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Zusammenfassung

Zur Erzeugung von Fortbewegungsmustern modularer Roboter wurde ein komplett inte-
griertes Simulationssystem entwickelt.
Mit Hilfe einer grafischen Benutzungsschnittstelle ist es möglich mit Simulationen zur
Laufzeit zu interagieren und diese zu überwachen. Durch die Möglichkeit das System auch
ohne grafische Benutzungsschnittstelle (GUI) zu starten, können Langzeitoptimierungen
als Hintergrundprozesse gestartet werden. Das System ermöglicht Benutzern verschiedene
Arten der Fortbewegung mit Hilfe einer standardisierten Programmierschnittstelle für Al-
gorithmen, die Aktuatoren ansteuern, untereinander zu vergleichen. Aufgezeichnete Daten
vergangener Simulationen können untersucht und bei Bedarf zu Dateien mit durch Tabu-
latoren separierten Werten (*.tsv) exportiert werden.
Das vorgestellte System ist als Rahmenwerk für Menschen mit unterschiedlichem Kenntnis-
stand über Fortbewegungsprinzipien in modularer Robotik zu verstehen. Die Hauptfunk-
tionen sind die Entwicklung, Analyse und Optimierung von Fortbewegungalgorithmen für
modulare Roboter in unterschiedlichen Konfigurationen. Als besonders nützlich hat sich
die Möglichkeit erwiesen komplexe Steuerungsparameter zu optimieren, deren Bedeutung
und Wirkung nur schwierig zu verstehen sind und deren Korrelationen mit dem Verhalten
des zugehörigen Algorithmus und anderen Parametern nicht klar sind. Die Anwendung des
Systems zur Optimierung von Steuerungsparametern ist für zwei unterschiedliche Fälle ge-
zeigt. Um die Nützlichkeit des vorgestellten Systems zu demonstrieren, werden in diesen
Experimenten zwei verschiedene Steuerungsalgorithmen, die unter Zuhilfenahme abstrak-
ter Basisklassen implementiert wurden, automatisch verbessert.
Das präsentierte System zeichnet sich durch seine Exklusivität in Bedienbarkeit, Funkti-
onsumfang und Nutzen für die Forschung im Bereich Fortbewegung modularer Roboter
aus. Meines Wissens gibt es im Bereich modularer Roboter keine vergleichbare Arbeit.





Abstract

This work presents an integrated simulation system for development of modular robotic
locomotion patterns.
Using graphical configuration interfaces users can create robots, attach sensors, create and
assign actuation algorithms, build an environment and optionally set up an optimization
mode. The graphical control interface allows to interact with the simulation at runtime
and to supervise it. With the possibility to run the system without graphical user interface
(GUI), long-term optimizations can be performed as background processes. The system
enables users to compare different locomotion patterns with the help of a standardized
programming interface for actuation algorithms. Recorded data from simulations can be
inspected and, if needed, exported to tab-separated value files (*.tsv) for further usage.
The proposed system can be regarded as a framework for people at different levels of
knowledge about modular robot locomotion principles. Its main functions are develop-
ment, analysis and optimization of locomotion algorithms for different configurations of
modular robots. Great benefit arises from the possibility to optimize even not well un-
derstood and complex control parameters, whose correlations with the behaviour of the
associated control algorithm and other parameters are not clear. An application of the
system for control parameter optimization is shown in two different experiments. In these
experiments two control algorithms implemented using abstract base interfaces of the sys-
tem, are automatically improved to demonstrate advantages of the system.
For the best of my knowledge the presented system offers a combination of usability, fea-
tures and benefits for research in the field modular robotic locomotion that exceeds other
systems.
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Introduction

1
Modular robots are a marvellous platform for research and education. They are low cost
and their structure is easy to understand. Because of their modular and hyper redundant
design it is possible to recombine several modules to new robots with new capabilities.
In this way they offer easy and fast prototyping of new topologies and control strategies.
Using arbitrary sensors and different methods of sensor fusion and integration it is possible
to achieve intelligent locomotion behaviour with simple hard- and software. Principles
of efficient locomotion can be investigated as well as mechanisms to adapt to terrains’
difficulties autonomously. To design algorithms that produce locomotion efficiently, a
platform is needed that allows to implement and compare different concepts in hard- and
software. In the following a very flexible system is introduced. Figure 1.1 shows the GUI
in application with a real robot. It is explained how to use it to design and optimize new
ideas of efficient and intelligent locomotion in modular robotics.

The intention was to build a system that allows inexperienced users as well as experts
to create simulations of modular robot locomotion. After a simulation set-up has been
created the user will be able to optimize and evaluate his results in an easy but detailed
way. This makes it applicable for educational and scientific purposes.

In the following the motivation of the proposed work is given. It is followed by an descrip-
tion of the structure of this thesis.

1.1 Motivation

The main idea of this work is to create a system that simplifies the process of locomotion
development in modular robotics. One of my objectives was to make it suitable for ed-
ucation and research. Students need a system that comes with everything necessary for
programming, running and evaluating real or simulated robot locomotion. Using such a
system helps to get in contact with the field of modular robots. Scientists need freedom of
action to implement their own ideas with as few limitations as possible. But they also want
to have a system that can be regarded as closed solution. Re-use of already configured
parts, as well as support in time consuming subtasks is needed to work efficiently.

My intention was to build a system that allows to configure different set-ups, to control
and supervise simulations or real robot control loops and to optimize control algorithms.
The requirement was to create a general interface for modular robotic control and loco-
motion algorithms to enable users to implement their own ideas in hard- and software.
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1 Introduction

Figure 1.1: Example of the proposed system. The GUI of the control system is
shown while operating a real robot. The simulated robot shows the desired state of
the real robot. In the plot window the desired angles of the joints are displayed versus
time. The small window in the upper left corner is used to change important control
parameters.

Comparisons of different locomotion strategies are simplified when using the same simu-
lation or control configuration except concrete composition of locomotion algorithms. For
evaluation purposes data handling is needed to record and visualize processes of simula-
tion and control. Thus, the current state of robots and algorithms actuating their joints
should be recorded and visualized at runtime. Implementations of some heuristic opti-
mization methods would allow to optimize the parameters determining characteristics of a
certain actuation algorithm. It should also be possible to integrate different robot models
by implementing arbitrary robot control libraries and importing corresponding 3d models
for the simulated robots. Such a system can be regarded as a closed solution for modular
robot science and can be very useful as an assisting tool in creating intelligent modular
robots with autonomous polymorphic locomotion methods.

Letting modular robots in chain-like configuration move, inspired by the movements of
real animals like worms, caterpillars and snakes, can be the beginning in the process
of creating efficient locomotion patterns. To reduce the complexity of the locomotion
generation problem, topologies of robots used in this work are all chain-like but with
different numbers of modules and arbitrarily oriented joints1. This work does not claim
that biology offers most efficient and best ways to move artificial creatures, but analysis of

1Orientations of joints can be pitching or yawing.
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inventions from the evolution can help to find some ideas for designing artificial locomotion
algorithms.

1.2 Structure of this work

This thesis presents a novel software system for research and education in the field of lo-
comotion of modular robots in a chainlike configuration. The usefulness is demonstrated
by its successful application for the optimization of control parameters of locomotion al-
gorithms. The thesis is structured as follows:
The second chapter introduces locomotion of limbless cylindrical animals and gives an
overview of creeping animals’ kinematics research. These ideas and some principles can
be taken into account when designing algorithms to move modular robots on different
terrain. Additional benefits arise from theoretical formulations of simplified models for
evaluating and rating the results from optimization of control algorithms.
Chapter three provides a description of the history and state-of-the-art of chain-like mod-
ular robots. Some basics on modular robot actuation are explained to transfer the knowl-
edge about animal kinematics into algorithms moving modular robots. Sinusoidal gener-
ators, central pattern generators (CPGs) and adaptive mechanisms are explained. After
describing the control parameter problem two different optimization methods are intro-
duced which are used in the proposed system to improve the locomotion of simulated
modular robots. The chapter closes with a comparison of related work.
Chapter four presents the main components of the proposed system that allows to imple-
ment, evaluate, compare and optimize arbitrary locomotion algorithms. After an expla-
nation of its components and capabilities the usage is explained. The presented system
is a framework for research and education and combines flexibility, extendibility and easy
usage.
Generalized programming interfaces are described in chapter six. They allow e.g. to im-
plement any desired algorithm to control groups of joints of modular robots. Algorithms
using sensor feedback are also taken into account.
Chapter six presents two different experiments and their results from the application of
two different previously explained optimization methods from chapter three. The results
from the experiments show the usefulness of the proposed system. Both methods calcu-
lated good solutions for parameters which determine the characteristics and behaviour of
the algorithms that generate locomotion patterns.
Chapter eight, the last chapter contains a discussion of the results of both optimization
methods in different cases of optimization. The thesis is evaluated with the help of the sci-
entific application of the system for the optimization of locomotion patterns. The results
show that the proposed system is useful for locomotion pattern generation and optimiza-
tion in research. For the best of my knowledge there is no other system that offers a similar
amount of functionality and usability than presented in this thesis. For future work ideas
to improve the system are explained.
In the appendix are a few important abstract base interfaces of the system. In addition
there are some examples for configuration files and data files. On the DVD the source code
system is stored as well as a howto-document that contains hints about installation and
usage of the software. In addition on the DVD an automatically generated documentation
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is stored. It has been created using the Doxygen system. Additionally several videos
are stored that show real and simulated modular robots that are controlled by using the
proposed system.

1.3 Summary

This chapter introduced the thesis and the motivation to create the proposed system.
A flexible system that allows to implement control algorithms for modular robots and
provides the user with useful functions for development and optimization at the same
time is introduced. After this introduction the structure of the thesis was explained. The
next chapter contains basic knowledge about creeping animal locomotion. This knowledge
helps to design bio-inspired locomotion patterns and to understand how these animals
move.
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Principles of Creeping Motion

2
This chapter imparts basic knowledge about animal locomotion. Modular robot research
benefits from this knowledge since it helps to understand locomotion principles of longi-
tudinal animals in order to create own locomotion patterns for robotics.
After a description of the motivation of bio-inspired locomotion, section 2.2 clarifies terms
of kinematics that are used in later sections. Section 2.3 presents different models of crawl-
ing. These models help to understand which physical terms are important in locomotion
of creeping animals in order to design efficient locomotion of robots with similar struc-
ture. They are also useful to estimate the energy consumption of different movements.
This helps to rate different possibilities of applying locomotion patters. In section 2.4
and section 2.5 deeper insights from biology are given. Research of caterpillars and snakes
helps to apply initial values to parameters that determine the characteristics of locomotion
patterns. In the end of this chapter, a conclusion is given in section 2.6 that contains a
summary of animal kinematics.

2.1 Introduction

Creeping animals with longitudinal bodies show off amazing capabilities in locomotion.
Caterpillars and snakes can easily pass unstructured terrain. They feature impressing
techniques to overcome arbitrary obstacles. Many differences lie in properties of their
bodies. Caterpillars, worms and snakes have soft and flexible bodies that can easily adapt
to uneven terrain, most robots however consist of rigid body parts. Longitudinal muscles
in addition to very flexible bones provide snakes with amazing locomotion capabilities.
Animals are not supposed to offer the best locomotion patterns for artificial creatures
like a robotic snake or caterpillar robot but they can express some helpful principles.
By using these principles guidelines for designing locomotion algorithms for robots in
chain-like configurations can be established.

2.2 Locomotion basics

From the kinematics point of view in creeping animal locomotion there are some definitions
that need to be mentioned in order to understand the following results from research in
biology.
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2 Principles of Creeping Motion

Figure 2.1: Illustration of step and stride. (Alexander [2])

2.2.1 Definitions and criteria of comparison

To compare and rate different locomotion techniques under different aspects definitions
of several measures are necessary. This paragraph presents some basic measures that are
used in this chapter and helps to understand the following models of locomotion.

• Acceleration

a = lim
∆t→0

∆v

∆t
=
dv

dt
(2.1)

Acceleration involves the need to overcome inertia of the moving body and friction
with the ground. From energetics point of view this is very expensive. For hunting
fast acceleration is more important than high speed.

• Center of gravity (COG)
The COG is a geometric property of any creature or object. It describes the average
location of the weight of an object and can be used to review stability of poses.

• Duty factor
The duty factor of a certain gait is the percentage of the total cycle which a given
foot is on the ground. Depending on duty factors walking and running can be
distinguished and current total friction can be estimated. Normally gaits with more
than 50% are considered a walk, while those with less than 50% are considered a
run.

• Economy of energy
The oxygen consumption of animals was measured under different circumstances.
Animals need energy for growth and reproduction, so they need to save energy. That
means energy saving leads to surviving in nature. In robotics energy-saving means
a longer working time, because of the limitation by batteries in mobile applications.

• Froude number

Fr =
centripetal force

gravitational force
=
mv2/l

mg
=
v2

gl
(2.2)

A dimensionless number comparing inertia and gravitational forces. Initially it is
used in hydrodynamic systems to compare objects of different sizes. In case of gait
patterns where walking is modelled as inverted pendulum it is defined as ratio of
centripetal force to gravitational force. Alexander [2] used Froude numbers to rate
general movement capabilities of different animals.

• Mechanical cost of transport
Required work to move the mass of creatures a certain distance.
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• Metabolic cost of transport
Amount of metabolic energy used to move one unit mass of the creature one unit of
distance

• Speed

v = lim
∆t→0

x(t+ ∆t)− x(t)

∆t
=
dx

dt
(2.3)

High speed means much higher energy consumption. Natural creatures choose high
speed for hunting or for running away from a predator. To save energy most animals
do not move with high speed if they do not need to.

• Stability
Creatures that move very slowly are possibly very economical with their energy. But
they have a lack in stability which can only be compensated by the choice of a good
gait. A lack in stability can be regarded as consequence of missing stabilizing forces.
In freely rolling wheels, these forces prevent from overturning when rolling with
appropriate speeds. Generally creatures are in stable poses when the projection of
their center of gravity lies within a plane created by at least three supporting points
of contact with the ground.

• Stride
One stride is a complete cycle of movement.

– Stride length is the distance moved in a single stride.

– Stride frequency describes the number of strides taken in one unit of time.

2.2.2 Optimization

Locomotion modes of creatures always represent trade-offs. It is impossible to have the
lowest energy consumption possible while moving at highest speed. Depending on desired
results there are several optimal set-ups with different focus:

• highest speed

• largest acceleration

• best energy saving

• best stability

• best efficiency

• most smooth locomotion

Before an optimization can be started it has to be chosen carefully among these or similar
set-ups from the list above to produce results according to the resulting needs.

Evolution in nature does not create best imaginable structures for single special purposes,
but it optimizes existing properties by refining following generations. Not only the design
of the physical structure but also the control of propulsive body parts determines efficiency
of locomotion. In this way muscle actuation patterns affect the amount of consumed energy
and the resulting speed of movements.
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2.2.3 Gaits

Gaits are timing sequences for lifting legs and placing them on the ground. Each creature
needs distinct gaits for different purposes. An energy saving movement pattern should be
used in normal situations if it is desirable to move from A to B without any constraints
like moving as fast as possible. There are movement patterns that provide best propulsion
rate, others that are energy saving and some for special purposes e.g. with best stability
conditions for difficult terrain.
In general, gaits can be understood as solutions for optimization problems. These op-
timization problems can be formulated as a desired movement, e.g. to move fast and
statically stable from A to B. For real world application it is not important to get the
best solution, but to reach the goal position B. Each creature needs a set of gaits to move
according to its needed applications. Adapting to irregular terrain, escaping very fast
from predators or hunting while moving as silent as possible are tasks in nature that need
proper gaits.
Kinematically gaits can be differentiated by their duty factors. Generally gates with duty
factors bigger than 0.5 are described as walks, while smaller duty factors represent runs.
Proper usage of different gaits requires smooth gait transitions. Switching from one to
another gait needs to be fast and must conserve stable states. Often there are some stages
in motion where stability criteria are not fulfilled when switching to another gait.

2.3 Principles of crawling

In the following, some simple models of crawling are described. They are useful to under-
stand principles of creeping motion and to do some rough estimates on energy costs.

2.3.1 Two-anchor crawling

A very simple model for crawling is described by Alexander [2]. It uses an artificial animal
that is able to lengthen and shorten its body. Protrusion is created by applying force to
the ground that is bigger than the frictional force in the opposite direction of travel and
smaller than the frictional force in direction of travel. In figure 2.2 A the side with contact
to the ground has bristles. These are directed to a position that allows the creature to
propulse itself without slipping back. To move forward it stretches to the front and after
that it shortens its body without sliding back at the front part.
Shortening and lengthening by λ in one cycle means, that the movement has the stride
length λ. The mass of the animal is m and the gravitational acceleration g. The coefficient
of friction with the ground while moving forward is called µforward and for sliding backward
µback. The coefficient of friction for backward sliding is larger because of the bristles. If
not it could not move forward, because no propulsion in desired direction of travel can be
generated. The animals weight is mg and leads to the frictional force resisting its forward
motion µforward ·mg. In each stride work of µforward ·mgλ has to be done. The mechanical
cost of transport T is the work per unit mass and per unit distance.

Tfriction = µforwardg. (2.4)
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Figure 2.2: Two different illustrations of the principle of two-anchor crawling. (A)
Shows an elastic body that creates static friction against the direction of travel with
the help of directed bristols. A(i) represents the beginning of one cycle of movement
where the creature is resting. Stage (ii) shows the creature in stretched state. The
directed bristols on the downside allow the creature to prolong forward without slip-
ping backwards. (iii) Now the creature has already shortened its body again. Again
the bristols prevent slippage. In (iv) again lengthening of the body occurs. (B) Shows
a body with three segments and elastic connections in between that is able to move
forward or backward without additional mechanisms. (Alexander [2])

But this works only at low speeds. Repeated acceleration and stopping means producing
and losing the kinetic energy. While moving fast a lot of energy gets wasted in stopping
the animals body.
Small modifications of the artificial creature lead to a three-segment crawler, shown on
figure 2.2 B, with a kind of springs between the three segments for shortening and enlarging
the body. While this creature moves with constant velocity v the segment in the middle
moves with velocity v too. But the first and last part are stationary half the time so they
have to move with 2v for the other half. The amount of kinetic energy that is gained
and lost in each stride λ is 1

2

(
2m
3

)
(2v)2 = 4mv2

3 . Now inertial cost of transport can be
calculated.

Tinertia =
4v2

3λ
. (2.5)

At high speed the inertial cost is higher than the frictional cost and at low speed it is the
other way round. Both are equal in case of v2

λg = 0.75µforward.
v2

λg is a Froude number.
Maggots crawl in a similar way advancing 0.15-0.25 body lengths per stride.

2.3.2 Crawling by peristalsis

Another technique of crawling is comparable to movements of an earthworm. Segments of
soft-bodied creatures are shortening and lengthening repetitively. Waves travel backwards
along the body. Each segment moves forward during the phase of lengthening and remains
in place when shortening. Segments that are directly behind the last lengthening segment
are prevented from sliding back. By doing this segments in front of the shortening parts
can be pushed forward. In the same way the segments behind the shortening parts are
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2 Principles of Creeping Motion

pulled forward.
The coefficients of friction while sliding are called µforward and µback. The fraction of
segments moving forward at any time is denoted with q. To provide protrusion frictional
force ((1−q)mgµback), preventing shortening segments from sliding back has to be greater
than frictional force of elongating segments (qmgµforward). That means:

q <
µback

µback + µforward
(2.6)

When locomotion is performed slowly enough, inertial forces can be neglected. Frictional
cost of transport is similar to the two-anchor crawling model (Equation 2.1) described
above.

Tinertia =
v2

2q2λ
(2.7)

The frictional and inertial cost of transport are equal when the Froude number based on
stride length, v2

λg , equals 2µforward · q2.

2.3.3 Serpentine crawling

Snakes move with the help of bending waves. These waves are travelling backward along
the body to push the animal forward. A rough simplification of crawling snakes in figure
2.3 shows the body of a snake in zigzag. To denote the frictional coefficient with the

Figure 2.3: Illustration of the principle of serpentine movement. Maximum bending
angle φ and stride length λ determine frictional and inertial forces in serpentine
movement. (Alexander [2])

ground µaxial is used for moving along the body axis and µtransverse for moving sideways.
After dividing the body into segments, each of mass δm, we can distinct resulting forces
δmg · µaxial and δmg · µtransverse. Both are involved in creating propulsion of the whole
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body with respect to the ground. To move along the body axis the forward component of
the available transverse frictional force must exceed the backward component of the axial
frictional force.

µtransverse · sinφ > µaxial · cosφ (2.8)

tanφ >
µaxial

µtransverse

Stride length λ equals wavelength of body-waves. To travel distances of λ, snakes have to
slide λ

cosφ in zigzag path. In a single stride frictional forces from ground and snakes’ body

can be calculated by evaluating µaxial·mgλ
cosφ .

Crawling at speed of v means that each segment slides with speed v
cosφ at angles of about

±φ in direction of travel. Velocity has a transverse component ±v tanφ. Each time
a segment yaws to the other direction this transverse component is lost and regained
afterwards. Kinetic energy, calculated by 1

2δmv
2 tan2 φ, gets lost and has to be recreated

when moving goes on. This means for each stride that this happens two times for each
segment. Inertial work for the whole body can be calculated by evaluating mv2 tan2 φ.
The frictional cost of transport

Tfriction =
µaxial · g

cosφ
. (2.9)

The inertial cost of transport

Tinertia =
v2tan2φ

λ
. (2.10)

At high speed inertial cost is much larger than frictional cost. At low speed frictional cost
grows and becomes much more important in contrast to the inertial cost of transport.

2.3.4 Summary of crawling methods

In this section three different simplified models of creeping motion have been introduced.
They are all very useful for establishing first estimations of requirements for efficient
locomotion techniques of limbless robots. Dynamic calculation of forces is needed to work
on efficient locomotion patterns and to implement functions that rate these patterns (see
chapter 3.4.2)
From the kinematics point of view we need friction to generate propulsion. But frictional
forces in the opposite direction of travel must be greater than friction in direction of travel.
Otherwise no locomotion at all or locomotion in the wrong direction will occur. The faster
creatures move the more inertial forces are of importance and the more frictional forces
can be neglected. Smooth movement patterns using smooth state transitions can be very
energy efficient because they tend to maintain kinetic energy. It seems that the general key
to fast and energy efficient locomotion techniques is to create smooth movement patterns.
Several real animals demonstrate us how this can be done while maintaining high degrees
of stability. Snakes, caterpillars and worms all use smooth locomotion modes. Though
energy efficiency varies among different gaits of these creatures.

