

MIN Faculty Department of Informatics

Motion Planning in dynamic environments using Model Predictive Control

Maximilian Hartz

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

15. May 2025

Outime							
Motivation	Path vs Motion Planning	CHOMP	TrajOpt	STOMP	MPC	Comparison	
Motivation							
Path vs Mo	tion Planning						
CHOMP							
TrajOpt							
STOMP							
MPC							
Comparison							

Source: [4]

Source: [2]

Path Planning vs Motion Planning

Path vs Motion Planning

Path Planning

- find shortest path from A to B (globally)
- (near) optimal solution
- long computation
- avoid static but (often) no dynamic obstacles
- no time
- result is a path
 - a series of points

Motion Planning

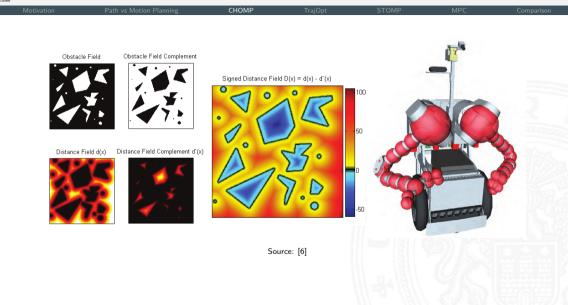
- find a smooth path
- follow constrains (speed, angles)
- avoid any obstacle
- incorporate time
- result is a trajectory
 - a series of points at specific times

	Local					
Motivation	Path vs Motion Planning	CHOMP	TrajOpt	STOMP	MPC	Comparison
Global Pl	lanning		Local Pla	nning		
			► real time	2		
🕨 may tak	e longer		react to	sensor feedb	ack	
🕨 optimize	e trajectory		🕨 determin	istic		
			needs ref	ference traje	ctory	

- TrajOpt
- Sampling based optimization techniques
 - STOMP
- Global optimization with local planner
 - MPC

Problem Description

 ·						
Motivation Path vs Motio	n Planning CHOMP	TrajOpt	STOMP	MPC	Comparison	
known start and	goal state					
► K degrees of free	dom					
T time-steps						
optimize trajecto	ry $u \in \mathbb{R}^{K imes T}$					
<i>u_t</i> state at time	t					
		$\min_{u} L(u)$				
	s.t.	$g_i(u) \leq 0$			(1)	
		$h_i(u)=0$				



CHOMP

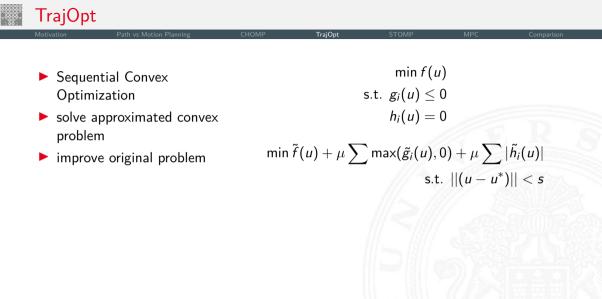
- Covariant Hamiltonian Optimization for Motion Planning
- Optimization of cost function
- Gradient Descent
- $\blacktriangleright L(u) = L_{obs}(u) + L_{prior}(u)$
- obstacle cost $L_{obs}(u)$
- smoothness L_{prior}(u)

CHOMP: obstacle cost

CHOMP: smoothness

Motivation	Path vs Motion Planning	CHOMP	TrajOpt	STOMP	MPC	Comparison

- acts as regularization
- derivative from finite difference
- any number of derivatives

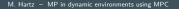

$$\blacktriangleright L_{prior}(u) = \frac{1}{2} \sum_{t=0}^{T} \left\| \frac{u_{t+1}-u_t}{\Delta t} \right\|^2$$

CHOMP: Joint Limits

Motivation	Path vs Motion Planning	СНОМР	TrajOpt	STOMP	MPC	Comparison
		$v_{\rm max}$ $-\bar{\xi}$ $\xi(0)$	ξυ ξ(1		ax	
	$q_{ m min}$	So	urce: [6]			

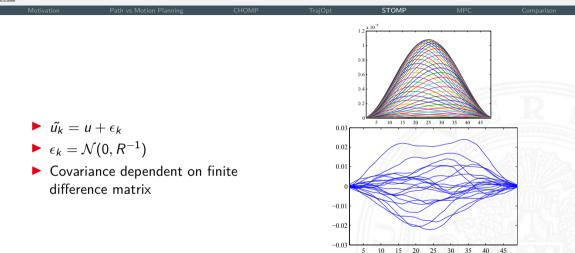
TrajOpt: Algorithm					
Motivation Path vs Motion Planning	CHOMP	TrajOpt	STOMP	MPC	Comparison
 Trust region size s increases if x* is better decreases until x* is better constrains might be broken check after optimization not satisfied ⇒ increase µ 	1: 1 2: 3: 4: 5: 6: 7: 8: 9: 10: 11: 12: 13: 14: 15: 16: 17: 18:	for TrustReg $x \leftarrow \arg m_x$ subject if TrueImp $s \leftarrow \tau^+$ break else $s \leftarrow \tau^-$ if $s < xtol$ goto 15	teration = 1, 2 avexifyProblem gionIteration = 1, 2 in $\tilde{f}(\mathbf{x}) + \mu \sum_{i=1}^{n} \tilde{f}(\mathbf{x}) + \mu $	2, do m(f, g, h) = 1, 2, do $\sum_{i=1}^{neq} \tilde{g}_i(\mathbf{x}) ^+ \cdot \sum_{i=1}^{neq} \tilde{g}_i(x$	+ $\mu \sum_{i=1}^{\infty} \tilde{h}_i(\mathbf{x}) $ constraints then trust region trust region

