

MIN Faculty Department of Informatics

Conformal Surface Printing on a 5-axis 3D Printing System

Paul Bartel

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

25. June 2024

Outline

Introduction	Basics	Implementation	Evaluation	Conclusion	References
Introductio	n				
Basics					
Implementa	ation				
Evaluation					RS
Conclusion					a contraction
References					ATTAL .
					THE ST
					The seal

5-axis 3D printing

Introduction

Conclusion

References

- Adding two additional axes allows for greater freedom in extruder orientation
- Extruder can conform to the object's surface, unlike conventional 3-axis systems
- Potential:
 - Supportless printing [1]
 - Better mechanial properties [2]
 - Better surface quality [3]

Problem

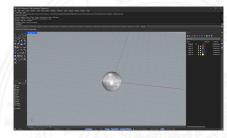
Introduction

- Additional axes increase complexity in toolpath calculation
- 5-axis is a niche in the AM space
 - Unlike 3-axis, almost no software solutions available
 - Most being scripts, closed source/paid
- Open5x[4] exists, but far from general purpose slicer
- ► Uses visual programming environment inside Rhino to run → usage unintuitive for average user

Introduction

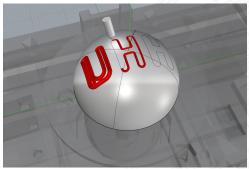
Rhino

plementation


Evaluation

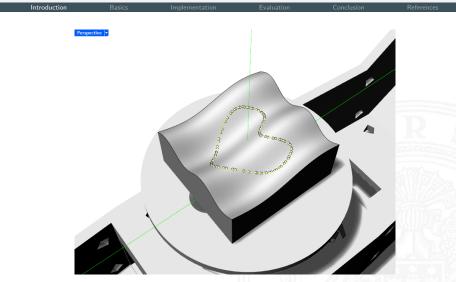
Conclusion

References

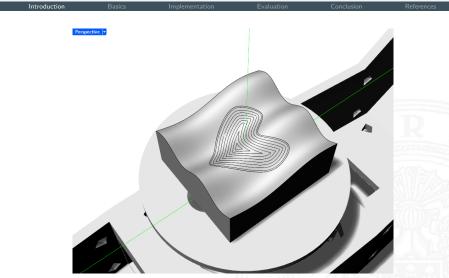

- Rhino is an extensive 3D CAD software, can be used for various applications
- Uses freeform NURBS modelling for precise representation of surfaces
- Functionality can be extended with downloadable or self-written plugins

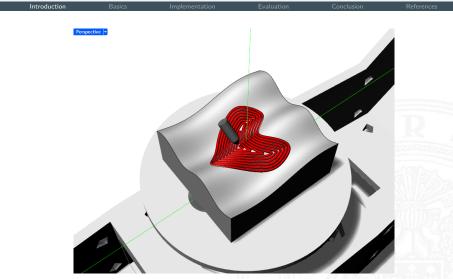
- Rhino plugin by Florens Wasserfall and Daniel Ahlers (in early development)
- Extends Rhinos functionality with 5-axis slicing
- Supports:
 - Loading machine models
 - Tool and material configuration
 - Generating G-code from points and surface normals
 - Toolpath visualization

References


 Slicer only supports the generation of contour line toolpaths on an already printed object

Goal: Extend Neo5x to support filling a bounded area on a surface.


- 1. Allow user to pick a surface and a closed curve
- 2. Create space-filling pattern within bounded area
- 3. Utilize the created pattern to generate a toolpath using the provided Neo5x interface.

