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Abstract— The data registration transforms multiple datasets
into the same coordinate system, and in this way overlapping
components of these sets are aligned. The registration is the
fundamental of many advanced tasks, such as data fusion.
There are plenty of solutions to data registration, and among
them the algorithms based on Fourier analysis are efficient for
large offsets but intricate. The surveys about data registration
seldom focus on the approaches based on Fourier analysis.
In this survey, we express the profound principles of Fourier
analysis behind the obscure mathematical equations in plain
language, explain the reason why the Fourier analysis tech-
niques could be used in data registration and present how it
is used in existing literatures. Transforming datasets into the
Fourier domain decouples the rotation from the translation. For
the rotation estimation, the algorithms could be categorized into
the ones based on re-sampling of the Cartesian Fourier spectral
and the ones adopting Spherical Fourier Transform. As to the
translation recovery, the Phase Only Matched Filtering (POMF)
is widely used and scarcely has a rival. In the end, we discuss
the challenge of the registration methods relying on Fourier
analysis and point out the future direction.

I. INTRODUCTION

Data registration is the process of spatially aligning two or
more datasets of an object or scene. This basic capability is
one of the fundamental tasks within many advanced data pro-
cessing techniques. The alignment process could determine
the correspondences between points in the datasets, enable
the fusion of information and estimate the motion of sensors.
Besides, if identities of objects in one of the datasets are
available, identities of objects and their locations in another
dataset can be determined by registering the two datasets.

The task of data registration is to find an optimal geometric
transformation between corresponding datasets. The data
might be 2D images, 3D point clouds (textured or not) or
3D volumes and so on, which are taken at different times,
using various sensors, or from diverse viewpoints. As to the
2D rigid case, the optimal geometric transformation is repre-
sented by three parameters: one for 2D rotation and two for
2D translation. For the 3D rigid case, the optimal geometric
transformation has 6 Degree of Freedom (DOF): three for 3D
rotation and three for 3D translation. So the data registration
could be interpreted as a box taken two or more datasets
as inputs and output three or six parameters describing the
geometric transformation between the datasets1.
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The data registration is an important and classical problem,
and there are plenty of solutions in existing literatures. The
algorithms could be classified into spatial domain methods
and frequency domain methods according to whether the
registration is operated in image domain or in frequency
domain.

The spatial domain methods could be categorized into
local methods and global methods. The local methods usually
depend on an iterative procedure aiming to find the optimal
transformation parameters which maximize the similarity
measures between the input datasets. The local methods
require good initial guesses and are easy to get trapped
in local minima due to the iterative local optimization
procedure. Further, the runtime of local methods would vary
considerably even for the input datasets with the same size.
Considering the shortcomings of local methods, the global
registration methods take the overall appearance of input data
into account. The majority of global methods are feature-
based techniques, which make use of the explicit feature
correspondences in the datasets. The common flowchart of
feature-based registration methods includes: key-point ex-
traction, feature description, feature matching, transformation
recovery and refinement. The feature-based strategies could
deal with the input data with partial overlaps and large
offsets, but confront challenges about how to eliminate the
mismatches, especially in the large scale scenes contain
numerous similar patches. Besides, the feature-based regis-
tration methods rely on the proper crucial parameters heavily,
so specific parameters should be set up for different datasets
carefully which reduces the intelligence of the algorithms.

Compared with the spatial domain registration methods,
the frequency domain methods attract less attention so far but
are potentially useful. In a sense, the registration algorithms
in frequency domain could be regarded as the global feature-
less methods. In global feature-less registration algorithms,
the original input data is depicted by a global descriptor, and
the transformation between the original data could be solved
by aligning the corresponding global descriptors. The Fourier
spectrum of the original data could be regarded as this kind
of global descriptor.

The frequency based registration techniques have four
major advantages:
• robustness to noise: they use all the information avail-

able rather than just the information associated with sets
of features, so they are more stable than the feature-
based methods;

• dissociation of rotation and translation: the separabil-
ity of rotation and translation is intrinsic in the structure
of the Fourier representation of signals, which reduces



the amount of calculation dramatically;
• insensitivity to parameters: compared to the feature-

based methods, they are less sensitive to the specific
crucial parameters. In other words, the parameters used
in frequency based registration techniques just deter-
mine the runtime and precision, do not determine the
registration succeed or fail.

• validity to partially overlapped data: the phase correla-
tion techniques, such as the Phase-Only Matched Filter
(POMF), are adopted in frequency based registration
algorithms to deal with the partially overlapped datasets.

