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Introduction

The typical industry production line scenario
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Example of typical tedious, monotonous tasks
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Motivation

 to helping factory workers on tedious, monotonous, dangerous tasks

Robotics has largely contributed to increasing industrial productivity and

Collaborative
Systems

Human
Operator

Traditional
Robot

Assembly

High dexterity = Combines human dexterity
and flexibility ~ with robot capabilities [24]

Dexterity / flexibility
could be unreachable [24]

Placement

Commercial cobots have
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High repeatability
and payload
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and speed [23]

Picking
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and repeatability [23]

The main industry tasks
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Motivation

Problem Statement:

1. Robotic assembly production lines and tasks are difficult to set up

« Installation and tuning of robots and devices cost lots of time

« Ease-of-programming has been identified as an open challenge in robot assembly

2. Assembly task success rates requirement are high (>99%)

3. TAKT time requirements are high

* Normally, less time than human worker
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Deep Reinforcement Learning for Industrial Insertion Tasks

Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019.




Related Work

University of California, Berkeley

Method overview

Algorithm 1 Residual reinforcement learning

Require: policy 7y, hand-engineered controller 7y.
1: forn=20,..., N — 1 episodes do
User Defined T 2: Sample initial state s ~ E.
Reward 3: fort=0,...,H — 1 steps do
4 Get policy action uy ~ g (ussy).
5 Get action to execute uy; = uy + 7H(S¢).
6: Get next state s;11 ~ p(- | s¢,up).
User Defined f 7 Store (¢, u¢, S¢41) into replay buffer R.
; 8-
9
0
l:

To

Controller Sample set of transitions (s, u, s’) ~ R.
Optimize # using RL with transitions.
end for
end for

Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019.
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Experiment result

Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019.
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Experiment result

D-Sub Connector

Goal

Perfect |

Noisy

Pure RL

Dense
Images, SAC
Images, TD3

16%
0%
12%

0%
0%
12%

RL + LfD

Images

32%

2%

USB Connector

Goal

Perfect | Noisy

Residual RL

Dense
Images, SAC
Images, TD3

100%
100%
52%

60%
64 %
52%

Human

P-Controller

100%

449

Pure RL

Dense

Sparse, SAC
Sparse, TD3
Images, SAC
Images, TD3

28%
16%
44%
36%
28%

20%
8%

28%
32%
28%

Model-E Connector

Goal

Perfect |

Noisy

Sparse
Images

100%
88%

32%
60%

Pure RL

Dense
Images, SAC
Images, TD3

0%
0%
0%

0%
0%
0%

RL + LD

Residual RL

Images
Dense
Images, SAC
Images, TD3

20%

20%

Residual RL

Dense

Sparse, SAC
Sparse, TD3
Images, SAC
Images, TD3

100%
88%
100%
100%
0%

84%
84%
36%
80%
0%

P-Controller

100%

60%

Human

P-Controller

Luo, Jianlan, et al. "Reinforcement learning on variable impedance controller for high-precision robotic assembly." 2019 International Conference on Robotics
and Automation (ICRA). IEEE, 2019.




Related Work

Stanford University, Stanford Artificial Intelligence Lab (SAIL)

Lee, Michelle A, et al. "Making sense of vision and touch: Learning
multimodal representations for contact-rich tasks." IEEE Transactions on
Robotics 36.3 (2020): 582-596.

Lee, Michelle A, et al. "Guided uncertainty-aware policy optimization:
Combining learning and model-based strategies for sample-efficient policy

learning." 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020.

Lee, Michelle A., et al. "Multimodal Sensor Fusion with Differentiable
Filters." arXiv preprint arXiv:2010.13021 (2020).

*Martin-Martin, Roberto, et al. "Variable impedance control in end-effector
space: An action space for reinforcement learning in contact-rich
tasks." arXiv preprint arXiv:1906.08880 (2019).




Related Work

Stanford University, Stanford Artificial Intelligence Lab (SAIL)

Making Sense of Vision and Touch:
Learning Multimodal Representations for Contact-Rich Tasks
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Method overview

Reaching Alignment Insertion

R

Time (ms)

Force sensor readings in the z-axis (height) and visual observations are shown with
corresponding stages of a peg insertion task
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Method overview

Trajectory
Generator

T l¢

, . Impedance PD
Multimodal Representation Controller

A [y A& lﬂu

Operational Space Dynamics
Controller Model

lfu

OptoForce| |Kinect v2 Robot

1000 Hz 30 Hz 1000 Hz

Controller structure




Related Work

Stanford University, Stanford Artificial Intelligence Lab (SAIL)

Method overview
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Stanford University, Stanford Artificial Intelligence Lab (SAIL)

Method overview
Encoder’s architecture settings:

For visual feedback, use a six-layer convolutional neural network (CNN) to
encode 128 X 128 X 3 RGB images.

*For depth feedback, use an eighteen-layer CNN with 3 X 3 convolutional filters
of increasing depths to encode 128 X 128 X 1 depth images. A single fully
connected layer to the end of both the depth and RGB encoders to transform
the final activation maps into a 2 X d-dimensional variational parameter vector.
For haptic feedback, we take the series and perform five-layer causal
convolutions with last 32 readings from the six-axis F/T sensor as a 32 X 6 time
variational parameter vector.

For proprioception, we encode the stride 2 to transform the force readings into
a 2 X d-dimensional current position, roll, linear velocity, and roll angular
velocity of the end-effector with a four-layer multilayer perceptron (MLP) to
produce a 2 X d-dimensional variational parameter vector.