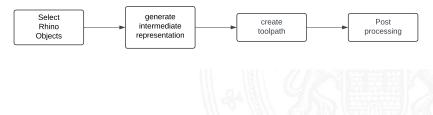

Step 1: Select surface and closed curve

Step 2: Create fill pattern within bounded area

Step 3: Generate space-filling toolpath

Outline

Introduction	Basics	Implementation	Evaluation	Conclusic	n	References	
Introduction							
Basics							
Implementa	tion						
Evaluation							
Conclusion							
References							S
							2222
							a
							E
							923
							1920
							6.3
							68


Neo5x Interface

Conclus

References

- User interacts with slicer through Camblocks
- A Camblock represents a workstep in a design e.g.
 - creating a contour line on an object
 - PnP operation (not implemented)
 - etc.
- Each Camblock holds config options and a collection of toolpath objects

CamFreeform

plementation

Evaluation

Conclusion

References

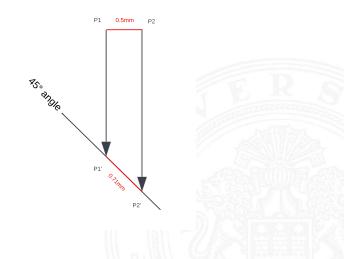
- Most important part: Space-filling curves
- Multiple ways to get such a pattern on the desired surface
- Looking at two different Methods
 - 1. Directly generating on surface
 - 2. Projecting

Introduction Basics Implementation Control Evaluation Control Control

 Fortunatly Rhino does support offsetting curves directly on surfaces

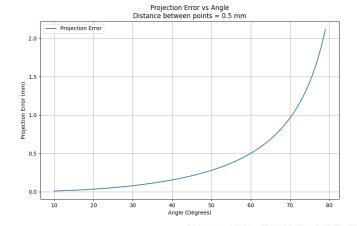
▶ Offsetting can be used to generate simple space-filling patterns

Red: initial curve Green: offset curve


Introduction

5

- Generate space-filling pattern in 2D plane and project them to the surface
- ▶ Positives: very simple, creating pattern in 2D is easier
- ► Negatives: Projection error based on the slope of the surface


Projection Approch

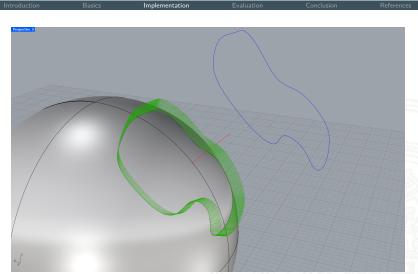
Introduction	Basics	Implementation	Evaluation	Conclusion	References

Introduction Basics Implementation Evaluation Conclusion	
--	--

Projecting error can be mitigated to a certain degree

Outline

Introduction	Basics	Implementation	Evaluation	Conclusion	References
Introductio	n				
Basics					
Implement	ation				
Evaluation					
Conclusion					
References					KS
					The second s
					1 A 6589
					* * * * 255
					開田田


- Rhino supports the creation of planes and projecting curves onto them
- Plane needs an origin point and a normal vector

Implementation

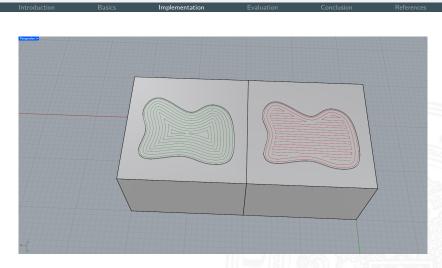
For best results plane should face in general direction of bounded surface area

- 1. Sample the curve points evenly and obtain surface normals
- 2. Average the obtained normals
- 3. Use the averaged normal vector to construct the plane
- 4. Project curve to constructed plane

Green: sampled normals, Red: averaged normal, Blue: projected curve

Generating space-filling pattern

Introduction	Basics	Implementation	Evaluation	Conclusion	References


- Space-filling pattern are created in the plane
- Currently, two types of fill pattern supported:
 - 1. Contour-Parallel
 - 2. ZigZag
- Each line on the plane should be x_{mm} apart, x being the extrusion-width
- After being created, project them back to the surface

Generating space-filling pattern

Introduction	Basics	Implementation	Evaluation	Conclusion	References
Perspective *					
x y					

