
64-041 Übung Rechnerstrukturen und Betriebssysteme

Aufgabenblatt 10 Ausgabe: 14.12.2025, Abgabe 07.01.2026 24:00

Gruppe

Name(n) Matrikelnummer(n)

Aufgabe 10.1 (Punkte 5+5+5)

Lebensdauer von SSDs. Wegen der viel schnelleren Zugriffszeiten setzen sich Flash-Speicher
(Solid State Disks, SSDs) zunehmend gegenüber magnetischen Festplatten durch. Ein Nach-
teil von SSDs bleibt die begrenzte Anzahl von Schreibzyklen, weil die extrem dünnen Isolier-
schichten der Floating-Gates in den Zellen beim Schreiben beschädigt werden.

Ein bekannter Hersteller garantiert für eine SSD mit 1.0 TByte Gesamtkapazität eine Lebens-
dauer von drei Jahren beziehungsweise eine maximale Anzahl von 400 TBW („400 Terabytes
total bytes written“). Die SSD liefert beim sequentiellen Lesen maximal 3.2 GB/s an Daten,
und kann laut Datenblatt mit 1900 MB/s (sequentiell) bzw. 600 MB/s (zufällige Zugriffe) be-
schrieben werden.
(a) Wie lange hält die SSD durch, wenn sie konstant mit der maximalen Schreibrate beschrie-

ben wird (z.B. Videoüberwachung) ?

(b) Wie lange lebt die SSD, wenn dauerhaft Schreibzugriffe auf zufällige Sektoren erfolgen?

(c) Wir nehmen an, dass bei einem Laptop durchschnittlich etwa 20 GB Daten pro Tag auf
die SSD geschrieben werden. Wie lange hält die SSD in dieser Betriebsart durch?

Aufgabe 10.2 (Punkte 5+5+5+5+10)

Datenblatt Lesen (Impulsdiagramme). Anders als Lehrbücher verzichten Datenblätter auf leicht
verständliche Erklärungen und präsentieren statt dessen die relevante Information in mög-
lichst kompakter Form. Als Beispiel betrachten wir das Datenblatt der integrierte Schaltung
FAN5622 zur Ansteuerung von zwei LEDs mit digital einstellbarer Helligkeit. Die Leucht-
dioden werden wie in Figure 1 gezeigt an das IC angeschlossen, und anschließend kann
die Stromstärke an den Pins 4 und 6 (und damit die Helligkeit von LED1 und LED2) über
digitale Steuerimpulse am Eingang CTRL geregelt werden, siehe http://tams.informatik.
uni-hamburg.de/lectures/2025ws/vorlesung/rsb/uebung/onsemi-FAN5626.pdf.

Geben Sie für alle der folgenden Fragen jeweils an, wo (Abschnitt/Diagramm/Seite) Sie die
gesuchte Information im Datenblatt gefunden haben, bzw. erläutern Sie Ihre Antworten:

1

http://tams.informatik.uni-hamburg.de/lectures/2025ws/vorlesung/rsb/uebung/onsemi-FAN5626.pdf
http://tams.informatik.uni-hamburg.de/lectures/2025ws/vorlesung/rsb/uebung/onsemi-FAN5626.pdf

64-041 Übung Rechnerstrukturen und Betriebssysteme Aufgabenblatt 10

(a) Ermitteln Sie zunächst die zulässige Betriebsspannung VIN des ICs.

(b) Wie kann die maximale Stromstärke der LEDs (und dazu proportional die gewünschte
Helligkeit) auf 10 mA eingestellt werden?

(c) Welche Spannungswerte sind am CTRL-Eingang notwendig, um sicher als logisch 1 (HIGH)
und logisch-0 (LOW) interpretiert zu werden?

(d) Wie lange muss das CTRL-Signal laut Tabelle auf LOW gehalten werden, um die LED ab-
zuschalten? Wie lange dauert es tatsächlich laut Figure 15?

Hinweis: bei den gezeigten Impulsdiagrammen sind die x-Achse (Zeit) und y-Achsen
(Spannungen/Ströme) jeweils in Div angegeben, wobei ein Div einem Kästchen
der gepunkteten Hilfslinien entspricht. Beispielweise wechselt die Eingangsspannung
CTRL (2V/Div) in Abbildung 15 zum Zeitpunkt t = 200 µsec (zwei Kästchen nach rechts
mit 100µs pro Kästchen) von 2 Volt (1 Kästchen hoch) auf nahe 0 Volt. Der Strom durch
die LED wird dann nach knapp 8 Kästchen abgeschaltet (ILED) und gleichzeitig fällt na-
türlich auch die Stromaufnahme I_IN des ICs.