11



2 Principles of Creeping Motion

2.4 Caterpillar

Caterpillars make maximum use of the power that is available from real-time muscle
contraction. Even if they move slow in comparison to adult insects they show off amazing
locomotion capabilities in unstructured terrain and climbing tasks. The way how they
move is not the most energy efficient way but it is not easy to outperform the simplicity
and stability of their locomotion. That is the reason why it suits so well to modular robotic
tasks. This section summarizes research of analysis of real caterpillar locomotion .

2.4.1 Caterpillar’s gaits

Generally caterpillars are able to perform different gaits for locomotion. The next para-
graphs describe three main gaits, shown in figure 2.4. Depending on current circumstances
caterpillars choose one of these gaits.

Forward moving

Forward movement is performed by using the principle of two-anchor crawling as described
in section 2.3.1, but with three anchors. Anchors of the artificial model can be assigned to
true legs on body segments 1-3, prolegs on segments 6-9 and the clasper on segment 13 of
figure 2.4. Locomotion is produced by waves of contraction of animal’s body, followed by
relaxation that runs along the body from tail to head. These body waves are capable of
producing propulsion with the help of travelling waves. A travelling wave lets each segment
be raised from the ground one after the other. After segments are stretched forward into
their neighbours, they are lowered back to the ground. At least three segments are moving
at all times. Brackenbury [8] observed that each foot is airborne for only 35% of a stride
to maximize stability.

Retreating

From kinematics point of view the gait retreating is comparable to moving forward. It is
used in case of threats by predators and produces very fast waves in reverse that arch up
the whole body. Then no leg has contact to ground except claspers at terminal segment.
Claspers work as an anchor until the relaxation phase of body waves lower the legs to
ground. If the relaxation reaches claspers they detach at current position and reattach
further back (Brackenbury [8]). Technically this movement is a kind of reverse gallop.

Backward roll

The third gait, displayed in figure 2.4, is the backward roll. Caterpillars use it as an
escape strategy. It is the fastest gait of caterpillars but it is hard to control the direction of
movement very precisely. Movement is produced through bringing the body in an unstable
position that results in rolling. This gait uses the same muscles as normal movement but
much more quickly to produce the needed kinetic energy. It is used as an escape strategy,

12



2.4 Caterpillar

Figure 2.4: Caterpillar’s movement: left: forward movement ; middle: retreating ;
right: rolling (Brackenbury [8])

not for general locomotion. It works on flat terrain with up to five revolutions at a speed
of about 39± 3.6 cms . In contrast to that the forward moving gait reaches only 10 mm

s .

2.4.2 Some differences in real caterpillars

Comparisons of different caterpillars show that there are quite big differences in properties
of locomotion patterns. In table 2.1 some differences in averages of kinematic properties
of four different caterpillars are summarized.

Gipsy moth caterpillars crawl much more slowly than adult insects of similar mass, and
take much shorter strides. Casey [9] describes that they are able only to speed up to 0.03
m
s . Stride lengths up to 0.008 m were recorded. Metabolic cost of transport is very high.
In comparison to running arthropods of same mass it is 4.5 times higher.
In case of Pleuroptya caterpillar speed, stride frequency and stride length are 1.0 ±
0.2 cms , 1.7 ± 0.2Hz and 0.6cm during normal forward walking. Like most caterpillars
Pleuroptya uses a single locomotory wave. But there is another, called Tyria jacobaea,
that generates about 1.32 simultaneous waves (Brackenbury [8]). Its duty factor is 66,5%
at a stride frequency of 2.9Hz.
Berrigan and Pepin [6] studied crawling of larvae of dipteran fly. Larvae of masses 0.5-220
mg crawl at speeds of 0.7-10 mm

s with stride frequencies of 0.6-2.8 Hz. In comparison to
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adult insects of similar mass ,which typically reach speeds of 70-100 mm
s with stride fre-

quencies of 10 Hz, this is quite slow. Berrigan and Pepin [6] measured oxygen consumption
of dipteran larvae to calculate the metabolic cost of transport. It was ten times as high as
assumed for running adult insects of same mass. From the point of energy efficiency this
result is very poor.

Cucullia Cacoecimorpha Pleuroptya Tyria
verbasci pronubana ruralis jacobaea

Body length [cm] 1.2 1.7 2.4 2.6
Stride frequency [s−1] 2.0 ± 0.2 2.6 ± 0.3 1.7 ± 0.2 1.8 ± 0.3
Stride length [% body length] 0.26 ± 0.07 0.24 ± 0.06 0.25 ± 0.04 0.16 ± 0.02
Speed

[
cm
s

]
0.62 1.06 1.02 0.75

Proleg stride duration [ms]1 620 360 450
Proleg stride duration [ms]2 200
Proleg stride duration [ms]3 140

Proleg airtime in segment 6 [ms] 620 240 240
Proleg airtime in segment 7 [ms] 300 210 200
Proleg airtime in segment 8 [ms] 180 270 240
Proleg airtime in segment 9 [ms] 60 240 220

∅ Number of prolegs-in-the-air4 1.87 2.67 1.96
∅ Number of prolegs-in-the-air5 1.38 1.58 1.26

Table 2.1: Comparison of caterpillar kinematics parameters in forward walking of
four different caterpillars. These values can be used to adjust locomotion patterns
for artificial creatures according to real animal dynamics. (Gans [20], Brackenbury
[8, 7], Belanger and Trimmer [4], Trimmer and Issberner [50])

2.4.3 Proleg movement

Prolegs of caterpillars, shown in figure 2.5 at Abd3-Abd6 are very important to avoid
falling or rolling sideways while traversing small branches. For animals with cylindrical
bodies it is very difficult to move horizontally without overturning. But both legs of
one pair of prolegs are very close to each other, which prohibits walking stable on those
legs. That is the reason caterpillars have strong gripping systems, allowing to move in
any orientation on different substrates. Unfortunately gripping the ground in this way
coincides with the loss of kinetic energy.

Role of prolegs in forward walking

In caterpillar kinematics prolegs play the most important role because they are the ele-
ments of caterpillars’ body that exert forces to the ground. They move in a passive way

1while forward walking
2while reverse walking
3while reverse gallop
4while proleg stride
5in a whole stride
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because they are connected to the bodysegments. One pair is placed at each of the seg-
ments 6-9 shown at figure 2.4 or at Abd3-6 in figure 2.5. Thus movements of segment
cause movements of pairs of prolegs. Each pair of prolegs moves in phase. To provide
enough friction with the ground that prevents from slippage prolegs use a passive grasping
system. Gripping is performed by a kind of suckers. By bending segments of the body
prolegs are lifted from the ground and later placed, a bit further in direction of movement,
back on the ground again (Belanger and Trimmer [4]).

Figure 2.5: Physiology of Manduca sexta Larvae. Prolegs at Abd3 to Abd6 and the
terminal proleg (TP) at the last segment build the locomotory system. While the
terminal proleg uses active grasping to anchor the body of the caterpillar all other
prolegs use passive attachment for locomotion. (Trimmer and Issberner [50])

In forward walking of Cucullia verbasci for a short time no proleg has contact to the
ground just before before half of each stride is reached. At this point terminal prolegs1

have to anchor to prevent backward-slippage. After that, when caterpillars start placing
the prolegs back to the ground (from back to forth), the head is lifted from ground. Body
segments stretch in direction of travel and one proleg after the other in reverse order
reaches the ground again.
Another forward walking pattern is used by Pleuroptya ruralis. In the beginning of one
movement cycle the terminal proleg anchors, then prolegs are lifted from back to forth
to be placed a bit further in the direction of movement. After half of the stride all
segments having prolegs are lifted to carry the current body wave to the head that lifts
last. Because of the smaller amplitude of the body wave the length of the steps is shorter
than in locomotion of Cucullia verbasci. Durations of single strides of the proleg movement
are close to be only half-length in comparison to Cucullia verbasci. This results in much
higher speed. Each pair of prolegs is nearly the same time off the ground and phase
differences between neighbouring segments are nearly the same.
Tyria jacobeae performs quite stable walking. At any time at least one proleg is placed on
the ground. Only ≈ 1.96 pairs of prolegs are in the air during the stride of the prolegs.
Locomotion is generated by 1.32 body-waves. This is the upper limit that fulfils the
stability condition. Overlapping of two body-waves occur by movements of head and tail
that are partially simultaneous with the movement of prolegs.

1Terminal proleg (TP) is shown in 2.5 at back end of the caterpillar.
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Physiology and proleg kinematics of Manduca sexta larvae

Trimmer and Issberner [50] clearly separate crawling of caterpillars from that of worms
or molluscs. Series of steps taken by caterpillars are comparable to walking or running
animals with stiff skeletons. They found out that the compression and extension of each
segment are similar to harmonic oscillations in a spring. Some part of these movements
were caused by folding the body wall between segments. Without fixed joints, soft-bodied
animals are able to move in ways that are difficult for articulated creatures (Trimmer and
Issberner [50]) or even artificial animals. Caterpillar locomotion uses hydrostatics and
abdominal appendages (prolegs). Crawling can be regarded as directed two-sided from
back to stomach wavelike bending (bilateral anterograde dorsoventral undulations) with
at least two pairs of prolegs in continuous contact with the substrate. In this description
terminal prolegs (TP) are included. It is necessary that at least two of five pairs of
prolegs are grabbing substrate at any time to provide stability. Having a look at the duty
factor induces walking gaits instead of running gaits in caterpillar locomotion. It is not
possible to cycle the whole body between kinetic and gravitational potential energy as
running animals do. But it seems that a mechanism to store and recover elastic energy
exists. Unlike worms, caterpillars do not have circular muscles and there are no septa
dividing the hemocoel. Trimmer and Issberner [50] suggested that caterpillars power
their movements through longitudinal shortening rather than constriction and elongation
used by worms.
Each segment contains about 70 distinct muscles, each controlled by one or occasionally
two motoneurons without inhibitory motor units. Thus, most movements can be con-
trolled by only few hundred motoneurons. The abdomen makes 75% of Manduca’s body
and provides principal means of locomotion. Abd3 to Abd6 are very similar and each
have one pair of appendages (prolegs) that grip passively and can be actively unhooked
and retracted. The terminal segment (TS) has one pair of specialized appendages, called
terminal prolegs (TPs), with different muscles and innervation than normal abdominal
prolegs feature.

Trimmer and Issberner [50] tried to describe the energy exchange in Manduca. Figure 2.5
shows necessary components needed to calculate relevant forces. Dy is associated with
gravitational potential energy :

Ep = Mgh, (2.11)

Vx and Vy determine kinetic energy :

Ek =
MV 2

2
and (2.12)

Elastic potential energy2:

Es =
Kx2

2
(2.13)

In Manduca each segment can be described as a spring, moving along x-axis with Es
proportional to Lx, the range of the spring-like segment3. Movements of each body segment

2K is a spring constant
3This does not mean that a spring is a physical structure in Manduca, but that there is something that

behaves spring-like.
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can be regarded as a spring that is itself moving forward periodically. Hence differences
in velocity between neighbouring segment borders provide simplified measures of spring
properties of current segments.

Thoracic legs, in the first three segments directly after the head of caterpillars, are only
used to steady anterior segments and are not involved in generating the propulsion itself.
So kinematic analysis concentrates on abdominal segments. As shown in figure 2.6 each
step in proleg-bearing segments consists of two phases, stance phase and swing phase.
During stance phase prolegs are attached to substrate by cuticular hooks (crochets). In

Figure 2.6: Swing and stance phase of Manduca sexta Larvae. (A) Different stages
of swing and stance phases of the terminal proleg. Differences in motion of underside
and backside of the skin, which occurs in alternating order, can be determined. (B)
In contrast to the terminal prolegs common prolegs show different behaviour that
can be described as folding and stretching movement of concertinas. (Trimmer and
Issberner [50])

swing phase crochets were unhooked from substrate, raised and moved forward.
About three segments are in different stages of the swing phase at any time. Onset of
swing phase in Abd3 coincides with onset of stance phase in Abd6. Average crawling
velocity is 0.28 ± 0.03 cms . Average step period for prolegs in Abd4 is 2.91 ± 0.09s. Duty
factor of prolegs in Abd4 is 0.53 ± 0.025 meanwhile duty factor in swing phase is 0.223.
But terminal prolegs (TP), with a duty factor of 0.41 ± 0.029, show off very short swing
phases of about 0.003. In midbody segments the waves of vertical displacement move
forward with phase differences of 30 − 35◦ (about 0.24 to 0.29s) between each of direct
neighbour segments Abd6 to Abd3 (Figure 2.7).

For each segment maximum shortening corresponds approximately to peak velocity in
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2 Principles of Creeping Motion

Figure 2.7: Phase Lag of Manduca sexta Larvae between neighbouring segments.
(A) Displacement in centimeters of reference points representing body segments ver-
sus time in seconds is shown. Similarities but with little time shift can be seen.
(B) Correlation coefficients of movements of segments with sinusoidal curves is quite
strong and justify the usage of sinusoidal curves in locomotion generation of artifi-
cial creatures. (C) Average phase lags between neighbouring segments are described.
(Trimmer and Issberner [50])

the middle of proleg swing phases. Changes in Lx were approximately in phase (within
11◦) and negatively correlated with Vx. Resulting variations in length could involve body
wall deformation and folding of the intersegmental membrane. Moving segments collapse
leading edges into next anterior segments. This was confirmed by slow motion video. The
main difference of the movement of the TP and midbody prolegs is, that in stance phase
terminal segments continue moving. To achieve this, TPs rotate about 30◦. In swing phase
TPs rotate in direction against rotation in stance phase to produce cyclic behaviour. Duty
factor of midbody prolegs is typical for walking gaits. But changes in vertical displacement
and horizontal velocity are in phase like in case of running animals. This kind of motion
agrees with interchange of kinetic and potential energy through storage and release of
elastic energy.
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2.5 Snake

2.4.4 Attaching to the ground

Caterpillars use special passive attachment systems providing stability while walking and
climbing in arbitrary orientations. Figure 2.8 shows them in detail. There are crochets

Figure 2.8: Attachment system of caterpillars. Left: Crochets at the 5-th hind end
of manduca [31]; Center: Bottom-view of prolegs with cremaster; Right: Crochets of
the 4-th abdominal segment attached on a silk pad [43].

at the tip of each proleg. These can be engaged or disengaged during crawling to grip
substrate. In horizontal movement it prevents from rolling sideways. For creatures with
cylindrical bodies this is very important to maintain stability when in locomotion. With
left and right legs positioned near by near these creatures are at risk while moving e.g.
on a horizontal branch to fall down. Attachment is so strong that crochets tear from
prolegs before they loosen from substrate. Disengaging is caused by retractor muscles.
prolegs are operated directly by a small number of motoneurons (one or two for each of
the six proleg muscles). Sensory hairs (planta hairs) near the distal tip of the leg cause
prolegs to retract. Muscles that are mainly used for retraction are the principal planta
retractor muscle (PPRM) and the accessory planta retractor muscle (APRM). Belanger
and Trimmer [5] have discovered that activity of these muscles is extremely stereotyped.
Retraction of planta causes crochets to disengage from the substrate, while contact by
planta with substrate causes them to hook into the surface. Prolegs have no extensor-
muscles and are operated via combination of hydrostatic pressure and activity of intrinsic
muscles. In mode of crawling prolegs work as claspers and the abdominal parts build
locomotors.

2.5 Snake

Snakes offer amazing locomotion and climbing techniques. The black mamba, the fastest
snake in the world, reaches speeds up to 20 km

h . This is quite impressive for a limbless
animal and its’ size. Even without any attachment system, snakes are marvellous climbers.
They have a wide range of sensor- and force-feedbacked locomotion modes to overcome
obstacles in elegant ways. The following sections describe the physiology of snakes and
one of their simplest ways to generate propulsion, the rectilinear movement.
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2 Principles of Creeping Motion

2.5.1 Physiology of snakes

Snake locomotion differs from that of invertebrates. As shown in figure 2.9 their physiol-
ogy is different to that of worms and caterpillars. Indeed they have similar shape. The

Figure 2.9: Anatomy of snakes. Backbone of snakes with position most important
muscles and tendons with respect to enumeration of vertebrae is shown. Semispinalis
(SP) and longissimus dorsi (LD) are very important muscles for locomotion of snakes.
(Jayne [33])

main difference lies in rigid body skeletons, divided by vertebrae, which allows distinction
between single segments easily. The number of vertebrae ranges from about 160 to 400 de-
pending on the species. The size of snakes differs by species as well. Neighboured vertebrae
are interconnected through muscles and tendons. Boid and colubroid snakes show differ-
ent patterns of muscle interconnections. There is a major dichotomy in arrangement of
muscles of primitive (boid) versus advanced (colubroid) snakes. Colubroids have different
muscles according to their specialization for locomotion or constriction. Main differences
are caused by different interconnection patterns of tendons between semispinalis (SP) and
longissimus dorsi (LD) (see figure 2.9). Another difference is the number of vertebrae
spanned by axial muscle segments and the relative proportion of tendon to contractile
tissue within single muscles. Most snakes are able to switch their locomotion modes in
response to resistive forces generated by interaction of snakes’ bodies and current sub-
strates. For snakes it is possible to use more than one locomotion mode at the same time
at different body sections.

2.5.2 Rectilinear movement

From the control point of view, one of the easiest locomotion techniques of big snakes
is rectilinear movement. It is quite similar to locomotion of caterpillars but with lower
amplitudes. Rectilinear movement can be described as lateral bending of elongated body
of snakes in a vertical plane. Locomotion is produced through rib movements and forms
straight lines. Ribs are used to lift and to move forward successive sections of the ventral
body surface as shown in figure 2.10. Travelling waves are passed posteriorly through the
body while ribs are used almost like legs. There are cyclically anchoring parts of the skin
at the ground using scales. By pushing the backbone forward and finally releasing the
scales snakes are able to move forward [38, 20].
This technique is often used by big snakes, like boids. It is the slowest locomotion mode

20
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Figure 2.10: Principle of rectilinear movement. Rectilinear movement is based on
coordinated shortening, lifting, lengthening and lowering of the skin at the downside
of snakes’ body. (Gans [20])

offered by snakes. Thus, the amount of frictional forces is much higher than the inertial
component. Snakes utilize this gait to move in a straight line over the ground. In combina-
tion with fixed lateral bending in horizontal plane it is also possible to move along desired
paths. Several bunching and fixation sites operate simultaneously to achieve continuous
movement of the axial mass as the skin cycles. The middle of the back moves at constant
rate.

2.6 Conclusion - Locomotion capabilities of caterpillars and snakes

Evolution attempts to improve physical and neural structures of certain kinds of creatures
to guarantee the possibility of surviving generations. That does not mean that it creates
generally perfect designs. This is not possible because every next step in evolution is based
on past stages that can only be improved. So there is the need to examine what different
creatures can perform extraordinary well and not to forget the backgrounds of evolution
of these animals.

2.6.1 Habitats and domains of caterpillars and snakes

A dominating part of caterpillar’s life is moving to places providing shelter and food. In
fact they need to be capable of traversing unstructured and rough terrain with different
properties of friction. Supported by kinematically effective and stable locomotion mecha-
nisms, caterpillars are able to grow until they pupate and change their outer appearance.
Caterpillars need escape strategies to get away from predators. Climbing is very needful
for the caterpillar to reach leaves of plants to hide under their surface. To fulfil the require-
ments of a caterpillars life it uses an effective mechanism to attach to the ground. Like
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2 Principles of Creeping Motion

that it enables the caterpillar to climb up food plants and to pupate. To move kinemat-
ically stable, caterpillars not only use well designed locomotion patterns but also benefit
from attachment systems, located at the end of the prolegs, for grasping the ground in a
passive way.

Indeed, snakes live in polymorphic environments. Typical environments are trees, moun-
tains, water, desert, forest, caves and today there are also ruins, that snakes inhabit. In
most cases it is irregular and difficult to traverse. Often there are small gaps, e.g. between
a bunch of stones and rocks, large distances between branches in a tree. Additionally,
snakes are limbless animals comparable to an articulated chain of hyper-redundant mod-
ules. They have to hunt and hide to survive. Snakes generate propulsion with the help
of different gaits depending on the current situation. All gaits underlie the principle that
a moving body propulses when generated forces in the opposite direction of travel are
higher than friction in the moving direction. That also means that snakes try to produce
high friction in the opposite direction of travel to be able to move. In general, snakes use
travelling waves to produce rhythmic locomotion comparable to caterpillar movement or
utilize force feedback to traverse narrow tunnels or to climb.

2.6.2 Summary of animal kinematics

To increase speed caterpillars increase the stride frequency. But in caterpillar movement
it is not possible to increase the stride frequency beyond the speed limitation of muscular
contractions or the segments will not have enough time to complete their cycle. In this
case it would result in arching up the body, which leads to increased instability. Increasing
stride length is another technique for increasing speed. But there is also a limitation,
depending on leg length and maximum bending angle of the body. In case of caterpillars
it means, that there are maximum bending angles between two neighbouring segments.
When formulating caterpillar locomotion with the help of travelling waves this property
can be described as amplitude. In forward walking proleg movement is limited, especially
by stability conditions and physical properties of the body. Further improvements in
efficiency of the movement can be done by manipulation of the duty factor. That means
how many pairs of feet are simultaneously on the ground during a whole stride. A higher
duty factor equals more contact with the ground, higher energy consumption because of
the friction and slower movement, but more stable walking. It is good to find a duty
factor as small as possible to increase the energy efficiency. But choosing too big duty
factors would reduce the stability much. In mathematical models, describing this kind of
locomotion, it can be denoted as phase-difference between neighbouring segments.

To save energy it is reasonable to use very smooth actuation patterns to make use of ki-
netic energy. Cucullia verbasci moves very inefficiently. One stride consists of arching up
the body, after that follows a short break and finally a stretching of the body in direction
of travel. This results in very high cost of energy.
In comparison with animals having jointed stiff skeletons, from the kinematics point of
view, caterpillars move not very efficiently. Their benefit lies in simple kinematic control.
It seems that the locomotion is not influenced by sensory feedback from interaction with
the ground. Caterpillar locomotion shows no significant differences in kinematics concern-
ing the orientation. Strong attachment systems are needed to realize this. Caterpillars’
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prolegs need to be unhooked actively, while gripping the substrate works in a passive way.
The final issue that affects speed, stability and energy consumption is the length of the
body wave in contrast to the length of the body. It is determined by phase difference
between neighbouring segments. To produce very smooth patterns of movement, phase
differences between two neighbouring segments should be the same because normally each
segment has same muscles. Equation 2.14 can be used to calculate the number of body
waves. The equation uses degrees to calculate the result. Phase difference multiplied with
the number of segments (M) results in the current number of body waves (k).

k =
∆φ×M

360
(2.14)

Habib [24] describes that two body waves, in vertical-plane applied to a body with at
least five segments, lead to stable movement. In this case the COG is at the same height
all the time. Regarding only proleg movement there are three modules that can simulate
four pair of prolegs, corresponding to the mid body segments. This mean, without having
a terminal proleg the number of complete waves needs to be smaller than two. This
can be achieved by smaller upper limits in phase difference. Alexander [2] points out
that worms are too small and too slow to get influenced by inertia significantly. Because
of the similarity in mass this should count for caterpillars, too. Building an artificial
caterpillar that is much heavier than a real one implies to take inertia into account. In
most efficient locomotion of caterpillars the head moves almost continuously as a result of
the hydraulic pressure inside the body. Because of the high duty factor of the prolegs in
caterpillar locomotion it is not possible to produce momentum to save energy. Instead each
body segment must be accelerated from rest again, when the next body wave occurs. In
comparison to stride lengths of vertebrates and insects of similar mass with solid skeletons,
the stride length of caterpillars movements is only 25 to 30%. Even if the locomotion is
low in energy efficiency, it provides a lot of advantages in traversing unstructured and
rough environments, especially if combined with attachment systems.