Green: Contour-Parallel, Red: ZigZag

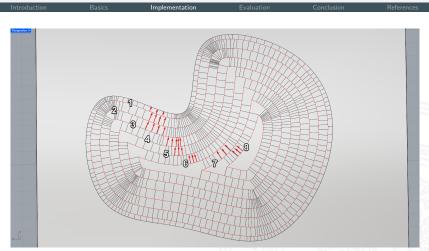
Project back to original surface

Green: Contour-Parallel, Red: ZigZag

Compensate projection error

ntroduction

plementation


Evaluatio

Con

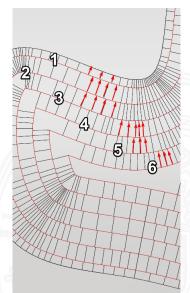
References

- ▶ In some segments, lines are further apart than they should be
- Increase extrusion-width for this part
 - If you increase extrusion-width, you have to adjust it on the parallel line segment aswell
- Extrusion-width can only be adjusted to a certain degree
 - max: 2 · nozzle diameter
 - min: 0.75 · nozzle diameter
- anything beyond a certain steepness cannot be compensated with extrusion-width alone

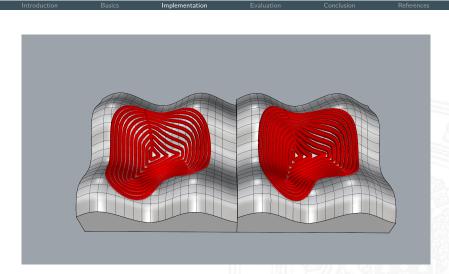
Compensate projection error

Every curve 1-8 will have its extrusion-width adjusted accordingly Start with outer-most curve

Compensate projection error

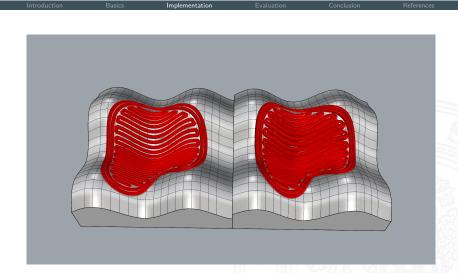


Introduction


Basics

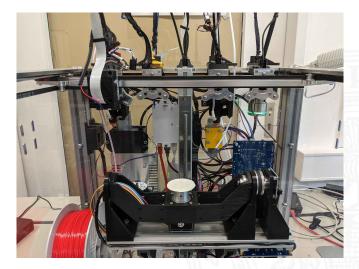
- Implementation
- Evaluation

- A section between two lines is an extrusion segment
- Calculate extrusion-width at point with (distance - exwidth 2) · 2
 - distance = length of red line
 - width = extrusion width from neighbour-curve
- Every Curve needs to know who its neighbour-curve is
- Neighbourhood information is created while creating the pattern



Left: without compensation, Right: with compensation

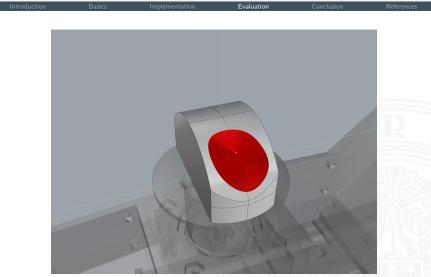
Left: without compensation, Right: with compensation



Outline

Introduction	Basics	Implementation	Evaluation	Conclusion	References
Introduction					
Basics					
Implementa	tion				
Evaluation					
Conclusion					D
References					KS
					ANTAD.
					2.2. 23
					訪問して

Printed on a modified E3D Toolchanger (Open5x)



Still time left, not all test are completed yet

- Neo5x doesn't support full 3D model slicing
 - Base object sliced with PrusaSlicer and printed with 3 axes
- Surface printing is done next as a separate job with all 5 axes

