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Motivation

Humans can predict the motion of objects

We do not solve equations of motion

Imagination of trajectory

Like running an internal ’simulation’
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How to acquire this imagination?

Visual Imagination

Knowledge of both agent and world required

Modeling the external world very complex

Learning imagined trajectory from visual input alone?
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Learning Visual Predictive Models

’Learning visual predictive models of physics for playing billiards’ by Katerina
Fragkiadaki, Pulkit Agrawal, Sergey Levine, Jitendra Malik [1]
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Object-Centric Prediction

Object-Centric Benefits

Naturally includes translation invariance

Easily share model across different ’worlds’
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Tom Sanitz Learning Visual Predictive Models of Physics 8



Introduction Learning visual predictive models Visual Imagination Evaluation Applications For The Project End

Network Architecture

Input at each time step

1 Current + previous 3 glimpses (images)

2 Applied forces Ft = (F x
t ,F

y
t )

3 Hidden states of LSTM units t − 1

Network output

Ball displacement ut+k = (λxt+k , λyt+k) for k = 1 . . . h in next h frames

Predict next 20 steps, therefor 20× 2 = 40 output values
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Model Training: World Setup

Random configurations:

Rectangular and non-rectangular walls

Wall length[300 pixel, 550 pixel]

Starting point

Forces on the ball (first frame only)

Sequence length([20,200]
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Model Training: Loss

Weighted Euclidean Loss

Errors in shorter time horizon get higher loss

Loss Function

L =
∑h

k=1 wk ||ũt+k − ut+k ||22
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Visual Imagination

Generate Visual Imaginations

Predicted trajectory leads to generate visual imaginations?

Translate each ball by predicted velocity (ũt) at time t

Repeat iteratively for all future world states
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Evaluation: Imagination
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Model Evaluation

Error in angle and magnitude

Constant velocity (CV)

Object centric (OC)

Compared to frame centric (FC)
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Model Evaluation

Evaluation Rectangular World

Near Collision := within [-4,4] frames depicting collision

Mean angular error in degrees

Relative error in magnitude of predicted velocity
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Evaluation: Object Centric vs Frame Centric

Comparison Details

Near collision angular error

Dashed := FC, solid := OC

20 steps (h=20)

2B-on-3B := trained on 2 ball world, eval on 3 ball world
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Qualitative Evaluation
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Qualitative Evaluation
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Qualitative Evaluation
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Evaluation: Visual Imagination
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Action Planning Using Visual Predictions

Plan actions for which the agent was never trained

Planning force required to push ball to desired location

Achieved using:
1 Run multiple visual imaginations (simulations)
2 Optimal force = Closest ball to target location
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Action Planning Using Visual Predictions
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Results: Action Planning Using Visual Predictions

OC-Model outperforms FC-Model

Oracle is the physics simulator

Hit accuracy in amount of tries, where ball in required distance to target

Arena size: 300-550 pixel
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Similarities And Challenges For The Project

Top down view and 2D trajectories very similar to our golf ball

Initially planned to use a similar approach, but long term errors are accumulating

Most likely improvement using Transformers?

Overall probably inferior to learning a residual like in Tossingbot [2]

However could be considered for local patches, e.g. infront of obstacles
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Thank you for your attention!
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