The Fourier Transform allows the decoupling of the
estimation of rotation parameters from the determination
of translation parameters. For the rotation estimation, the
Spherical Harmonics based algorithms could give a pre-
cise analytical solution but are computational expensive,
while the algorithms based on the re-sample structure of
the Cartesian Fourier Transform need less computation but
do not lead to an exact solution and often suffer from
the sensitive interpolation procedure. Considering the re-
sampling of Fourier frequency values is quite sensitive to
interpolation, the Pseudo-polar Fourier Transform (PPFT)
based on Fractional Fourier Transform (FrFT) is introduced
to Cartesian Fourier Transform based registration algorithms.
Both of two categories of methods are investigated detailedly
in this survey. For the translation recovery, the Phase Only
Matched Filtering (POMF) is widely accepted. The POMF
decouples the local signal energy from the signal structures
based on the fact that two shifted signals carry the shift
information within the phase of their Fourier spectrum.

Among all the existing surveys [1][2][3][4][5][6][7], there
is no one focusing on registration methods based on Fourier
analysis. This survey tries to express the principles of the
Fourier Transform in the plain language, explain the reasons
why the Fourier analysis techniques could be adopted for the
registration purpose, and demonstrate how they are used in
existing literatures.

This paper is organized as follows: Section II describes the
expression of normal Fourier Transform, its principles and
philosophy; explains why it could decompose the rotation
and translation of datasets. The rotation estimation tech-
niques based on Cartesian Fourier spectral are investigated in
section III. Section IV presents the basis theory of Spherical
Fourier transform and the Generalized Convolution Theorem,
which explain why the Spherical Harmonics could be used to
estimate the rotation parameters. The rotation determination
techniques based on the Spherical Harmonics are analysed
in section V. The translation recovery based on phase-only
correlation is discussed in section VI. And finally section VII
concludes the challenges and points out the future direction
of registration approaches based on Fourier spectrum.

II. PRELIMINARY OF FOURIER ANALYSIS
A. Basic Principles of Fourier Transform

Fourier analysis techniques are extremely significant in
signal processing and pattern recognition, since they decom-
pose the function into a linear combination of sinusoidal

basis functions. Each of these basis functions is a complex
exponential of a different frequency. In other words, the
Fourier analysis techniques map a function into a set of
coefficients of basis functions, and the coefficient of the basis
function with frequency f gives how much power the func-
tion contains at the frequency f . That is, the Fourier analysis
techniques give us another way to represent a waveform.
Admittedly, there are infinite ways to decompose the signals.
But the goal of decomposition is to get something easier
to deal with than the original signals, and the reason why
sinusoids are adopted is that they are the eigenfunctions of
the Laplacian operator, hence they maintain fidelity to most
real systems. The basis functions of normal Fourier analysis
techniques are induced by the Laplacian operator in Cartesian
coordinate system. By the same token, the Laplacian operator
also has effective forms in other coordinate systems, e.g.
polar and spherical coordinate system. The Polar/Spherical
Fourier analysis techniques are connected with Cartesian
Fourier analysis techniques by the Laplacian operator.

There are four types of Fourier analysis techniques:
Fourier Series (FS), Fourier Transform (FT), Discrete-time
Fourier Transform (DTFT) and Discrete Fourier Transform
(DFT). The FS breaks down a periodic continuous function
into the sum of infinite sinusoidal functions. The FT extend
the idea of FS to continuous aperiodic functions. The DTFT
is the spectral representation for aperiodic discrete signals,
and normally the discrete inputs are acquired by digitally
sampling the continuous function. It is interesting that the
DTFT frequency representation is always a periodic function.
So though the result of DTFT is an infinite summation, some-
times it is convenient to regard the DTFT as a transform to
a ’finite’ frequency representation (the length of one period).
The DFT converts a finite list of equally spaced samples of a
function into the list of coefficients of a finite combination of
complex sinusoids, ordered by their frequencies. Since digital
computer can only work with discrete and finite signals,
the only type of Fourier analysis technique could be used
in computer software is DFT. Please note that the Fourier
Transform is usually used as the generic term of the Fourier
analysis techniques in the literatures.

