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Embodied AI
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Embodied Agent Environment

Embodied Perception and Interaction



Goal: General-Purpose Dexterous Manipulation



Reality: Specialized Dexterous Manipulation

OpenAI, 2018 Wang et al., 2024 Lin et al., 2024



Why is There a Huge Gap?

• Problem complexity:

◦ Rich and slipping contacts with complex dynamics

◦ Underactuation during in-hand re-orientation or nonprehensile manipulation

◦ High dimensional state and action spaces

◦ Dynamic perception during heavy occlusion



Why is There a Huge Gap?

• Popular paradigms: model-based trajectory optimization

Bai et al., 2014 Pang et al., 2023



Why is There a Huge Gap?

• Popular paradigms: reinforcement learning

OpenAI, 2018 Lin et al., 2024Chen et al., 2021



What about Learning from Human Motion?

• The progress in the vision community

HOI4D, Liu et al., 2022 HaMeR, Pavlakos et al., 2024 MCC-HO, Wu et al., 2024



What about Learning from Human Motion?

• Challenges:

◦ Embodiment gap

◦ Missing of “actions”

◦ Heterogenous operation targets and tasks



What about Learning from Human Motion?

• Challenges:

◦ Embodiment gap

◦ Missing of “actions”

◦ Heterogenous operation targets and tasks

Only learn motion planning from human data and
leave the rest to a general neural tracking controller



A Cross-Embodiment Tracking Control Paradigm

Task Description

Using a knife to chop

Generative Human Motion Planning
Cross-Embodiment

Neural Tracking Control



Advantages

• Separate planning and control similar to traditional paradigms

• Partially separate semantics from dynamics

• Neural planner and controller to harvest the power of data



A Cross-Embodiment Tracking Control Paradigm

Capturing Human Manipulation Data Generative Human Manipulation Planning Cross-Embodiment Tracking Control



Capturing Human Manipulation Data

HOI4D: A 4D Egocentric Dataset for Category-Level Human-Object Interaction 
Yunze Liu*, Yun Liu*, Che Jiang, Kangbo Lyu, Weikang Wan, Hao Shen, Boqiang Liang, 

Zhoujie Fu, He Wang, Li Yi. CVPR 2022

TACO: Benchmarking Generalizable Bimanual Tool-ACtion-Object Understanding 
Yun Liu, Haolin Yang, Xu Si, Ling Liu, Zipeng Li, Yuxiang Zhang, Yebin Liu, Li Yi. CVPR 2024

CORE4D: A 4D Human-Object-Human Interaction Dataset 
for Collaborative Object REarrangement

Chengwen Zhang*, Yun Liu*, Ruofan Xing, Bingda Tang, Li Yi. In submission



• The first dataset for 4D egocentric category-level human-object interaction

HOI4D Dataset



Rich Annotations



• 4D panoptic segmentation

• 3D hand pose

• Category-level object pose (rigid and articulated)

• Object mesh with mobility annotation

• Per-frame motion segmentation

• Camera pose

• Action segmentation

Rich Annotations



Feature I: Category Level



Feature II: Large Scale

• 2.4M RGB-D frames over 4,000 videos

• 800 object instances from 16 categories (7 rigid + 9 articulated)



Feature II: Large Scale

• 2.4M RGB-D frames over 4,000 videos

• 800 object instances from 16 categories (7 rigid + 9 articulated)

• 610 different indoor rooms

• 43 semantic category in 4D scenes

• 26 action categories

• 92 tasks including pick-and-place and functionality-based tasks



Feature III: Functionality Driven

• Examples of interaction tasks



• Learning robotic dexterous manipulation from human demonstration

Application - Robot Learning from Human Demonstration



Application - Robot Learning from Human Demonstration

• Mixing imitation learning (IL) and reinforcement learning (RL)

• Task: Pick up the toy car and keep it a certain height from the table

RL only

RL + IL



More Applications

• Knowledge transfer across sensors

• Dynamic reconstruction

• Camera re-localization in dynamic scenes

• Action anticipation

• …



Summary of HOI4D

• The first dataset for 4D egocentric category-level human-object interaction

• An integrated data collection and annotation pipeline

• Various applications including 4D perception and robot learning



A Cross-Embodiment Tracking Control Paradigm

Capturing Human Manipulation Data Generative Human Manipulation Planning Cross-Embodiment Tracking Control



Generative Human Manipulation Planning

GeneOH Diffusion: Generalizable Hand-Object Interaction Denoising
via Denoising Diffusion