In comparison to other chain-like animals with hydrostatic skeletons snakes move much
faster. Despite of differences in size, stoutness, proportion of body length to number of
vertebrae and proportion of body to tail length there are similarities in waveform and tim-
ing of muscle activities relative to vertebral flexion. Increased recruitment of muscles can
compensate the increased number of body segments that needs to be used for locomotion.
Rectilinear movement is very slow but useful to traverse some obstacles like small gaps or
holes.

2.7 Summary

This chapter summarized theoretical foundations from animal research. Important terms
of animal kinematics were explained in order to enable the design of efficient locomotion
patterns for modular robots. Not only for designing new algorithms, but also for rating
existing methods insights from this chapter are useful. The next chapter presents famous
modular robots that benefit from principles of animal locomotion, applies knowledge from
the previous chapter to modular robot kinematics and describes methods to generate and
optimize similar locomotion patterns.
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Locomotion of Modular Robots

3
The first section of this chapter introduces modular robots in chain-like configuration and
describes famous modular robots from their first occurrence to the current state-of-the-
art. At the end of the first section the simulated robots, used in experiments (described
in section 6) of this work, are described. Section 3.2 presents a summary of important
principles regarding the kinematics of modular robots. In section 3.3 common methods
to generate locomotion patterns for modular robots are explained. Methods to optimize
these locomotion patterns are presented in section 3.4. These optimization methods are
integrated into the proposed system and were used in the experiments (described in chapter
6). Section 3.5 summarizes related work. The chapter ends with a summary of modular
robot locomotion.

3.1 Modular robots

Inspired by amazing locomotion capabilities of worms, caterpillars and snakes, research
of modular robots became popular since the 1980s. Very often the idea was to build up
robots based on modules having all the same base structure. For certain tasks one single
module is useless, but the combination of many of them creates structures that are able
to fulfil these tasks.

3.1.1 Classification

Using different combinations of joints and elements that exert forces to the ground locomo-
tion can be generated in many ways. Hirose and Yamada [27][29][30] present a classification
of different kinds of chainlike modular robots.

1. active bending joint type

2. active bending and elongating joint type

3. active bending joint and active wheel type

4. passive bending joint and active wheel type

5. active bending joint and active crawler type

The way the locomotion is generated determines its efficiency in certain environments.
This work focusses on the first category of limbless modular robots in chain-like configu-
rations using active bending by powered joints. In principle these robots consist of rigid
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links connected by 1-DOF rotating joints which are powered by servo motors. Joints in
these robots can be oriented as pitching- or yawing-joint. Using both orientations together,
modular robots can operate freely in three-dimensional environments. Some prototypes
used at our department are explained by Zhang et al. [56]. Control of the servos is per-
formed by micro-controller boards. More recent models used in our experiments have
blue-tooth and separate touch sensor modules to realize wireless and intelligent control.

3.1.2 Application

There are several applications of modular robots in industry, surveillance, research and
education. In industry they can be used in pipelines and sewers for tasks of inspection.
Whereas in surveillance they are useful to gather information in unstructured terrain like
collapsed buildings. In this way survivors can be found or useful knowledge about the
current state of disaster sites can be gathered. For research they are of special interest.
Biologically inspired control like CPGs (described later in section 3.3.2) can be studied
as well as locomotion techniques seen in real animals can be applied. Biologists can test
their hypothesises using robots and researchers related to robotics can use the results from
biologists to create control strategies. Because of possible low cost architecture modular
robots also suit very well as educational platform. Application of control algorithms can be
exercised as well as the design of electrical circuits and programming of micro-controllers.

3.1.3 From early beginning to state-of-the-art

Shigeo Hirose and his team developed different prototypes of modular robots. In the early
beginning, huge train-like machines shown in figure 3.1, like KORYU I (KR-I 1985-1992),
were built. With the help of manipulators mounted on the top of some modules, it was

Figure 3.1: KORYU I is one of the first modular robots which redundant structure.
By connecting several segments to a large chain it was able to climb stairs. In contrast
single modules fail in this task. (Hirose [28, 29], Hirose and Morishima [30])

designed to fulfil assisting tasks in industry. The redundant structure using wheels at each
module, provides the robot with the ability to overcome stairs. Indeed single modules were
not able to climb stairs but the combination of several modules in a chain was able to
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fulfil this task. Later, smaller robots were built. Some of them were able to imitate
the locomotion of limbless animals while others utilize artificial mechanism like wheels or
tracks.

ACM-R5 was presented at EXPO2005. It can be regarded as a snake-like robot and
provides several features for usage in special terrain. The housing offers dust sealing and
waterproofing to allow usage under any severe condition. It is composed of several rigid
modules with small passive wheels. In this way it allows the robot to move smoothly
on surfaces as well as swimming utilizing undulative movements in water. ACM-R5 is
designed for inspection and search operations in underwater environments.

Figure 3.2: ACM-R5H is an amphibious snake robot. Efficient locomotion on land
by using wheels is provided as well as swimming and diving in water. In both cases
locomotion is generated by wavelike motions of the body. (HiBot [26])

Five versions of Soryu robot have been build in the last 20 years. Soryu-4, shown in
middle of figure 3.3, is a modular robot developed to move in narrow and unstructured
environments. It consists of three dust- and water-proof modules covered with tracks.
These can adapt their posture, using special joints with high degrees-of-freedom, in order
to overcome obstacles such as stairs, etc.. Joints allow to rotate single modules along the
longitudinal axis to pass obstacles. Usage of different sensors and locomotion capabilities
makes it applicable to urban, industrial, outdoor or unstructured scenarios, like search
and rescue missions or remote inspection in potentially hazardous sites.

Figure 3.3: Series of Soryu robots consist of three modules driven by tracks. They are
designed for tasks in rough terrain. Single modules can be autonomously disconnected
or connected. These special joints are powerful enough to rotate or lift connected
modules. (HiBot [26])
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Johann Borenstein and his team created the four-inch1 Omnitread, OT-4, that weighs
around four kg and the eight-inch version, OT-8 with weight of nearly twelve kg. Joints
are actuated using pneumatic bellows which are powerful enough to lift half its body off
the ground. Propulsion is generated with the help of moving tracks at all sides of each
module. Thereby OT-4 provides enough flexibility to manoeuvre in difficult terrain. They
are intended to be used as inspector bots for hazardous environments.

Figure 3.4: Each joint of Omni-Tread 4 (OT-4) is actuated by four independent
pneumatic bellows. Locomotion is created by tracks. One of the design principles
was to maximize the area of the robot covered by tracks. [44]

The of the AmphiBot-project (Crespi et al. [14]) was to build a biologically inspired
amphibious snake-like (or eel/lamprey-like) robot. It is shown on figure 3.5. Goals were:

Figure 3.5: AmphiBot is based on hyper-redundant chain of identical modules but
has some special parts to increase its capabilities. There are four legs and a tail.
Inspired by salamanders this amphibious robot is designed to swim and crawl in a
robust way. (École polytechnique fédérale de Lausanne [57])

14 inch ≈ 10 cm
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1. Building an amphibious robot, inspired by snakes and elongate fishes such as lam-
preys, for outdoor robotics tasks.

2. Usage of the robot for testing novel types of adaptive controllers based on the concept
of central pattern generators2.

3. Usage of the robot to investigate hypotheses of how locomotion-controlling neural
networks are implemented in real animals.

M-TRAN is a homogeneous modular robotic system that consists of several modules of
the same structure that allow to be easily recombined, depending on the current task. In
2002 the second version of M-TRAN3 (M-TRAN II), described by Kamimura et al. [34],
was finished by Satoshi Murata and his team. The third version of MTRAN is shown
on figure 3.6. A benefit of this famous modular robot is the automatic reconfigurability

Figure 3.6: M-TRAN III is the third version of Modular Transformer. The limbless
body generates locomotion with the help of waves travelling along the robot’s body.
These waves are generated by CPGs. The property of autonomous reconfigurabil-
ity allows the robot to change its topology according to the needs to pass current
obstacles. (Kamimura et al. [34])

that is supported by its active connection system, which allows to connect or disconnect
several independent modules autonomously. By using cooperation between distributed
autonomous sub-systems independent modules it is possible to change its shape to fulfil
certain tasks like passing obstacles. The key concept was not only to create independent
modules of similar structure that are all capable of moving independently but also to let
them communicate and cooperate. Supported topological structures are chain and lattice.
Locomotion control is implemented using CPGs (described in section 3.3.2). Depending
on the current topology multi-legged walking as well as locomotion using body-waves can
be used.

The latest contribution of our group TAMS at the University of Hamburg is the climbing
caterpillar-like robot. Since van Griethuijsen and Trimmer [51] discovered that vertical
locomotion patterns do not significantly differ from locomotion in the horizontal plane,
similar methods for locomotion generation can be used for climbing. As part of the BICCA
project (described in chapter B.2) a robot has been developed that uses an attachment

2As described in section 3.3.2
3Modular-Transformer
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system based on the combination of passive suckers, high frequency vibrating motors and
release valves. As described by Chen et al. [11] vertical locomotion on smooth surfaces
like glass can be performed. This work extends previous research by Wang et al. [53].

Figure 3.7: Climbing caterpillar-like robot (Chen et al. [11])

3.1.4 Simulated robot models

Three different robot models, shown on figure 3.8 have been simulated. Depending on
purposes of current experiments an adequate robot was chosen.
The left robot in the figure is a commercial product for educational purpose. The company
robotechn intelligent technology created the Cubo Robot [47]. From the topological point
of view it is very flexible. It can easily be reassembled and reprogrammed to move in
different ways. By using small feet with rubber coating it is capable to produce enough
static friction to avoid slippage on the ground when moving on plain surfaces.
The robot model in the middle of figure 3.8 shows a simplification of modular robots that
are based on cubes. This very simple model has advantages in computing time. Because
of its geometric simplicity the collision engine needs only few simple calculations when
locomotion of the robot occurs. In this way it is ideal for testing new ideas.
The robot model at the right side of figure 3.8 is based on the robot Y1, described by
Zhang et al. [56]. The three-dimensional model of the modules is taken from the OpenMR
plug-in [22] for OpenRAVE. In addition this plug-in provides the system with a controller
to simulate real servos that where used by all introduced robot models. By using the Open
Dynamics Engine (ODE) physics plug-in in the OpenRAVE core, the simulation results
gathered by the proposed system are effected by the physical properties of the robot parts
like the shape of the chassis, mass and the controller’s capabilities itself. Properties of
controllers represent properties of real servos, like maximum speed, torque and angular
limitations. Simulating sensors enables to implement intelligent control algorithms. For
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achieving this, a touch-sensor plug-in has been developed as part of the proposed work.
In this way it is possible to perform simulations of modular robots being comparable to
real situations.

Figure 3.8: Three different robot models with similar structure were used in simula-
tions for this work. Left: A detailed model of CUBO robot, a commercial educational
robot platform (robotechn intelligent technology [47]) that can be reconfigured man-
ually in very short time. It shows very good locomotional capabilities with very few
slippage. Center: A very simple concept model of a modular robot is used for first
evaluations of new ideas. Because of its simple geometrical structure it keeps the
load generated by the physics engine on a very low level and reduces the time needed
for simulations. Right: Three-dimensional model of a prototype with tactile sensors
based on GZ-I (Zhang et al. [55], González-Gómez [22]).

These tactile sensors can be attached to any of the virtual robots introduced at the begin-
ning of the current subsection. In figure 3.8 the robot model in the middle and the right
one are prepared with touch sensors. Sensors are represented by red boxes on the lower
sides of the robots. By using these simple touch sensors robots have the advantage to
imitate the physical structure of the ground efficiently. By using the detailed robot model
on the right, the computational effort to calculate collisions with environmental objects is
very high and results in larger amount of time needed to finish simulations. Simulations
using simplified models like the model in the middle are much faster but they capture only
basic properties and do not take special designs of robot chassis into account.

3.2 Kinematics of modular robots

The key to let limbless modular robots travel in desired directions is to establish larger
frictional force in the direction opposite to the direction of travel. Then, these robots are
able to push themselves forward. Modular robots in chain-like configuration are able to
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perform different gaits even without legs or wheels just by using techniques of limbless
animals. Despite differences in body properties and sizes similar locomotion pattern as
observed in nature can be used if the scale is considered (Quillin [46]). Main principles of
locomotion of these robots are based on descriptions of animal locomotion, described in
chapter 2. A summary of kinematic analysis of modular robots in chain-like configuration
is given in the following.

3.2.1 Principles of modular robot locomotion

In limbless locomotion at least two points of contact with the ground are needed to move
relative to the ground. These locations are called supporting points. From analysis of the
kinematics by González-Gómez et al. [23], Zhang et al. [55] follows that the locomotion
is stable when the projection of the COG lies on a point within the parallel line of the
connection of the supporting points of the robot. This is the stability condition for chain-
like modular robots without strong gripping mechanisms.
To save energy, rules of inertia and friction can be considered to create energy efficient
locomotion patterns. Therefore the generated movement patterns should be as smooth as
possible.As described in chapter 2, slow movements do not allow momentum to be created,
but inertial forces can be neglected when locomotion takes place. The smoother the body
of the robot moves the more its inertia can be disregarded. In this case governing forces in
locomotion creation results from static friction with the ground. For light-weighted robots
this can be advantageously.

3.3 Locomotion generation

There are several strategies to generate locomotion. In general, smooth waves or fixed
patterns are used to generate motion of robotic chains. Another method to create efficient
locomotion that uses combination of fixed patterns is presented by Yamashina et al. [54]. A
database with possible transitions between different robot states is used there to generate
locomotion. The choice which transition should be applied is optimized by a reinforcement
learning method (q-learning). Creating locomotion by this is totally different to former
techniques. This work focusses on smooth waves created by generators that produce
periodic output. To create travelling waves, resulting from body waves of modular robots,
sinusoidal generators as well as CPGs can be used. Meanwhile sinusoidal generators exhibit
only similarities in the output signal in comparison to animal locomotion, CPGs also share
the principle how the output is generated. Both categories are described in the following
sections.

3.3.1 Sinusoidal generators

The usage of sinusoidal generators with the intention to generate locomotion of modular
robots is presented by González-Gómez et al. [23], Zhang et al. [55]. Equation 3.1 and
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table 3.1 are both taken from [23].

ϕi(t) = Ai sin

(
2π

Ti
t+ φi

)
+Oi, ∈ {1 . . .M} (3.1)

The use of sinusoidal curves is recommended for low computational power applications.
The output is cost efficient to calculate. Higher level parameters, as shown in table 3.1
allow to modulate the locomotion very easily. Recordings from real caterpillars in figure
2.7 on page 18 prove the usage of sine-shaped curves in animal locomotion. The distance

Symbols Descriptions Range

ϕi(t) Bending angle of module i [−90, 90] degrees

Ai Amplitude of generator i [0, 90]

Ti(t) Period of generator i Time units

φi(t) Phase of generator i (−180, 180]

Oi Offset of generator i [−90, 90]

M Number of modules of the robot M ≥ 2

Table 3.1: Parameters of sinusoidal generators. They can be used to modulate the
output of the sine function. Changing these parameters influence speed of travel,
energy efficiency, position of the COG and smoothness of the locomotion, step size
and stride frequency.

∆x travelled in one period along the x axis can easily be calculated with the help of
equation 3.2 described by González-Gómez et al. [23]. LT is the total length of the robot.
The number of complete waves is denoted as k and the wavelength as λ.

∆x =
LT
k
− λ (3.2)

This means that increasing the amplitude while maintaining the frequency results in larger
distance travelled in the same amount of time. This forces faster rotational speeds in the
robot joints and increases the height of the center of gravity of the robot. The frequency
correlates with the travelled distance per time in a direct way. It is limited by the maximum
rotational speed of engaged motors. The phase difference between neighboured modules
is the most important dynamic parameter. It determines the number of waves that will
be used by the robot. According to the stability condition, presented in section 3.2.1, the
phase is important to be well chosen.

3.3.2 Central pattern generators

The creation of rhythmic locomotion patterns as a result of neuroscience and robotics
can be carried out with CPGs. From the biologists point-of-view CPGs are organized
as coupled bursting elements. There is at least one unit per articulated body element.
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3 Locomotion of Modular Robots

Each unit can be divided further into oscillatory centres for flexor and extensor muscles.
As explained by Ijspeert [32] in nature CPGs find application in activities like chewing,
breathing and digesting as well as building blocks in locomotor neural circuits.
Inspired by neural circuits networks producing smooth regular curves, locomotion can be
created. Similar to sinusoidal generators (described in section 3.3.1) travelling waves are
generated by rhythmically actuating the joints of a robot. The amazing aspects are that
CPGs are able to produce rhythmic output signals without receiving rhythmic inputs and
have self-stabilizing abilities. Input from sensors is not needed for the process of creating
rhythmic patterns, but it is used to modulate the output. Locomotion generation can
benefit from simple sensory input by causing gait transitions in dependency from the
magnitude of the signal. Especially for maintaining movements coordinated sensory input
is used.

In robotics several CPG models were used to control swimming, walking and creeping
robots. Models integrating sensor feedback, turned out to be the most robust ones. Ijspeert
[32] present an overview about CPGs in locomotion control of animals and robots. De-
pending on researchers’ focus there are different categories of CPG designs. It determines
which components will be modelled.

• biophysical system

• connectionists’ model

• system of coupled oscillators

• neuromechanical simulation

CPG-nets can be created by connecting several oscillators. Important oscillators are the
half-center model, where two populations of neurons are mutually coupled with inhibitory
connections that use fatigue mechanisms. These fatigue mechanisms like leaky-integration
are used to create the dynamics in the system. Another famous building block is the
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2

Remotor
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Figure 3.9: CPG network according to push-pull model introduced by Herrero-
Carrón et al. [25]. Oscillators are composed of promoter and remotor neurons which
are interconnected by inhibitory synapses bidirectionally. Unidirectional inhibitory
and excitatory connections to next neighbours of promoters and remotors allow the
whole net to synchronize. In this way a strong self-stabilizing network of oscillators
is build that produces efficient locomotion patterns.
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3.3 Locomotion generation

matsuoka oscillator, described by Matsuoka [41]. To calculate the state of CPGs-networks
dynamically numerical integration is used to solve coupled differential equations.
Figure 3.9 shows a CPGs-net with a topology according to the push-pull model presented
by Herrero-Carrón et al. [25]. It consists of a chain of oscillators connected by excitatory
and inhibitory synapses. Each oscillator is composed by two different kinds of neurons,
promotor and remotor neurons. These are connected by inhibitory synapses. Inhibitory
synapses prohibit neurons, connected to them, to fire at the same time. Thus a very
stable and rhythmic behaviour is achieved. Synaptic connections between neighbouring
oscillators determine dynamic characteristics of the whole network.
Two other CPG models were successfully used by Li et al. [37, 36] to generate robust
locomotion patterns.

Advantages:

1. limit cycle behaviour → robustness against perturbations

2. well suited for distributed implementation

3. smooth transitions when modulation occurs → differential equations act as fil-
ters ⇒ avoids damage in motors

4. integration of sensor feedback as coupling terms in differential equations possible

5. well suited for learning and optimization algorithms

Disadvantages:

1. higher computational effort for calculation of neural networks

2. missing methodology for designing CPGs

3. no theoretical foundation

4. sometimes many control parameters with complex correlations

5. proves of stability are difficult

3.3.3 Adaptive actuation

In addition to algorithms producing driving, adaptive mechanisms, it can be used to change
the basic shape of the robot. Sensor feedback is needed to overcome obstacles and evade
objects blocking the direct way to a destination. Adaptive methods using sensor feedback
can be integrated into locomotion algorithms directly. Having a look into nature we can
examine that caterpillars react to stimuli on their head with a change in the current gait.
Brackenbury [7] analyses fast backward movement and concludes that it is a response to
stimuli. This kind of behaviour is produced by a CPG-based control system that integrates
sensor feedback directly like Kamimura et al. [34] present. But it is sometimes more easy
and flexible to extend existing systems with adaptive offset controllers. A sketch of this
approach is shown in figure 4.6.
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3 Locomotion of Modular Robots

Based on the topological control principle described in section 4.3.1, adaptive control
modules can be added to locomotion modules to improve the locomotion capabilities of
the current robot.

3.4 Optimization of locomotion

As described the proposed system can be used to implement arbitrary forms of locomotion.
The control architecture allows to combine several actuation modules into behaviours e.g.
fast crawling and adaptive crawling. After a behaviour has been created, the problem of
finding optimal parameters arises. In this chapter methods that are integrated into the
simulation system are described to find good solutions for certain sets of parameters. A
short introduction into some theory to analyse the complexity of the parameter optimiza-
tion problem is given. Then, after an introduction into the optimization methods itself,
set-ups are described as case studies that were optimized with the help of these algo-
rithms. In each experiment predefined sets of parameter values are going to be improved
to achieve efficient locomotion with different focuses. To make the results comparable the
same set-up of the environment is used to be optimized under different methods.

3.4.1 Analysis of parameter optimization problem

The concrete problem that has to be solved is composed of a chain of parameters deter-
mining the locomotional behaviour of a modular robot. Each parameter can be applied to
one value of its domain. To find adequate solutions and to compare results from different
optimization techniques an analysis of the solution space is necessary. Because of the high
order dimensionality (see equation 3.3) it is very difficult to analyse the problem. Defining
approximations of the distribution of the solutions of the problem is challenging because
the distribution of weighting functions, rating single solutions, are mostly non-linear.

Complexity

Depending on the formulated problem different degrees of complexity arise. The number
of parameters that are involved and the size of their domains determine the complexity of
formulated problems.

