64-041 Ubung Rechnerstrukturen und Betriebssysteme

Aufgabenblatt 10 Ausgabe: 14.12.2025, Abgabe 07.01.2026 24:00

Gruppe

Name(n) Matrikelnummer(n)

Aufgabe 10.1 (Punkte 5+5+5)

Lebensdauer von SSDs. Wegen der viel schnelleren Zugriffszeiten setzen sich Flash-Speicher
(Solid State Disks, SSDs) zunehmend gegentiiber magnetischen Festplatten durch. Ein Nach-
teil von SSDs bleibt die begrenzte Anzahl von Schreibzyklen, weil die extrem diinnen Isolier-
schichten der Floating-Gates in den Zellen beim Schreiben beschéddigt werden.

Ein bekannter Hersteller garantiert fiir eine SSD mit 1.0 TByte Gesamtkapazitit eine Lebens-
dauer von drei Jahren beziehungsweise eine maximale Anzahl von 400 TBW (,,400 Terabytes
total bytes written”). Die SSD liefert beim sequentiellen Lesen maximal 3.2 GB/s an Daten,
und kann laut Datenblatt mit 1900 MB/s (sequentiell) bzw. 600 MB/s (zufdllige Zugriffe) be-
schrieben werden.

(a) Wielange halt die SSD durch, wenn sie konstant mit der maximalen Schreibrate beschrie-
ben wird (z.B. Videoiiberwachung) ?

(b) Wie lange lebt die SSD, wenn dauerhaft Schreibzugriffe auf zuféllige Sektoren erfolgen?

(c) Wir nehmen an, dass bei einem Laptop durchschnittlich etwa 20 GB Daten pro Tag auf
die SSD geschrieben werden. Wie lange hilt die SSD in dieser Betriebsart durch?

Aufgabe 10.2 (Punkte 5+5+5+5+10)

Datenblatt Lesen (Impulsdiagramme). Anders als Lehrbiicher verzichten Datenblatter auf leicht
verstandliche Erklarungen und prasentieren statt dessen die relevante Information in mog-
lichst kompakter Form. Als Beispiel betrachten wir das Datenblatt der integrierte Schaltung
FANS5622 zur Ansteuerung von zwei LEDs mit digital einstellbarer Helligkeit. Die Leucht-
dioden werden wie in Figure 1 gezeigt an das IC angeschlossen, und anschlieffend kann
die Stromstdrke an den Pins 4 und 6 (und damit die Helligkeit von LED1 und LED?2) {iber
digitale Steuerimpulse am Eingang CTRL geregelt werden, siehe http://tams.informatik.
uni-hamburg.de/lectures/2025ws/vorlesung/rsb/uebung/onsemi-FAN5626.pdf.

Geben Sie fiir alle der folgenden Fragen jeweils an, wo (Abschnitt/Diagramm /Seite) Sie die
gesuchte Information im Datenblatt gefunden haben, bzw. erldutern Sie Ihre Antworten:

http://tams.informatik.uni-hamburg.de/lectures/2025ws/vorlesung/rsb/uebung/onsemi-FAN5626.pdf
http://tams.informatik.uni-hamburg.de/lectures/2025ws/vorlesung/rsb/uebung/onsemi-FAN5626.pdf

64-041 Ubung Rechnerstrukturen und Betriebssysteme Aufgabenblatt 10

(a) Ermitteln Sie zunéchst die zuldssige Betriebsspannung VIN des ICs.

(b) Wie kann die maximale Stromstidrke der LEDs (und dazu proportional die gewtiinschte
Helligkeit) auf 10 mA eingestellt werden?

(c) Welche Spannungswerte sind am CTRL-Eingang notwendig, um sicher als logisch 1 (HIGH)
und logisch-0 (LOW) interpretiert zu werden?

(d) Wie lange muss das CTRL-Signal laut Tabelle auf LOW gehalten werden, um die LED ab-
zuschalten? Wie lange dauert es tatsdchlich laut Figure 15?

Hinweis: bei den gezeigten Impulsdiagrammen sind die x-Achse (Zeit) und y-Achsen
(Spannungen/Strome) jeweils in Div angegeben, wobei ein Div einem Késtchen
der gepunkteten Hilfslinien entspricht. Beispielweise wechselt die Eingangsspannung
CTRL (2V/Div) in Abbildung 15 zum Zeitpunkt t = 200 usec (zwei Kastchen nach rechts
mit 100us pro Késtchen) von 2 Volt (1 Késtchen hoch) auf nahe 0 Volt. Der Strom durch
die LED wird dann nach knapp 8 Kéastchen abgeschaltet (ILED) und gleichzeitig fillt na-
tirlich auch die Stromaufnahme I_IN des ICs.

