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Motivation
Principles of Walking - Introduction Introduction to Robotics

I Enabling locomotion in difficult terrain
I Legs can be used for other things
I Necessary to integrate robots in a human environment

26 27

26http://1.bp.blogspot.com/-MhFnvPPR5V4/UmifTu4r_OI/AAAAAAAAFtI/FvJqeWu9Ahc/s1600/13-pictures-of-crazy-goats-on-cliff.jpg
27https://www.allposters.com
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Problems
Principles of Walking - Introduction Introduction to Robotics

I Stability (and safety)
I Complex control
I Hardware costs
I Energy consumption
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29Tucker, Vance A. "The energetic cost of moving about: walking and running are extremely inefficient forms of locomotion. Much greater

efficiency is achieved by birds, fish—and bicyclists." American Scientist 63.4 (1975): 413-419.
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Types of Walking
Principles of Walking - Introduction Introduction to Robotics

I Static - Dynamic
I Passiv - Active
I 2,4,6,8,... legged
I Open loop - closed loop
I This lecture: active bipedal walking, no running

30 31

30https://3c1703fe8d.site.internapcdn.net/newman/gfx/news/hires/2017/1-sixleggedrob.jpg
31https://asl.ethz.ch/research/legged-robots.html
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Video
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Types of Implementing Walking
Principles of Walking - Introduction Introduction to Robotics

I Control Theory
I Neural Networks
I Central Pattern Generators
I Evolutional Computing
I Expert Solution

32

32https://de.wikipedia.org/wiki/Spline-Interpolation
M. Bestmann 340 / 626



Important Words
Principles of Walking - Introduction Introduction to Robotics

I Support leg/foot
I Flying leg/foot
I Torso / trunk
I Step / double step
I Sagittal / lateral
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Support Polygon
Principles of Walking - ZMP Introduction to Robotics

I Convex hull of all ground contact points
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Center of Pressure (CoP)
Principles of Walking - ZMP Introduction to Robotics

I Center of ground reaction forces
I Those can also be horizontal
I Moment becomes zero
I Equals the zero moment point (ZMP)
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Zero Moment Point (ZMP)
Principles of Walking - ZMP Introduction to Robotics

I When standing, projection of CoM coincides with ZMP
I When dynamic, CoM outside of support polygon
I ZMP is always inside support polygon
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ZMP
Principles of Walking - ZMP Introduction to Robotics

I Forces of the robot define position of ZMP
I Can it get outside of the support polygon?
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ZMP
Principles of Walking - ZMP Introduction to Robotics

I No! The ZMP is always in the support polygon
I If it is on an edge, the robot rotates
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Limitations of ZMP
Principles of Walking - ZMP Introduction to Robotics

I Sole slips on ground
I Other parts of the robot are in contact with environment
I Ground is not perfectly level
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Linear Inverted Pendulum
Principles of Walking - Linear Inverted Pendulum Introduction to Robotics

I Simplest model for walking robot or human
I Point mass at end of massless telescopic leg
I f: kick force, tau: torque
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Inverted Pendulum
Principles of Walking - Linear Inverted Pendulum Introduction to Robotics
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Support Leg Exchange
Principles of Walking - Linear Inverted Pendulum Introduction to Robotics

I Considering fixed step length
I Earlier touchdown of the next step results slow down
I Later touchdown of the next step results speed ups
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3D Support Leg Exchange
Principles of Walking - Linear Inverted Pendulum Introduction to Robotics

I Transfer to 3D
I Introduction of lateral movement
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Omni-directional (holonomic) Walking
Principles of Walking - Linear Inverted Pendulum Introduction to Robotics

I Forward (x)
I Sideward (y)
I Turn (yaw)
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Double Support Phase
Principles of Walking - Linear Inverted Pendulum Introduction to Robotics

I Accelerations are extreme on support change
I Not feasible in reality
I Introduction of a double support phase
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Double Support
Principles of Walking - Linear Inverted Pendulum Introduction to Robotics
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Zero Support
Principles of Walking - Linear Inverted Pendulum Introduction to Robotics
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?
Principles of Walking - Linear Inverted Pendulum Introduction to Robotics