O(n) =
numOfParameters−1∏

n=0

|valueSetn|
∧
= an (3.3)

Runtime

The runtime of optimization processes depends on the complexity of the current problem
in combination with the number of evaluations needed by the optimization and in the
end, on the runtime of a single simulation round either. Finding an optimal or at least
good solution usually means repeating experiments until the convergence of the resulting
solution’s quality is given.
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3.4 Locomotion optimization

maxTime = complexity× time

performance
(3.4)

In equation 3.4 time means the amount of real time that needs to be simulated. This
can be the time given to overcome a certain obstacle. How much computing time it takes
to simulate this period depends on the performance of the system. Thus the resulting
time needed for finishing one simulation run can be calculated by taking into account
the performance factor of the current machine running the simulation. In this case the
performance is defined as fraction of realtime.

3.4.2 Description of optimization techniques

In selection of optimization methods it has to be considered that appropriate weighting
functions are normally non-linear. By choosing appropriate optimization techniques it
should be avoided to get stuck in local maxima of solution spaces. Heuristic methods
seem to perform very well in this case, although global search for good solutions should
be applied by selected optimization methods. For application it is not necessary to find
the best solution. One reason for this is caused by rounding error of physics engines.
Especially calculating frictional forces is highly complex and can not be done as accurate
as needed to perfectly match reality.

Genetic algorithms

Genetic algorithms (GAs) can be regarded as stochastic optimization methods. They
evolve one generation after the other meanwhile each generation is based on the previous
except the first one. Each generation holds a population of individuals where each indi-
vidual represents one complete solution of the formulated problem. After one individual
is evaluated it gets rated. The idea is to generate following populations based on the
fittest individuals of the previous one by using only simple combination and manipulation
methods shown in figure 3.10 and 3.11. Termination occurs when scores are converging,
a certain number of generations is evaluated or a predefined limit is reached by at least
one individual. GAs are recommended for optimization of CPGs by Ijspeert [32]. The
advantage is that even cost functions, which are neither continuous nor linear, can be
optimized in this way. Unfortunately, the runtime can be very large depending on the
characteristics of certain problems that need to be optimized and the configuration used
to adjust the GA as explained by Goldberg [21].

O(n) =

genomeSize−1∏
n=0

|alleleSetn|
∧
= an (3.5)

duration[sec] = numOfGenerations× populationSize× time

performance
(3.6)

It can be very useful to analyse the problem space before parameters defining character-
istics of the current GA instance are going to be adjusted. But in general evolutionary
algorithms produce good results if the cost of time is of less importance.
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Figure 3.10: The principle of genome operation crossover is to swap sequences of
genes between two genomes. Two genomes are necessary to perform this operation.

Figure 3.11: The genome operation mutation changes the values of a single gene or
a sequence of genes. Only one genome is needed for this operation.

Modified great deluge algorithm

As a representative of classical approaches to solve optimization problems the great deluge
algorithm (GD) has been implemented. The complexity of problems being solved by this
implementation can be calculated using the more general formulation using equation 3.3.
According to the problem space analysis in section 3.4.1 the algorithm was modified to
avoid to get stuck in local maxima. The idea of the classical GD algorithm is shown
in figure 3.12. Initially, the algorithm tries to find a solution that satisfies a very low
condition, called water-level. Every time a solution is found, it increases this condition
by a given amount, named rain. To find a proper candidate the algorithm searches in
the neighbourhood of the last accepted solution. The idea to overcome the problem of
local maximum is to use dynamically calculated neighbourhood definition. In this way the
radius of search is increased more and more the longer no proper solution is found after
a fixed number of retries. If no satisfying solution for current water-level is found, after a
fixed number of allowed tries evaluated, the algorithm stops. For further improvement the
algorithm offers itself several new chances when failing. This means after a fixed number
of fails it resets the search radius to initial state and proceeds as normal. These new tries
can be started by consuming credits. The algorithm terminates if after a certain number
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Figure 3.12: The principle of classical great deluge algorithm (GD): In each iteration
a candidate in the neighbourhood is selected randomly and evaluated. If the results
do not satisfy the current requirement (water-level) then the algorithm continues with
selection and evaluation of the next candidate. If a candidate is accepted the water-
level is raised before selecting the next. Termination occurs when a desired score is
reached or a certain number of unsuccessful iterations is reached.

of evaluations no candidate was accepted and no credit is left to reset search. If the
number of allowed retries per chance is reached, one credit is consumed and the number of
used retries is set to zero again. The number of used retries together with the confidence
parameter determines valid range of neighbourhood. Confidence of twenty means that
every twentieth simulation round when no valid candidate was found, the step-size used
to modulate current candidates is increased by itself. But after a valid neighbour that
satisfies the current condition of water-level is found, the number of retries is set to zero
again and in this way the step-size is set to its initial value again. Adjustments of initial
water-level, allowed number of retries, number of credits and confidence parameters define
the optimization behaviour and efficiency of this algorithm.
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Fitness function

Both optimization methods described above need fitness functions to rate their candidates.
To generate results that are applicable for different purposes, several fitness functions are
needed. After each evaluation the resulting state gets rated by one of them. To rate
results of experiments, that are part of this work, a very simple fitness function has been
implemented.

currentScore =
√

(xStart− xEnd)2 + (yStart− yEnd)2 (3.7)

It simply calculates distances between starting point and last position of currently used
robots. Fitness function 3.7 was intended to be used for producing results with largest dis-
placement in given time. Because of randomness, that is always part of collision checking
in physics engines, there is some inaccuracy. In repeated experiments with exactly same
settings, deviations around arithmetic average in results of the described fitness function
±0.15 metres were observed. Using the fitness function above results are governed by an
inaccuracy of ≈ 5 ∗ 10−5 each step taken by the simulation system. Depending on current
goals, any other fitness function can be used to obtain results with different focus from
simulations.

3.5 Related work

Many researchers invested much effort in pattern generation for locomotion of modular
robots. Often they use optimization methods and simulations to find insights for the
application of locomotion patterns to real robots. Marbach and Ijspeert [40] used GAs
in simulations of modular robots with different topologies to evolve efficient locomotion
patterns. In Habib [24, chap. 7] kinematic analysis of modular robot locomotion is done in
detail and the results are formulated to principles. These were tested in simulations with
the ODE (Smith [49]) physics engine. With the help of the simulations they were able
to record data in order to apply comparative analysis. Another work uses Q-Learning,
an unsupervised reinforcement learning technique, to select stepwise locomotion patterns
from a database of locomotion patterns (Yamashina et al. [54]). In this way locomotion is
not generated by a function, when needed, but predefined by stored sequences of selections
from a database of patterns. The robot itself has to generate transitions between applied
patterns from the database.
Kamimura et al. [34] created their own simulation software for optimization of locomotion
for their famous modular robot M-TRAN II. They integrated the model of the robot into
a 3d-library system and optimized the CPG-driven locomotion with the help of GAs.
A similar combination of hard- and software was done by Daidie et al. [16]. They created
an educational robot module that can be combined with others to create a modular robot
with hyper-redundant structure that is able to move. They included software to simulate
and program built robots.
All of them produced good results for their research but they all created systems for
special cases: their own research. There are other works on simulation systems that are
more general and not special purpose systems. Webots (Cyberbotics [15]) is a commercial
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software that uses ODE (Smith [49]). It is part of the Nao (Aldebaran [1]) development
kit for research and education. Webots is very general and has great capabilities in cre-
ation of complex environments like living rooms or buildings in general. They also have
examples regarding modular robots but there is no further support that would make the
development of locomotion patterns easier. Optimization methods are not integrated and
must be implemented by users, if needed.
OpenRAVE (Diankov [17], Diankov and Kuffner [18]) is an open-source software for plan-
ning, simulation and control of arbitrary robots (see chapter 5.1). It is widely used and
offers good support in case of questions and feature requests. It is a very general software,
but it is designed to be extended very easily. With the help of plug-ins the system can be
extended with many desired functions afterwards. González-Gómez [22] created a plug-in
for OpenRAVE that contains one modular robot model and a servo controller plug-in (see
chapter 5.1). The proposed work combines the flexibility of OpenRAVE by using plug-ins
like OpenMR and wraps it into a framework for modular robots. As described by Krupke
et al. [35] the proposed work tries to fill the gap between very general open simulation
systems and closed implementations of simulation software for specific modular robots.

3.6 Summary

This chapter introduced modular robotic locomotion to the reader. Famous prototypes
were presented and after an explanation of their kinematics, methods to generate bio-
inspired locomotion patterns like sinusoidal generators and CPGs are explained. In addi-
tion this chapter presented methods like GAs and the modified GD algoritrhm to improve
the locomotion. The presented methods of pattern generation and optimization are part
of the proposed work and are partially used later in the presented experiments in chapter
6. Section 3.5 summarized related work about generation and optimization of locomotion
patterns for modular robots and justifies the development of the proposed system. The
next chapter presents the proposed system that is used in the experiments (see chapter 6)
to optimize locomotion patterns of simulated modular robots in special situations.
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Simulation System Description

4
This chapter presents the proposed system for modular robot locomotion generation and
optimization. As a fully integrated system it offers also necessary components to create
configuration files for the robot, the sensors, the locomotion, the environment and the
optimization of control algorithms.
Section 4.1 and section 4.2 present the concept and structure of the system. The core
mechanisms are explained in section 4.3. In this section important concepts that make
the system that flexible as it is are clarified. Benefits in the usability result from two
different GUIs. Section 4.4 presents the configuration interface and section 4.5 presents
the control interface. They contain descriptions of their main functions and some hints
how to use them. In the end of this chapter a summary is given.

4.1 Introduction of the simulation system

The proposed modular robotic environment is intended to be easy to use, even for people
with only few knowledge about modular robots’ control. In this way its usage as an
educational tool is possible. Furthermore, it is designed to work as a framework in research
to investigate the robust generation of locomotion patterns for modular robots. New
locomotion methods can easily be implemented, evaluated and optimized. The user can
benefit from passed simulations by re-using already configured parts in next simulations.
This is very comfortable e.g. when comparing different robots in the same environment.

It allows fast creation of several robot configurations including sensor placement and def-
inition of the control behaviour. The behaviour is defined through the combination of
several algorithms which are applied to groups of joints. New control algorithms for lo-
comotion, adaptive behaviour using sensor feedback or additional special tasks can be
implemented with the help of the configuration user interface, any C++ development envi-
ronment or text editor. The integrated environment editor allows to create the workspace
of the robot which is needed to perform some experiments. Building environments can be
done by drag-and-drop from object library. Configurations are stored in XML format to
allow re-usage. In this way the configuration is not only human readable but also editable
by hand retroactively. The structure of the configuration files can be seen on figure 4.1.

The structure of simulations from the simulation core’s point of view is illustrated in
figure 4.2. In principle robots moving in specific environments need to be simulated. The
environment consists of several objects and its physics underlie some well defined laws.
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*.simulation.xml

*.robot.xml

*.sensor.xml *.actuation.xml

*.environment.xml

Simulation 
Properties

*.optimization.xml

Figure 4.1: Structure of configuration files. Simulation configuration files include
independent configured parts, like the robot or the environment. In this way compo-
nents can easily be exchanged or reused.

Robots interact with the environment following the present physical laws. Every robot
consist of rigid links, rotational joints and optional sensors. For generating locomotion
robots’ joints show off autonomous behaviour. All autonomously actuated joints together
can be regarded as locomotion system.

Simulation

Environment

Objects

Physics

Robot

Links

Joints

Sensors

Behaviour

Figure 4.2: Overview of simulations. In simulations arbitrary configured robots
interact with objects inside environments according to rules defined by the physics
engine. Part of robots are the visible parts of their body as well as their behaviour
and their sensing capabilities.

The Information given by the configuration files is enough to run a proper simulation
for the purpose of evaluation, demonstration or optimization. Once the simulation envi-
ronment is initialized it can be supervised or manipulated using the components of the
graphical control interface or by code. When running in command line mode only manip-
ulation by code is possible of course.
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4.2 Overview

Figure 4.3 shows the main components of the system with high granularity. There are two
different kinds of graphical user interfaces. Not only a configuration but also a control
GUI allow easy use of the system. A container object holds the simulation environment,
including the OpenRAVE (described in chapter 5.1) core itself, as well as the control
kernel, several data handlers and implementations of real robot control modules. Input
and output of configuration and data files is performed by special objects.
Using configuration GUI files all settings for one specific simulation can be written to
disk. Extracting information from these files provides the system with everything needed
to properly initialize the simulation container with all its objects.
The control GUI allows to supervise and manipulate the objects held by the simulation
container. A 3d viewer can be used to watch the simulated environment. It is also possible
to change the pose of single objects or to change the point of view.

Simulation Container

Data
Handlers

Control
Kernel

OpenRAVE

ODE Plugins Robots

Data I/O

GUI

ControlConfiguration

Figure 4.3: Main components of the system are the GUI and a simulation container.
The GUI is divided into two different parts, one for configuration and one for control.
In the container of the simulation the OpenRAVE-core is running as well as the
control-kernel that controls the robot and all data handling.

4.3 Core-system

The core is based on the simulation container object shown in figure 4.3. As an independent
unit it runs without the need of graphical components. But it is able to communicate
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with the control GUI optionally. It is bidirectional communication that allows not only
to represent the current status of the simulation in different ways using the GUI but also
the possibility to manipulate the simulation by actions of the user. The control kernel
holds all algorithms assigned to the current robot that actuates its joints. Data handlers
for each kind of data are able to catch every produced value and pass it to file writers
or to the GUI for visualization purposes. Information from the physics engine, robots,
environments and actuation modules can be handled properly by using these objects for
data handling. When needed, the data handlers can pass the data to the I/O component
for writing result files.

tsimulation = told + δ ∗ durationstep (4.1)

In addition there is a simulation clock that allows to make quantitative statements about
the simulation. The system implements continuous simulation and will be done step by
step. The simulation time of the current step is calculated by equation 4.1 where δ is the
sampling factor of the continuous simulation. The sampling factor is of high importance
for the accuracy of the physics engine and related parts of the system like OpenRAVE-
core, sensors and locomotion algorithms. To calculate the current simulation time, the
time needed to calculate the current step needs to be taken into account. This depends on
the simulation set up, can vary from step to step and is highly correlated with computer
system’s performance.
To allow slow-motion simulations delay µ has been added to equation 4.1.

tsimulation = told + δ ∗ durationstep + µ (4.2)

Using equation 4.2 simulation and control of real robots can be slowed down and system
load can be reduced by increasing the value of µ.

4.3.1 Control kernel

To configure the control of arbitrary robots in a very flexible way a control object has
been developed. Figure 4.4 shows a scheme of the control kernel that keeps all actuation
modules assigned to the current robot. The main purpose of the control kernel is to
generate the control signals for the joints of the robot. This works by summarizing the
output of every single actuation algorithm’s output joint-wise to one list of output signals.
It can also be used to modify any parameter of the algorithms by code or by GUI at
the runtime of the program. Depending on the chosen interface for implementation of
the actuation module it has access to sensors connected to the robot in addition. The
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Figure 4.4: The control kernel contains all algorithmic modules calculating new
desired positions for the joints of the robot. Several modules can easily be combined
by summarizing their output. Using this technique simple locomotion can be extended
with adaptive algorithms using sensor feedback.

integration of sensor feedback for adaptive algorithms is possible using this feature.

while running do
ReadSensors ();
for i← 0 to |ActuationModules| do

CalculateAngles ();
angles← AddAngles();

end
SetServos (angles);

end
Algorithm 1: Calculation of angular output

4.3.2 Data logging

All kind of data is managed by a group of data handlers as shown in figure 4.5. Information
from simulated environments1, simulated sensors, control kernel and real robots is gathered
and can be acquired by data file writer or control GUI. The file writer takes all unwritten
data and flushes it to an XML file. The control GUI can ask for specific data lines to
display them in the GUI directly.

For every different kind of data there is a specialized handler class. OpenRAVE envi-
ronments and robots are passing information like position of the robot, movement speed,
energy consumption and many more to their handler. For every actuation module in the
control kernel, one data handler for catching calculated values is assigned. In this way

1robot and environment in OpenRAVE
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Data
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Data File 
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Figure 4.5: Data management is performed by several handler objects. Calculated
data is appended to their buffers for live data observation and writing to files in a
separate thread.

every value taking part in changing the robots’ joint angles is buffered. For efficient re-
alization of this feature, the implementation of a circular buffer from the boost library is
used. One specialized handling object is used for real robots.

4.3.3 Simulation modes

By defining the simulation mode the behaviour of the simulation core is determined. For
example there are some experimental settings stored in a mode that has only one purpose:
to run a GA with a special configuration of robot and its actuation. But there are also
some configurable modes for locomotion optimization purposes. It is possible to start a
real robot control loop by selecting the right mode or for running the simulation loop in
the most simple way.

Single run simulation

The easiest way to perform a simulation is in single run mode. After starting, the simu-
lation will run until the user stops the program. It is useful for several purposes:

• evaluation of results

• interactive investigation of parameters

• testing new configurations
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• demonstrations

This mode simulates the robot within his environment, if defined, including the occurring
physical forces.

Real robot control

For the purpose of controlling real modular robots this mode has been created. If a library
for controlling a desired robot is available it can be wrapped to fit the system. In this case
the output of the control kernel, shown in figure 4.4 is used to actuate the joints of real
robots and virtual robots either. In addition information from the robot can be gathered
and send to the control kernel. Figure 4.6 explains how sensors are virtually connected to
the control kernel.

  Angles

 Servo Control Signals

Motor Controller

Control Kernel

Servo Motors

Actuation
Module 1

Actuation
Module m

Sensor 1

Sensor n

Sum

Figure 4.6: The control kernel with sensors in the big picture of the control system.
Actuation modules have access to sensors if needed. In this way sensor information
has influence on the angular output of the sum of control algorithms

If the GUI is used, a corresponding simulated robot is shown in the viewer. In this case
no environment is shown. The virtual robot can be used to display the desired movement
of the robot or to visualize the current state of the robot.
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Optimization modes

As one of the most important features offered by the proposed system optimization modes
are integrated. Part of this work is the implementation of unsupervised reinforcement
learning (modified GD algorithm) and the integration of a GA library (Wall [52]). Various
locomotion modes can be improved by finding good sets of parameters with the help of
these optimization methods. Given that every algorithm generating movement patterns
implies an optimization problem these methods can help to solve it. Implemented op-
timization methods can easily be configured with the help of the configuration interface
as described on page 56. Both modes are using an objective function to evaluate single
simulation runs. By repeating a limited number of simulation steps until a satisfying set
of values is found the locomotional behaviour of the current robot is refined according to
the expectations of the user.

During each simulation cycle the simulated environment can be supervised if the GUI is
used. But it is also possible to run the optimization as background process to achieve a
higher efficiency and to enable remote access from other machines. After each cycle results
are written to a file.

Optimization using genetic algorithms Here heuristic optimization is applied. It tries to
find good solutions for the formulated problem in a global way by using a fitness function.
After increasing the amount of time the probability to get stuck in a local minimum is
reduced. In GAs the problem consisting of a set of parameters will be formulated as
genome. The initial genome will be randomly manipulated using two main operations.

• mutation

• crossover

The algorithm will run for many generations each consisting of a population with a bunch
of individuals. Each individual represents one solution in terms of a genome. Termination
occurs when convergence of resulting scores, calculated by the fitness function, is reached.
This works according to the principle of survival of the fittest.

Optimization using modified great deluge algorithm After starting randomly with one
possible solution for the problem this solution gets refined slowly by searching for a good
neighbour. Every time a proper solution has been found the requirements for accepting a
solution increase. To avoid getting caught in local minima the search space increases with
the number of failed attempts to find a proper neighbour.

4.3.4 Online modulation of locomotion

The control kernel is designed to allow modulation of the locomotion procedures during
run-time. Between two simulation steps, values of the parameters defining the characteris-
tics of locomotion patterns can be changed. This is possible using the control GUI, by code
or by using a remote control. As described by Noeske et al. [42] e.g Nintendo’s WiiMote
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can be used as human robot interface (HRI). It works well as intuitive and easy-to-use
device for robot interaction. Using a remote controller device and the GUI high-level
remotes can be prototyped very easily.

4.4 Configuration GUI

According to the different requirements of users at different levels of knowledge there are
two graphical user interfaces for the task of configuration. One focuses on easy usability,
while the other gives more configuration possibilities to experienced users. In [35] the user
interface is explained more detailed.
The main function of the configuration interface is to assist users in generating configura-
tions to run the system. In the beginning a robot can be constructed or selected. Then
actuation modules can be implemented optionally that fulfil a specific task using the ac-
tuated joints of robots. After that, robots can be supported with a behaviour consisting
of one or more actuation modules. Environments with the function of workspaces for the
robots can be created in the next step. In the end global settings regarding the core system
can be made as well as the simulation mode. In case of optimization modes there is an
additional page for configuring how the optimization will be performed.

4.4.1 Beginner’s configuration wizard

The wizard guides the user step-by-step through the process of configuration. Some pages
are optional and can be ignored while others are obligatory and form a precondition
for valid configuration files. Using the wizard interface the user is guided through the
configuration task. File-names are generated automatically using timestamps and users
do not need to take care about this issue. Each page has some fields that needs to be filled
out to reach the next page. Many explanations and hints help users to finish the wizard.

4.4.2 Expert’s configuration dialog

The main advantage of this configuration interface is that it can be used to configure
single components of a simulation and to compose already configured parts to a complete
configuration. In this way e.g. existing environments or robots can be reused and do not
need to be defined again for another set up.

4.4.3 Robot construction

Figure 4.7 shows the page of the graphical user interface that can be used to construct a
robot. The upper left group allows to give a name to the robot, which will be used for the
robot configuration file name as well. The field to enter the name is mandatory to proceed
with the next step of the configuration: the orientation of the joints and the number of
joints2. With the help of the lower left group sensors can be configured and attached at

2Both together defines the topology of the robot.
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Figure 4.7: The wizard page for robot configuration is suggested to be used for easy
creation of a robot. Joint topology can be adjusted and sensors can be placed at
predefined places of the robot.

predefined places. Using the list widget in the upper right corner of this page it is also
possible to select and reuse an already existing robot configuration. In the lower right
part of the screen a preview of the current selection can be seen.

4.4.4 Creating new control algorithms

The first step to create a new control algorithm can be done within the wizard page shown
in figure 4.8. The upper part allows to give a name to the algorithm and to add parameters,
function and resulting values with desired names. The lower part shows a summary and
allows to edit the settings after double-clicking on an arbitrary entry.
After everything is successfully declared the new control algorithm module has to be
implemented using the wizard page shown in figure 4.9. In dependency to the previous
wizard page a C++-style header was generated and a implementation file was prepared.
The left view shows the header file that can be left as it is. The right view shows the
implementation of the header file. The user only needs to implement at least the function
that calculates the output angles for the joints of the robot. If the user is satisfied with his
settings he can click on the compile button to add the new control algorithm module to the
user-library of control algorithms. Both viewers support basic C++ syntax highlighting
capabilities to make it easier to work with.
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Figure 4.8: Actuation algorithm declaration allows to declare a new control algo-
rithm, to add some parameters and to apply initial values to them. In addition helping
functions can be added.