(e) Die Helligkeit der LEDs wird iiber ein Digitalsignal am Eingang CTRL geregelt, siehe
Figure 16, Figure 17, und Tabelle 2.

Wir wollen ein Blinkmuster erzeugen, bei dem die LED zunéichst auf 50% der maximalen
Helligkeit eingestellt wird, und dann nach 1.0 sec auf die volle Helligkeit. Beschreiben Sie
die dazu nétigen Signale am CTRL-Eingang und zeichnen Sie das Impulsdiagramm.

Aufgabe 10.3 (Punkte 5+5+5+10+15)

Akkumulator-Maschine. Die am Anfang der Vorlesung vorgestellte ,Primitive Maschine” ver-
korpert einen Digitalrechner der ersten Generation (ca. 1950). Es gibt nur ein Resultatregister
(den ,, Akkumulator”) fiir die arithmetischen und logischen Operationen, und alle Datenope-
rationen und Sprungbefehle arbeiten mit absoluten Addressen. Es ist zwar unbequem, aber
auch sehr lehrreich, ein paar Beispielprogramme fiir einen derartigen Rechner zu erstellen.

Die PRIMA verfiigt tiber einen Hauptspeicher von 256 Bytes (Adressen 0..255) und insgesamt
vier 8-bit Register: den Programmzéhler (program counter, PC), das Befehlsregister (BR), ein
Adressregister (AR), und den Akkumulator (ACCU). Der Befehlszyklus umfasst drei Takte:
Befehl holen , Adresse holen, und Ausfiihrung:

PRIMA Befehlszyklus:

1. Holen: BR := MEM[PC }, PC := PC + 1
2. Adresse: AR := MEM[PC], PC := PC + 1
3. Ausfihrung: siehe Befehlssatz

Die Befehlsausfiihrung startet nach einem Reset bei Speicheradresse 0. Als Beispiel fiir mi-
nimale Input/Output-Féahigkeiten gibt es zusdtzlich einen von auflen bedienten Schalter
(switch, SW), der mit einem bedingten Sprungbefehl abgefragt werden kann.

64-041 Ubung Rechnerstrukturen und Betriebssysteme Aufgabenblatt 10

PRIMA Befehlssatz:

Opcode Mnemonic Bedeutung

0x00 nop no-operation

0x01 clear accu = 0

0x02 load accu = MEM[AR]

0x03 store MEM[AR] = accu

0x10 incr accu = (accu + 1) & Oxff

0x11 decr accu = (accu - 1) & Oxff

0x12 add accu = (accu + MEM[AR]) & Oxff

0x13 sub accu = (accu - MEM[AR]) & Oxff

0x20 neg accu = ~accu & Oxff (bitwise not)

0x21 and accu = accu & MEM[AR] (bitwise and)

0x22 or accu = accu | MEM[AR] (bitwise or)

0x23 xor accu = accu A MEM[AR] (bitwise xor)

0x40 jump PC = AR (unconditional jump)

0x41 bz if (accu == 0) PC = AR (branch if zero)
0x42 bneg if (accu & 0x80) PC = AR (branch if negative)
0x45 bsw if (SW) PC = AR (branch if switch)
Oxff halt stop machine execution

Sie konnen die folgenden Aufgaben gerne mit Papier und Bleistift 16sen, aber natiirlich ist die
Verwendung einer virtuellen Maschine zu empfehlen. Wie stellen ein Python-Skript zur Ver-
fiigung, dass die PRIMA simuliert: href://tams.informatik.uni-hamburg.de/lectures/
2025ws/vorlesung/rsb/uebung/prima.py.

