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Why are multi-robot systems essential?

Efficiency ﬁ Flexibility ﬁ Resilience ﬁ

(Parallel processing) (On demand deployment) (Role substitution)



3Cs of Multi-robot Systems
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Amanda Prorok, Matthew Malencia, Luca Carlone, Gaurav S. Sukhatme, Brian M. Sadler, Vijay Kumar, “Beyond Robustness: A Taxonomy of Approaches
towards Resilient Multi-Robot Systems,” arxiv 2021



Freeform Robotics - Research Focus B ARS

Types of Multi-robot Collaboration

* Feature: Physical connection among robots
* Applications: Inspection, exploration, general-
(=eo)nlif=’[d=h purpose robot, etc.

* Feature: Manipulate a same object
Collaborative « Applications: Production, construction,
Manipulation surgery, etc.

* Feature: No physical interaction
* Applications: Searching, scanning,
etc.

Mobile Collaboration

Relative Environment Decision Making
Localization Perception and Planning

Fundamental Technologies




Background & ARS

¢ One type of robot is difficult to cope with all uncertain tasks in

dynamic environment

¢ Deploying redundant teams of heterogeneous robots results in high

transportation and maintenance costs

Special-purpose robots



Motivation B ARS

Transformable General-purpose Robot

Special-purpose robots
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Challenges

1. How do robots achieve physical collaboration?

¢ Efficient and robust connectors and actuators

2. How do robots identify the position of each other?

¢ Multi-robot self-contained relative localization

3. How do robots achieve environment perception?

¢ Source-inconsistent data fusion (hardware, time, viewpoint)

4. How do robots collaborate to perform tasks?

¢ Multi-robot collaborative planning in dynamic environment
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FreeBOT - A Rolling Sphere

Components: Ferromagnetic spherical shell + built-in mobile cart with magnets;
Features: Achieve arbitrary connection and movement of the entire spherical surface;
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SnailBot - In the Wild B ARS
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Da Zhao, Haobo Luo, Yuxiao Tu, Chongxi Meng, and Tin Lun Lam, "Snail-Inspired Robotic Swarms: A Hybrid Connector Drives
Collective Adaptation in Unstructured Outdoor Environments," Nature Communications, April 2024.




FreeSN - Strut-node MSRR

Components:

¢ Strut module: Contains two
magnetic connectors with
lifting mechanisms

¢ Node module: A spherical
ferromagnetic shell

Features:

1. Strut-node structure brings
good structural stability

2. Enable parallel motion to
increase the output force
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Yuxiao Tu, Guangi Liang, Tin Lun Lam, "FreeSN: A Freeform Strut-node Structured Modular Self-reconfigurable Robot, " IEEE ICRA 2022
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Compatibility among Freeform Robots

¢ Freeform Robots: FreeBOT, SnailBot, and FreeSN
¢ Share the same connecting principle — Magnetic force

¢ Share the same connecting terrain — Ferromagnetic sphere

Uutually CompatM

13



Challenges

1. How do robots achieve physical collaboration?

¢ Efficient and robust connectors and actuators

2. How do robots identify the position of each other?

¢ Multi-robot self-contained relative localization

3. How do robots achieve environment perception?

¢ Source-inconsistent data fusion (hardware, time, viewpoint)

4. How do robots collaborate to perform tasks?

¢ Multi-robot collaborative planning in dynamic environment
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2. Multi-robot Self-contained Relative Localization

Contact-range (Om) Short-range (<5m) Middle-range (<50m) Long-range (>50m)
Accuracy “1mm Accuracy ~“1cm Accuracy ~“10cm Accuracy “1m
Magnetic Array Vision-Based UWB + Odometry Visual Semantic Landmark
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Contact-range (Om) Relative Localization B ARS

¢ Challenge: No fixed point connector to identify the
location of the connection

¢ Approach: Magnetic sensor array + GNN-based
localization algorithm

¢ Result: Real-time configuration detection
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Yuxiao Tu, Guangi Liang, Tin Lun Lam, "Graph Convolutional Network based Configuration Detection for Freeform Modular Robot
Using Magnetic Sensor Array," IEEE ICRA 2021
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FreeSN - Configuration Identification