Generated header file

Implementation of the new algorithm

Compiles the content into a user's library

Figure 4.9: Actuation algorithm implementation is performed as second step. The
main function that calculates the angular output has to be implemented as well as all
helping functions. Then it gets compiled into the user library as a shared object file.
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4.4.5 Defining robot’s behaviour

Within this wizard page the user can assign a behaviour to the robot. There are two
possibilities. Simple actuation can be used which means that all of the robot’s joints will be
actuated from the same algorithmic module to produce locomotion. The alternative is to
use grouped actuation which allows more complicated combinations of different algorithms
within one robot according to the principle shown in figure 4.4.

Figure 4.10: Assigning actuation modules to groups of joints creates the behaviour
of a robot. Firstly, joints can be selected and grouped. Then one or more actuation
algorithms can be assigned to a group.

This make this work two concepts are used:

• grouping of joints

• assignments of algorithms to groups

Several groups can be built by selecting joints in the topological robot preview. At the
lower part of the current wizard page all groups that were built up are summarized. To
each of these groups one of the available control algorithm modules can be assigned using
the combo box. Each entry shows off a field with the active joints that are in this group.

4.4.6 Building environments

This wizard page enables the user to create an environment where the robot can operate.
This can be done without any knowledge of OpenRAVE-XML.
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At the left of figure 4.11 there a two graphic views. They are two-dimensional orthographic
projections of the scene. The upper frame shows the scene in a side-view while in the lower
frame the scene can be examined from the bird’s eye view. The two views are synchronized
and support zooming.

Figure 4.11: The environment editor can be used to create an environment by drag-
and-drop of objects from the scene object library and to place the current robot in
the environment. Objects can be manipulated and previewing is supported.

There is a library of objects that can be placed in the scene by drag-and-drop. The
representative object for the robot’s position is obligatory to place the robot at a reasonable
pose. Below the list of available objects there is a list of already created scene items. Each
object can be right-clicked to set its frictional coefficient3.
The editor allows manipulation of scene items in a limited way. Selected objects4 can be
moved by mouse dragging. It is also possible to rotate scene items in the xy-plane using
the manipulation frame. To rotate a selected object the ’rotate’ buttons can be used to
apply rotation with a fixed step size. Alternatively desired angles in degree can directly be
entered into the combo box. In addition scene items except the robot itself can be scaled
using the ’plus/minus’ buttons.
To inspect a preview of the current scene in a 3d-viewer the ’Show Preview’ check box
must be selected5.

3The frictional coefficient of the coulomb friction model is valid in the range of [0 1]
4Selection is performed by double-click.
5Due to its implementation this feature is very expensive in computing time. It is recommended to use it

only for short time to check the result of the creation and deactivate it again before additional changes
will be applied to the scene.
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4.4.7 Global simulation properties

The upper circle of figure 4.12 marks the simulation properties. Initial values regarding
the simulator’s core can be defined there. Most attention should be given to the simulation
mode. It will be explained in the next section

Global simulation properties

Summary of included 
configuration files

Figure 4.12: Global simulation properties needs to be adjusted using this wizard
page. The simulation mode as well as some accuracy options and properties of the
physics engine can be changed. At the bottom of the page there is a summary of
other included configuration files.

4.4.8 Simulation mode configuration

Each supported simulation mode described on page 48 can be configured. Especially the
learning methods offer many settings.

GAs – defining genomes

In figure 4.13 and 4.14 the necessary dialogues to configure a genetic algorithm with the
help of the GUI is shown. The upper part of the wizard page, shown in 4.13, is needed to
change the behaviour of the genetic algorithm that is going to be created.
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Figure 4.13: The first page of the GA configuration is needed to register parameters
that should be part of the genome used in the genetic algorithm. All parameters from
the current set of actuation algorithms assigned to the robot can be used.

Figure 4.14: After registering a parameter its properties have to be configured.
Especially the set of allowed values must be specified for efficient optimization.
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To register arbitrary control parameters of one of the actuation algorithms from the control
kernel, the second part of the parameter registration wizard page can be used. After one
of the currently assigned actuation modules is selected, one or more parameters of the
selected module can be registered to the configuration of the planned optimization run
of the system. For further adjustments, the dialogue shown in figure 4.14 needs to be
used. Each parameter added to the set that needs to be optimized can be changed in
configuration. At first it has to be defined if its value should be improved for all or only
selected joints and secondly if it should have the same value for each assigned joint. The
alternative is to set them individually. For each parameter it is possible to define valid
value spaces. Ranges can be defined or single values can be added to the set of valid
values. How optimization of actuation algorithms works in detail is explained in section
3.4.2.

4.5 Control GUI

The simulation and control system has to be initialized with the information stored in a

*.simulation.xml file. The simulation core as well as the GUI and the OpenRAVE
components are initialized in this way. The control GUI allows the user to interact with the
control/simulation core of the system. There is a tab widget containing several control
and observation pages. In figure 4.15 the tab bar can be seen. It is useful to switch

Tab bar

Control tool bar

Live observation 
tool bar

Figure 4.15: The main window of the control GUI enables users e.g. to supervise
control algorithms with the help of live plots and the simulated environment by using
the integrated coin3d viewer that is part of OpenRAVE.
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between the existing tabs of the main window. The live data observation tab has its own
toolbar and can be detached if needed. In addition there are several dialogue windows
for configuration purposes, like the actuation module properties dialogue and a remote
configuration dialogue.

4.5.1 Main window toolbar

The main toolbar shown in figure 4.16 offers some important basic information and di-
rect access to some useful functions of the system. Its components are numbered as the
following:

1 2 3 4 5
6 7

Figure 4.16: The main window toolbar provides users with knowledge about the
elapsed simulation and realtime. In addition simulations can be started, paused and
restarted. Systemload and accuracy can also be modified.

1. loads a configuration file

2. start-/pause- and restart-button

3. additional delay between two simulation steps

4. adjusts the simulation time in parts of real time or synchronizes the simulation time
to real time

5. changes the step size δ of the physics engine (unit is [µsec])

6. shows the simulation time and real time of the current simulation step

7. simple simulation step counter

The menu allows to hide this toolbar when necessary.

4.5.2 Live data observation

The active tab of the main window, shown in figure 4.15 allows to observe current data
of the robot, its sensors or the control algorithm(s) used by the robot. As known by
system monitors, this tab allows to display a kind of live plots on the screen. Using the
widget shown in figure 4.17 the user can combine any desired data lines for observation
into one group. With the help of the check-boxes of the different tabs within the plot
selector, which represent joints or modules, single data lines can be selected. Clicking the
’Add Plots’ button will create an element to display the selected graphs. For each control
algorithm, sensor type and the robot itself there is a tab that contains check-boxes. A
push on the ’Delete’ button will remove the latest plot widget.
According to the desired re-plotting rate the graphs will be refreshed. This tab offers his
own toolbar to apply some important settings. In this way when simulations are running
in GUI mode it is possible to display current values of interest. For this purpose a sliding
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Figure 4.17: Live plots are selected by using this widget of the main window. For
each available category graphs can be selected and combined to live-views as shown
in figure 4.15.

1 2 3 4 5

Figure 4.18: By using the live plot toolbar the characteristics of the visualization
of data are changed. Performance is influenced by changing the refresh rate and
sampling rate.

window of variable size is defined. To display live views the sliding window is moved to
the end of each data line of interest every time the painting device gets refreshed. The
live plot toolbar, shown in figure 4.18 has the following components:

1. If ’Auto Plot’ is enabled, the plots will be repainted according to the refreshing rate.

2. Refreshing rate determines after how many new values the plots will be refreshed.

3. Sampling determines how many calculated values will be left out for plotting purpose.

4. Zoom adjusts how many values will be displayed at the same time.

5. The ’Distortion Frame’ check-box shows or hides a widget to apply a constant dis-
tortion to any of the control algorithms.
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4.5.3 Environment viewer

The environment viewer, shown in figure 4.19, is based on Coin3d. It is part of OpenRAVE
and has been fully integrated into the GUI of the proposed system. It allows to manipulate
the poses of all objects. In addition there are three wheels at the lower border of the
viewer for changing the camera properties. Zooming and rotating the camera is possible.
At the right edge of the viewer a small control panel is placed to change between camera
perspective adjustments and object’s pose manipulation mode. The other icon buttons
are of lesser importance6.

OpenRAVE viewer's
control panel

Speed of COG of 
the first module

Viewer zoom wheel

Rotation of the scene 
around the vertical axis

Rotation around
the x-axis

Position of COG
of the first module

Figure 4.19: The environment viewer is based on the OpenRAVE viewer that has
been integrated into the control GUI. OpenRAVE uses the Coin3d viewer for visual-
ization of environments. To provide some additional useful information several GUI
elements have been added that show the current position of the selected robot in the
environment and its smoothed speed based on displacement.

4.5.4 Real robot control

This tab needs to be reimplemented for each new real robot because of the different features
of arbitrary modular robots.It allows to monitor the real sensors and other information
read from the robot device. It is also possible to send commands to the robot using
components of this wizard page.

4.5.5 Control algorithm properties

The dialogue shown in figure 4.20 allows to manipulate the values of all control parameters
used by the robot’s control algorithms on line, while the system is running. It allows to

6Detailed information can be taken from the documentation of Coin3d.
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explore the effects of control parameter modulation in an interactive way. For each algo-
rithm it offers an own tab containing all registered control parameters. Each algorithms’
parameters can be adjusted in two different ways. They can be changed uniformly where
every assigned joint will be calculated using the same parameter value or in an individ-
ual way using different values for each joint. The individual method allows to apply non
uniform amplitudes. As explained by Chang and Chen [10] modular robots’ actuation
algorithms can benefit from variable amplitudes during locomotion. The usage of variable
bending rates in animals’ locomotion has been observed with real animals as well.
If the value of a certain parameter changes, e.g. by code, the current value in the dialogue
will change as well. Core and GUI are synchronized by timers. When necessary the control
algorithms can be reset to initial state by pressing the ’Reset’ button.

(a) Normal property dialogue (b) Extended property dialogue

Figure 4.20: To change parameter values of arbitrary control algorithms online these
properties dialogues are used. The simple dialogue changes the values instantly for
each regarding joint in a uniform way. In contrast the advanced dialogue allows to
change the values individually for each joint. When optimizing actuation algorithms’
parameters with enabled GUI these dialogues can also be used to watch the current
values.

4.5.6 Data file processing

At all times data files can be stored to a drive containing all calculated values of the
current simulation. To inspect and process these files, the data file inspection tab from
figure 4.21 can be used. First of all a data file needs to be loaded. After that the tab will
be initialized with meta information about the contained data. Then, a data line needs
to be assigned to the x-axis using the combo box that is intended for this purpose. For
the x-axis the value count or one of the offered time stamp systems should be used by
default. Then, any of the desired data series for the y-axis can be selected. It is possible
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vertical scaling

horizonztal scaling capture plot window
content to png

exports plots to 
plain text file

removes all grapohs

list of all graphs

adds the current 
selection to the 
list of graphs 
and draws it 

data line 
selection

axis selection

current 
file

opens file dialog

Figure 4.21: Data inspection tab helps to analyse data from files of passed simulation
steps. After selecting a data file meta information is extracted about the content of
this file and can further be selected for displaying or exporting. A nice feature is to
capture directly screenshots of currently plotted data or to select desired plots for
export to tab separated files.

to select only specific joints or to use them all by checking the parent node of the desired
type. Clicking ’Add Graph’ will cause the displaying widget to draw the composed graphs
on the screen. An entry into the list of graphs will also be created for each curve. The
visualization can be scaled in x- and y-direction with the help of two sliders on top and on
the left side of the plot widget. It is also possible to zoom into a region of the widget, by
clicking at the desired place and then, after releasing the mouse button again, moving it
to another place and clicking again. With this kind of rubber band selection any rectangle
can be used to zoom into. A right click causes to go back to the normal view. To capture
the current content of the plot window the button named ’Save png’ can be used. A
useful feature is the capability to export the current selection of data into a plain text file
that can be further processed with another tool like Matlab or gnuplot. This can be done
simply by clicking the button labelled with ’Export’.

4.5.7 Definition of a high level remote control

With the GUI a connection to a remote control can be established. Currently, there is
implementation of the remote interface (see section 5.4) for Nintendo’s Wiimote. The

63
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Wiimote is widely used in human robot and human computer interaction [13, 48, 39, 3,
45, 12]. In this case bluetooth is used for communication. After the connection has been
successfully established, the remote control can be configured. The GUI allows to assign
arbitrary control parameters to the elements of the Wiimote that can be used for the
purpose of control. Reasonable values for the stepsize that determines the ratio of the
change of parameters with respect to the values read from the remote hardware can be
applied. In this way several parameters can be bound to each element of the Wiimote
using different scales for modulation. Noeske et al. [42] describe this in more detail.

Figure 4.22: Using the remote configuration dialogue it is possible to select and
configure a remote according to the selected set of actuation algorithms. Remotes
are available in a library that can be extended. The concept is to bind manipulation
of one or more parameter values to available hardware elements of a certain remote.
This is useful for testing and evaluation of results and new ideas.

Figure 4.22 shows an example of a configuration. According to the capabilities of the
current remote7 and its implementation, hardware elements of the remote can be used
to change parameters’ values in order to manipulate the movement of the robot. In
the example, the fusion of gyroscopes and accelerometers is selected. Pitching of the
Wiimote will result in increasing or decreasing the amplitude of the applied travelling
waves. Meanwhile rolling will change the offsets of the yawing joints in order to steer the
robot to the left and to the right. Yawing can be used to manipulate the frequency of the
travelling waves for accelerating or decelerating the robot. This scheme can be applied to
arbitrary algorithms actuating joints.

7Sensors and buttons can be used.
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4.6 Summary

This chapter gave extensive descriptions of the functions of the proposed system. Benefits
from the GUIs make it easy-to-use and the concepts of the core system allow efficient
re-use of parts of previous work. It was explained that it is general enough to fit the
needs of future demands. But as described the system is also suitable for people who
are not very familiar with modular robotic locomotion. As explained no further tools are
needed because everything necessary is already integrated. The next chapter gives deep
insights into the implementation of the system and focuses on the library-based approach
that allows to extend the system at runtime without recompiling the whole software. It
is explained how these mechanisms are implemented.

65



4 Simulation System Description

66



Implementational Details

5
The proposed simulation system has been implemented using C++, Qt and some libraries
enumerated in section 5.1. This chapter presents details of the implementation of impor-
tant components.
Descriptions about integrated software and libraries is given at first. Second, the most
important concepts allowing a high degree of flexibility and extendibility are explained.
The idea and abstract interface of actuation modules (see 5.2) is explained. It is followed
by the introduction of a robot hardware control wrapper interface (see 5.3) and a remote
control base interface (see 5.4). Finally some file formats (see 5.5) used for configurations
and results are introduced.

5.1 Integrated software, libraries and plug-ins

To build a powerful system many components have been integrated into the modular
robotic simulation system. By doing this, the focus of this work was placed on modular
robotic locomotion design, evaluation and optimization.

OpenRAVE

The Open Robotics Automation Virtual Environment (Diankov [17]) is a robotic simu-
lation and control environment with focus on kinematic and geometric information. The
structure of this open-source system is very flexible and allows users to write plug-ins and
to use arbitrary robots. It features 3D-viewer, physics engine and a small runtime-core
that can easily be integrated into other systems. Robots and their environments can be
defined using XML files. Using one of many base interfaces of OpenRAVE, developers ex-
tend the system as needed with new sensors, robot parts, XML readers, inverse kinematics
modules, planners and many more.

ODE

The Open Dynamics Engine (Smith [49]) is used by OpenRAVE to simulate rigid body
dynamics when robots are interacting with environmental objects. It is widely used in
robotic simulation software1 and many video games. It allows collision detection with

1E.g. Cyberbotics’ Webots [15] uses ODE in simulation environments.
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friction. Based on friction, shifting of modular robots is produced. Therefore, ODE is the
most important part of the software because it holds basic principles of creeping modular
robots’ locomotion.
In addition ODE defines several joint types and allows to map real joints to simulated
ones very closely.

OpenMR

Figure 5.1: Concept of simulated servo controllers of the OpenRAVE-plugin
OpenMR. As level 1 controllers several algorithms as actuation modules described
on page 70 have been implemented. (González-Gómez [22])

With the OpenRAVE plug-in OpenMR González-Gómez [22] implemented a servo con-
troller, shown in figure 5.1, that internally has a proportional controller. Angles in degree
can be sent as a command to instances of this controller, that will change the state of
the assigned joint according to the dynamical properties of the controller. Within a robot
definition file that OpenRAVE can read, this controller can be assigned to the joints of the
robot. Together with its joints this controller imitates servo motors. In addition González-
Gómez [22] included a 3d-model of modular robot prototype, used in the research at the
University of Madrid and the University of Hamburg. Both have been used in the exper-
iments the 3d-model and the controller. Using the OpenRAVE XML format or collada
XML format arbitrary robots can be used in the same way.

Tactile sensor plug-in

The used sensors do all implement the Sensor-Base-Interface of OpenRAVE and can be
regarded as OpenRAVE plug-ins. This allows to use any sensor provided by OpenRAVE
or developed by any institution for the use with OpenRAVE. To access the sensor data,
special sensor data handlers were implemented for the simulator which can access the data
and are able to reprocess the gathered data. That means the number of available sensor
types depends on the existence of a matching data handler. These handlers can provide
algorithms that actuate the joints with sensor information. They are also necessary to
get the data for storing and plotting purpose. Using an abstract base class for these data
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handlers, new handlers can be implemented easily.
The implementation of tactile sensors, used in this work, produces tactile data, according
to OpenRAVE’s sensor architecture. Collisions within the physics engine are used to
determine contact of tactile sensors with any obstacle. Tactile-data objects can contain
information about direction and amount of occurring forces. In case of the proposed work
the implementation of tactile sensors uses debounced collision information and neglects
amounts of occurring forces. Each sensor has only two different states. Like a simple
button it can be pressed or not.

Qt

Qt is a cross-platform application and GUI framework for C++-developers. Graphical
user interface elements allow to create powerful, flexible and nice looking applications.
Each GUI consists of combinations of widgets that communicate with the signal-and-slot-
principle. These signals and slots can be used for asynchronous communication with other
non-GUI components. Using this principle and many other non-GUI classes provided by
Qt C++ is extended widely. The proposed simulation system uses many features, data
types and classes offered by Qt.

Qwt

With the help of Qt Widgets for Technical Applications series of data can be plotted on
the screen nicely. In the GUI this library is used to display static plots of data as well
as live-data from the currently running simulation or control of robots. As known by
window-based CPU-load tools data can be plotted directly after it has been created in an
efficient way.

Boost

Boost is a collection of C++ libraries containing many implementations of container-classes,
data types and concepts. These libraries can be characterised as very stable and efficient.
Several implementations of e.g. circular buffer and thread are used in the simulation
system.

GAlib

The C++ Library of Genetic Algorithm Components (Wall [52]) contains a set of C++
genetic algorithm objects that can be used to produce solutions to custom optimization
problems. The library allows to change all properties that are of importance to create
efficient genetic algorithms in order to produce good results in an efficient and reasonable
way. In the proposed system it is used to optimize parameters of actuation modules based
on results from simulation.
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5.2 Actuation module library

All available actuation algorithms are compiled into shared libraries to make the system
extendible and modular. There is a standard library with some basic algorithms that can
be used to define the behaviour of robots and one user library that can be further extended.
Because the system was created using Linux these are share object files2. The idea is to
enable users to create their own algorithms for actuating joints of several modular robot
configurations. Without recompiling the whole system it is possible to add new actuation
modules. This makes the system suitable for projects and workshops with hard time
restrictions.
Figure 5.2 shows actuation modules from users point of view. It is a system receiving
commands to generate desired angles for the joints of the robot. These angles will be
converted by controllers into motor control signals. How angles are computed is chosen by
users who implement the module. To fulfil this task users can define parameters changing
the behaviour of the module. Parameters allow subsequent modulation of the output.
The function computing the angular output can use helping functions, defined by the user
himself. In this way the function calculating angles can be structured easily. The third
component is a storage for intermediate results. Every calculated value of interest can be
stored in a matrix. Every value gets stored in one XML data file if needed.

 Clock

 Angle

CPG - Blackbox

Angle Calculation

Values

Parameters

Functions

Figure 5.2: Each control algorithm that calculates angular positions of joints fol-
lows the concept of the actuation module blackbox. After receiving the command
to calculate the next step angular output is generated. The function that produces
the output uses previously in the implementation defined parameters, function and
intermediate data.

2The filename extension is so. Using windows these libraries are called dynamic link library (*.dll)
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5.2.1 Abstract base interfaces

To implement new algorithmic modules that generate input signals for the servo controller
there are three different interfaces as shown in 5.3. Each interface provides modules im-
plementing it with different properties. ActuationModule is the most basic interface.
The code is part of the appendix A.1. It allows to implement modules for manipulation
of joints in general. It offers on-line modulation of parameters, values can be logged and
displayed in plotting windows at runtime. Classes implementing optimization methods are
able to change the values of current parameters. For future purposes of parallel evaluation
of different set-ups they offer a cloning function. With the implementation of CloneSelf,
a cloning function, this interface follows the design of OpenRAVE3.

ActuationModule

PatternGenerator SensingModule

Figure 5.3: The abstract base class of actuation modules is inherited by two different
interfaces. In this way users have three different possibilities to extend the control
algorithm library. As pattern generators algorithms can be regarded that calculate
periodic output. Sensing modules allow to access sensor data and to use them for
calculation of the output. Implementing actuation modules give most freedom to
users’ decisions but also excludes some useful functions like calculation of frequency
of periodic signals.

As PatternGenerator can be regarded everything that produces periodic signals com-
parable to a sinusoidal curve. Using this interface provides the user automatically with
information like the calculated phase difference between neighbouring modules as well as
the frequency. At the beginning or on reset the module’s storage gets initialized with
Gaussian white noise, which is often an important starting condition for CPGs. Another
feature provided by this interface is the possibility to add distortion to one or more entries
in the storage. Robustness and behaviour in case of drop out can be investigated. For
deeper insights the reader is suggested to have a look at the appendix A.2.
The SensingModule interface allows use of sensor data from sensors that are attached
to the virtual or real robots’ body. Each algorithm, inheriting from this base interface,
is provided with an instance of a sensor data handling object for each attached sensor
type to access the latest and preprocessed sensor data. The code of the interface is in the
appendix A.3.