Die Simulation ist text-basiert, kann also auch remote im Terminal ausgefiihrt werden, etwa
(Remote/SSH-Zugang) auf rzsshl.informatik.uni-hamburg.de:

ssh <username> rzsshl.informatik.uni-hamburg.de
wget tams.informatik.uni-hamburg.de/lectures/2025ws/vorlesung/rsb/doc/prima.py
python prima.py

Im Python-Interpreter kann dann interaktiv herumgespielt werden, aber natiirlich konnen Sie
auch Thre eigenen Skripte schreiben und starten:

prima = PRIMAQ)
prima.memset(0, [42,11,2,3,4,5,6,7,8,9]) # MEM[O®] = 42, MEM[1] = 11,
prima.print_memory(0, 127, 1) # MEM[0..127] list of hex-values
prima.print_registers()
prima.load_memory("/tmp/demo.txt")
prima.clk ()
prima.instruction()
prima.set_SW(C 0)
for i in range(1000):
prima.instruction(print_registers=True)
if prima.is_halted(): break # machine stopped

addr: hex hex hex hex ... \n
clock pulse (phase 1 or 2 or 3)
one instruction (phase 1+2+3)
set input switch to 0 (or 1)

H H K H

href://tams.informatik.uni-hamburg.de/lectures/2025ws/vorlesung/rsb/uebung/prima.py
href://tams.informatik.uni-hamburg.de/lectures/2025ws/vorlesung/rsb/uebung/prima.py

64-041 Ubung Rechnerstrukturen und Betriebssysteme Aufgabenblatt 10

print.print_memory(0, 256, 2) # MEM[O0..255] addr + hex-values
prima.save_memory("/tmp/factorial.txt", start=0, end=256,
comment="Prima factorial by A.Author")

(a) Offenbar gibt es fiir die PRIMA keinen separaten ,Load Immediate” Befehl, um einen
direkt im Befehl kodierten Zahlenwert in den Akkumulator zu laden. Uberlegen Sie sich,
einen Befehl (oder eine Befehlsfolge), startend ab Speicheradresse 0x30, die den Wert
0x42 in den Akkumulator 14dt.

(b) Schreiben Sie ein Programm, dass den Wert in der Speicherstelle 0xfc zundchst einmal
auf den Wert 0x03 initialisiert und anschlieflend in einer Endlosschleife immer weiter
hochzihlt.

Bitte geben Sie fiir diese und die folgenden Aufgaben das Programm jeweils als ,aus-
fithrbare” Textdatei (erzeugt mittels prima.save_memory()) und als kommentiertes Lis-
ting ab, wo sie die verwendeten Speicheradressen und jeden einzelnen Maschinenbefehl
beschreiben.

(c) Erweitern Sie das Programm aus der vorherigen Ausgabe, so dass der Wert an der Spei-
cherstelle 0xfc abhdngig vom Wert des Schalters SW in der Endlosschleife inkrementiert
(SW=0) oder dekrementiert (SW=1) wird. Nutzen Sie zum Texten die set_SW()-Funktion
des Simulators.

(d) Schreiben Sie ein Programm, dass die Werte an den Speicheradressen 248 und 249 (bzw.
0x£f8 und 0xf9) miteinander multipliziert und dann stoppt. Dabei soll das Ergebnis an
die Adresse 0xfb geschrieben werden. Um den Aufwand gering zu halten, berechnen
wir nur das niederwertige Byte (also die Bits 7:0) des vollstandigen 16-bit Resultats.

Da die PRIMA nicht tiber einen Multiplikationsbefehl verfiigt, ist vermutlich eine kleine
Schleife notwendig. Eine Moglichkeit ist es, den ersten Operanden so oft mit sich selbst
zu addieren, wie der zweite Operand angibt.

(e) Erstellen Sie ein Programm zur Berechnung der Fakultit n!, wobei Sie den Code aus
der vorherigen Aufgabe natiirlich wiederverwenden konnen. Das Argument 7 soll dabei
aus Speicheradresse 0xfc gelesen und das Resultat (wiederum nur die unteren 8-Bits) in
Adresse 0xff abgespeichert werden.

Welche Werte berechnet Thr Programm fiir die Argumenten =0,n =5, und n = 7?

Aufgabe 10.4 (Punkte 10+5)

Installation und Test eines C-Compilers (GNU Toolchain): In Vorbereitung auf Kapitel 13 zum
x86-Assembler und analog zu den Beispielen in Kapitel 2 ab Folie 95, sollen Sie selbst Zugang
zu einem C-Compiler und den zugehorigen Tools haben. Wir empfehlen die GNU Toolchain
mit dem gcc C-Compiler und Werkzeugen. Die Programme sind auf Linux-Systemen in der
Regel vorinstalliert, so dass Sie die Befehle direkt ausfiihren konnen.