The sequence of N complex numbers x0, x1, . . . , xN−1
is transformed into an N -periodic sequence of complex
numbers X0, X1, . . . , XN−1 according to the DFT formula:

Xk =

N−1∑
n=0

xn · e−i2πkn/N (1)

Equation (1) could be interpreted as the cross correlation
of the input sequence, xn, and a complex exponential at
frequency k/N . Thus it acts like a matched filter, and Xk is
the Fourier coefficient with that frequency, which represents
how much power contained in the original sequence at that
frequency. Based on the coefficients, the original complex
data xn could be expressed as:



xn =
1

N

N−1∑
k=0

Xk · ei2πkn/N (2)

The kernel of Fourier analysis technique is the representa-
tion of data in another linear space. The Equation (2) could
be regarded as the representation of the original sequence in
frequency domain.

B. Decoupling of Rotation and Translation

In the data registration application, the Fourier Rotation
Theorem and Fourier Shift Theorem are used to decouple the
rotation and translation information between two datasets.
The Fourier Shift Theorem indicates that a shift in position in
one domain gives rise to a phase change in another domain.
The Fourier Rotation Theorem says that a rotation of a
dataset by an angle θ implies that its Fourier spectrum is
also rotated by the same angle along the same direction.
These two theorems are the theoretical bases explaining
why the Cartesian Fourier transform could be used in data
registration.

Let v1(x) and v2(x) be two datasets which are re-
lated through a rigid roto-translational motion: v2(x) =
v1(R−1x − t); according to which, v2(x) is obtained from
v1(x) by first translating each point of it by the vector t
and then rotating the result of this operation by the rotation
matrix R. Denote the corresponding Fourier Transform of
v1(x) and v2(x) by V1(s) and V2(s). According to the
Fourier Rotation Theorem and Fourier Shift Theorem, the
relationship between V1(s) and V2(s) is:

V2(s) = V1(R−1s)e−i2π(s
TRt) (3)

Equation (3) could be simplified in terms of magnitudes:

|V2(s)| = |V1(R−1s)| (4)

From equation (3) and (4), it can be obtained that, in the
frequency domain, the estimation of rotation matrix R could
be decoupled from the recovery of translation t. Furthermore,
we can notice that the phase information in equation (4)
is related to both the rotation matrix R and the translation
vector t, which means we have to determine the rotation
matrix firstly based on equation (4). After that, rerotate
the datasets according to the obtained rotation matrix, in
this way there is the pure translation offset left. Then the
Fourier Shift Theorem could be adopted to calculate the
translation parameters. And this is the standard flowchart of
the registration techniques based on Fourier analysis.

III. ROTATION RECOVERY BASED ON
CARTESIAN FOURIER SPECTRUM

According to the Fourier Rotation Theorem, the estimation
of rotation matrix between two datasets could be converted
to the determination of the rotation information between
the magnitudes of the corresponding Fourier spectra. With
regard to the rotation recovery algorithms in existing litera-
tures, they could be classified into two main categories: the

methods based on the re-sampling of the Cartesian Fourier
spectrum and the methods based on the Spherical Harmonics.

The early try of registration of translated and rotated
images using Fourier analysis techniques is presented in [8].
The idea of algorithm in [8] is quite naive. Since there is
only phase drift between the Fourier spectra of datasets if
they are pure translational duplicate version to each other, the
authors define a function that is the quotient of the Fourier
spectra and try all tentative values of rotation angle. The
true rotation angle approaches the quotient to the exponential
form. In other words, the fully automatic directed search
strategy is used to determinate the rotation angle. Obviously
this method is computational expensive. Further, the authors
of [9] point out that the method rests on the observation
that if the rotation angle is rather small (not exceeding ±2
degree), the peak of the quotient may be still spotted out
although considerably lower than that associated with a pure
translation. This represents a serious problem and makes
such technique suitable only for applications where rotations
are small and certainly not for general purpose utilizations.
Besides, because the rotation angle is applied to magnitude
of Fourier spectra not the original data, and the phase drift is
related to both translation and rotation, the phase drift caused
by rotation could not be compensated, which also reduces its
robustness.