3Every component of an OpenRAVE environment can be cloned either.
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5.2.2 Creating new algorithms

Arbitrary control algorithms can be integrated into the system if they were implemented
using one of the base interfaces. This can be done by using any text-based editor or with
the help of the control GUI of the proposed system. When using any editor the user
must assure to compile it correctly as a shared library that can be integrated into the
system. The control GUI offers mechanisms to automatically generate the largest part
of the code and handles the compilation into the user-library of actuation algorithms. In
principle every control algorithm follows the structure shown in figure 5.2. The task of a
control module is to produce angular positions of at least one joint. Every time it gets
the command to calculate the output, it uses a top-level function to produce it. Then
the output can be used by controllers to actuate joints. Within each of these control
algorithms this function must be implemented. This function can use other assisting
functions, their intermediate results and some parameters to calculate a solution as an
output of the module, described in section 5.2.

5.2.3 Implementation using software design patterns

Dynamic class loading of classes with self-registering types was the key to provide compu-
tational efficiency and flexibility. Instances of dynamically loaded classes can be created
using a factory. Users are allowed to create their own algorithmic modules having access
to the joints of the robot at runtime and without recompiling the whole system.

In the standard UNIX/POSIX architecture there is C-header dlfcn.h that contains C-
functions to use shared libraries. We use the functions from this header file to load shared
object files (*.so) containing modules that can actuate the joints of the robot. When
opening a shared library, symbols can be exported and used to extend our program. The
classes defined in a shared library must export symbols that can be used to create instances
themselves. For this purpose each class gets a static function maker that creates a new
instance of the class and returns a pointer to the type of its abstract base class. Adding
this function and its name as a key to a globally defined map, builds the factory. The
map will be exported when the library gets opened by the dlopen-function of the dlfcn.h.
In [19] the principle of a factory is described. After adding a proxy-class that registers the
maker -function of the current class with the name of the class in the factory, instances of
dynamically loaded classes can be created.
After opening a shared object file of this kind, each class defined in the library will have an
entry in the factory containing the name of the type and a pointer to the maker function.
That’s all we need to work with these classes. How to create an object with the help of
the factory is shown in the following example:

1 ActuationModule∗ newCPG = cpgFactory ["MTRAN" ] ( 5 ) ;

This creates an object that represents a CPG of a type called MTRAN for five connected
joints. ’MTRAN’ is the class name and ’5’ the parameter of the constructor.

The system is equipped with a standard library that contains some algorithms for joint
actuation of the robot. For example these can be locomotion algorithms to move the
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robot. Users can extend the number of available algorithms by creating a user library.
The configuration interface allows to extend the user library of joint control algorithms
in a very easy way. A new module has to be defined according to figure 5.2. After that
the function(s) must be implemented and compiled into the extended user library. If
the software is properly installed the user does not need any knowledge about compiling
libraries. A closed solution is offered without the need of any additional text-editor. There
is a simple editor integrated in the configuration interface. It features very simple syntax
highlighting for C++ and this should be enough to implement one or more functions. After
a new algorithm class is added it remains in the user library for future usage.

5.3 Real robot control interface

To control real modular robots’ hardware a robot control interface has been created. It
enables users to implement control libraries of available robots that needs to be controlled
by the proposed system. The connection to the proposed system is created by using a
wrapper for this interface. The wrapper extends the base control library with Qt-concepts
which allows to use signals and slots. In this way the wrapper can be connected and
disconnected to system at runtime. Listing A.4 shows the idea how of realizing the base
control interface in software. All listed abstract functions need to be implemented to cre-
ate control objects for new robots.
The benefits of controlling real robots are that users can directly test their control algo-
rithms on hardware after the phase of testing in the simulator is accomplished. In this
way the same implementation of robots’ behaviour can be used for both controlling real
and simulated robots. For this purpose on the one hand the interface needed to be general
enough to support a wide range of arbitrary robotic prototypes and on the other hand
in a certain way restrictive to maintain efficient control of hardware. To be as general as
possible commands can be send to robots by using a single function sendCommand. As
parameter it expects a string that contains the real command sent to the robot. Com-
mand strings need to be parsed by the user’s implementation of robot control. Functions
with side effects are used to get information about robots’ state. In addition, there are
some common but useful functions like connect, disconnect, reset and functions
returning meta information about currently controlled robots.

5.4 Remote control interface

For the purpose of extending interactive capabilities of the simulation and control system,
a remote control interface has been designed that allows to implement the usage of arbi-
trary remote control hardware like gaming device controls or other mobile devices. As an
example, an implementation of this interface for Nintendo’s Wiimote has been created.
The motivation is to allow evaluation of robots’ actuation mode using hardware remote
controls. To implement the interface, supported control units must be defined. These can
be assigned to parameters of current control methods actuating robot’s joints. In case of
joysticks this means pushing to the left could lower the value of a certain parameter and
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pushing to the right would result in increasing the value. There is a graphical configura-
tion interface, explained on page 63 for detailed configuration of the remote. Users can
create a kind of high-level control for robots in this way.
The base interface is shown in section A.5 on page VI of the appendix. To create im-
plementations of remote devices this interface must be implemented. There are functions
called connect and disconnect that manage availability of remotes. Especially for
wireless devices these functions are of importance. A sendCommand function has been
implemented to provide the interface with high flexibility for future implementations of
remotes. It allows access to any special function of new devices by parsing the command
string. To acquire snapshots of the current state of the remote and its sensors and control
parts readAllData can be used. To get the properties of the current remote there are two
functions getAvailableControlDevices and getAvailableCommands. These are
used by the remote control configuration dialogue of the GUI to allow the user to configure
the robot remote control according to his needs.

5.5 File formats

The configuration of a simulation or control loop is stored in XML formatted files. They
show off a modular and hierarchical structure. It is possible to change the configuration
within these files by hand if the keywords and structure used in the proposed system are
known by the user.

5.5.1 Configuration files

There is a top-level simulation file (*.simulation.xml) that includes other configured
components. These are:

• global properties

• robot configuration (topology and sensors)

• actuation of the robot

• environment

• (optional: genetic algorithm configuration)

In listing B.1 an example of a top-level configuration file is given.

Global properties

The settings of the global properties of a simulation can be seen in the example of listing
B.1. Within simulationProperties all global options can be found. Currently the
following options are available.

• showViewer

• parallelComputing

74



5.5 File formats

• storingData

• mode

• accuracy

• stepWidth

With showViewer it can be determined if the coin3d viewer will be shown. Valid values
are 1 and 0, these values correspond to boolean values. ParallelComputing can enable
or disable a special feature for parallel computing4 of the angular output of the actuation
modules using OpenMP5. To enable or disable the data storing mechanisms of the system
storingData can be used. This also affects the creation of a temporary datafile. There
are several operating modes provided by the system. They can be distinguished by their
name within the mode tag. The value in accuracy changes the sampling rate of the
system regarding the visualization with live-plots and the updating rate of sensor data. It
does not effect the 3d visualization of the environment. The stepWidth changes directly
the step-width of the physics engine δ with unit [µs] and other related things. Thus, we
perform continuous simulation it corresponds to a kind of sampling of the world’s laws.

Robot configuration

To describe the topology of a robot OpenRAVE-XML6 is used. Robots can be build from
arbitrary modules simply by connecting links and joints. The properties of these can also
be changed according to the needs. In addition it is also possible to attach several sensors
to the robot. In listing B.2 the description of the robot shown in figure 5.4 is noted down.

Figure 5.4: OpenRAVE-XML description files are used to compose robots (see ap-
pendix B.2) out of rigid body parts and joints. Restrictions of maximum torque and
maximum speed can be defined within these files.

4This feature is currently not in use. But it works well when implemented inside an actuation module.
There will be a benefit when using locomotion algorithms with a very high computational complexity
running on multi-core machines. Then every involved module or joint can get his own thread for
calculation of the output to speed-up the calculation time.

5http://openmp.org/wp/
6http://openrave.programmingvision.com/wiki/index.php/Format:XML
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Sensor configuration

The utilized sensors are based on the abstract OpenRAVE sensor base interfaces. Thus
they have their own configuration files, depending on their implementation. Sensors can be
added to the system as a plug-in and dynamically loaded if they are compiled as a shared
object file. In listing B.3 and B.4 there are examples of how these sensor configuration
files can look like. In general only properties of a certain sensor can be adjusted if the
corresponding functions are implemented that allow to change them.

Actuation configuration

Listing B.5 shows an example how a configuration file that determines the behaviour of
the robot could look like. The attribute robotName of the tag validRobot stores the
name of the robot file for which the actuation configuration was created. Each of the
actuationModule tags stores the information needed to assign an actuation module to
a group of joints. The attribute name holds the name of the current actuation module.
The name can be used later to create an object of this kind that calculates the angular
output for a group of joints. The tag jointConfiguration stores the information with
which the joints should be actuated by this module. Under the attribute joints a string
of zeros and ones with as many elements as the number of joints of the current robot is
stored. ’1’ means the joint is actuated by the current module and ’0’ means that this joint
is disabled. The position in the string corresponds to the indices of the robots joints. In
this way groups of joints can be built and several locomotion methods can be assigned to
these groups. Assignment of groups is allowed to be redundant and overlapping.

Environment configuration

As well as the robots’ configuration files the environments’ configuration files follow the for-
mat OpenRAVE uses. So the OpenRAVE-XML documentation can be used to understand
how to build environments by hand. There is only one exception. Robot configuration
files are not included in the environment files. Indeed the pose of the robot is stored as a
comment in the last line of the file. An example is shown in listing B.6. These configura-
tion files allow to adjust the physics engine’s properties as well as placing several objects in
the world. There are geometric primitives available but also importing of triangle-meshes
is possible. Each object can be placed in the desired pose as static or dynamic object.
The properties of each object can be adjusted. Some of these properties are:

• frictional coefficient

• mass

• mass distribution

• color

For a more detailed explanation of the available options please refer to be OpenRAVE
documentation.
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Genetic algorithm configuration

To configure integrated genetic algorithm mechanisms configuration files similar to listing
B.7 on page IX are expected to be used. In general two categories have to be adjusted,
the properties of the genetic algorithm and its genome.
In properties some parameters are defined to determine algorithm’s behaviour. These have
to be chosen wisely because they mainly determine the runtime and efficiency of the GA.
In addition parameters are registered by their name within the properties-tag.
The second part of the configuration file consists of definitions of genome fragments for each
parameter that has to be part of the genome. The whole genome is composed of fragments,
one for each parameter that has to be part of it. Each fragment needs definitions of valid
values. This can be for instance a sampled range containing of minimal value, maximum
value and a step-size. The proposed file format allows even individual parameter handling.
This means that for every joint that is concerned a different configuration of valid values
can be chosen. If this feature is not needed it is also possible to use the same value for each
involved joint. By the fact that the control kernel shown on page 47 can consist of several
actuation modules in the genome fragments it has to be noted down which joints of the
robot are effected. For this purpose genomeConfig tags own the attribute activeJoints. It
is a binary string of the size of the current robot, where the position in the string equals the
enumeration of joints of the robot. ’1’ means that this joint is effected by this parameter
and ’0’ means not affected.

5.5.2 Data files

All information calculated in one simulation can be stored to a single XML data file. In
Listing B.8 a shortened example of a data file is shown. It does not contain information
from sensors, because no touch sensor was attached to the robot model.
The first subnode in the file format contains metadata about information stored in the
current file. This header-node has one entry for each kind of actuation module, sensor
type and one for offered information about the robots position and speed. In this way
it is possible to reconstruct very fast how many different types of values are stored and
how many individual values are generated in each simulation step. In addition each entry
contains a list with names of all data types stored.
All following nodes contain data values. Since writing of data files occurs after a fixed
number of samples there is a node round that contains all data since last storing event.
Data is organized in frame nodes. For each computed step of a single actuation module
all data is stored frame by frame. These frames are easy to distinguish by using their
enumeration number, real-time stamp or simulation-time stamp. Within one frame of a
single data producing module all of its available data types are stored in subnodes.
In the control GUI data analysis is included that allows to read metadata stored in the
header node in order to allow users to select any plot from available data for displaying or
exporting purpose. Displaying allows to inspect several data lines at the same time. Once
selected these files can be exported.
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5.6 Summary

After a summary of integrated software and libraries, programming techniques were ex-
plained that allow to extend the proposed system further. In this way more algorithms
for modular robot locomotion can be implemented and loaded at runtime of the program.
Then, users have access to these with the help of the configuration interface. In this way
the proposed system is extendible regarding algorithms producing locomotion patterns.
For evaluation purposes arbitrary real robots can be controlled using the same mecha-
nism. Since users can implement new wrappers to control desired real robots, the system
is also extendible for evaluation and verification purposes on real hardware. This and the
recording of data from simulations make the system useful as framework for research. The
next chapter presents two different experiments with simulated robots in order to show the
usefulness of the system for application. In these experiments two different optimization
methods (see section 3.4.2) are used.
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Experimental Results

6
Several set-ups have been created to compare different methods for achieving good solu-
tions for formulated problems of locomotion optimization. Since simulation set-ups are
highly polymorphic, only very few combinations can be described in this work. To make
different methods of optimization comparable, the same simulation set-ups are chosen to
be optimized. Even the sets of valid values and their limitations are exactly the same. For
comparison the same fitness function is used and to make assumptions about efficiency the
same number of repeated evaluations is used. Despite many different aspects of optimal-
ity exist, only improvements in speed are analysed. Depending on application arbitrary
fitness functions can be implemented to improve locomotion at different aspects.
Section 6.1 presents an experiment where the shape of travelling waves is optimized in or-
der to provide fastest locomotion possible by varying amplitudes individually. Section 6.2
presents an experiment where several parameters of an adaptive locomotion algorithm are
optimized in order to pass an irregular shaped obstacle with the help of sensor feedback.
These parameters determine the resulting locomotion patterns in dependency to sensor
feedback.

6.1 Optimization of travelling wave shape

Modular robots, that use travelling waves to generate propulsion, can vary the level of
efficiency of their locomotion by altering high level parameters like amplitude, frequency,
phase-difference and offset. In the following experiment sinusoidal generators are used to
move a simulated robot in a very simple environment, consisting of only a flat ground.
Phase difference is set to 55 degrees and maximum amplitude is 40 degrees. Figure 6.1
shows a whole cycle of the specific travelling wave in a schematic robot. Since there are
five modules, the number of travelling waves, generated by robot’s body is always around
0.751. As described in section 3.3.1 these parameters determine dynamics of locomotion.
In parameter optimization using the proposed system, two different possibilities are of-
fered to handle these values. One is the uniform approach where every module’s wave
generator will have the same value each parameter applied and the other one is that every
module can have an individual value. Chang and Chen [10] describe different models of
variable amplitude to improve locomotion speed of chain-like modular robots. Inspired by
their work this subsection describes experiments where parameters determining the shape
and dynamics of travelling waves are treated independently. The following optimization

1 55∗5
360

= 0.763888889
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Figure 6.1: Different stages of a sine-pattern with uniform amplitudes applied to a
chain of rigid links and joints. From (a) to (h) all stages of a whole locomotion cycle
of 2*π is shown. The step-size between each stage shown is 0.25*π. The movements
of the robot results in displacement from left to right.

experiment modulates values of amplitude of each of the five robot modules individually
to achieve fastest possible locomotion. Each amplitude parameter is limited with an upper
limit of 40 degree and a lower limit of 0 degree. The range in between is sampled with
step-size of 0.25 degree. The idea is to look for a better solution than simply setting every
amplitude to maximum value to achieve largest displacement possible. The search space
of the formulated problem has more than 100 billion possible solutions2. For evaluation
30000 steps are simulated (30 seconds) and resulting scores in unit meters are compared.
Average reference distance for uniform amplitudes of 40 degree is around 1.65 metres3.
In general larger values of amplitude seem to result in larger displacement of the robot,
since amplitude correlates with step-width. Increasing step-width, while stride-frequency
is fixed, results in faster movement in legged walking. But in limbless locomotion static
friction plays an important role in generating propulsion.

First tries of this experiment contained a mistake which led to an important discovery.

2( 40
0.25

+ 1)5 = 108, 175, 616, 801 solutions
3Average value is taken from 50 repetitions.
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Figure 6.2: Uniform and optimized sine-patterns in comparison: In 6.2(a) a sine-
pattern at 2*π is shown. Amplitudes are all uniform. In 6.2(b) an optimized version of
the same stage with individual amplitudes can be found. In simulations robots using
amplitudes of version 6.2(b) had much greater displacement in the same amount of
time.

The initial idea was to restrict amplitudes to range of 20 to 40 degrees. By mistake lower
limit of amplitude of the last joint was set to 2 degrees. 15 of 20 optimization trials found
the best solution by setting all joints to 40 except the last one which had the value of 2-3.
This was the reason to expand the interval of valid values to something between 0 and 40
to allow joints to be fixed or move only very little. These settings produced best results
when the amplitude of the tail-joint was set to zero or very small values. Figure 6.2 shows
the difference at the most important part of the body movement. The tail has to anchor
when the whole body tries to propulse itself in direction of movement. Slippage against
direction of travel reduces efficiency of locomotion. In 6.2(b) static friction is increased by
placing the tail part of robot’s body in better orientation than in 6.2(a).

6.1.1 Results from great deluge algorithm

Trials of modified great deluge algorithm have been adjusted parameter values according
to table 6.1.

Parameter Value

Credits 10
Retries 200
Initial water-level 0.15
Rain 0.01
Confidence 20

Table 6.1: Parameter values of modified GD optimization in experiments where the
shape of travelling-waves is improved. Credits, retries and confidence determine the
behaviour of the algorithm to avoid to get stuck in local extrema.

Table 6.2 contains parameter values of ten of the best results from modified great deluge
algorithm. Joints are enumerated from head to tail. It can easily be seen that the current
robot performs best if the last joint is not moving. In contrast to the last joint others
are moving with very high amplitude. With respect to largest displacement in given time,
these combinations of amplitudes seem to produce the best results possible.
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Amplitude 1 2 3 4 5 6 7 8 9 10

Joint 0 40 40 40 40 40 40 40 40 40 40
Joint 1 40 39.5 39.75 40 40 40 40 40 40 40
Joint 2 39.75 40 40 40 40 40 39.75 40 40 39.75
Joint 3 40 39.75 40 40 40 40 40 40 40 40
Joint 4 0 0 0 0.75 0 0 0 0 1.5 0

Displacement [m] 1.958 1.956 1.954 1.953 1.950 1.949 1.949 1.947 1.946 1.945

Table 6.2: Best 10 amplitude sets from GD-optimizations out of 30 trials.

In figure 6.3 all graphs of maximum scores versus number of iteration are plotted. Starting
scores and learning rates are spread widely but in the end they nearly converge. Figure
6.4 shows worst case and best case maximum scores as well as the average of all 30 trials.
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Figure 6.3: Maximum scores of 30 repetitions of amplitude optimization experiment
with modified GD algorithm.

82



6.1 Optimization of travelling wave shape

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  2000  4000  6000  8000  10000

S
c
o

re
s

Number of iterations

area of best scores
largest of all maximum scores

average of all maximum scores
smallest of all maximum scores

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  2000  4000  6000  8000  10000

S
c
o

re
s

Number of iterations

largest of all maximum scores
average of all maximum scores
smallest of all maximum scores

Figure 6.4: Minimum, maximum and average of all amplitude optimization experi-
ments with modified GD algorithm.

6.1.2 Results from evolutionary programming

In table 6.3 values used to instantiate genetic algorithm for optimization of the current
robots’ travelling wave shape are summarized. Explanations of how to adjust genetic
algorithms are given by Goldberg [21]. Results from table 6.4 are quite similar to those

Parameter Value

Population-size 30
Probability of mutation 0.8
Probability of crossover 0.2
Convergence percentage 99%
Generations to convergence 50

Table 6.3: GA parameters used in travelling-wave optimization experiments. Each
generation contains a population of individuals according to the population-size. The
algorithm terminates if the mean score of last 50 generations converges to 99%.

of the modified great deluge algorithm but with slightly lower parameter values and lower
scores.

In figure 6.5 it can be seen that all plots of max scores are similar and converge but
with different results. A maximum possible score is not found in every trial. Single trials
seem to get stuck in local maxima. As figure 6.6 shows the deviation from mean scores is
quite low. The maximum scores converges in average at around 1.8. In the end all three
graphs end up in the same point because there was only one experiment that had so many
repetitions until the algorithm stopped.
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Amplitude 1 2 3 4 5 6 7 8 9 10

Joint 0 37.5 39.5 38.75 39.75 39.25 37 38.25 39.75 37.75 38.75
Joint 1 39.25 40 40 38.75 39.5 39.5 38.75 39 38.5 39.75
Joint 2 39.25 39 38 40 39.75 39.25 40 40 40 40
Joint 3 39.5 39.25 38.25 37.25 39.25 38.75 39.75 36.75 39.5 30.25
Joint 4 1 2.25 0.5 0.5 0.75 2.25 0 0.75 3.25 0.75

Displacement [m] 1.878 1.874 1.865 1.846 1.839 1.828 1.822 1.820 1.816 1.806

Table 6.4: Best 10 amplitude sets taken from GA-optimizations out of 29 iterations.
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Figure 6.5: Maximum scores of 29 repetitions of GA-based amplitude optimization
experiment.
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Figure 6.6: Minimum, maximum and average of GA-based amplitude optimization
experiments.
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6.2 Optimization of adaptive locomotion

In this category the focus lies on optimization of parameters regarding adaptive capabilities
of robots’ locomotional behaviour. As representative of environments with partially uneven
terrain a special object were created. It is shown on figure 6.7.

Figure 6.7: This artificial irregular shaped obstacle has been created for experiments
with sensor-feedback-driven adaptive control algorithms. It can be used to simulate
outdoor environments that are difficult to traverse.

For easier comparison the amount of simulated time was limited to one and a half minute4.
A detailed robot model with five pitching joints and twelve touch sensors5 at the lower
side was used. Locomotion is generated by two different actuation modules. One is a
simple sinusoidal generator6 and the other one is an adaptive algorithm that generates
offsets for each joint using global sensor feedback of all touch sensors7. Both actuation
modules are combined using the control kernel of the proposed simulation and control
system. Figure 4.6 explains the simple integration method. The sinusoidal generator is
adjusted to have an amplitude of 30 degree and phase difference between neighbouring
segments of 55 degree. This configuration implies a quite low center of gravity to assure
stable movements, even if it does not offer smoothest locomotion possible, because there is
only about three-quarter of a whole wave generated by body movements8. Improvements
can be achieved by using more modules.

For modular robots in chainlike configuration without adaptive capabilities it is not pos-
sible to pass convex and concave obstacles. Using this object locomotional behaviour of
modular robots can be improved in four different aspects at the same time.

