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Overview of Large Language Models in Robotics

> LLMs start combining with robotics.
» Challenges in robotics: hardware dependencies, data lacking.

» New paradigm: LLMs for defining robotic tasks.

_*OO

Robotics LLM Embodied Intelligence / Agents

Figure: How are LLM combined with robotics
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Recent Years LLM & Robots

Interaction

CLIP [99], OSRT [109)], etc

Fine-tuning VLM into VLA in RT-2 [9], etc.]

VLN in real-environments [89], VLN in simulation [157], etc,J

VING [114], RECON [115], ViKiNG [116], etc.]

ReasoningHCoT [136, 69, 138], etc.J

Planning)—{Process natural language instruction [117], task decomposition [145, 103], etc.]

Language-conitioned behavior — BC-Z [58], MT-Opt [64], etc.]

Action after paring instruction]—[HRL [55], Behavior Transformer [113], etc]

J L Table tasks [82], ecc.]

Physical worId]—[PaLM-E [34], LM-Nav [117)], etc,]

Figure: The types of robot-Ilm tasks
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LLM motion planning histories(1)
1. SayCan Video Link

Instruction Relevance with LLMs Combined Task Affordances with Value Functions
How would you put & Find an apple 06
an apple on the -30 Find a coke 0.6
table? 30 Find a sponge 0.6
4 Pick up the apple 0.2
I would: 1. .
-30 Pick up the coke 0.2
-5 Place the apple 0.1
30 Place the coke 0.1 Value
LLM 10 Go to the table 0.8 Functions
-20 Go to the counter 0.8

I would: 1. Find an apple, 2.

Figure: saycan
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https://say-can.github.io/img/demo_sequence_compressed.mp4
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LLM motion planning histories(2)
1. Code as Policies Video Link

User
Large
Language
Model

<+—--- Stack the blocks on the empty bowl.

l Policy Code

block_names = detect_objects("blocks")
bowl_names = detect_objects("bowls")
for bowl_name in bowl_names:
if is_empty(bowl_name):

empty_bowl = bowl_name

break
objs_to_stack = [empty_bowl]|+ block_names
stack_objects(objs_to_stack)

l def is_empty(name):

def stack_objects(obj_names):
n_objs = len(obj_names) ;
for i in range(n_objs - 1): 5
objo = obj_names[i + 1]
obj1 = obj_names[i]
(objo, obj1)

Figure: code as policies

References
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https://code-as-policies.github.io/videos/3_min_explainer.mp4
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Why do we need Reward-based Design

» Previous methods only work on Pick and Place tasks
» Precise motion is also of high importance

» There is no way to code all operations in a hard way
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Tasks That Benefit From Reward(1)

Sit down

Biped stand

-
|/ NI\
(a) Quadruped robot

Face sunset

Figure: Quadruped Robotics
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Tasks That Benefit From Reward(2)

Experiment and Results
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Open drawer

Turn on faucet

Keep banana upright

Lift the apple
(b) Dexterous manipulator robot

Figure: Shadow Hands
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» Reward Translator and Motion Controller.

Interaction between user inputs, LLMs, and robot actions.

User User

Make robot dog
stand up on two feet.

L]

LLM

Make robot dog.
stand up on two feet.

L

‘ LLM

Low-level 3cﬂor\*

set_joint_target(0.0, 0.2, 07,
00,-03,08,00,02,07,
00,-03,08)

|

Motion descrption ¥
The robot dog's torso is upright,
balanced over its hind feet, which
are flat and shoulder-width apart.
The front legs hang loosely, poised
mid-air, mimicking a humanis
relaxed arms.

User

Make robot dog Reward Translator
stand up on two feet. (LLM)
Reward code
# Set t
set_torso. rewﬂvds(helght 0.7, pitch=np.deg2rad(90))

ewards

# Set feet rewards
set_feet_pos_rewards(front_left, height=07)
set_feet_pos_rewards(back_left, height=00)
set_feet_pos_rewards(front_right, heigl .7)
set_feet_pos_rewards(back_right, heigl X

Optimized

low-level actions .
+«————— Motion Controller

References
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User

Make robot dog stand up on two feet.
]
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Motion Descriptor Prompt

(" Reward Translator

Motion Descriptor

[start of description]
The torso of the robot should pitch upward at 90.0 degrees.

front_left foot lifted to O.7 meters high.
front_right foot lifted to O.7 meters high.
[end of description]

The height of the robot's CoM or torso center should be at 0.7 meters.