The more official algorithms of data registration based
on Fourier spectrum are proposed in [10][11]. The essential
ideas in these two paper are quite similar. They adopt the well
known invariant function named Fourier-Mellin transform,
which is translation invariant and represents rotation and
scale as translations along the corresponding axes in homol-
ogous parameter spaces. The Fourier-Mellin Invariant (FMI)
descriptor of an image, named Fourier log-magnitude spectra
in [11], is obtained by re-sampling the spectral magnitude of
this image to polar coordinates and then re-sampling along
radial coordinate with a logarithmic function. And the FMI
descriptor could also be achieved by re-sampling the spectral
magnitude directly onto a rectangular polar-logarithmic coor-
dinate in one step, like what is done in [10][11]. In the polar-
logarithmic representation of the spectral magnitude, both the
rotation and scale are transformed to translation. Actually
the FMI descriptor is not firstly proposed in [10], but all
previous methods match the FMI descriptors using cross-
correlation, or variants of cross-correlation. Since the FMI
descriptor is based on the magnitude of Fourier transform,
the cross-correlation of the FMI descriptors generally yields
a very broad maximum, which leads to the FMI descriptor
based registration methods are unreliable and may give rise to
wrong estimates of correlation peaks. The Symmetric Phase-
Only Matched Filtering (SPOMF) is introduced to match the
FMI descriptors in [10], and this is the main difference from
the algorithm in [11]. In this way, the advantages of the
SPOMF, which are sharpness of the correlation peaks and
robustness in the presence of noise, and the decoupling the
rotation, scale and translation acquired by the FMI descriptor
are combined together. The problem here is that the limited
scale range can be estimated since large scales would alter



the frequency beyond recognition. It should be noted that the
maximum scale recovered by [10] is 2.0 and the maximum
scale recovered by [11] is 1.8. Besides, since the re-sampling
of Cartesian frequency values on a polar grid is very sensitive
to interpolation, the accuracy of registration algorithms is
severely degraded by the approximation errors inherited in
the computation of the polar and log-polar Fourier spectra.

A novel frequency domain technique which works in
Cartesian coordinates and bypasses the need to transform
data from the Cartesian to the polar domain is presented in
[9][12][13]. It is an important advance because it is well
known that the Cartesian-to-polar coordinate transformation
is a numerically sensitive operation, especially when it is
dependent on the interpolation of the Fourier spectrum. The
fundamental idea of this novel method rests on the property
of the Fourier transform magnitudes of the images: For two
roto-translated images, the difference between the Fourier
transform magnitude of one image and the mirrored replica
of the Fourier transform magnitude of the other have a
pair of orthogonal zero-crossing lines. These two lines are
rotated with respect to the frequency axes by an angle that
is half the rotational angle. In [9], the difference function
of normalized Fourier transform magnitudes is defined, and
the zero-crossing lines of the difference function is used to
determine the rotation angle. Therefore, the estimate of the
rotation angle is transformed to the detection of two zero-
crossing lines. Subsequently, the phase correlation technique
is applied to solve the translation parameters.

The research direction of determining rotation angle based
on the difference function of normalized Fourier transform
magnitudes is extended to the case of 3D rigid motion in
[14][15]. This kind of 3D data registration method contains
three procedures: rotation axis determination, estimate of the
rotation angle around the axis and translation calculation.
The rotation axis is determined in [15] by searching a
minimum of radial projection of the polar re-sampled differ-
ences of the magnitude of Fourier spectra. After obtaining
the rotation axis, the rotation angle estimation is a planar
rotation problem, which is solved by a combination of the
a 1D Fourier transform and a 2D polar Fourier transform
defined as a cylindrical Fourier transform. This algorithm
involves the interpolation operation in the re-sampling of the
difference function in rotation axis estimation step, which
increase the uncertainty of the registration result. Another
main drawback is that this method requires the common
region between two input data to be known, which means this
method could not handle with the general partial overlapped
datasets and constraints its application.

The methods presented in [16][17] inherit the three-step
framework, but apply the 3D Pseudo-polar Fast Fourier
Transform (FFT) to avoid the interpolation operation. The
Pseudo-polar FFT is firstly proposed in [18], and it could
be used to compute the Discrete Fourier Transform (DFT)
on pseudo-polar grids without interpolation of Cartesian
Fourier spectra. The Pseudo-polar FFT is based on the
Fractional Fourier Transform (FrFT) [19] [20], which is a
generalization of the conventional Fourier transform. The

FrFT depends on a parameters α and can be interpreted
as a rotation by an angle α in the time-frequency plane
with respect to the conventional Fourier transform. An FrFT
with α = π/2 corresponds to the conventional Fourier
transform. Essentially, the α-order FrFT shares the same
eigenfunctions as the conventional Fourier transform, but its
eigenvalues are the αth power of the eigenvalues of the con-
ventional Fourier transform. Concretely, the FrFT samples
the spectrum of a vector with length N at the frequencies:
ωk = αl/N, l = −N/2, . . . , N/2. In other words, the FrFT
could compute the Fourier spectra with arbitrary frequency
resolution. Furthermore, the FrFT of a vector of length N
can be computed in O(NlogN) operations for any α.