1. starting locomotion with regular body-shape

2. passing convex shaped terrain

3. passing concave shaped terrain

4In this setup it equals 90000 simulation steps of physics engine
5Touch sensors are described on page 68.
6Described in section 3.3.1.
7The adaptive algorithm is designed by Guoyuan Li at the University of Hamburg and is part of his

Ph.D-Thesis
855 ∗ 5/360 = 0.763888889
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4. recovering shape to be efficient on flat terrain

In figure 6.8 four different stages of one successful climbing trial using the proposed algo-
rithm optimized parameters are shown.

(a) Second convex wave (b) Change from convex to concave

(c) Climbing next wave with high slope (d) Top of last convex wave reached

Figure 6.8: Here different stages of a simulation where a modular robot with tactile
sensors passes an obstacle. The chronological order is ascending from (a) to (d).
Figure (a) shows the robot passing the second convex element. In (b) the robot
has already mastered the following concave part of the ground. This is the most
extreme situation, because applied offset values are very high in positive and negative
direction. In (c) the concave part is nearly passed and the robot has already recovered
from adaptivity of the concave section. (d) shows the robot on top of the last hill of
the obstacle.

Appropriate parameter settings should allow to move efficiently in all four categories.
Using fitness functions which reward fast travelling candidates stronger, results can be
produced when trained on objects similar to figure 6.7. In table 6.5 information about the
possible values of each parameter that has to be optimized is given.

Figure 6.9 shows the environmental set-up used for this optimization task. To visualize re-
sulting scores from optimization, calculated by current fitness function, a yellow-red scale
is shown. Each coloured segment represents one meter which equals one point of score.
Good resulting sets of parameters are not only capable of passing the irregular shaped
obstacle but also to move as far as possible along the scale in given time. Parameters
that will be optimized in this set-up are all part of the adaptive algorithm. There is a
threshold that defines when the robot got stuck. It determines when manipulation of the
robot’s base shape has to be applied. Then, there is the recovering speed parameter that
defines how fast the robot is allowed to recover its base-shape. There are another eight
parameters that specify the amount of change of offsets. Four are supposed to increase
and another four to lower current values of offsets. Depending on the current state of the
sensors, these are used in a control loop that calculates resulting relative joint positions.
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Parameter Minimum Maximum Step-Size Number of possible values

Get-stuck 100 1000 25 37
Recovering 0.01 2 0.01 200
Constant 1 0.1 1 0.1 10
Constant 2 0.1 1 0.1 10
Constant 3 0.1 1 0.1 10
Constant 4 0.1 1 0.1 10
Constant 5 0.1 1 0.1 10
Constant 6 0.1 1 0.1 10
Constant 7 0.1 1 0.1 10
Constant 8 0.1 1 0.1 10

Table 6.5: Parameter configuration settings for optimization

Figure 6.9: Simulation set-up with scale

Both optimization methods use iterations of the same simulation set-up to generate im-
proved sets for these control parameters. Single runs consist of 90000 simulation steps.
According to adjustments of stepsize in ODE physics engine of 0.001 the amount of time,
simulated in each iteration, is 90 seconds. Having a look at the number of iterations used
to reach stopping criterion of proposed optimization methods there are six to seven days
that have to be simulated in total for each run to finish9. Brute-force methods would have
to evaluate more than 700 billions10 of possible solutions.

6.2.1 Results from great deluge algorithm

To obtain satisfying results, three parameters of the proposed modified great deluge al-
gorithm have to be set to reasonable values. As shown in table 6.6 minimal score of the
first satisfying solution, the so-called water-level, is 0.6 meter. This means that the first
accepted solution allows the robot to reach at least the top of the first convex-shaped
wave of the ground. In figure 6.9 scale relative to obstacle is shown. After a solution was
accepted the water-level is increased by rain of strength 0.02. In this way the next score

96000 ∗ 90 seconds = 540000 seconds = 9000 minutes = 150 hours = 6.25 days
1037 ∗ 200 ∗ 108 = 740, 000, 000, 000
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Parameter Value

Credits 10
Retries 200
Initial water-level 0.6
Rain 0.02
Confidence 20

Table 6.6: Modified GD-parameters in optimization of the adaptive algorithm.

that has to be reached is 0.62 meters. The confidence parameter that adjusts adaptive
search radius is set to twenty. Ten credits are given for the case of bad luck. One credit
is consumed when 200 failures in a row are passed.

In table 6.7 resulting parameters from the best ten optimization trials of proposed modified
great deluge algorithm are shown.
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Figure 6.10: Maximum scores of 20 repetitions of irregular terrain experiment with
modified GD algorithm.
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6.2 Optimization of adaptive locomotion

Parameter 1 2 3 4 5 6 7 8 9 10

Get-stuck 110 85 185 160 160 185 60 160 135 360
Recovering 0.33 0.74 0.56 0.55 0.56 0.13 0.37 0.18 0.25 1.23
Constant 1 11.8 3.3 2.7 6.6 2.6 1.4 0.6 2.4 1.4 1.9
Constant 2 21.6 1.9 0.7 1.6 2.3 0.8 0.7 1.3 1.9 4.6
Constant 3 11.8 9.7 5.1 6.5 2.7 2.2 2.5 1.9 1.7 2.8
Constant 4 0.6 1.3 2.4 5.34 2 1 16.2 1.4 0.9 0.3
Constant 5 20.2 1.1 1.2 0.9 0.4 0.9 1.5 0.1 0.8 1.5
Constant 6 1.5 5.9 1.7 6.8 0.5 0.6 0.3 0.9 1.6 0.09
Constant 7 2.36 5.1 5.76 6.5 4.1 2.9 4.3 2.7 2.8 6
Constant 8 11 1.5 1.2 1.7 2.3 0.9 0.9 0.6 1 3.1

Displacement [m] 3.96 3.88 3.86 3.81 3.77 3.73 3.72 3.66 3.66 3.56

Table 6.7: Parameter values of candidates from best 10 GD-optimizations.
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Figure 6.11: Minimum, maximum and average of all irregular terrain experiments
using modified GD algorithm.

6.2.2 Results from evolutionary programming

Table 6.8 contains settings used for genetic algorithms of this experiment. In this case
the crossover operator is disabled to achieve faster convergence. Optimization terminates
when convergence occurs. It is defined as the ratio of the n-th previous best-of-generation
score to the current best-of-generation score. In this case it is 99%. Generations to
convergence determine how many generations are taken into account for convergence test.
Each generation is populated with 40 individuals that have to be evaluated. In table 6.9
best results from genetic algorithms are shown. As expected in this kind of experiment
resulting values and the correlations among them are not understandable for humans. But
they can be used for adaptive locomotion to pass a certain obstacle. All plots maximum
scores in Figure 6.12 show off a similar shape and are very close together. In the first
1000-2000 iterations learning rates are very high but then converge to zero. Then further
improvements happen very seldom.
Figure 6.13 shows the area between worst case and case learning behaviour. Using the
described genetic algorithm the difference between best and worst result is quite small.
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Parameter Value

Population-size 40
Probability of mutation 1
Probability of crossover 0
Convergence percentage 99%
Generations to convergence 50

Table 6.8: GA parameters in parameter optimization of adaptive algorithm.

Parameter 1 2 3 4 5 6 7 8 9 10

Get-stuck 175 125 100 125 175 175 125 150 125 250
Recovering 0.09 0.13 0.2 0.14 0.11 0.06 0.21 0.05 0.02 0.03
Constant 1 1 0.7 0.9 0.9 1 0.8 1 0.9 0.4 0.9
Constant 2 0.9 0.9 0.7 1 0.7 0.8 0.6 1 1 0.9
Constant 3 0.7 1 1 1 0.7 1 1 0.1 0.4 0.4
Constant 4 1 0.5 0.2 1 0.1 0.9 0.3 1 0.2 0.3
Constant 5 0.1 0.5 0.4 0.7 0.3 0.8 0.4 0.7 0.3 0.3
Constant 6 0.5 0.5 0.6 0.8 0.3 0.2 0.4 0.5 0.7 0.3
Constant 7 1 0.9 1 1 0.9 0.8 1 0.9 1 1
Constant 8 0.7 0.7 0.7 1 0.8 0.6 0.9 0.6 0.5 0.6

Displacement [m] 3.19 3.11 3.08 3.07 3.05 3.02 3.02 3.02 3.02 3.01

Table 6.9: Parameter values of candidates from best 10 GA-optimizations out of
twenty.
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Figure 6.12: Maximum scores of 20 repetitions of irregular terrain experiment with
GA.
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Figure 6.13: Minimum, maximum and average of all irregular terrain experiments
using GA.
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6 Experimental Results

6.3 Summary

This chapter presented results from two different experiments where locomotion patterns
were optimized with respect to fast locomotion. Since both experiments successfully pro-
duced optimized results the proposed system can be regarded as a useful contribution for
modular robotic research. Both optimization methods in both experiments found better
solutions for the parameters that had to be optimized then generally possible by trial-
and-error. Moreover, the meaning of the parameters of the locomotion algorithm in the
second experiment are not well understood, in contrast to the first experiment, but they
were also successfully optimized. In the following chapter the quality of results from both
optimization methods are compared to each other. After that benefits of the proposed
work for research are discussed.
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7
In the following, the purpose and usability of the proposed modular robotic simulation and
control system is discussed. Not only its usefulness but also its limits will be explained.
Section 7.1 compares the results of the two different optimization methods used for the
experiments in chapter 6. Then, in chapter 7.2 these results are placed in the big picture
of this thesis and they are used to justify the contribution of this work to modular robot
science. The chapter ends with ideas for future work to improve the usability of the system
and to increase its applicability for modular robot science in research and education by
extending its number of functions.

7.1 Comparison of results from both methods

In the following, results from both experiments using two different optimization methods
are compared with respect to quality and runtime. Aim of these experiments is to show the
plausibility and the usefulness of the proposed modular robotic simulation system. In the
first experiment, meaning of parameters that have to be optimized are easy to understand.
In this way readers are able to discuss the results more easily. The second experiment
shows how parameters can be optimized even if users do not know their meanings.

7.1.1 Travelling wave shape

Figure 7.1 shows learning behaviour of both optimization methods in variable amplitude
experiments. In 7.1(a) for example maximum scores versus number of iteration within
optimization process are shown. Each red graph represents one complete optimization trial
using GAs. Each green graph shows the maximum scores of one modified GD optimization
run. While each GA trial was terminated until 5000 evaluations were performed, great
deluge algorithm is capable of further improvements of the results. The averages of all
optimization trials, shown in 7.1(b), shows the differences more clearly. Learning-rate
with GAs is much faster in the first 5000 repetitions than in modified GD algorithm. But
above 5000 evaluations convergence of resulting scores appears. Learning performed by
the proposed modified GD algorithm is able to produce better results if more time is given.
In mean modified GD algorithm outperforms GAs at around 5000 iterations.
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Figure 7.1: Comparison of learning rates in wave shape optimization. In (a) all
maximum scores of each iteration of both experiments are shown. Red graphs rep-
resent scores of GA-runs and green graphs scores of GD-runs. Figure (b) shows the
smoothed averages of both optimization methods. The black dotted line marks the
distance travelled by a robot using the same locomotion method but without indi-
vidually optimized amplitudes. Red and green dotted lines mark largest distances
reached by optimized parameters.

7.1.2 Adaptive locomotion

The second experiment can be characterized as much more complicated and challenging for
optimization algorithms as well as for human understanding. It is hard to describe what
exactly the parameters that have to be optimized do in particular. The solution space
is much bigger, we do not know anything about correlations between these parameters
and tasks, that have to be fulfilled are much more complex. This explains the bigger
difference between averages of simulation results. Figure 7.2 shows differences of learning
behaviour using two different optimization methods. In figure 7.2(a) it can be seen that
red lines lay all very close together. These belong to results from trials with genetic
algorithms. In contrast to this, the green graphs representing resulting maximum scores of
proposed modified GD algorithm, are spread more wide. These also show off in much better
results. In figure 7.2(b) it can easily be seen that great deluge algorithm outperforms GA
optimization after around 3000 iterations. Although results from GAs in earlier iterations
were better in experiments described above.
To compare best results of both optimization methods, a modified screenshot shown in
figure 7.3 can be used. There are marks on the scale that indicate maximum distances
travelled by using optimized parameter sets of both techniques. In addition there is a
mark that shows a reference distance, travelled by the current robot but using the same
locomotion method without any adaptivity and on flat terrain. It can be seen that the
best result of modified GD algorithm is quite close to normal locomotion without passing
irregular shaped object. This can only be achieved by fast and efficient adaptive behaviour
of the shape adjusting algorithm used by the robot.
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Figure 7.2: Comparison of learning rates in adaptive locomotion optimization. In
(a) all maximum scores of each iteration of both experiments are shown. Red graphs
represent scores of GA-runs and green graphs scores of GD-runs. Figure (b) shows
the smoothed averages of both optimization methods. Red and green dotted lines
mark largest distances reached by optimized parameters.

Figure 7.3: The largest distances travelled in 90000 simulation steps of traversing
obstacle experiment are marked in this figure. Each coloured bar has the length of
one meter. Best travelled distances of both optimization methods can be compared
with the size of the robot. In addition the distanceis marked that is travelled by the
same robot with the same configuration but without the obstacle.

7.1.3 Conclusion

In both experiments improvements of locomotion were performed. The variable amplitude
experiments, using two different optimization techniques found combinations of amplitudes
that were better than just setting maximum values for the given environment. Learning
with GAs was faster in the beginning than with modified GD algorithm. With the in-
creasing number of evaluations, modified GD algorithm found even better solutions while
GAs converged earlier.
Analysing results of the adaptive locomotion algorithm and using sensor feedback on ir-
regular terrain, it can be found that in both cases good results were produced. Using
resulting parameter sets from optimization, the current robot was able to overcome the
irregular shaped obstacle sufficiently. If the problem is formulated as traversing an ob-
stacle the two methods can be successfully used. As in the first experiment GAs have
better performance in the beginning of the process of optimization. Later, modified GD
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algorithm runs outperform GAs. In this experiment the gap between best scores of every
optimization strategy is much bigger than in the first experiment. Practically this means
that by the help of the best set of parameters it is possible to change the locomotional
behaviour extremely fast. The experiment starts on regular flat terrain, continues over
an obstacle of irregular shape and finally ends of flat terrain again. Especially switching
between surfaces with different properties is a challenging task. In addition the irregular
obstacle shows concave parts as well as convex parts which increases the difficulty.

7.2 Benefits

This diploma thesis describes a fully integrated modular robotic simulation, optimization
and control system with focus on bio-inspired locomotion generation. Benefits, arising from
its usage for research and education in locomotion generation of chain-like modular robots,
are pointed out. The core system is based on OpenRAVE and ODE physics engine. Both
are widely used and accepted simulation tools that can be used to simulate robotic tasks
with real world application. As explained by Diankov and Kuffner [18] the precision is high
enough to make results from simulations applicable to real world situations. Features of
the proposed system are an easy-to-use GUI with two different modes that allows experts
and beginners to set up a simulation. This includes robot configuration, environment
creation, locomotion behaviour definition and composition and even optimization of newly
created locomotion techniques. The system structure is flexible enough to be extended as
needed at many points. Its usability and flexibility makes it applicable for research and
education. One of the greatest benefits for researchers lies in the possibility to optimize
hardly understandable parameters with complex correlations among others. This works by
the help of standardization of control algorithms, using a common interface for locomotion
generation. It enables the system to treat all control parameters in a similar way. Thus
even new locomotion modules that have just been added can be optimized in the same
way as algorithms, that are part of the standard set of the system. Since the configuration
GUI is responsible for setting up everything necessary, the system could also be used by
students that are new to modular robotic locomotion. They can create new locomotion
techniques, watch and evaluate the results.
The control GUI can be used to test new set-ups and especially new control algorithms
with the help of visual feedback from 3d-viewer and live-plots of control data, before
starting an optimization. But it is also possible to check the results after optimization is
finished in the same way.

7.3 Future work

Depending on current goals both GUIs (configuration and control GUI) can be extended to
implement more functionality from the core system. For usage as an educational platform
its robustness should be improved regarding the execution order of user input. Important
tasks for the future are summarized:

• work on sensor fusion in order to select autonomously proper locomotion patterns
(work on intelligent behaviour)

96



7.4 Summary of the thesis

• parallel optimization methods

– distributed version of GD algorithm

– parallel evaluation of single populations in the GA

• extension of the core system

– integration of more kind of sensors

– implementation of more fitness functions (energy efficiency)

– integration of on-line optimization to learn from real-world experiments

• extension to the configuration GUI

– easy import of new robot models

– increasing robustness of the GUIs

• extension of the control GUI

– more intuitive visualization of sensors

Benefits for education and research arise from easy exchange of robot models with designs
created by users interactively or by importing external robot models.
The implementation of more sensors would help to work on sensor fusion techniques in the
field of modular robotic locomotion. In this way robust autonomous behaviour of modular
robots in complex terrain can be achieved.
Finally it can be taken into account that on-line optimization can be integrated to learn
real-world experiments like Marbach and Ijspeert [40] presents. Combined optimization
of simulated and real world experiments could further improve locomotional strategies.
Further benefits would arise from usage of other fitness functions in locomotion optimiza-
tion in order to create economic gaits. With consideration of increased stability and high
energy efficiency limbless modular robots in chain-like configuration come closer to real
world applications in industry, surveillance and space science.

7.4 Summary of the thesis

From related work (see section 3.5) follows that there is no other open simulation system
with focus on modular robot locomotion design and optimization that is flexible enough to
be useful for the application with new modular robot systems and locomotion algorithms.
Its design concepts allow to extend it as needed for specific purposes. Experiments (see
chapter 6) showed that the proposed system is suitable for the optimization of locomotion
patterns. Two easy-to-use GUIs make it even suitable for educational purposes. In this
way this thesis represents a valuable contribution to modular robotic locomotion research.
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Glossary

body-wave
wave travelling through longitudinal body 29, 104

clasper
kind of gripper, used by caterpillars to anchor its tail to the ground in horizontal
and vertical walking 12, 19, 104

duty factor
percent of total cycle which a given foot is on the ground 6, 8, 13, 16, 17, 22, 23, 104

dynamic class loading
technique of extending programs at runtime 72, 104

electrolyte
solution able to conduct electric current 104

excitatory
interconnection type of neurons, used to trigger firing of connected neurons 104

factory
object to create instances from classes loaded at runtime without concrete knowledge
of their constructors 72, 104

Froude number
dimensionless number comparing inertia and gravitational forces 9, 10, 104

gait
pattern of movement or locomotion mode like walking and running 6, 8, 11, 21, 32,
35, 104

gait transition
switching from one to another gait 8, 34, 104

hemocoel
system of cavities between the organs of arthropods and molluscs through which the
blood circulates 16, 104

hydrostatics
branch of fluid mechanics that studies fluids at rest 16, 104

inhibitory
interconnection type of neurons, used to create behaviour similar to mutual exclusion
104

105



Glossary

invertebrate
animals without backbone 20, 104

lamprey
kind of jawless fish 28, 29, 104

metabolic cost of transport
amount of energy, used for locomotion (often determined by measuring oxygen con-
sumption) 14, 104

mollusc
group of invertebrates that includes squid, octopuses, cuttlefish, snails, slugs, oysters,
scallops, and many more 16, 104

motoneuron
neurons located in the central nervous system, used to directly or indirectly control
muscles 16, 19, 104

pneumatic bellow
actuators that can be filled with air like a kind of balloons 28, 104

proleg
passive leg of caterpillars, used for attaching to the ground with miniaturized hooks
12, 14–19, 22, 23, 104

self-registering type
optional data types that register automatically to a factory and after that are avail-
able to the program 72, 104

septum
cell wall dividing bodies into segments 16, 104

stride
complete cycle of periodic movement 6–15, 22, 23, 104

thoracic
between head and abdomen 104

travelling wave
wave shape e.g. sinusoidal, used to produce locomotion in limbless hyper-redundant
body structures 12, 22, 32, 64, 79, 83, 104

true leg
normal leg of a catterpillar that can be actuated actively 12, 104

vertebra
bony structure in the backbone or spine 20, 104
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Acronyms

COG
center of gravity 6, 23, 32, 33, 104

CPG
central pattern generator 3, 26, 29, 32–35, 37, 40, 41, 71, 72, 104

GA
genetic algorithm 37, 40, 41, 48, 50, 77, 93–97, 104

GD
great deluge algorithm 38, 41, 50, 93–95, 97, 104

GUI
graphical user interface v, 1, 2, 43, 45, 61, 62, 65, 69, 96, 97, 104

HRI
human robot interface 51, 104

ODE
Open Dynamics Engine 30, 67, 68, 87, 96, 104
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Base Interfaces

A
Listing A.1: Abstract base interface of actuation modules

#ifndef ACTUATIONMODULE H
#define ACTUATIONMODULE H

4 #include <iostream>
#include <math . h>
#include <c s t d l i b>
#include <map>
#include <s t r i ng>

9

#include <QVector>
#include <QDebug>
#include <QString>

14

class ActuationModule{
public :

//! Is intended to initialize the ActuationModule to a valid state, while
the simulation is running.

virtual void r e s e t ( ) = 0 ;
19

//! Sets all parameters, used for the calculation of angles, to the latest
values.

inline void s e t P r o p e r t i e s (const QVector <double> propertyVector ) ;

//! Changes the value of a single parameter.
24 inline void setParameter (const QString name , double value ) ;

//! Returns the current value of a parameter with given name.
inline double getCurrentParameterValue (const QString parameterName ) ;

29 //! Delivers angles for each joint.
inline QVector <double> getAngleData ( ) ;

//! Gives the descriptions (e.g. names) of the parameters.
inline QVector <QString> g e t P r o p e r t i e s I n f o ( ) ;

34

//! Returns all current parameter values.
inline QVector <double> g e t P r o p e r t i e s ( ) ;

//! Returns all current values of the calculated data.
39 inline QVector <QVector <double> > get Inte rna lData ( ) ;

//! Gives the descriptions (e.g. names) of the calculated data.
inline QVector <QString> ge t In t e rna lData In f o ( ) ;

44 //! Sets the angle ’value’ for specific joint with index ’numOfJoint’.
inline void setAngle (int numOfJoint , double value ) ;

I
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//! Gets the current angle of a specific joint with index ’numOfJoint’.
inline double getCurrentAngle (int numOfJoint ) ;

49

//! Gets the old angle of a specific joint with index ’numOfJoint’.
inline double getOldAngle (int numOfJoint ) ;

//! Computes the values for the next step of the simulation.
54 virtual void computeAngles ( ) = 0 ;

inline QVector <QVector <double> > c a l c u l a t e V a l u e s ( ) ;

//! Returns the name of this module.
59 inline QString getName ( ) ;

//! Returns the type of this module.
inline QString getType ( ) ;

64 //! Copies the object and returns a pointer to this copy.
virtual ActuationModule∗ c l o n e S e l f ( ) = 0 ;

protected :
int numOfConnectedJoints ; //!< represents the number of joints for which

this module is used
69

QVector <double> p r o p e r t i e s ; //!< holds the parameters of this module
QVector <QString> p r o p e r t i e s I n f o ; //!< holds the descriptions of the

parameters of this module
QVector <QVector <QVector <double> > > i n t e rna lData ; //!< holds all kind of

computed values for the last and current step
QVector <QString> i n t e r n a l D a t a I n f o ; //!< holds descriptions for each kind

of used value of the computation of the angles
74 QVector <double> angleData ; //!< are the current angles for each joint (

computed values, not real angles!)