(e) Die Helligkeit der LEDs wird über ein Digitalsignal am Eingang CTRL geregelt, siehe
Figure 16, Figure 17, und Tabelle 2.

Wir wollen ein Blinkmuster erzeugen, bei dem die LED zunächst auf 50% der maximalen
Helligkeit eingestellt wird, und dann nach 1.0 sec auf die volle Helligkeit. Beschreiben Sie
die dazu nötigen Signale am CTRL-Eingang und zeichnen Sie das Impulsdiagramm.

Aufgabe 10.3 (Punkte 5+5+5+10+15)

Akkumulator-Maschine. Die am Anfang der Vorlesung vorgestellte „Primitive Maschine“ ver-
körpert einen Digitalrechner der ersten Generation (ca. 1950). Es gibt nur ein Resultatregister
(den „Akkumulator“) für die arithmetischen und logischen Operationen, und alle Datenope-
rationen und Sprungbefehle arbeiten mit absoluten Addressen. Es ist zwar unbequem, aber
auch sehr lehrreich, ein paar Beispielprogramme für einen derartigen Rechner zu erstellen.

Die PRIMA verfügt über einen Hauptspeicher von 256 Bytes (Adressen 0..255) und insgesamt
vier 8-bit Register: den Programmzähler (program counter, PC), das Befehlsregister (BR), ein
Adressregister (AR), und den Akkumulator (ACCU). Der Befehlszyklus umfasst drei Takte:
Befehl holen , Adresse holen, und Ausführung:

PRIMA Befehlszyklus:
1. Holen: BR := MEM[PC }, PC := PC + 1
2. Adresse: AR := MEM[PC], PC := PC + 1
3. Ausführung: siehe Befehlssatz

Die Befehlsausführung startet nach einem Reset bei Speicheradresse 0. Als Beispiel für mi-
nimale Input/Output-Fähigkeiten gibt es zusätzlich einen von außen bedienten Schalter
(switch, SW), der mit einem bedingten Sprungbefehl abgefragt werden kann.

2

64-041 Übung Rechnerstrukturen und Betriebssysteme Aufgabenblatt 10

PRIMA Befehlssatz:
Opcode Mnemonic Bedeutung

0x00 nop no-operation
0x01 clear accu = 0
0x02 load accu = MEM[AR]
0x03 store MEM[AR] = accu

0x10 incr accu = (accu + 1) & 0xff
0x11 decr accu = (accu - 1) & 0xff
0x12 add accu = (accu + MEM[AR]) & 0xff
0x13 sub accu = (accu - MEM[AR]) & 0xff

0x20 neg accu = ~accu & 0xff (bitwise not)
0x21 and accu = accu & MEM[AR] (bitwise and)
0x22 or accu = accu | MEM[AR] (bitwise or)
0x23 xor accu = accu ^ MEM[AR] (bitwise xor)

0x40 jump PC = AR (unconditional jump)
0x41 bz if (accu == 0) PC = AR (branch if zero)
0x42 bneg if (accu & 0x80) PC = AR (branch if negative)
0x45 bsw if (SW) PC = AR (branch if switch)

0xff halt stop machine execution

Sie können die folgenden Aufgaben gerne mit Papier und Bleistift lösen, aber natürlich ist die
Verwendung einer virtuellen Maschine zu empfehlen. Wie stellen ein Python-Skript zur Ver-
fügung, dass die PRIMA simuliert: href://tams.informatik.uni-hamburg.de/lectures/
2025ws/vorlesung/rsb/uebung/prima.py.