The 3D pseudopolar grid is given by three sets of samples:
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N
2 }, k ∈ {−

3N
2 , . . . ,

3N
2 }. The

pseudo-polar Fourier transform is defined by sampling the
Cartesian Fourier transform on the pseudo-polar grids. How-
ever, instead of the interpolation of Cartesian Fourier spectra,
the pseudo-polar Fourier transform could be calculated by
FrFT directly. For fixed l, j, the samples of the 3D pseudo-
polar grid are equally spaced in the radial direction. But this
space is different for different l, j. And the grid has equally
spaced slopes. The detailed calculation of 3D Pseudo-polar
FFT could be found in [18].

Three important properties of the 3D Pseudo-polar Fourier
transform fit it to be applied in data registration:

1) invertible, and both the forward and inverse transform
could be implemented using fast algorithms;

2) do not require re-gridding or interpolation;
3) the pseudo-polar grids could be used as an approxima-

tion to the polar/spherical grids.
The estimation of the rotation axis is shown to be alge-
braically accurate by using the 3D pseudo-polar FFT in
[16][17]. But the determination of the rotation axis is still an
error-prone part in case that the scan data has interference
and occlusion. The pseudo-polar FFT is also applied in 2D
image registration in [21].

The most recent registration method based on Cartesian
Fourier spectra is presented in [22][23], named Spectral Reg-
istration with Multilayer Resampling (SRMR). The SRMR
re-samples the spectral magnitude of 3D FFT calculated
on discrete Cartesian grids of the 3D data to decouple
the 3D rotation and 3D translation, just like the previous
techniques. Further, the SRMR also tries to transform the
rotation parameter to the translation estimation problem and
adopt the phase correlation techniques to figure out it, and
this main idea is also inherited from the previous techniques.
The most remarkable feature of SRMR is that it uses the



spectral structure at a complete stack of layers instead of only
one spherical layer. And it does not rely on finding minima
indicating the main rotation axes, which makes it extremely
robust for the partial overlapped datasets. But the strong point
is bought at the cost of working only in a limited range of
roll and pitch offsets between input datasets. So the SRMR
is only applicable in robotic mapping scenarios, where there
is little roll and pitch changes. Furthermore, please note that
the SRMR also suffers from the sensitive interpolation of
spectral magnitudes.

IV. BASIC THEORY ABOUT SPHERICAL
HARMONICS

A. Spherical Fourier Transform

The angular part of spherical Laplacian operator’s eigen-
functions are named spherical harmonic functions Y ml :
S2 7→ C, where S2 stands for the unit 2D sphere and C
symbolizes the set of complex number.

Y ml (ϑ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cosϑ)eimϕ (6)

where (ϑ, ϕ) are the spherical coordinates; Pml is an associ-
ated Legendre polynomial; l, m are integers, l > 0, |m| < l.
The l is called the degree of spherical harmonics. For the l-th
degree, there are 2l + 1 spherical harmonics basis functions
indexed in the range of −l ≤ m ≤ l. Similar to the Cartesian
Fourier basis, spherical harmonics represent the different
frequency components of spherical functions.

Let L2(S2) denote the space of square integrate functions
defined on S2. The spherical harmonics of degree l consti-
tute a (2l + 1) dimensional subspace of L2(S2). Spherical
harmonics of different degrees are orthogonal to each other.
Furthermore, the spherical harmonic functions provide an
complete orthonormal basis for L2(S2). In other words, any
function f(ϑ, ϕ) ∈ L2(S2) could be expanded as a linear
combination of spherical harmonics:

f(ϑ, ϕ) =

∞∑
l=0

l∑
m=−l

fml Y
m
l (ϑ, ϕ) (7)

fml =

∫
S2

f(Ω)Y ml (Ω)dΩ (8)

where the overline stands for the complex conjugate. Equa-
tion (7) is named Spherical Fourier expansion or inverse
Spherical Fourier Transform, and fml is commonly called
the spherical harmonic coefficients of f(ϑ, ϕ).

It is obvious that the Spherical Fourier Transform has
similar formula with the Cartesian Fourier Transform. More-
over, the Spherical Fourier Transform is rotation friendly and
plays a vital role in matching patterns on S2.