Source: [5]



Compariso

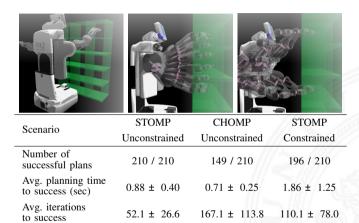
random sample based


Algorithm:

- initial trajectory
- generate multiple noisy trajectories
- evaluate the cost function
- compute probability
- update the through a weighted average
- non-differentiable

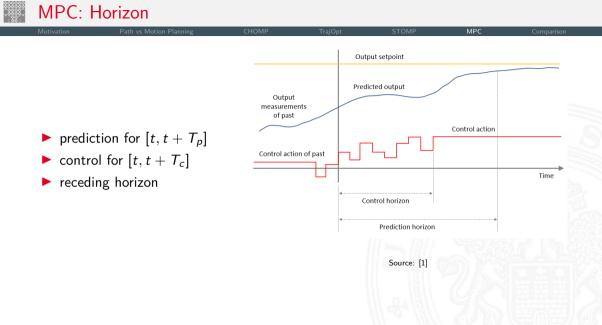
STOMP: Noise

Source: [3]


STOMP: Costs and Limits

Motivation Path vs Motion Planning Cl	HOMP TrajOpt	STOMP	MPC	Comparison
Obstacle Costs				
► like CHOMP				
Constraint Costs				
end-effector position and orien	itation			
Torque Costs				
requires dynamics model				
Joint Limits				
clipping noisy trajectories				

STOMP: Comparison


		STOMP	

Source: [3]

Motivation	Path vs Motion Planning	CHOMP	TrajOpt	STOMP	MPC	Comparison
Model	Predictive Control					
predict	system into future					
🕨 optimi	ze actions <i>u</i>					
🕨 only a	oply first action u_1					
🕨 recom	oute often					
🕨 react t	o inaccuracies					

: 88 : .	1011 C. U	ystem model					
	Motivation	Path vs Motion Planning	CHOMP	TrajOpt	STOMP	MPC	Comparison
	🕨 Requir	es system Model					
		-					
	🕨 must b	be linear					
	N	$A_{X} + B_{U}$					
	$x_{t+1} - $	$Ax_t + Bu_t$					
	🕨 🕨 🕨	systems are non-line	ear				
	ann	proximately linear					
		~					
	SOIV	ve non-linear model p	redictive contr	ol (INIMPC)			

Comparison

Motivation	Path vs Motion Planning	CHOMP	TrajOpt	STOMP	MPC	Comparison
CH	OMP					
	smooth					
	local minima					
🕨 Tra	jOpt					
•	higher success ratio					
	local minima					
► ST	OMP					
	no local minima					
	higher success ratio					
	arbitrary constrains					
🕨 MF	PC					
•	real-time					
	requires system model					
	local minima					

Bibliography

[1] Run field oriented control of pmsm using model predictive control.

https:

//de.mathworks.com/help/examples/mcb/win64/xxmcb-mpc-pmsm-plot.png, 2025. Last Accessed: 15.05.2025.

[2] forbs.

The-best-examples-of-human-and-robot-collaboration. https://imageio.forbes.com/specials-images/imageserve/ 62f33bc82e274eb23360c8b8/ The-Best-Examples-Of-Human-And-Robot-Collaboration/960x0.jpg?height=399& width=711&fit=bounds. Last Accessed: 15 05 2025

Bibliography (cont.)

[3] Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan Schaal.

Stomp: Stochastic trajectory optimization for motion planning.

In 2011 IEEE International Conference on Robotics and Automation, pages 4569–4574, 2011.

[4] researchleap.

Ai drive reasoning.

https:

//researchleap.com/wp-content/uploads/2021/12/AI_Drive_Reasoning-002.png,
2021.

Last Accessed: 15.05.2025.

[5] John Schulman, Jonathan Ho, Alex X Lee, Ibrahim Awwal, Henry Bradlow, and Pieter Abbeel.

Finding locally optimal, collision-free trajectories with sequential convex optimization. In *Robotics: science and systems*, volume 9, pages 1–10. Berlin, Germany, 2013.

			Comparison

[6] Matt Zucker, Nathan Ratliff, Anca D. Dragan, Mihail Pivtoraiko, Matthew Klingensmith, Christopher M. Dellin, J. Andrew Bagnell, and Siddhartha S. Srinivasa. Chomp: Covariant hamiltonian optimization for motion planning. The International Journal of Robotics Research, 32(9-10):1164–1193, 2013.