of the tracking can be increased when camera- and laser-
based tracking is combined.

As an example application we presented a new approach
to generalize observed trajectories to motion patterns using
a SOM in order to predict future trajectories. We tested our
algorithm with more than 30 trajectories collected during a
two-hour observation session and showed that our prediction
technique achieves convenient trajectory predictions.
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