The well known property of the Cartesian Fourier trans-
form is that the magnitudes of the Fourier spectra are
invariant under translation, since the translation in the signal
manifests itself as a phase drift in the Fourier spectra. As
to the Fourier transform on the sphere, the action is rotation
instead of the translation. The magnitude of the Spherical

Fourier spectra is rotational invariant. So the Spherical Har-
monics are widely used to constitute the rotation invariant
descriptor [24][25][26] and 3D shape retrieval [27].

B. Generalized Convolution Theorem

It is well known that it is possible to convert the rotation of
data to translation, and the phase correlation techniques could
be used to calculate the translation parameters. And this cor-
relation could be converted to point-wise product via Fourier
Transform. In other words, the correlation in time domain
equals point-wise multiplication in frequency domain, then
the original problem could be solved in frequency domain
much more efficiently. Furthermore, this convolution theorem
could be generalized to the functions defined on S2. Efficient
spherical convolution, aided by a fast Spherical Fourier
transform and its inverse, contributes to the registration of
graphs on S2.

Following the tradition, let SO(3) denote the rotation
group in 3D space, represented by the 3 × 3 matrices with
determinant one. Given a function f1 on the sphere, and its
rotated replica f2 for a rotation g ∈ SO(3): f2 = ∧(g) · f1.
Registration of the two functions could be achieved by
correlating functions:

C(g) =

∫
S2

f2(Ω) • ∧(g) · f1(Ω)dΩ (9)

and the g maximizing the integral (9) is the rotation between
two functions. However, evaluating C(g) for all possible
rotations is a terrific time-consuming task.

Spherical Fourier Transform could be adopted to deter-
mine the maximum g efficiently based on rotation invariant
characteristic of spherical harmonic:

∧(g)Y ml (Ω) =
∑
|k|≤l

Dl
km(g)Y kl (Ω) (10)

where Dl
km(g) are called Wigner-D function, and they are the

irreducible unitary representations of SO(3). In some sense,
the Dl

km(g) could be interpreted as the k-th component
of ∧(g) acting on Y ml (Ω). Formula (10) signifies that the
rotated cousins of a spherical harmonic could be expressed
as a linear combination of spherical harmonics with the same
degree. According to equation (7), the Spherical Fourier
expansions of f1 and f2 are:

f1(Ω) =
∑
l

∑
|m|≤l

aml Y
m
l (Ω) (11)

f2(Ω) =
∑
l′

∑
|m′|≤l′

bm
′

l′ Y
m′

l′ (Ω) (12)

Substituting equations (11) and (12) into equation (9), then
utilizing the ”Separation of Variables” technique and the
orthogonality between spherical harmonics, the correlation
function could be rewritten as:

C(g) =
∑
l

∑
|m|≤l

∑
|m′|≤l

aml b
m′
l •

∫
S2

Y m
′

l (Ω) ∧(g)Y ml (Ω)dΩ

(13)



Recall the rotation invariant property of the spherical har-
monic expressed by equation (10), ∧(g)Y ml (Ω) could be
replaced:

(14)

C(g) =
∑
l

∑
|m|≤l

∑
|m′|≤l

aml b
m′
l •∫

S2

Y m
′

l (Ω)
∑
|k|≤l

Dl
km(g)Y kl (Ω)dΩ

=
∑
l

∑
|m|≤l

∑
|m′|≤l

aml b
m′
l •

∑
|k|≤l

Dl
km(g)

∫
S2

Y m
′

l (Ω) Y kl (Ω)dΩ

All over again, based on the orthogonality of spherical
harmonics, the integral and the summation on k in equation
(14) could be zapped:

(15)C(g) =
∑
l

∑
|m|≤l

∑
|m′|≤l

aml b
m′
l ·Dl

m′m(g)

The detailed deduction could be found in [28][29]. It is
mainly on the strength of the ”Separation of Variables”
technique and orthogonality of spherical harmonics, and
makes full use of the two criteria over and over again. As
prescribed in equation (15), the convolution in equation (9)
is converted to point-wise multiplication, and the correlation
C(g) concerning the whole series of g could be evaluated
uniformly and efficiently based on the spherical Fourier
coefficients. In this way, the rotation g maximizing C(g)
could be easily found.

V. ROTATION RECOVERY BASED ON SPHERICAL
HARMONICS

The data registration methods based on the Spherical Har-
monics attracts scarce attention in the image analysis society.
An example of pattern matching on S2 is introduced in [29]
when an efficient algorithm for the numerical calculation of
the Spherical Fourier transform of functions defined on the
rotation group is proposed.

