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Trajectory generation — Recapitulation

Trajectory Generation 2 - Recapitulation Introduction to Robotics

The trajectory of a robot with n degrees of freedom (DoF) is a vector of n parametric
functions with a common parameter:

Time
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Trajectory generation — Recapitulation (cont.)

Trajectory Generation 2 - Recapitulation Introduction to Robotics

v

Deriving a trajectory yields
> velocity ¢

» acceleration g

> jerk g

v

Jerk represents the change of acceleration over time, allowing for non-constant
accelerations.

v

A trajectory is CK-continuous, if the first k derivatives of its path exist and are
continuous.

v

A trajectory is defined as smooth if it is at least C?>-continuous.
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Trajectory generation — Recapitulation (cont.)

Trajectory Generation 2 - Recapitulation Introduction to Robotics

Trajectory generation

» Cartesian space

> closer to the problem

> better suited for collision avoidance
» Joint space

> trajectories are immediately executable
> limited to direct kinematics
> allows accounting for joint angle limitations
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Trajectory generation — Recapitulation (cont.)

Trajectory Generation 2 - Recapitulation Introduction to Robotics

» Linear interpolation

> respect the minimum velocity constraint
» Trapezoidal interpolation

» normalization
» Polynomial interpolation.

» differentiable acceleration
» cubic polynomials
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Approximation

Trajectory Generation 2 - Approximation and Interpolation Introduction to Robotics

» Approximation of the relation between x and y (curve, plane, hyperplane) with a
different function, given a limited number n of data points D = {x;, y;}

Q

O
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Approximation

Trajectory Generation 2 - Approximation and Interpolation Introduction to Robotics

Definition
An approximation is a non-exact representation of something that is difficult to
determine precisely (e.g. functions).

Necessary if
» equations are hard to solve

» mathematically too difficult or computationally too expensive

Advantages are
» simple to derive
» simple to integrate

» simple to compute
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Approximation (cont.)

Introduction to Robotics

Trajectory Generation 2 - Approximation and Interpolation

Stone-Weierstrass theorem (1937)

Theorem
» Every non-periodic continuous function on a closed interval can be approximated as
closely as desired using algebraic polynomials.
» Every periodic continuous function can be approximated as closely as desired using
trigonometric polynomials.
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Interpolation

Trajectory Generation 2 - Approximation and Interpolation Introduction to Robotics

» A special case of approximation is interpolation, where the model exactly matches

all data points.
If many points are given or measurement data is affected by noise, approximation should preferably be used.
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Interpolation

Trajectory Generation 2 - Approximation and Interpolation Introduction to Robotics

Definition
Interpolation is the process of constructing new data points within the range of a
discrete set of known data points.

» Interpolation is a kind of approximation.

» A function is designed to match the known data points exactly, while estimating
the unknown data in between in an useful way.

» In robotics, interpolation is common for computing trajectories and
motion /-controllers.
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Interpolation vs. Approximation

Trajectory Generation 2 - Approximation and Interpolation Introduction to Robotics

» Approximation: Fitting a curve to given data points.
> Online tool: https://mycurvefit.com/
» Interpolation: Defining a curve exactly through all given data points

> In the case of many, especially noisy, data points, approximation is often better suited
than interpolation
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https://mycurvefit.com/

Interpolation with Overfitting

Trajectory Generation 2 - Approximation and Interpolation Introduction to Robotics
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Overfitting example

Trajectory Generation 2 - Approximation and Interpolation Introduction to Robotics

Complete the sequence: 1,3,5,7,7




Interpolation without Overfitting
Introduction to Robotics

Trajectory Generation 2 - Approximation and Interpolation

f(x)




Interpolation basics

Trajectory Generation 2 - Interpolation methods Introduction to Robotics

» Base

> subset of a vector space
> able to represent arbitrary vectors in space

> finite linear combination
» Uniqueness
» nt"-degree polynomials only have n zero-points
> resulting system of equations is unique
» Oscillation

> high-degree polynomials may oscillate due to many extrema
» workaround: composition of sub-polynomials
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Polynomial examples

Trajectory Generation 2 - Interpolation methods Introduction to Robotics

linear polynomial quadratic polynomial cubic polynomial

aviy

Whatever the degree n of the polynomial is, there's n — 1 turning points.
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Interpolation methods

Trajectory Generation 2 - Interpolation methods Introduction to Robotics

Generation of robot-trajectories in joint-space over multiple stopovers requires
appropriate interpolation methods.

