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Prompt-based Techniques

(A) Pretrain—finetune (BERT, T5)
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Motivation

1. to build a good big-modal based image model

2. to harness the capability of zero-shot
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Scientific Questions

1. What task will enable zero-shot generalization?
2. What is the corresponding model architecture?

3. What data can power this task and model?

Conclusion
o]

6/27



Introduction Methodology Experiment Related Works
[ 1e]

00 00000000

[o]
[e]e] [e]e] [e]e]e}
0000

Methodology
Segment Anything Task
Model Architecture

Conclusion
o]

7/21



Introduction Methodology
00 oe
00 00

0000

General Methods
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(b) Model: Segment Anything Model (SAM)

1. Promptable Segmentations

2. Encoder-Decoder Architecture

3. Data Engine with Dataset
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* 1+ billion masks
« 11 million images
+ privacy respecting —
+ licensed images

(c) Data: data engine (top) & dataset (bottom)
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. Translating the idea of Prompting to the task of semantic

segmentation
Generate mask for any prompt
Leads ot a natural pre-training algorithm
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Pretrain

FCN

Provide with positive and negative clicks
Present the answer of correct mask

Unlike the classic interactive semantic segmentation, the
annotator can provide the mask for any prompt
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Vision Transformer (ViT)
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1. Prompt of Dense and Sparse
2. masks / points, boxes, text

3. Mask encoder map the image embedding, mask and prompts
to the result mask
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Training

1. Assisted-manual stage
1.1 like classic interactive semantic segmentation
1.2 have mechanism for solving granularity problem
1.3 annotations are based on the models' output
2. Semi-automatic stage
2.1 Aims to increase the diversity of masks in order timprove the
model's generalization ability
2.2 Ask the annotators to provide different masks

3. Fully-automatic stage
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Instance Segmentation

ground truth ViTDet
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Visual Generation Visual Interaction
Input Image Conditional Gen. Editing Point to multi-level Seg Box to Seg Stroke to Seg
Sy S — T R—

The image depicts a wooden
pier extending into a large
body of water, with a bench
placed in the middle of the
pier. The scene is set against
a backdrop of trees and
mountains, creating a tranquil
and picturesque environment.

LLavA

Visual Understanding

The text "2024 16-
MONTH CALENDAR" is
detected, suggesting
that this calendar is a
16-month calendar for
the year 2024.

The lake in question is |[ BESEg

Lost Lake, which is _ This image is

located in Whistler, paw-some!

British Columbia, ‘

Canada. be outdoorsy? - 4
#naturelover

Social Media Post

External Knowledge Composition
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Movement

Segmentation mask
! =] T — Posemb | yiew 2 Grasping
1
| i | 0
Segmentation :
* foundation model | NN ) """ """ """ """ TToo- )
Method Seen  Unseen  New background  More distractors  Average
Ours 82.5 80.0 65.0 75.0 75.625
-replace mask with bbox  50.0 40.0 25.0 30.0 36.25
-w/o tracking 70.0 50.0 55.0 70.0 61.25
-single view 65.0 80.0 20.0 70.0 58.75
-RGB-M only 85.0 70.0 50.0 70.0 68.75

21/27



Introduction Methodology Experiment Related Works Conclusion
Q0 o]

00 [o] 000@0000
[e]e] [e]e] [e]e]e}
0000

Grasp Anything

Prompt Engineering

Directives Context
Initialization Augmentation
s

My goal is to
fenerate as many diverse
graspable objects as

Image is & Grasp Pose

P
Grasp Grasp
T21 Model Detection

" Aspoonanda
plate on a desk.
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Scene Description
Corpus

{P: <Sentence>
(Q: <List of Objects>

Fig. 2. Dataset creation pipeline.
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Agriculture Robots

NAVIGATION HARDWARE

INTERFACE
) DATA 4 > DATA g

ROAD BATTERY
FOLLOWER MANAGEMENT

ROAD LIDAR MOTOR

RIS AR SEGMENTATION CENTERING INTERFACE

STEM SENSOR KINEMATICS VIDEO

PLANAR LIDAR BRI FUSION CONTROL RECORDING

SENSORING PERCEPTION PLANNING CONTROL

Fig. 1: Overview of the robot platform architecture showing its components and relations
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text queries

21k categories as Pre-trained 2D Open- 2D region proposals with Inference
text-aligned features

Vocabulary Instance
Segmentation Method,
i.e., Detic (Frozen)

a) Text-aligned 2D Region
I’ropusal Generation

Region
Proposals

3D Projection

Instance Fusion ‘ ‘ ‘

[ Memory Bank of Queryable 3D Instances ].| Post-processing |

S N A ew

Insta Fusi
Periodic filtering and merging of instances in the memory bank nstance Fusion Top 1 is shown in blue.

Quéry: “Sofa”

L I
Text Feature

Q Ranking
O

Figure 2: Pipeline of the proposed method.
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Takeaways

1. A good semantic segmentation model

2. Encoporating human interaction like Prompting can give more
possibliities

3. An existing experiment pattern can achieve great result when
combined with new emerging techniques

27 /27



	Introduction
	Background
	Motivation

	Methodology
	Segment Anything Task
	Model Architecture

	Experiment
	Training and Data Engine
	Zero-Shot Transfer
	Demo

	Related Works
	Conclusion