The Spherical Harmonics and Generalized Shift Transform
is officially adopted to recover the rotation of spherical
images in [30][31][32]. The images arising from a omnidi-
rectional camera could be mapped onto the sphere, and the
underlying mappings of the sphere can reflect a rotational
camera motion. The problem of rotation estimation directly
from the images defined on the sphere could be addressed
based on the Spherical Harmonics without correspondences.
The resolution of the rotation space depends on the band-
width of the harmonic expansion. The experiments show that
the methods are suitable for large rotations, and are quite
resistant to small translations of a camera. Moreover, it is
attractive that [32] presents a novel decoupling of the shift
theorem with respect to the Euler angles and exploits it in
an iterative scheme to refine the initial rotation estimates.

In order to determine the rotation matrix between 3D data,
the first problem is how to describe the structure of the
3D data using a spherical image. The registration method

in [33] explores the global representation of range scans
named Extended Gaussian Image (EGI), which is built by a
spherical histogram of surface orientations. This technique is
based on the correlation of the EGIs in the Spherical Fourier
domain and makes use of the Generalized Shift Transform
to compute the rotation between the EGIs, which is also the
rotation between the original scans. The EGI is translational
invariant but it has three shortcomings: 1) EGIs only uniquely
define convex objects; 2) EGI is only feasible to smooth
surface, but causes problems at discontinuities; 3) it fails to
deal with the scans contain spherical objects, which would
lead to constant histograms and less informative EGIs.

We developed another 3D scan registration technique
based on Spherical Harmonic. We propose a new structure
representation of scans, named Spherical Entropy Image
(SEI). SEI divides the 3D data into several patches according
to the polar angle and azimuth angle of points. For each
patch, considering the depth of points as the observations
of a random variable, build the histogram and compute the
entropy of the variable. The SEI is achieved by computing
the entropy of patches in a dense manner. The SEIs maintain
the visual intuition of the original point clouds. But the
SEI is not translation invariant due to the fact that the way
to divide scans is translation dependent, so the translation
normalization of the scans is essential before calculating SEI.
Further, the SEI could be translation invariant if the SEI is
computed on the magnitude of the scans, but in this way, the
SEI becomes more computational expensive.

VI. TRANSLATION DETERMINATION

Supposing the determined rotation R is correct, there is
only translation offset between the datasets after applying
the determined R to them.

Due to its ability to deal with the partially overlapped sig-
nals, the cross-correlation technique is suitable to determine
translation parameters. For all the registration techniques
based on the Fourier analysis in the existing literatures,
the cross-correlation technique is adopted to recovery the
translation information without any exception. However, the
value of the standard cross-correlation method is heavily
dependent on the energy of underlying signals rather than
on the spatial structures, so it often fails to discriminate
the signals which are of different shapes but similar energy.
Furthermore, the correlation peaks could be relatively broad
depending on the signal structures, which makes it difficult
and unreliable to locate the correct displacement between
noisy signals. In order to decrease the impact of dispro-
portionally large value points which are not present in the
overlapped area and achieve more distinct sharp peaks, the
POMF algorithm is used to resolve the translation recovery
problem by almost all the registration methods based on
Fourier analysis techniques.

The POMF decouples the local signal energy from the
signal structures based on the fact that two shifted signals
carry the shift information within the phase of their Fourier
spectrum. Let f1(x, y, z) and f2(x, y, z) be two shifted



signals, and F1(u, v, k) and F2(u, v, k) be their correspond-
ing Fourier spectra. The shift between these two translated
signals could be solved by the following equations:

S(u, v, k) =
F1(u, v, k)

|F1(u, v, k)|
• F2(u, v, k)

|F2(u, v, k)|
(16)

s(x, y, z) = F−1{S(u, v, k)} (17)
(xp, yp, zp) = arg max

(x,y,z)

s(x, y, z) (18)

where the overline indicates the complex conjugate, and
(xp, yp, zp) is the displacement between the two signals.
In theory, it could be used in arbitrary dimensional signal
registration problems. Ideally, the s(x, y, z) contains a Dirac
peak, but the Dirac pulse deteriorates in practical due to the
noise. Please note that the Fourier analysis technique used
in POMF is the Cartesian Fourier transform.