Describe the motion of a dog robot using the following form:
* The torso of the robot should pitch upward at [NUM: 0.0] degrees.
* The height of the robot's CoM or torso center should be at [NUM: 0.3] m.

Remember:

1. If you see phrases like [NUM: default_value], replace the entire phrase
with a numerical value.

2. If you see phrases like {CHOICE: choice1, choice2, ...}, it means you
should replace the entire phrase with one of the choices listed.

Reward Coder Prompt

Reward Coder

# Set torso rewards

set_torso_rewards(height=0.7, pitch=np.deg2rad(90))
# Set feet rewards
set_feet_pos_rewards(‘front_left, heigh
set_feet_pos_rewards(back_left, height=0x
set_feet_pos_rewards(front_right, height=07)
set_feet_pos_rewards(lback_right, height= 00)

- 1

Motion Controller

We have a description of a robot's motion and we want you to turn that into
the corresponding program with following functions:
set_torso_rewards(height, pitch)

height: height target for the robot torso

pitch: pitch angle of the torso

Example answer code:
import numpy as np
set_torso_targets(0.1, np.deg2rad(5))

Remember:
1. Always format the code in code blocks

References

Motion
template

Rules

Reward
API

Example

Rules
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Motion Descriptor

iv) Motion Descriptor Prompt for Dexterous Manipulator

‘We have a dexterous manipulator and we want you to help plan how it should move to perform tasks
using the following template:

[start of description]

To perform this task, the manipulator’s palm should move close to {CHOICE: apple, banana, box, bowl,
drawer_handle, faucet_handle, drawer_center, rest_position}.

object]={CHOICE: apple, banana, box, bowl, drawer_handle, faucet_handle, drawer_center} should be
close to object2={CHOICE: apple, banana, box, bowl, drawer_handle, faucet_handle, drawer_center,
nothing}.

[optional] object] needs to be rotated by [NUM: 0.0] degrees along x axis.

[optional] object2 needs to be rotated by [NUM: 0.0] degrees along x axis.

[optional] object] needs to be lifted to a height of [NUM: 0.0Jm at the end.

[optional] object2 needs to be lifted to a height of [NUM: 0.0Jm at the end.

[optional] object3={CHOICE: drawer, faucet} needs to be {CHOICE: open, closed}.

[end of description]

Rules:

1. If you see phrases like [NUM: default_value], replace the entire phrase with a numerical value.

2. If you see phrases like {CHOICE: choicel, choice2, ...}, it means you should replace the entire
phrase with one of the choices listed.

3. If you see [optional], it means you only add that line if necessary for the task, otherwise remove that
line.

4. The environment contains apple, banana, box, bowl, drawer_handle, faucet_handle. Do not invent
new objects not listed here.

5. The bowl is large enough to have all other object put in there.

6. I will tell you a behavior/skill/task that I want the manipulator to perform and you will provide the
full plan, even if you may only need to change a few lines. Always start the description with [start of
plan] and end it with [end of plan].

7. You can assume that the robot is capable of doing anything, even for the most challenging task.

8. Your plan should be as close to the provided template as possible. Do not include additional details.

12/26
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Reward Coder

def set_joint_fraction_reward(name_joint, fraction)

This function sets the joint to a certain value between 0 and 1. 0 means close and 1 means open.
name_joint needs to be select from [‘drawer’, *faucet’]

def set_obj_z_position_reward(name_obj, z_height)
this term encourages the orientation of name_obj to be close to the height (specified by z_height).
def reset_reward()

‘This function resets the reward to default values.

Example plan: To perform this task, the manipulator’s palm should move close to object]=apple.
object] should be close to object2=bowl. objec(2 needs to be rotated by 30 degrees along x axis.
object2 needs to be lifted to a height of 1.0.

This is the first plan for a new task.