Xueyi Liu, Li Yi. ICLR 2024

CAMS: CAnonicalized Manipulation Spaces for Category-Level Functional 
Hand-Object Manipulation Synthesis

Juntian Zheng, Lixing Fang, Qingyuan Zheng, Yun Liu, Li Yi. CVPR 2023

using a spatula to remove 
residue from the plate

using a brush to clean the pot

Multibody Human-Object Interaction Synthesis via Synchronized Motion Diffusion
Wenkun He, Yun Liu, Ruitao Liu, Li Yi. In submission



CAMS: CAnonicalized Manipulation Spaces for Category-Level 
Functional Hand-Object Manipulation Synthesis

Juntian Zheng, Lixing Fang, Qingyuan Zheng, Yun Liu, Li Yi. CVPR 2023



Task Definition & Challenges

Object Geometry Goal SequenceInitial Hand

Challenges:
Shape Diversity
Manipulation Diversity

Input

Output

Functional Manipulation



Contact-Centric Representation of Finger Motion



System Input Planner

CAMS
CVAE

CAMS Embeddings Synthesizer

CAMS
Fitting

Finger
Embeddings

Contact
Reference
Frames

×𝑛!"#$%!

System Output

Manipulation

Object Shape Initial Hand State

Goal Sequence

Overview of Motion Generation Framework



Comparison

Ours
GraspTTA
w/ interp ManipNet



Manipulation Diversity



Robustness to Diverse Shapes



A Cross-Embodiment Tracking Control Paradigm

Capturing Human Manipulation Data Generative Human Manipulation Planning Cross-Embodiment Tracking Control



Cross-Embodiment Tracking Control

Learning a Per-
Trajectory Tracker

Learning a Tracking
Controller

Motion
Retargeting

Tracker 1

Tracker 2

Tracker N

…

Tracking
Controller

distillation



Kinematics-Only Human
Demonstration

Dexterous Manipulations Transferred to
a Simulated Robot Hand by Our Method

QuasiSim: Parameterized Quasi-Physical Simulators for
Dexterous Manipulations Transfer

Xueyi Liu, Kangbo Lyu, Jieqiong Zhang, Tao Du, Li Yi. ECCV 2024



• Problem setup:

◦ Input: a motion reference {𝑠!, 𝑠", … , 𝑠#} describing a human hand
manipulating an object

Tracking a Single Trajectory



• Problem setup:

◦ Input: a motion reference {𝑠!, 𝑠", … , 𝑠#} describing a human hand
manipulating an object

◦ Output: a dynamic sequence {𝑠̂!, '𝑎!, 𝑠̂", '𝑎", … , 𝑠̂#} transferring the skill to
a robotic dexterous hand

Tracking a Single Trajectory



• Tough dynamics challenge trajectory optimization or RL

• Instead of focusing on optimization algorithms, can we optimize the
simulator design?

• More generally: how to optimize simulation strategy for robot learning?

Tracking a Single Trajectory



Optimizing Physical Simulation

• Relaxed physical constraints help optimization via smoothing out the
optimization objective

• High fidelity physics is critical for sim-to-sim or sim-to-real transfer

𝑝



How to Benefit from Both?

• Relaxed physical constraints help optimization via smoothing out the
optimization objective

• High fidelity physics is critical for sim-to-sim or sim-to-real transfer

Using both in a physics curriculum!



A Physics Curriculum

Lowest fidelity

Highest optimizability

Medium fidelity

Medium optimizability

Highest fidelity

Lowest optimizability

A physics curriculum

1-st Simulator m-th Simulator M-th Simulator

Fidelity increases

Optimizability decreases



Key Idea: Optimizing through a physics curriculum

Optimizable variables

Discrete
Discontinuous
Non-Smooth

Optimization objective



Key Idea: Optimizing through a physics curriculum

Current optima

Optimizable variables

Optimization objective



Current optima

Previous optima

Optimizable variables

Optimization objective

Key Idea: Optimizing through a physics curriculum



Optimizable variables

Optimization objective Current optima

Previous optima

Key Idea: Optimizing through a physics curriculum



Optimizable variables

Optimization objective Current optima

Previous optima

Key Idea: Optimizing through a physics curriculum



Parameterized
Analytical Simulator

𝑝 Residual
Contact
Forces

Parameterized
Residual Physics

Residual Force Network

Flexible Neural networks for
Approximating high-fidelity physics

Parameterized Quasi-Physical Simulator

Controllable analytical relaxations on
Articulated multi-rigid constraints

Contact constraints

Parameterized Quasi-Physical Simulator



Ours

Baseline

[Bullet]