Magnetic localization Magnetic identification

¢ Estimates the connection topology and (R G- e (=
the relative pose of each module by: o U U | o o

1) Magnetic Relative Localization;

2) Magnetic Module Identification;

3) Module Orientation Fusion;
4) System Configuration Fusion.
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Yuxiao Tu, Tin Lun Lam, "Configuration Identification for a Freeform Modular Self-reconfigurable Robot - FreeSN," IEEE T-RO 2023.
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Short-range (<5m) Relative Localization

¢ Challenge: Variable configuration brings unstructured features for visual detection and localization.

¢ Approach: Robust module detection and & Result: Position accuracy < 0.06m; Orientation accuracy < 2.23°

optimization-based localization that
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Yuming Liu, Qiu Zheng, Yuxiao Tu, Yuan Gao, Tin Lun Lam, "Visual Relative Localization for Spherical Modular Self-Reconfigurable
Robots with the Ability to Adapt to Different Configurations” (Under Review)
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¢ Challenge: Lack of theoretical analysis of the

variance and bias of the estimators.

¢ Approach: Dead reckoning + self-carried UWB

+weighted semidefinite relaxation solution

RMSE(f,)

RMSE(po)

¢ Result: RMSE of the orientation and position are
3.97° and 0.22 meters with affordable hardware.
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Yue Wang, Muhan Lin, Xinyi Xie, Yuan Gao, Fugin Deng, Tin Lun Lam, " Asymptotically efficient estimator for range-based robot

relative localization," IEEE/ASME TMECH 2023



Long-range (>50m) Relative Localization

¢ Challenges: 1) Large viewpoint difference; 2) High demand on computational resources.

¢ Approach: Semantic Histogram Descriptor + Graph Matching

¢ Result: Matching speed > 30x; Matching accuracy > 10% Rf’j Fusioning result
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Xiyue Guo, Junjie Hu, Junfeng Chen, Fugin Deng, Tin Lun Lam, “Semantic Histogram Based Graph Matching for Real-Time Multi-
Robot Global Localization in Large Scale Environment," IEEE RA-L 2021
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Challenges

1. How do robots achieve physical collaboration?

¢ Efficient and robust connectors and actuators

2. How do robots identify the position of each other?

¢ Multi-robot self-contained relative localization

3. How do robots achieve environment perception?

¢ Source-inconsistent data fusion (hardware, time, viewpoint)

4. How do robots collaborate to perform tasks?

¢ Multi-robot collaborative planning in dynamic environment
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4. Collaborative Planning for MSRR
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Linear-Time Quasi-Static Stability Detection

v Main idea: By estimating the critical stable state of the configuration instead of using finite
element methods for stability analysis, the computational complexity is significantly reduced.
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¢ Challenge: Unique motion modalities and collaborative control

methods between modules.

¢ Approach: Establish a kinematic model, planning, and control

Iron Spherical Shell .
(with anti-slip cover)

methods for high-DoF manipulators formed by connecting

AB;_12€i-1,

multiple modules in series.

¢ Result: A novel Spherical Rolling Contact Joint (SRC joint) and

its kinematic model, motion planning, and control methods. « Spherical rolling contact joint (left) that is realized by FreeBOT (right)
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« Point to point reaching desired position in free space « Reaching target pose while avoiding obstacles

Lijun Zong, Guangi Liang, Tin Lun Lam, "Kinematics Modeling and Control of Spherical Rolling Contact Joint and Manipulator,”
|IEEE T-RO 2022.
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Locomotion of MSRR B ARS

¢ Typical approach — Gait Locomotion

¢ Step 1: Form a fixed connection relationship to mimics the shape of an animal

(Snake, Quadruped, Hexapod, etc.)

¢ Step 2: Generate the gait patterns of the whole body by joints relative motion.