I Why are we not finished yet?
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Video
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Detecting Instability
Principles of Walking - Stabilization Introduction to Robotics

Which senses do you think humans use for walking?
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Detecting Instability
Principles of Walking - Stabilization Introduction to Robotics

I Sensors
I IMU(s)
I Force sensors on foot sole
I 6 axis force/torque sensor in ankle
I Joint Torques
I Camera

I Model
I Joint positions
I Link masses and inertia
I Rigidity of links (especially foot soles)

M. Bestmann 359 / 626



Stabilizing Approaches
Principles of Walking - Stabilization Introduction to Robotics

I Simple stopping
I Counter movements with the arms/torso
I Change of step position (capture steps)
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Video
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Counter Movements with Upper Body
Principles of Walking - Stabilization Introduction to Robotics

I Rotation around edge of support polygon
I Introduce counter force with arms/torso or flying leg
I Flying leg is mostly not usable
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Video
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Capture Step
Principles of Walking - Stabilization Introduction to Robotics

I Capture point is where the robot comes to a complete stop
I Multiple capture steps may be necessary
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Video

M. Bestmann 365 / 626



Machine Learning
Principles of Walking - Stabilization Introduction to Robotics

I We will not cover machine learning
I If you are interested join my lecture in "Intelligent Robotics" in the winter term
I General approaches are:

I Learning parameter of a walking pattern generator (e.g. double support length)
I Learning neural networks from scratch
I Learning from demonstration
I Artificial central pattern generators
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Current State of the Art
Principles of Walking - Stabilization Introduction to Robotics

Videos
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Current State of the Art
Principles of Walking - Stabilization Introduction to Robotics

I Some very expensive robot manage to solve the problem (at least most of the time)
using control theory

I Cheaper robots still struggle to achieve really stable walking
I Machine learning approaches still mostly only work in simulation (reality gap)
I Working on better comparison between approaches, e.g. EuroBench
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Full Body Motion
Principles of Walking - Full Body Motion Introduction to Robotics

I Small overview of full body motions
I Examples are: walking with hand on handrail or standing up
I Higher complexity since all limbs are involved
I Breaks assumptions that are often made for normal walking
I Motions can be periodic or non periodic
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Walking with Hand Contacts
Principles of Walking - Full Body Motion Introduction to Robotics

I Using handrail, pushing cart, opening door, holding hands, using walking stick,
collaborative carrying

I Introduces additional forces on the robot
I Support polygon maybe totally different
I More complex models have to be used
I Currently mostly used approach: quadratic programming

I Solve problem of optimizing a quadratic function with multiple linear constrains
I Use rigid body dynamics together with a model
I Problems

I Model is not perfect
I If caring an object, you need a model of it
I Robot is maybe not perfectly rigid
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Non Periodic Motions
Principles of Walking - Full Body Motion Introduction to Robotics

I Simpler due to known start and end
I Examples

I Standing up
I Kicking
I Grasping
I Waving
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Implementing Non Periodic Motions
Principles of Walking - Full Body Motion Introduction to Robotics

I Keypoint teach in
I Put robot into key positions manually
I Save joint positions at these points
I Interpolate
I Useful for simple motions (e.g. waving) or static robots

I Learning from demonstration
I Either demonstrate on the robot itself or by using motion capture
I Normally more than one demonstration
I Not just simply replaying

I Cartesian splines
I Define trajectories of the limbs with Cartesian splines manually
I Comparably easy to do for humans (much better than joint space)
I Use inverse kinematics to compute joint goals
I Splines configurable with few parameters
I Optimize parameters, e.g. using tree-structured parzen estimator
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Implementing Non Periodic Motions
Principles of Walking - Full Body Motion Introduction to Robotics

I DeepLearning
I Just let it learn in simulation till it works
I Put it on the robot and hope for the best
I Reality gap

I Control Theory
I Have an open loop trajectory, e.g. from teach in or LIPM
I Use a stability criterion, e.g. ZMP
I Adjust joint goals with controller, e.g. PID

I More on the learning aspect in the intelligent robotics lecture
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Questions
Principles of Walking - Full Body Motion Introduction to Robotics

Questions?
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