Im Informatikum kénnen Sie die Dual-Boot Rechner in den Poolrdumen unter Linux nutzen.
Wenn Sie zu Hause lernen und keinen Linux PC haben, bzw. die Cygwin-Umgebung (s.u.)
nicht installieren wollen, konnen sie auch ,Remote” auf den Informatik Rechnern arbeiten:
aus einem Linux-Terminal / der Windows-Eingabeaufforderung einloggen:

O ® N G R W N e

[T S T T N S N O S S
N & G A O N R S © ®»® 9N o O & ®® N = o

64-041 Ubung Rechnerstrukturen und Betriebssysteme Aufgabenblatt 10

ssh rzsshl.informatik.uni-hamburg.de
...dort dann Start der Programme. Achtung: ihr Linux HOME-Verzeichnis ist infhome.

Fir Windows-Systeme konnten Sie die Cygwin-Umgebung von cygwin.com herunterladen
und installieren. Im Setup von Cygwin dann bitte den gcc-Compiler und die Entwickler-
Tools auswéahlen und installieren. Natiirlich konnen Sie auch jeden anderen C-Compiler ver-
wenden, miissen sich dann aber die bendétigten Befehle und Optionen selbst heraussuchen.

Anmerkung: keine Angst, die Aufgabe soll zeigen, wie Assemblercode aussieht und Thnen
helfen erste Einblicke zu gewinnen, wie Betriebssystem, (Programm-) Bindr-Code und die
Hardware zusammenspielen. Hauptsachlich soll diese Aufgabe dazu motivieren, auf dem ei-
genen Rechner mit den Werkzeugen zu ,spielen” und ein Gefiihl dafiir zu bekommen, wie
der programmierte Code auf den niedrigeren Abstraktionsebenen und im Speicher des Rech-
ners schliefilich aussieht. Es geht nicht darum Assemblerprogrammierung zu lernen!

Fiir einen ersten Test tippen Sie bitte das folgenden Programm ab oder laden Sie sich die
Datei aufg10_4. c herunter. Passen Sie die Datei an, indem Sie dort ihren Namen und die Ma-
trikelnummer eintragen. Anschliefiend sollen Sie das Programm {ibersetzen und den dabei
erzeugten Assembler- und Objektcode studieren.

/% aufgl0®_4.c
* Einfaches Programm zum Test des C-Compilers und der zugehoérigen Tools.
* Bitte setzen Sie in das Programm ihren Namen und die Matrikelnummer ein
* und probieren Sie alle der folgenden Operationen aus:

* Funktion Befehl erzeugt

e e~ focoococoooooocoocooooooooooo oo oo oo oo oo focoocooooooooooso
* C -> Assembler: gcc -S aufgl0®_4.c -> aufgl®_4.s

* C -> Objektcode: gcc -c aufgl0®_4.c -> aufgl®_4.o0

* C -> Programm: gcc -0 aufgl®_4.exe aufgll®_4.c -> aufgl0_4.exe

* Disassembler: objdump -d aufgl®_4.o0

ki objdump -d aufgl0®_4.exe

* Ausfiihren: aufgl0®_4.exe

*/

#include <stdio.h>

int main(int argc, char** argv)

{ int matrikelNr = 345678;

char vorname[32] = "Studi";

char nachname[32] = "Informaticus";
//char *vorname = "Studi";

//char *nachname "Informaticus";

printf("Name: %s %s - Matrikelnr.: %d\n", vorname, nachname, matrikelNr);
return 0;

3

(a) Machen Sie sich mit dem Compiler und den Tools vertraut. Probieren Sie die vorgeschla-
genen Befehle aus und sehen Sie sich die Ausgaben an.

https://cygwin.com

64-041 Ubung Rechnerstrukturen und Betriebssysteme Aufgabenblatt 10

(b)

Erzeugen Sie eine Textdatei, die die Ausgabe des Programms und ein Listing des Disas-
semblers enthilt. Dies geschieht am einfachsten mit den folgenden Befehlen:

./aufgl®_4.exe > loesungl®_4.txt

eChO e e e el el el >> 10esungl®_4_txt
objdump -d aufgl®_4.o0 >> loesungl®_4.txt

Markieren Sie in der Datei an welcher Stelle des Codes: Vorname, Nachname und Matri-
kelnummer stehen (mit kurzer Begriindung). Diese Datei ist als Losung des Aufgaben-
teils abzugeben.

In dem Code aufgl0_4.c sind die Zeilen 22 und 23 auskommentiert. Andern Sie die
Variablen fiir Vor- und Nachnamen in die zweite Version (Zeiger auf den String, statt
char-Array).

Was dndert sich in dem Assembler-Code? Es geniigt, die Anderungen (inhaltlich) zu be-
schreiben, es miissen keine Listings abgegeben werden.