Die Simulation ist text-basiert, kann also auch remote im Terminal ausgeführt werden, etwa
(Remote/SSH-Zugang) auf rzssh1.informatik.uni-hamburg.de:

ssh <username> rzssh1.informatik.uni-hamburg.de
wget tams.informatik.uni-hamburg.de/lectures/2025ws/vorlesung/rsb/doc/prima.py
python prima.py

Im Python-Interpreter kann dann interaktiv herumgespielt werden, aber natürlich können Sie
auch Ihre eigenen Skripte schreiben und starten:

prima = PRIMA()
prima.memset(0, [42,11,2,3,4,5,6,7,8,9]) # MEM[0] = 42, MEM[1] = 11, ...
prima.print_memory(0, 127, 1) # MEM[0..127] list of hex-values
prima.print_registers()
prima.load_memory("/tmp/demo.txt") # addr: hex hex hex hex ... \n
prima.clk() # clock pulse (phase 1 or 2 or 3)
prima.instruction() # one instruction (phase 1+2+3)
prima.set_SW(0) # set input switch to 0 (or 1)
for i in range(1000):

prima.instruction(print_registers=True)
if prima.is_halted(): break # machine stopped

3

href://tams.informatik.uni-hamburg.de/lectures/2025ws/vorlesung/rsb/uebung/prima.py
href://tams.informatik.uni-hamburg.de/lectures/2025ws/vorlesung/rsb/uebung/prima.py

64-041 Übung Rechnerstrukturen und Betriebssysteme Aufgabenblatt 10

print.print_memory(0, 256, 2) # MEM[0..255] addr + hex-values
prima.save_memory("/tmp/factorial.txt", start=0, end=256,

comment="Prima factorial by A.Author")

(a) Offenbar gibt es für die PRIMA keinen separaten „Load Immediate“ Befehl, um einen
direkt im Befehl kodierten Zahlenwert in den Akkumulator zu laden. Überlegen Sie sich,
einen Befehl (oder eine Befehlsfolge), startend ab Speicheradresse 0x30, die den Wert
0x42 in den Akkumulator lädt.

(b) Schreiben Sie ein Programm, dass den Wert in der Speicherstelle 0xfc zunächst einmal
auf den Wert 0x03 initialisiert und anschließend in einer Endlosschleife immer weiter
hochzählt.

Bitte geben Sie für diese und die folgenden Aufgaben das Programm jeweils als „aus-
führbare“ Textdatei (erzeugt mittels prima.save_memory()) und als kommentiertes Lis-
ting ab, wo sie die verwendeten Speicheradressen und jeden einzelnen Maschinenbefehl
beschreiben.

(c) Erweitern Sie das Programm aus der vorherigen Ausgabe, so dass der Wert an der Spei-
cherstelle 0xfc abhängig vom Wert des Schalters SW in der Endlosschleife inkrementiert
(SW=0) oder dekrementiert (SW=1) wird. Nutzen Sie zum Texten die set_SW()-Funktion
des Simulators.

(d) Schreiben Sie ein Programm, dass die Werte an den Speicheradressen 248 und 249 (bzw.
0xf8 und 0xf9) miteinander multipliziert und dann stoppt. Dabei soll das Ergebnis an
die Adresse 0xfb geschrieben werden. Um den Aufwand gering zu halten, berechnen
wir nur das niederwertige Byte (also die Bits 7:0) des vollständigen 16-bit Resultats.

Da die PRIMA nicht über einen Multiplikationsbefehl verfügt, ist vermutlich eine kleine
Schleife notwendig. Eine Möglichkeit ist es, den ersten Operanden so oft mit sich selbst
zu addieren, wie der zweite Operand angibt.

(e) Erstellen Sie ein Programm zur Berechnung der Fakultät n!, wobei Sie den Code aus
der vorherigen Aufgabe natürlich wiederverwenden können. Das Argument n soll dabei
aus Speicheradresse 0xfc gelesen und das Resultat (wiederum nur die unteren 8-Bits) in
Adresse 0xff abgespeichert werden.

Welche Werte berechnet Ihr Programm für die Argumente n = 0, n = 5, und n = 7?

Aufgabe 10.4 (Punkte 10+5)

Installation und Test eines C-Compilers (GNU Toolchain): In Vorbereitung auf Kapitel 13 zum
x86-Assembler und analog zu den Beispielen in Kapitel 2 ab Folie 95, sollen Sie selbst Zugang
zu einem C-Compiler und den zugehörigen Tools haben. Wir empfehlen die GNU Toolchain
mit dem gcc C-Compiler und Werkzeugen. Die Programme sind auf Linux-Systemen in der
Regel vorinstalliert, so dass Sie die Befehle direkt ausführen können.