For “Self-Supervised Predictions and Decoder Architecture Representations”, please check paper
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Method overview

RL policy: trust-region policy optimization (TRPO)

cr(1—(tanh Alls}2)(1—sy) (r)
L+ ca(l— E)(1 - £2) ifs <e1 & sy < &y (@)

el
2+ ci(hg — |s2]) if s, <0 (i)
) if hd — |Sz| < &9 (C)

Reward design for: reaching (r), aligning (a), inserting (i), and completed (c).

Cartesian end-effector position displacements: AX

Cartesian roll angle displacements: Ao
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Experiment result
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Experiment result
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3. Studies

« Impedance controller, admittance controller
*  RL based assembly using impedance controller

*  DRL based assembly using admittance controller




Impedance controller,
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Impedance controller,
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Impedance controller,




admittance controller
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admittance controller




1. Proactive Action Visual Residual Reinforcement Learning for Contact-Rich
Tasks Using a Torque-Controlled Robot (ICRA2021)




Contribution 1: Representation of policies and controller scheme
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Contact-based parametric policy

We use a simple Q-learning algorithm:

QT(St; Ht} = Er;,s;+1NE [?’t . ‘yEut_lmw[Q“(.ng, Ut+1)]]

e [l ol ol sl | ol k] : (success)
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Contribution 2: Proactive Action
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Contribution 2: Proactive Action Experiment
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Training Experiment Example

Q-Learnin g_Reward2020-02-07 16:51:26

Episode !
reward °

: 100 Episoélwes

Q-Learning_Steps2020-02-07 16:51:27

Episode;:

H

steps

100 Episo]cuines



Experiment Results

TABLE I TABLE II
ABLATION STUDY OF POLICY EVALUATION STATISTICS COMPARISON OF SUCCESS RATES FOR DIFFERENT BASELINES

Baselines Result(success/total)  Total Time Cost Baselines Fix motherboard  Move motherboard

No vision 92/200 1.09 h Baseline 1 97/100 W20
No RL policy 112/200 0.65 h Baseline 2 100/100 0/20
Random RL policy TT200 259 h Baseline 3 08/100 B1/100
No jgvestjoative action iy 200 (L85 h Baselige 4 100/ 100 R8/100
| Our method 179/200 1.18 h Our method 100/100 100/100




2. Combining Learning from Demonstration with Learning by Exploration to
Facilitate Contact-Rich Tasks (IROS2021 submission)




% Studies

Representation of policies and controller scheme

Target pose




Contribution 1: Learning from demonstration based on visual servoing




Contribution 2: A region-limited residual reinforcement learning(RRRL) policy
based on force-torque information

Reaching
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Contribution 2: A region-limited residual reinforcement learning(RRRL) policy

based on force-torque information

Algorithm 1 RRRL

Require: Model based policy g, learning frequency C'
target action-value update frequency Cb.

1: Initialize replay memory H to capacity N
. Initialize action-value function () with random weigh
o
. Initialize target action-value function Qtﬂrgd wil
weights #— =6
: for episode = 1 to M do
Sample state sq
while NOT EpisodeEnd do
Calculate a(s) with Equation (8)
Choose action ay from mg(s;)
With probability € choose a random action ap;
Otherwise select apy, ~ mg(S;)
Obtain action a; = (1 — a) * ag +a * agy,
Execute a;, observe reward r; and state s;44
Store transition (s, a;, s, S¢41) in H with pric
Mty pe = Maz;<¢p;
for j =1to Cy do
Sample minibatch of transitions with prioril
from H
Update transition priority
Update # with the method proposed in [40
end for
Every C'; steps reset Qapger = @
end while
21: end for

m(a|s) = (1 — a(s)) - mg(als) + a(s) - ma(als).

Parametric Policy:
Double DQN with proportional prioritization

(1




Contribution 2: A region-limited residual reinforcement learning(RRRL) policy
based on force-torque information

Training Experiment Example

Episode
reward
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Teaching Experiments
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Experiments Results
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Experiments Results

TABLE III
EVALUATION IN THE EXECUTION PHASE

Maximum
contact force

Execution phase | Success rate
| Perfect
Only teach-pendant | 55/100

33/100

|
Uncertainty |

17/100 | 15 N
5/100 | 15 N

Only hand-guiding

35N

spiral searching

Hand-guiding +

51/100
spiral searching

33/100

|
|
|
69/100 ‘ 47/100
‘ 35N

|
|
|
| |
‘ Teach-pendant + ‘
|

Our method 95/100 91/100 IS N
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Future Work

Dynamic Movement Primitives for More Complex Contact-rich Tasks
*Complex trajectory assembly

*Massage Robot

DMP random coupling noise DMP random weight noise DMP random residual noise
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Davchev, T., Luck, K. S., Burke, M., Meier, F., Schaal, S., & Ramamoorthy, S. (2020). Residual Learning from Demonstration: Adapting Dynamic
Movement Primitives for Contact-rich Insertion Tasks. arXiv e-prints, arXiv-2008.




Future Work

Sim2Real RL for insertion tasks

(a) Reach (b) Push (c) Pick-and-place

«Zhan, A., Zhao, P., Pinto, L., Abbeel, P., & Laskin, M. (2020). A Framework for Efficient Robotic Manipulation. arXiv preprint arXiv:2012.07975.
*Bogunowicz, Damian, Aleksandr Rybnikov, Komal Vendidandi, and Fedor Chervinskii. "Sim2Real for Peg-Hole Insertion with Eye-in-Hand
Camera." arXiv preprint arXiv:2005.14401 (2020).
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