Some interpolation methods using polynomials:
» Bernstein-polynomials (Bézier curves)

» Basis-Splines (B-Splines)

» Lagrange-polynomials

» Newton-polynomials

Examples of polynomials interpolation:
> http://polynomialregression.drque.net/online.php
> https://arachnoid.com/polysolve/

» http://www.hvks.com/Numerical/webinterpolation.html

S. Li, J. Zhang
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Bernstein-Polynomials

Trajectory Generation 2 - Interpolation methods - Bernstein-Polynomials Introduction to Robotics

Bernstein-polynomials (named after Sergei Natanovich Bernstein) are real polynomials
with integer coefficients.

Definition
Bernstein basis polynomials of degree k are defined as:

k .
Bik(t) = (I.)(l— Okt i=0,1,...,k

where (II‘) is the binomial coefficients, (If) = Wik)' and k > i > 0.
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Bernstein-Polynomials

Trajectory Generation 2 - Interpolation methods - Bernstein-Polynomials Introduction to Robotics

Bernstein Polynomials:
y = boBo’k(t) + blBl,k(t) +--+ kak,k(t)

where by is Bernstein coefficients.
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Polynomial of degree 1

Trajectory Generation 2 - Interpolation methods - Bernstein-Polynomials Introduction to Robotics
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Polynomial of degree 2

Trajectory Generation 2 - Interpolation methods - Bernstein-Polynomials Introduction to Robotics
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Polynomial of degree 3

Trajectory Generation 2 - Interpolation methods - Bernstein-Polynomials Introduction to Robotics
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Polynomial of degree 15




Properties

Trajectory Generation 2 - Interpolation methods - Bernstein-Polynomials Introduction to Robotics

Properties of Bernstein basis polynomials:

> base property: the Bernstein basis polynomials [B;x : 0 < i < k] are linearly
independent and form a base of the space of polynomials of degree < k,

» positivity Bjk(t) >0 for t € [0, 1],

1

i=0

k k . .
» decomposition of one: ) Bj(t)= > (’f)t’(l — )i =1,
i=0

» recursivity: Bjx_1(t) = %B;,k(t) + %B;H,k(t)
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Bézier curves

Trajectory Generation 2 - Interpolation methods - Bernstein-Polynomials Introduction to Robotics

Bernstein Polynomials:
y = boBok(t) + b1 By x(t) + - - + bk By «(t)

where by is Bernstein coefficients.
If by is a set of control points Py, -, P,, where n is called its order of the Bézier

curve (n = 1 for linear, 2 for quadratic, etc.).

Animation of Bézier curves
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Bézier curves for trajectory generation

Trajectory Generation 2 - Interpolation methods - Bernstein-Polynomials Introduction to Robotics

» Cubic polynomials (3"-degree) most used
> derivatives exist

» velocity
» acceleration
> jerk

> provides smooth trajectory
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B-spline curves and basis functions

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

» A B-spline or basis spline is a polynomial function that has minimal support
with respect to a given degree, smoothness, and domain partition

» A B-spline curve of order k is composed of linear combinations of B-Splines
(piecewise) of degree k — 1 in a set of control points
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B-spline curves and basis functions (cont.)

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

30
—&— Control Points
—— Degree 1
25 A —— Degree 2
—— Degree 3
—— Degree 4
20 A
> 15 A
10 1
5 -
0 T T T T T T
35 40 45 50 55 60 65 70

S. Li, J. Zhang




B-spline curves and basis functions (cont.)

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

Linear splines correspond to piecewise linear functions

Advantages:

» splines are more flexible than polynomials due to their piecewise definition

v

still, they are relatively simple and smooth

v

prevent strong oscillation

Generally, 2nd derivatives are continuous at intersections

v

v

also applicable for representing surfaces (CAD modeling)
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B-spline curves and basis functions (cont.)

Trajectory Generation 2 - Interpolation methods - B-Splines

» the domain of B-splines are subdivided by
t = (to, t1,t2, oy tmy tmtds -« oy Emtk),
where
» t: is the knot vector, has m + k non-decreasing parameters
» m-th knot span is the half-open inteval [t, tmt1)
» m: is the number of control points to be interpolated

» k: is the order of the B-spline curve

S. Li, J. Zhang

Introduction to Robotics
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Definition of B-splines

Trajectory Generation 2 - Interpolation methods - B-Splines

B-splines N; j of order k:
» for k =1, the degreeis p=k —1=0:

1 : fort;<t<tig
Niq(t) = h= "
ia(t) { 0 : else
» a recursive definition for k > 1
ti

t— tio,—t
N;’k(t) = —Ni,k—l(t) + itk

————Niy1x-1(t)
tipk—1 — i titk — tit1 4

with i =0,..., m.
» the above is referred to as the Cox-de Boor recursion formula