Im Informatikum können Sie die Dual-Boot Rechner in den Poolräumen unter Linux nutzen.
Wenn Sie zu Hause lernen und keinen Linux PC haben, bzw. die Cygwin-Umgebung (s.u.)
nicht installieren wollen, können sie auch „Remote“ auf den Informatik Rechnern arbeiten:
aus einem Linux-Terminal / der Windows-Eingabeaufforderung einloggen:

4

64-041 Übung Rechnerstrukturen und Betriebssysteme Aufgabenblatt 10

ssh rzssh1.informatik.uni-hamburg.de

. . . dort dann Start der Programme. Achtung: ihr Linux HOME-Verzeichnis ist infhome.

Für Windows-Systeme könnten Sie die Cygwin-Umgebung von cygwin.com herunterladen
und installieren. Im Setup von Cygwin dann bitte den gcc-Compiler und die Entwickler-
Tools auswählen und installieren. Natürlich können Sie auch jeden anderen C-Compiler ver-
wenden, müssen sich dann aber die benötigten Befehle und Optionen selbst heraussuchen.

Anmerkung: keine Angst, die Aufgabe soll zeigen, wie Assemblercode aussieht und Ihnen
helfen erste Einblicke zu gewinnen, wie Betriebssystem, (Programm-) Binär-Code und die
Hardware zusammenspielen. Hauptsächlich soll diese Aufgabe dazu motivieren, auf dem ei-
genen Rechner mit den Werkzeugen zu „spielen“ und ein Gefühl dafür zu bekommen, wie
der programmierte Code auf den niedrigeren Abstraktionsebenen und im Speicher des Rech-
ners schließlich aussieht. Es geht nicht darum Assemblerprogrammierung zu lernen!

Für einen ersten Test tippen Sie bitte das folgenden Programm ab oder laden Sie sich die
Datei aufg10_4.c herunter. Passen Sie die Datei an, indem Sie dort ihren Namen und die Ma-
trikelnummer eintragen. Anschließend sollen Sie das Programm übersetzen und den dabei
erzeugten Assembler- und Objektcode studieren.

1 /* aufg10_4.c
2 * Einfaches Programm zum Test des C-Compilers und der zugehörigen Tools.
3 * Bitte setzen Sie in das Programm ihren Namen und die Matrikelnummer ein
4 * und probieren Sie alle der folgenden Operationen aus:
5 *
6 * Funktion Befehl erzeugt
7 * ----------------+-------------------------------------+----------------
8 * C -> Assembler: gcc -S aufg10_4.c -> aufg10_4.s
9 * C -> Objektcode: gcc -c aufg10_4.c -> aufg10_4.o

10 * C -> Programm: gcc -o aufg10_4.exe aufg10_4.c -> aufg10_4.exe
11 * Disassembler: objdump -d aufg10_4.o
12 * objdump -d aufg10_4.exe
13 * Ausführen: aufg10_4.exe
14 */
15

16 #include <stdio.h>
17

18 int main(int argc, char** argv)
19 { int matrikelNr = 345678;
20 char vorname[32] = "Studi";
21 char nachname[32] = "Informaticus";
22 //char *vorname = "Studi";
23 //char *nachname = "Informaticus";
24

25 printf("Name: %s %s - Matrikelnr.: %d\n", vorname, nachname, matrikelNr);
26 return 0;
27 }

(a) Machen Sie sich mit dem Compiler und den Tools vertraut. Probieren Sie die vorgeschla-
genen Befehle aus und sehen Sie sich die Ausgaben an.

5

https://cygwin.com

64-041 Übung Rechnerstrukturen und Betriebssysteme Aufgabenblatt 10

Erzeugen Sie eine Textdatei, die die Ausgabe des Programms und ein Listing des Disas-
semblers enthält. Dies geschieht am einfachsten mit den folgenden Befehlen:

./aufg10_4.exe > loesung10_4.txt
echo "==" >> loesung10_4.txt
objdump -d aufg10_4.o >> loesung10_4.txt

Markieren Sie in der Datei an welcher Stelle des Codes: Vorname, Nachname und Matri-
kelnummer stehen (mit kurzer Begründung). Diese Datei ist als Lösung des Aufgaben-
teils abzugeben.

(b) In dem Code aufg10_4.c sind die Zeilen 22 und 23 auskommentiert. Ändern Sie die
Variablen für Vor- und Nachnamen in die zweite Version (Zeiger auf den String, statt
char-Array).

Was ändert sich in dem Assembler-Code? Es genügt, die Änderungen (inhaltlich) zu be-
schreiben, es müssen keine Listings abgegeben werden.

6