Experimental Results

Human Demonstration



Ours

Baseline

[Isaac Gym]

Experimental Results

Human Demonstration



Cross-Embodiment Tracking Control

Learning a Per-
Trajectory Tracker

Learning a Tracking
Controller

Motion
Retargeting

Tracker 1

Tracker 2

Tracker N

…

Tracking
Controller

distillation



Towards Generalizable Neural Tracking Control for Dexterous Manipulation 
from Human References

Xueyi Liu, Jianibieke Adalibieke, Qianwei Han, Yuzhe Qin, Li Yi. In submission.



A Generalizable Neural Tracking Controller

Tracking
Controller

Generalize

Unseen Reference Trajectories
with Novel Objects

Large Noise in Reference Motions
(unreasonable state, penetration,

etc.)

Robust to



Large Scale Imitation

Kinematic Reference Action Sequence
(Tracking Result)

Kinematic Reference

…

Action Sequence
(Tracking Result)

Robot Tracking Demonstrations

Tracking Controller



Challenges

Tracking Controller

Complex dynamics

Tracking complexity varies

Very biased tracking results!
Diversity is important!



Key Idea: Building a Data Flywheel

Kinematic Reference Action Sequence
(Tracking Result)

Kinematic Reference

…

Action Sequence
(Tracking Result)

Robot Tracking Demonstrations

Tracking Controller
Improve

Enlarge and
Diversify



Robot Tracking
Demonstrations

Tracking Controller
RL with

Imitation Loss

Learning a Neural Tracking Controller from Demonstrations



Improving Per-Trajectory Tracking via Data Prior

Robot Tracking
Demonstrations

Tracking Controller

t

Kinematic
Reference

Tracking
Demonstration

Tracking
Result

Track the trajectory via the
tracking controller

Initialize the tracking policy
via the tracking result

Solving per-trajectory
tracking problem

Can we leverage the tracking controller
to improve tracking demonstrations?

Tracking controller could provide the
base for further optimization!



Improving Per-Trajectory Tracking via Homotopy Optimization

Robot Tracking
Demonstrations

Tracking Controller

Can we explore trajectory relations to
improve the per-trajectory tracking?

Trajectory
A

Trajectory
B

…

Trajectory
C

An effective optimization path
can improve the per-trajectory

tracking result of C

How to model and utilize such
trajectory relations to improve the

tracking demonstrations?

Kinematic
Motion Object

Kinematic
Motion Object

Homotopy Optimization
Path Generator

Modeling ”parent-child“ relations



Robot Tracking
Demonstrations

Tracking Controller
RL with

Imitation Loss

Learning a Neural Tracking Controller from Demonstrations

Transferring Data Prior
t

Kinematic
Reference

Tracking
Result

Tracking
Demonstration

A Homotopy Optimization Scheme

Tracking
Demonstration

Trajectory
to Track

…

“Parent” Tracking
Result

Kinematic
Reference

…

An Effective
Optimization Path

Using the tracking controller
via a homotopy scheme

to improve the quality and diversity
of robot tracking demonstrations



Experimental Results

OursRetargeted
Kinematic Reference Baseline

Difficulties:
1) Small and thin shovel
2) Complex object movements with subtle in-hand re-orientation



Experimental Results

OursRetargeted
Kinematic Reference Baseline

Difficulties:
1) Thin shovel with missing faces
2) Complex object movements (lifting – waving stage 1 – waving stage 2)



Experimental Results

OursRetargeted
Kinematic Reference Baseline

Difficulties:
1) Thin (hard to grasp) and long (difficult to hold firmly and control) shovel
2) Complex object movements (lifting -- the challenging waving stage)



Experimental Results

OursRetargeted
Kinematic Reference Baseline

Difficulties:
1) Large and long (difficult to hold firmly and control) object with a challenging gravity center
2) Complex object movements (lifting -- the waving stage)



Experimental Results

OursRetargeted
Kinematic Reference Baseline

Difficulties:
Round sphere that is hard to grasp



Experimental Results

Ours Baseline



Experimental Results

Ours Baseline



Experimental Results



Conclusion

• Human videos are ubiquitous online containing huge amount of
manipulation data

• Learning to plan semantic manipulation from human data is possible as the
AIGC technology progresses

• Cross-embodiment tracking control can physically control a dexterous hand
to follow the planned trajectory for general purpose dexterous manipulation



Thank you!