M-TRAN Il

25



Configuration Design

» Motivation. Design a configuration suitable for the task terrain.
» Methods. Gradient ascent for continuous parameters and modified Bayesian optimization for discrete parameters.
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Connection Planning for Transformation

interchanging connection points; 2) an exponential-time TBB algorithm further

optimizes the solution of IM by a new branch and bound strategy with stage cost.

data.

404

Reconfiguration steps
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Challenge: Finding the optimal solution involving a huge search space.

Approach: A polynomial-time IM algorithm computes near-optimal solutions by

Result: IM and TBB verify their near-optimality and optimality on experimental
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Haobo Luo, Tin Lun Lam, “Auto-Optimizing Connection Planning Method for Chain-Type Modular Self-Reconfiguration Robots,”
IEEE T-RO 2022

27



Flow Locomotion B ARS

¢ The locomotion achieved by a series of reconfiguration

¢ The connection relationship is changing all the time
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(Source: Georgia Tech, National Geographic)
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Flow Locomotion

¢ Challenge: Flow through continuous rugged obstacles and maintain gravity stability

¢ Approach: 1) Configurations are designed to grasp the surface of obstacles like vines;

2) Motion planning keeps each module moving within the supporting polygon.

¢ Result: The vine-like configuration conforms to the rugged surface of various obstacles.

e center of gravity
e contact points
—— supporting polygon

Haobo Luo and Tin Lun Lam, "Adaptive Flow Planning of Modular Spherical Robot Considering Static Gravity Stability, " IEEE RA-L 2022
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Freeform Robotics - Research Focus B ARS

Types of Multi-robot Collaboration

* Feature: Physical connection among robots
* Applications: Inspection, exploration, general-

=eelniils{lI{=h purpose robot, etc.

* Feature: Manipulate a same object
Collaborative * Applications: Production, construction,
Manipulation surgery, etc.

* Feature: No physical interaction
* Applications: Searching, scanning,
etc.

Mobile Collaboration

Relative Environment Decision Making
Localization Perception and Planning

Fundamental Technologies
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Multi-robot Collaborative Manipulation B ARS

Planning for Multi-robot collaborative mobile transportation (ICRA 2021)

Experiment 1: interior door and narrow passage

Speed X2

Whole-Body Control (Humanoids 2022) Robot-to-human Objec Handover (CBS 2024,
IROS 2022) 31




Freeform Robotics - Research Focus B ARS

Types of Multi-robot Collaboration

* Feature: Physical connection among robots
* Applications: Inspection, exploration, general-

=eelniils{lI{=h purpose robot, etc.

* Feature: Manipulate a same object
Collaborative « Applications: Production, construction,
Manipulation surgery, etc.

* Feature: No physical interaction
* Applications: Searching, scanning,
etc.

Mobile Collaboration

Relative Environment Decision Making
Localization Perception and Planning

Fundamental Technologies
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Multi-robot Mobile Collaboration

Path planning in dynamic environment (IROS 2022)
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Challenges

1. How do robots achieve physical collaboration?

¢ Efficient and robust connectors and actuators

2. How do robots identify the position of each other?

¢ Multi-robot self-contained relative localization

3. How do robots achieve environment perception?

¢ Source-inconsistent data fusion (hardware, time, viewpoint)

4. How do robots collaborate to perform tasks?

¢ Multi-robot collaborative planning in dynamic environment
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3. Multi-robot Environment Perception

Sensing Enhancement Interference Cancellation Data Fusion Cognition
Sensing quality inconsistent Interference of dynamic Multimodal, viewpoint Inter-class and inner-class
(hardware, time) objects (robots, human) inconsistent diversity

Exemplar RGB- DSequencWIthMuItlpIeDyn;an:cObjects \ - o
“’E 1}, § | Blooa] |
=~ 0 Ul
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=0 U
— J J .:..:.
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(RAL 2021, TPAMI 2022, (IROS 2021, RAL 2022, (RAL 2021, RAL 2023) (IROS 2021, TIP 2022, TIM 2023,
ICASSP 2023, RAL 2023, TCVST 2023) CAAI TIT 2024)
TNNLS 2023, KBS 2023)
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Thank You!

Freeform Robotics
freeformrobotics.org
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