The phase-only and amplitude-only matched filters are
compared to the classical matched filter using the criteria
of discrimination, correlation peak, and optical efficiency in
[35], and the pure phase correlation filter outperform other
filters remarkably. But the original phase correlation method
is claimed to identify integer pixel displacements, which
inspires the development of numerous subpixel alternatives.
A low complexity subspace identification technique is pre-
sented in [36]. The horizontal and vertical components of the
translation is separated by a Singular Value Decomposition
(SVD) factorization of the phase correlation matrix. Then
perform a linear fit to the phase of these separate compo-
nents in order to identify the magnitude of the translation.
This approach identifies the non-integer pixel displacement
without interpolation, further this approach is robust to noise
and needs limited computational complexity, which makes
this method a quite attractive option for phase correlation
problem. However, this approach relies on the quality of the
linear fit rather than gives the analytic expressions. A closed-
form solution to subpixel translation estimation is provided
in [37]. This model is based on the philosophy that images
with subpixel shifts were in fact originally displaced by
integer values, and then the shifts are reduced to subpixel
values due to down-sampling. Experiments confirm that high
accuracy can be acquired using this approach, and it is
available to perform accurate error analysis and evaluate the
performance due to the existence of the analytic expression.
[38] extends the phase correlation method to N-dimensional
datasets. The motion model for translational offsets between
N-dimensional images could be represented by a rank-one
tensor based on the Fourier shift theorem. The adoption of
a high-order SVD could decompose the phase correlation
between two N-dimensional datasets to independently trans-
lational displacements along each dimension.

The phase correlation techniques are widely used to deter-
mine the translation parameters in data registration, and the
POMF technique is the best choice without any rivals.

VII. CHALLENGES AND FUTURE DIRECTION

In general, the data registration approaches based on
Fourier analysis techniques could handle with the large off-

sets but the registration results have lower precision. Hence
the registration methods based on Fourier analysis techniques
are usually used in the coarse registration step, whose results
are refined by the local methods, such as Iterative Closest
Point (ICP) and Normal Distributions Transform (NDT).
The runtime of most local methods are initial estimates
dependent, which means the more precise the initial guesses
are, the less runtime the local methods require. So overall
the usage of coarse registration method (e.g., the techniques
based on the Fourier analysis) not only makes the registration
automatically but also improves the efficiency.

But for now, there are plenty of challenges for the reg-
istration methods based on Fourier spectrum. The Fourier
spectrum of 2D image and 3D volume could be calculated
directly, but for the 3D points cloud, the original 3D surfaces
are rasterized into volume grids. Generally the way to
rasterize the 3D surface is assigning a voxel the value of
1 if it is occupied by the surface, otherwise its value is set
to be 0. In this way, the final volumes only contain two
values: 1 and 0, which makes the Fourier spectra of them
less informative. One of the solutions could be estimating the
Gaussian curvature of the 3D surface and assigning a voxel
the value of Gaussian curvature on the point it contains. In
such a way, the volume grids are more informative and the
richly structured part of the surface plays a more important
role in registration procedure.

With regard to the rotation recovery techniques based on
the Cartesian Fourier spectrum, the most existing techniques
suffer from the interference and occlusion. Though the recent
multilayer method SRMR is quite robust to the partially
overlapped dataset, it depends on the sensitive interpolation
of spectral magnitudes. A novel multilayer re-sample strategy
which uses the FrFT to avoid the interpolation is expected in
the future; this kind of algorithm would not only be capable
of dealing with the partially overlapped datasets but also be
algebraically accurate.

As far as the rotation estimation approaches based on the
Spherical Harmonics, the biggest challenge is the amount
of calculation. Even a fast algorithm is proposed in [29],
the registration algorithms involving Spherical Harmonics
need more runtime than the ones based on Cartesian Fourier
spectrum. But this disparity between them is shorten by the
high-speed arithmetic hardware, and considering the robust-
ness, theoretical completeness and algebraically accuracy,
the methods based on Spherical Harmonics are vigorous
in the future. Just like the multilayer strategy based on
Cartesian Fourier spectrum, the multilayer strategy could also
be adopted by the methods based on Spherical Harmonics.
As we said, the Spherical Harmonic is the angular part of
spherical Laplacian operator’s eigenfunctions. The truth is
that the the eigenfunction of spherical Laplacian operator
contains both the radial and angular structures. So it is more
natural for the Spherical Harmonics based registration meth-
ods to adopt the multilayer strategy. But unfortunately, there
is no fast algorithm for the radial transform, and whether fast
algorithms exist is still a question to be answered. That is the
reason why the existing methods only consider the angular



structure.
In a word, the registration techniques dependent on Fourier

spectrum are immature but energetic, and they deserve more
attention from image analysis society.
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