QString name ; //!< the name of this module
QString type ; //!< the type of this module

79 //! Creates and initializes the vectors for the internal data with the
correct number of elements.

virtual inline void I n i t (int) ;
} ;

84 // typedef to make it easier to set up the factory
typedef ActuationModule∗ maker pt (int j o i n t s ) ;
// our global factory
extern "C" std : : map<std : : s t r i ng , maker pt ∗ , s td : : l e s s<std : : s t r i ng> > cpgFactory ;

89 #endif // ACTUATIONMODULE_H

II



Listing A.2: Abstract base interface of pattern generators

1

#ifndef PATTERNGENERATOR H
#define PATTERNGENERATOR H

#include "actuationModule.h"
6

class PatternGenerator : public ActuationModule{
public :

//! Applies initial values for the used movement generator
11 virtual void r e s e t ( ) = 0 ;

//! Computes the angles for the constructor given number of joints
virtual void computeAngles ( ) = 0 ;

16 //! Returns a pointer to a copy of this object
virtual ActuationModule∗ c l o n e S e l f ( ) = 0 ;

//! Applies a specific value to a certain type of data in the _internalData.
virtual inline void s e t D i s t o r t i o n (const int jo intNr , const int dataType ,

const double value ) ;
21

//! Calculates the phase difference between neighboring joint angle
functions and the frequency for each joint.

virtual inline void computePhaseDif ference (int) ;

//! Enables concurrent computing of the angles of neighboring modules with
OpenMP.

26 virtual inline void s e t P a r a l l e l (bool p a r a l l e l ) ;

//! Clears the _internalData and applies the result of a noise-function to
it.

virtual inline void addNoise ( ) ;

31 protected :
QVector <int> t imeSteps ; //!< Counted time steps from the simulator,

stored for each joint

QVector <double> o ldAng le s ; //!< Angles of each joint of the previous
time step

36 QVector <double> cyc l eDurat i on ;//!< Number of calculation steps used for a
whole oscillation cycle (2*pi)

QVector <double> p h a s e D i f f ; //!< The phase difference of each joint to
its next neighbor (last is connected to the first)

bool p a r a l l e l ; //!< Sets the state of using OpenMP (true
means calculating in parallel)

41

//! Calculates Gaussian White Noise.
virtual inline double gauss ianWhiteNoise ( ) ;

} ;

46 #endif // PATTERNGENERATOR_H
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Listing A.3: Abstract base interface of sensing modules

#ifndef SENSINGMODULE H
#define SENSINGMODULE H

4 #include "actuationModule.h"
#include "dataHandler/sensorWatcher_tactile.h"
#include "dataHandler/sensorWatcher_sensibot.h"
#include "dataHandler/sensorwatcher_laser2d.h"

9 using namespace OpenRAVE;

class SensingModule : public ActuationModule{
public :

14 //! Applies initial values for the used movement generator
virtual void r e s e t ( ) = 0 ;

//! Computes the values for the next step of the simulation.
virtual void computeAngles ( ) = 0 ;

19

//! returns a pointer to a copy of this object
virtual ActuationModule∗ c l o n e S e l f ( ) = 0 ;

//! Assigns a sensor data handler to this SensingModule.
24 virtual void setSensorWatcher ( SensorWatcher∗ watcher ) ;

//! Sets a boolean to true, when the sensors are initialized and ready to
use. Useful for virtual sensors.

inline void setSensorsReady ( ) ;

29 //! Sets the behaviour of the algorithm for the offsets.
inline void setBehaviour ( QVector<short int> genome ) ;

//! Gets the behaviour of the algorithm for the offsets.
inline QVector<short int> getBehaviour ( ) ;

34

//! Sets the real robot mode (actually only sensibot is supported)
inline void setRealRobotMode ( ) ;

protected :
39 SensorWatcher∗ sensorWatcher ; //!< the assigned sensor data handler

bool sensorsReady ; //!< true, if the sensors handled by _sensorWatcher are
ready (used for virtual sensors)

QVector<short int> behav iour ; //!< This QVector determines the behavior
for calculating the angles.

44

bool i sRea lRobot ; //!< true, if a real robot is used
} ;

#endif // SENSINGMODULE_H

IV



Listing A.4: Abstract base interface of robot controls

1 #ifndef ROBOTCONTROL H
#define ROBOTCONTROL H

#include <s t r i ng>
#include <vector>

6

class RobotControl{

public :
virtual int connect ( )=0 ;

11 virtual void d i s connec t ( )=0 ;

virtual void enab leServos (bool servosOn )=0 ;
virtual void sendCommand( std : : s t r i n g command , unsigned char∗ va lue s=NULL)=0 ;
virtual void sendCommand( std : : s t r i n g command , unsigned char values , unsigned

char des t ina t i on ID )=0 ;
16 virtual void sendCommandByValue ( std : : s t r i n g command , unsigned char va lue s=

NULL)=0 ;

virtual void r eque s tA l l In f o rmat i on (unsigned char∗ returnValues , int
numberOfReturnedChars )=0 ;

virtual void r eques t In fo rmat ion ( std : : s t r i n g type , std : : vector<bool>∗
returnValue )=0 ;

virtual void r eques t In fo rmat ion ( std : : s t r i n g type , std : : vector<int>∗
returnValue )=0 ;

21 virtual void r eques t In fo rmat ion ( std : : s t r i n g type , std : : vector<double>∗
returnValue )=0 ;

virtual void t e s t ( )=0 ;

inline int getNumberOfSensormodules ( ) ;
26 inline int getNumberOfSensorsPerModule ( ) ;

inline int getNumberOfJoints ( ) ;
inline std : : s t r i n g getTopology ( ) ;

31 protected :
int numOfSensorModules , numOfJoints , numOfSensorsPerModule ;
s td : : s t r i n g topo logy ;

virtual void resetCommandBuffer ( )=0 ;
36 } ;

#endif // ROBOTCONTROL_H
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Listing A.5: Abstract base interface of remote controls

#ifndef REMOTE H
2 #define REMOTE H

#include <QString>
#include <QList>
#include <map>

7 #include <s t r i ng>
#include "remoteStructures.h"

using namespace RemoteControl ;

12 class Remote : public QObject{
Q OBJECT
public :

virtual int connect ( ) = 0 ;
virtual int d i s connec t ( ) = 0 ;

17

virtual void sendCommand( QString command) = 0 ;
virtual remoteData readAllData ( ) = 0 ;

inline bool i sConnected ( ) ;
22 inline QList<QString> ge tAva i l ab l eCont ro lDev i c e s ( ) ;

inline QList<QString> getAvailableCommands ( ) ;

protected :
bool connec t i onSta tus ;

27 QList<QString> a v a i l a b l e C o n t r o l D e v i c e s ;
QList<QString> availableCommands ;

public s l o t s :
virtual void receiveCommand ( QString command) = 0 ;

32 } ;

typedef Remote∗ maker rc ptr ( ) ;
// the global factory

37 extern "C" std : : map<std : : s t r i ng , maker rc ptr ∗ , s td : : l e s s<std : : s t r i ng> >
remoteFactory ;

#endif // REMOTE_H
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File Formats

B
B.1 Configuration file formats

Listing B.1: Example of top-level configuration files

1 <s imu la t i on>
<robot>. / c o n f i g u r a t i o n /robotXML/MFIdemo 5py . robot . xml</ robot>
<actuat ion>

. / c o n f i g u r a t i o n / actuat ion /MFIdemo 5 py 2012 . 09 . 06 17 : 38 . ac tuat i on . xml
</ actuat ion>

6 <environment>. / c o n f i g u r a t i o n /environmentXML/MFIdemo . env . xml</ environment>
<s i m u l a t i o n P r o p e r t i e s>

<showViewer>1</showViewer>
<para l le lComput ing>0</ para l l e lComput ing>
<s tor ingData>1</ stor ingData>

11 <mode>S i n g l e Run Simulat ion</mode>
<accuracy>30</ accuracy>
<stepWidth>0 . 001</stepWidth>

</ s i m u l a t i o n P r o p e r t i e s>
</ s imu la t i on>

Listing B.2: Example of robot configuration files

<Robot name="MFIdemo_5py">
<KinBody name="kMFIdemo_5py">

<Kinbody f i l e="./configuration/robotXML/base/TailP.kinbody.xml"/>
4 <Kinbody p r e f i x="1"

f i l e="./configuration/robotXML/base/PY.kinbody.xml"/>
<Kinbody p r e f i x="2" f i l e="./configuration/robotXML/base/YP.kinbody.xml">

<t r a n s l a t i o n>0 0 . 072 0</ t r a n s l a t i o n>
</Kinbody>
<Kinbody p r e f i x="3" f i l e="./configuration/robotXML/base/PY.kinbody.xml">

9 <t r a n s l a t i o n>0 0 . 144 0</ t r a n s l a t i o n>
</Kinbody>
<Kinbody p r e f i x="4" f i l e="./configuration/robotXML/base/YP.kinbody.xml">

<t r a n s l a t i o n>0 0 . 216 0</ t r a n s l a t i o n>
</Kinbody>

14 <Kinbody f i l e="./configuration/robotXML/base/HeadP.kinbody.xml">
<t r a n s l a t i o n>0 0 . 288 0</ t r a n s l a t i o n>

</Kinbody>
<Jo int type="hinge" name="J1">

<Body>Tai l</Body>
19 <Body>1Seg</Body>

<o f f s e t f r o m>1Seg</ o f f s e t f r o m>
<a x i s>1 0 0</ a x i s>
<maxtorque>0 . 4</maxtorque>
<maxvel>4 . 5</maxvel>

24 < l i m i t s d e g>−90 90</ l i m i t s d e g>
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</ Jo int>
<Jo int type="hinge" name="J2">

<Body>1Seg</Body>
<Body>2Seg</Body>

29 <o f f s e t f r o m>2Seg</ o f f s e t f r o m>
<a x i s>0 0 1</ a x i s>
<maxtorque>0 . 4</maxtorque>
<maxvel>4 . 5</maxvel>
< l i m i t s d e g>−90 90</ l i m i t s d e g>

34 </ Jo int>
<Jo int type="hinge" name="J3">

<Body>2Seg</Body>
<Body>3Seg</Body>
<o f f s e t f r o m>3Seg</ o f f s e t f r o m>

39 <a x i s>1 0 0</ a x i s>
<maxtorque>0 . 4</maxtorque>
<maxvel>4 . 5</maxvel>
< l i m i t s d e g>−90 90</ l i m i t s d e g>

</ Jo int>
44 <Jo int type="hinge" name="J4">

<Body>3Seg</Body>
<Body>4Seg</Body>
<o f f s e t f r o m>4Seg</ o f f s e t f r o m>
<a x i s>0 0 1</ a x i s>

49 <maxtorque>0 . 4</maxtorque>
<maxvel>4 . 5</maxvel>
< l i m i t s d e g>−90 90</ l i m i t s d e g>

</ Jo int>
<Jo int type="hinge" name="J5">

54 <Body>4Seg</Body>
<Body>Head</Body>
<o f f s e t f r o m>Head</ o f f s e t f r o m>
<a x i s>1 0 0</ a x i s>
<maxtorque>0 . 4</maxtorque>

59 <maxvel>4 . 5</maxvel>
< l i m i t s d e g>−90 90</ l i m i t s d e g>

</ Jo int>
</KinBody>

</Robot>

Listing B.3: Example of tactile sensor configuration files

<s enso r type="TactileSensor">
2 <power>1</power>
</ senso r>

Listing B.4: Example of laser sensor configuration files

<s enso r type="BaseLaser2D">
2 <minangle>−1</ minangle>

<maxangle>1</maxangle>
<r e s o l u t i o n>1</ r e s o l u t i o n>
<maxrange>1</maxrange>
<scantime>1</ scantime>

7 <render>1</ render>
<power>1</power>

</ senso r>
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Listing B.5: Example of actuation configuration files

1 <actuat ion>
<val idRobot robotName="MFIdemo_5py.robot.xml"/>
<actuationModule name="DirectJointAccess">

<j o i n t C o n f i g u r a t i o n j o i n t s="01010"/>
</ actuationModule>

6 <actuationModule name="PatternGenerator_sinusoidal">
<j o i n t C o n f i g u r a t i o n j o i n t s="10101"/>

</ actuationModule>
</ actuat ion>

Listing B.6: Example of environment configuration files

1 <Environment>
<phys i c s eng ine type="ode">

<o d e p r o p e r t i e s>
<g rav i ty>0 0 −9 . 81</ g rav i ty>
< s e l f c o l l i s i o n>1</ s e l f c o l l i s i o n>

6 </ o d e p r o p e r t i e s>
</ phys i c s eng ine>
<KinBody name="floor">

<Body type="static">
<Trans la t i on>0 0 −0 . 003</ Trans la t i on>

11 <Geom type="box">
<ex t ent s>8 8 0 . 003</ extent s>
<d i f f u s e C o l o r>0 . 3 1 0 . 3</ d i f f u s e C o l o r>
<ambientColor>0 . 3 1 0 . 3</ ambientColor>
<t ransparency>0 . 05</ transparency>

16 < f r i c t i o n>0 . 1</ f r i c t i o n>
</Geom>

</Body>
</KinBody>

</Environment>
21 < !--Pose: ,0 0 0 0,0 0 0,-->

Listing B.7: Example of genetic algorithm configuration files

<genet i cAlgor i thm>
<p r o p e r t i e s>

<pops i z e>30</ pops i z e>
4 <pmut>0 . 01</pmut>

<pcro s s>0 . 9</ pc ro s s>
<nConvergence>50</nConvergence>
<pConvergence>0 . 99</pConvergence>
<f lushFrequency>1</ f lushFrequency>

9 <gaMode>1</gaMode>
<numOfParametersToOptimize>2</numOfParametersToOptimize>
<r eg i s t e r edParamete r s>

<parameter number="0" contro lAlgor i thm="Global Adaptive Touch"
parameter="Get-stuck-threshold"/>

<parameter number="1" contro lAlgor i thm="Global Adaptive Touch"
parameter="back to zero constant"/>

14 </ r eg i s t e r edParamete r s>
</ p r o p e r t i e s>
<genomeConfig number="0" a l l J o i n t s="1" genomeType="1" valueType="1"

valueSpace="1" a c t i v e J o i n t s="11111">
<upperBounds>800</upperBounds>
<lowerBounds>50</ lowerBounds>

19 <boundsIncrements>25</ boundsIncrements>
<lowerBoundTypes>2</ lowerBoundTypes>
<upperBoundTypes>2</upperBoundTypes>
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<uniform>1</ uniform>
</genomeConfig>

24 <genomeConfig number="1" a l l J o i n t s="1" genomeType="1" valueType="1"
valueSpace="1" a c t i v e J o i n t s="11111">
<upperBounds>1</upperBounds>
<lowerBounds>0 . 01</ lowerBounds>
<boundsIncrements>0 . 01</ boundsIncrements>
<lowerBoundTypes>2</ lowerBoundTypes>

29 <upperBoundTypes>2</upperBoundTypes>
<uniform>1</ uniform>

</genomeConfig>
</ genet i cAlgor i thm>

B.2 Data file format

Listing B.8: Example of data file format

<dataRoot>
<Header>

3 <Global Adaptive Touch types="4" par t s="5">
<typeNames>d e s i r e d a n g l e r ea l t ime simtime stepcount</typeNames>

</ Global Adaptive Touch>
<Pat t e rnGene ra to r s i nu so ida l types="7" par t s="5">

<typeNames>Angle Time Phase D i f f e r ence Frequency r ea l t ime simtime
stepcount</typeNames>

8 </ Pat t e rnGene ra to r s i nu so ida l>
< t a c t i l e types="7" par t s="12">

<typeNames>x−normals y−normals z−normals r ea l t ime simtime
stepcount</typeNames>

</ t a c t i l e>
<Robot Data types="16" par t s="13">

13 <typeNames>speed x pos y pos z pos alpha beta gamma
p o t e n t i a l e n e r g y average com speed d e s i r e d j o i n t p o s i t i o n s
r e a l j o i n t p o s i t i o n s s e r v o c u r r e n t s s e rvo spe ed s r ea l t ime
simtime stepcount</typeNames>

</Robot Data>
</Header>
<round number="0">

<Global Adaptive Touch>
18 <Frame index="0" r e a l t ime="1361368880613" simtime="30">

<d e s i r e d a n g l e>0 0 0 0 0</ d e s i r e d a n g l e>
</Frame>
<Frame index="1" r e a l t ime="1361368880632" simtime="61">

<d e s i r e d a n g l e>0 0 0 0 0</ d e s i r e d a n g l e>
23 </Frame>

. . .
</ Global Adaptive Touch>
<Pat t e rnGene ra to r s i nu so ida l>

<Frame index="0" r e a l t ime="1361368880613" simtime="30">
28 <Angle>5 . 80648 −29 . 297 −7 . 10298 28 . 9827 8 . 38557</Angle>

<Time>0 . 031 0 . 031 0 . 031 0 . 031 0 . 031</Time>
<Phase D i f f e r ence>0 0 0 0 0</ Phase D i f f e r ence>
<Frequency> i n f i n f i n f i n f i n f</Frequency>

</Frame>
33 <Frame index="1" r e a l t ime="1361368880632" simtime="61">

<Angle>11 . 3934 −27 . 4934 −12 . 6101 26 . 9354 13 . 802</Angle>
<Time>0 . 062 0 . 062 0 . 062 0 . 062 0 . 062</Time>
<Phase D i f f e r ence>0 0 0 0 0</ Phase D i f f e r ence>
<Frequency> i n f i n f i n f i n f i n f</Frequency>

38 </Frame>
. . .
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</ Pat t e rnGene ra to r s i nu so ida l>
< t a c t i l e />
<Robot Data>

43 <Frame index="0" r e a l t ime="1361368880613" simtime="30">
<speed>3 . 24042e−18 3 . 24042e−18 3 . 24042e−18 3 . 24042e−18 3

. 24042e−18</ speed>
<x pos>5 . 00018 5 . 00018 5 . 00018 5 . 00018 5 . 00018</ x pos>
<y pos>−1 . 86 −1 . 86 −1 . 86 −1 . 86 −1 . 86</ y pos>
<z pos>−2 . 69615 −2 . 69615 −2 . 69615 −2 . 69615 −2 . 69615</ z pos>

48 <alpha>0 . 706795 0 . 706795 0 . 706795 0 . 706795 0 . 706795</ alpha>
<beta>0 . 0209787 0 . 0209787 0 . 0209787 0 . 0209787 0 . 0209787</ beta>
<gamma>−0 . 0209787 −0 . 0209787 −0 . 0209787 −0 . 0209787

−0 . 0209787</gamma>
<p o t e n t i a l e n e r g y>−0 . 0674037 −0 . 000114443 −0 . 000114443

−0 . 134807 −0 . 000114258</ p o t e n t i a l e n e r g y>
<average com speed>0 0 0 0 0</ average com speed>

53 <d e s i r e d j o i n t p o s i t i o n s>1 . 58101e−322 1 . 36856e−321 6 . 15379e−313
6 . 15379e−313 6 . 93178e−310</ d e s i r e d j o i n t p o s i t i o n s>

< r e a l j o i n t p o s i t i o n s>32 0 37 0 1
. 66857e+09</ r e a l j o i n t p o s i t i o n s>

<s e r v o c u r r e n t s>32 0 101 0 1 . 34227e+09</ s e r v o c u r r e n t s>
<s e rvo spe ed s>2 . 54029e+07 0 37 0 0</ s e rvo spe ed s>

</Frame>
58 <Frame index="1" r e a l t ime="1361368880632" simtime="61">

<speed>0 . 005093 0 . 005093 0 . 005093 0 . 005093 0 . 005093</ speed>
<x pos>5 . 00066 5 . 00066 5 . 00066 5 . 00066 5 . 00066</ x pos>
<y pos>−1 . 86 −1 . 86 −1 . 86 −1 . 86 −1 . 86</ y pos>
<z pos>−2 . 71193 −2 . 71193 −2 . 71193 −2 . 71193 −2 . 71193</ z pos>

63 <alpha>0 . 706313 0 . 706313 0 . 706313 0 . 706313 0 . 706313</ alpha>
<beta>0 . 0334883 0 . 0334883 0 . 0334883 0 . 0334883 0 . 0334883</ beta>
<gamma>−0 . 0334884 −0 . 0334884 −0 . 0334884 −0 . 0334884

−0 . 0334884</gamma>
<p o t e n t i a l e n e r g y>−0 . 0677983 −0 . 000115152 −0 . 000115152

−0 . 135597 −0 . 000114816</ p o t e n t i a l e n e r g y>
<average com speed>0 0 0 0 0</ average com speed>

68 <d e s i r e d j o i n t p o s i t i o n s>1 . 58101e−322 1 . 36856e−321 6 . 15379e−313
6 . 15379e−313 6 . 93178e−310</ d e s i r e d j o i n t p o s i t i o n s>

< r e a l j o i n t p o s i t i o n s>32 0 37 0 1
. 66857e+09</ r e a l j o i n t p o s i t i o n s>

<s e r v o c u r r e n t s>32 0 69 0 3</ s e r v o c u r r e n t s>
<s e rvo spe ed s>2 . 54029e+07 0 37 0 1 . 34228e+09</ s e rvo spe ed s>

</Frame>
73 . . .

</Robot Data>
</round>
. . .

</dataRoot>

XI



B File Formats

XII



This work is motivated by my work as a student assistant in modular robots’ locomotion
research. The student position was supported by the DFG BICCA project1.

BICCA Project

The focus of the BICCA project lies on the design, development and programming of a
climbing caterpillar robot that is able to climb on smooth vertical surfaces like glass using
an attachment system. The attachment system is based on a semi-passive system that
uses motor-driven vibrating suction cups to stick to surfaces. Releasing from the attached
surface is possible by using valves that are connected to microcontroller boards. Re-
attachment is performed by high frequency vibration that removes the air from the suction
cups. Not only dynamic creation of appropriate locomotion patterns, but also distributed
intelligent control of the attachment system is a challenging task in this project.

Figure B.1: This concept art shows first ideas of a climbing caterpillar robot.

1B iologically Inspired C limbing Caterpillar Project funded by DFG (Deutsche Forschungsgemeinschaft)
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angefertigt und mich anderer als der im beigefügten Verzeichnis angegebenen Hilfsmittel
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