Example answer code:

import numpy as np

reset_reward()

# This is a new task so reset reward; otherwise we don't need it
set_l2_distance_reward("palm", "apple")
set_l2_distance_reward("apple”, "bowl")
set_obj_orientation_reward("bowl", np.deg2rad(3e))
set_obj_z_position_reward("bowl", 1.0)

execute_plan(s)

Remember:

1. Always format the code in code blocks. In your response execute_plan should be called exactly once
at the end.

2. Do not invent new functions or classes. The only allowed functions you can call are the ones listed
above. Do not leave unimplemented code blocks in your response.

3. The only allowed library is numpy. Do not import or use any other library.

4. If you are not sure what value to use, just use your best judge. Do not use None for anything.

5. Do not calculate the position or direction of any object (except for the ones provided above). Just
use a number directly based on your best guess.

6. You do not need to make the robot do extra things not mentioned in the plan such as stopping the
robot.
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Sample |

import numpy as np

reset_reward()

# This is a new task so reset reward; otherwise we don't need it
set_l2_distance_reward("paln”, "faucet_handle")
set_obj_orientation_reward("faucet_handle”, np.deg2rad(9e))
set_joint_fraction_reward("faucet”, 1)

execute_plan(2)

Sample 2

import numpy as np
reset_reward()

# This is a new task so reset reward; otherwise we don’t need it
set_l2_distance_reward("palm", "faucet_handle")
set_joint_fraction_reward("faucet", 1) # 1 means open

execute_plan(2)

Reward Coder only

Sample 1

import numpy as np

reset_reward()
set_joint_fraction_reward("faucet", 1)

execute_plan()

import numpy as np
reset_reward() i Reset reward for a new task
set_joint_fraction_reward("faucet”,

1) # Turn on the faucet by setting the joint fraction to 1 (open)

execute_plan(2)

Conclusion

References
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Motion Controller

» We have the reward function from the LLMs
» We have the reward computational methods, and what we
need exactly is the behavior

» The approaches: RL, offline trajectory optimization, receding
horizon trajectory optimization(MPC)
» online methods
» requires lower computational power
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Show MJPC DEMO
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MuJoCo MPC : Humanoid Locomotion

Run
Reload

Copy pose

Visualize

I [
Humanoid Wal | /,“
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Basic Steps

1. MPC plans a sequence of optimized actions
2. robot carries out the actions

3. advance to the next step and then update the states

References
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Understanding Planners in MJPC(1)

» Predictive Sampling Planner:

» A zero-order, sampling-based predictive control method.

» Shooting method(Guess where the future will go, simulate and
decide, adjust according to observation)

» Simple, yet competitive with more elaborate derivative-based
algorithms.

» Better at exploring non-smooth optimization landscape

» Used for the Manipulation task
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Understanding Planners in MJPC(2)

» iLQG (Iterative Linear Quadratic Gaussian) Planner:

>

>

>

iteratively updating the control policy based on linear
approximations of dynamics and cost

Interweaves the local collocations with the shooting
mechanisms

Produces smoother and more accurate actions

Used for legged locomotion tasks

References
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Experimental Targets

» Test Tasks.

» Quadruped Robotics
» Dexterous Manipulator

» Goals

» Sufficient for diverse and complex robot motions?
P [s the extra motion descriptor effective?
» Can this method be applied to the real robot?

21/26
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Evaluation and Results
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» Key findings and success rates.

T

» QOurs, Reward Coder Only, Code as Policies

——

2 4
Number of generated code

/_

2 4
Number of generated code
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Language to Rewards
Key Concepts

» Transforming language instructions into reward functions.

» Reward functions as flexible task representations.
> Components:

1. Reward Translator (based on LLMs)
2. Motion Controller (based on MuJoCo MPC)

» Result Video

References
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https://language-to-reward.github.io/videos/sim/apple_drawer.mp4

Conclusion
oe

Takeaways

» Language2Rewards stands as a unique method that applies
the reward in a real-time control environment
» The selection of method should be considered case by case
» MPC / RL / Offline Optimization
» Different Planners
» Large Language Model can well understand the user's
intention and produce the code accordingly in robotics
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