Rhino: Contour-Parallel

Small area: Contour-Parallel

Evaluation

Real print: Contour-Parallel

Big area: Contour-Parallel

Introduction	Basics	Implementation	Evaluation	Conclusion	References
			-		
the second second					

Rhino: Contour-Parallel

Big area: Contour-Parallel

Evaluation

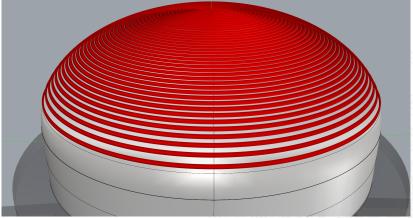
Real print: Contour-Parallel

Evaluation

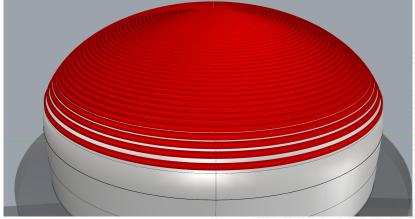
Rhino: ZigZag

;

Conclusion


References

Real print: ZigZag


		Evaluation	

Variable extrusion off

		Evaluation	Conclusion	
	and a second and	A REAL PROPERTY AND INCOME.		
		1111		

Variable extrusion on

Variable Extrusion

Evaluation

Conclusion

References

Left: off, Right: on

Earth demo object

Introduction	Basics	Implementation	Evaluation	Conclusion	References
		271133X			
198					
W/W			Const		
the second		A			
			Ę		
			R. R	کنی	
A A ARALLIN					
1 A A A A					
EX HALL MARK					
HISTORY MAD					
HA MININ	P			, STA	
	Ĩ		1. Contraction of the second s		
ALL ALL					
HANAH					

Didn't finsih it in time, so only Rhino screenshot available

plementation

References

- Overall pretty happy with results
- Projection is not perfect: anything past 60° slope cannont realistically be compensated
 - Find those areas and create new curves
- ► Currently can only limit area with one curve → not usable for some applications

(

Outline

ntroduction Basics	Implementation	Evaluation	Conclusion	References
ntroduction				
mplementation				
Evaluation				
Conclusion				D
References				RS
				Contraction of the second
				STATE AND A
				は田田

Conclusion

ntroduction

- Sucessfully extended functionality of Neo5x Plugin
- Projects space-filling curves created in a plane onto the surface
- Which are used to generate a valid toolpath
- Counteract projecting error by adjusting material extrusion

ntroduction

- Find a way to mitigate underfill in cases where projecting doesn't work well
- Allow for more freedom when trying to limit an area that should be filled
- Allow for printing multiple layers

Outline

Introduction Basics	Implementation	Evaluation	Conclusion	References
Introduction				
Basics				
Implementation				
Evaluation				
Conclusion				D
References				KS
				A seal
				SA ARDON
				事则理论影
				1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
				* 2 * 3D
				田田田

References

[1] Freddie Hong et al.

Open5x: Accessible 5-axis 3d printing and conformal slicing. In CHI Conference on Human Factors in Computing Systems Extended Abstracts, pages 1–6, 2022.

[2] Nathaniel Kaill, R.I. Campbell, and Patrick Pradel.

A comparative study between 3-axis and 5-axis additively manufactured samples and their ability to resist compressive loading. 04 2022.

[3] B. Ramos et al.

Optimal 3d printing of complex objects in a 5-axis printer. *Optimization and Engineering*, pages 1–32, 2022.

[4] Robert McNeel Associates.

McNeel Forum. https://discourse.mcneel.com/, 2024.

Int		

- [5] Robert McNeel Associates. Rhinoceros 3D. https://www.rhino3d.com/, 2024.
- [6] Consuelo Rodriguez-Padilla, Enrique Cuan-Urquizo, Armando Roman-Flores, José L. Gordillo, and Carlos Vázquez-Hurtado. Algorithm for the conformal 3d printing on non-planar tessellated surfaces: Applicability in patterns and lattices. *Applied Sciences*, 11(16):7509, 2021.