S. Li, J. Zhang

Introduction to Robotics
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Recursive definition of a B-spline

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

The recursive definition of a B-spline basis function N; x(t):

Ni ()
Nik—1(t)  Niy1x—1(t)

Nik—2(t)  Nip1x—2(t) Nipok—2(t)

Nio(t) Nit1,2(t) Nijk—3,2(t) Nipx_22(t)

N;1(t) Nit1,1(t)  Nigoa(t) == Nigk—3,1(t) Nigg—2,1(t) Nipx—1,1(t)
; ; : : : : 1 t
ti tir1 tiio T titk—2 titk—1 titk
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Examples of B-splines

Trajectory Generation 2 - Interpolation methods - B-Splines

Introduction to Robotics
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Examples of B-splines

Trajectory Generation i i Introduction to Robotics




Trajectory Generation 2 -

Interpolation methods - B-Splines

Introduction to Robotics

1

0.5

0

ti

1

0.5

0
ti

1

0.5

S. Li, J. Zhang

0
ti

T . .
k:2 /// \\

-3 ti — 2 ti—1 ti ti+1 ti + 2 ti+ 3
k:3 //_\\\ //7\\\

-3 ti — 2 ti—1 ti ti+1 ti + 2 ti+ 3

3

325 /592



Uniform B-splines

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

» Distance between uniform B-splines’ control points is constant

» Weight-functions of uniform B-splines are periodic
» All functions have the same form
» Easy to compute

Bmk = Bmt1,k = Bmiok,
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Uniform

Trajectory Generation 2 -

B-splines of order 1 to 4

Interpolation methods - B-Splines Introduction to Robotics

10
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Non-uniform B-spline of order 3

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics
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Properties of B-splines

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

> Partition of unity: S5 o N k(t) = 1.
> Positivity: Nj(t) > 0.
» Local support: N;(t) =0 for t & [t;, tjyk].
» Ck=2 continuity:
If the knots {t;} are pairwise different from each other, then

N; (t) € CF=2

i.e. Nik(t)is (k —2) times continuously differentiable.
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Construction of a B-spline curve

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

A B-spline curve can be composed by combining pre-defined control-points with
B-spline basis functions:

r(t) =D vj- Njk(t)
j=0

where t is the time, r(t) is a point on this B-spline curve and v; are called its control
points (de-Boor points).

r(t) is a Ck~2 continuous curve if the range of t is [tx_1, tmy1].
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B-Spline curves

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

v

A series of de-Boor points forms a convex hull for the interpolating curve

v

Path always constrained to de-Boor point's convex hull

v

De-Boor points are of same dimensionality as B-spline curve

v

B-spline curves have locality properties
» control point P; influences the curve only within the interval [7;, 7j; ]
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The influence of different control points

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics
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The influence of different control points (cont.)

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics
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The influence of different control points (cont.)

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics
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Generating control points from data points

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

Question

Given a set of m data points and a degree p, find a B-spline curve of degree p defined
by m control points that passes all data points in the given order.

Two methods:

> by solving the following system of equations [9]

a(t) =Y v Niu(t) = Q=N-V
j=0
where q; are the data points to be interpolated, j = 0,--- , m;

N is a m x m matrix;
V and Q is a m X s matrices, s is the space dimension.

» by learning, based on gradient-descend.[10]
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Surface reconstruction with B-Splines

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

» Surface reconstruction from laser scan data using B-splines [11]

Pointcloud (16,585 points) 35 patches, 1.36% max. error 285 patches, 0.41% max. error
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Surface reconstruction with B-Splines (cont.)

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

Pointcloud (20,021 points) 29 patches, 1.20% max. error 156 patches, 0.27% max. error

Pointcloud (37,974 points) 15 patches, 3.00% max. error 94 patches, 0.69% max. error

S. Li, J. Zhang




Surface reconstruction with B-Splines (cont.)

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

» Surface approximation from mesh data (reduced to 30,000 faces)

Mesh (69,473 faces) 72 patches, 4.64% max. error 153 patches, 1.44% max. error
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Lagrange interpolation

Trajectory Generation 2 - Interpolation methods - B-Splines Introduction to Robotics

To match / + 1 data points (x;,y;) (i =0,1,...,/) with a polynomial of degree / , the
following approach of Lagrange can be used:

I
pi(x) =Y yili(x)
i—0

The interpolation polynomial in the Lagrange form is defined as follows:

= xo)(x =x) - (x = Xim1)(x = Xiga) - (x = x1)
(i = x0)(xi = x1) -+ (X — xi-1)(Xi — Xi1) - (% — x1)

L;(X)

1ifi=k
L"(Xk):{ 0ifik
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