Grasp planning with anthropomorphic gripper

Yannick Jonetzko

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics

Technical Aspects of Multimodal Systems

Outline

1. Motivation

2. Anthropomorphic gripper
 Shadow Dexterous Hand

3. Definition grasp
 What is a grasp?

4. Approaches
 Grasplt!
 Standard grasp
 Teleoperating grasp learning

5. Conclusion
Human hands can handle several problems
Service robots interact with human environment
One gripper for all common tasks
Anthropomorphic gripper

Anthropomorphic \approx human like

Anthropomorphic gripper characteristics:
- Similar mechanical structure like human hand
- Two or more fingers
- Each finger with two or three phalanxes

www.schunk.com
www.popsci.com
www.robotiq.com
Shadow Dexterous Hand

- 24 Degrees of Freedom
- Human size
- Open platform
- Optional BioTac (20 DoF)

https://www.shadowrobot.com/products/dexterous-hand/
A grasp needs at least two oppositional forces that are applied on the object.

What is a "good" grasp?

- Stable hold
- Satisfy object constraints
- Object should not be deformed

→ Grasp like a human?

1 https://en.oxforddictionaries.com/definition/grasp
Approaches

A grasp can be computed:
- Compute contact points
- Apply inverse kinematics for gripper and manipulator
- Evaluate forces and torques with friction cone

A standard grasp can be learned:
- Record human grasping objects
- Evaluate the grasps
- Build a database of standard grasps
→ More human like than computed grasps

Y. Jonetzko
Two stages:

- Find grasping points on the surface of the object
- Match points with fingertips and compute the inverse kinematics

Then try this from any direction and use the best grasp.

Problems:

- Object geometry needs to be known
- Imprecise visual location
- No real time computation for the whole manipulator
Friction cone

Gripper exerts forces and torques through contact points. For a stable grasp, all external forces and torques need to be balanced.

Friction cones contain:

- Forces (3 Dimensions)
- Torques (3 Dimensions)

→ Build wrench space

Grasplt! [MA04]
Friction cone - example

Successful grasp:

▶ Applied forces inside of the friction cones
▶ Quality of grasp depends on the sum of forces and torques

Problems:

▶ Soft fingers or objects
▶ Worst case: maximum finger force
▶ Deformation of the object
http://www.cs.columbia.edu/%7Eallen/EH08.wmv
Humans grasp series of objects:

- Record grasps
- Define standard grasps
- Build database of successful tested grasps
- For new unknown objects, try to find a similar from database
Standard grasp

two finger pinch grasp

two finger precision grasp

all finger precision grasp

power grasp

[RHSR07]
The complete grasping process is divided in 6 phases:

1. Chose standard grasp for unknown object
2. Move manipulator in pre-grasp posture
3. Move to target-pose position
4. Apply target-pose
5. Wait till forces are sufficient (stable grasp)
6. Move to post-grasp position
Grasp strategy

Pre-grasp posture:

- Position near the object, approach distance
- Hand is "open"
- Cartesian collision free movement to the object
- "Simple" plan to the pre-grasp position
- The position relative to the object can be improved by visual feedback (from 3cm up to 1mm)
Typical grasp process

https://www.youtube.com/watch?v=mkGp_V0oDvo
<table>
<thead>
<tr>
<th>no.</th>
<th>name</th>
<th>grasp type</th>
<th>TUM Hand before & after optimization</th>
<th>Shadow Hand before & after optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>adhesive tape</td>
<td>power</td>
<td>10 10</td>
<td>10 10</td>
</tr>
<tr>
<td>2</td>
<td>toy propeller</td>
<td>3F spec</td>
<td>10 10</td>
<td>10 10</td>
</tr>
<tr>
<td>3</td>
<td>toy cube</td>
<td>2F pinch</td>
<td>10 10</td>
<td>10 10</td>
</tr>
<tr>
<td>4</td>
<td>can</td>
<td>power</td>
<td>10 10</td>
<td>10 10</td>
</tr>
<tr>
<td>5</td>
<td>tissue pack</td>
<td>power</td>
<td>10 10</td>
<td>10 10</td>
</tr>
<tr>
<td>6</td>
<td>tennis ball</td>
<td>power</td>
<td>10 10</td>
<td>7 10</td>
</tr>
<tr>
<td>7</td>
<td>paper ball</td>
<td>power</td>
<td>9 10</td>
<td>10 10</td>
</tr>
<tr>
<td>8</td>
<td>sharpener</td>
<td>AF prec</td>
<td>8 10</td>
<td>10 10</td>
</tr>
<tr>
<td>9</td>
<td>remote control</td>
<td>power</td>
<td>8 10</td>
<td>10 10</td>
</tr>
<tr>
<td>10</td>
<td>cup</td>
<td>power</td>
<td>9 10</td>
<td>10 10</td>
</tr>
<tr>
<td>11</td>
<td>board marker</td>
<td>2F prec</td>
<td>7 10</td>
<td>10 10</td>
</tr>
<tr>
<td>12</td>
<td>tea light</td>
<td>AF prec</td>
<td>6 10</td>
<td>8 10</td>
</tr>
<tr>
<td>13</td>
<td>golf ball</td>
<td>power</td>
<td>7 10</td>
<td>6 9</td>
</tr>
<tr>
<td>14</td>
<td>matchbox</td>
<td>AF prec</td>
<td>7 9</td>
<td>6 10</td>
</tr>
<tr>
<td>15</td>
<td>light bulb</td>
<td>power</td>
<td>6 10</td>
<td>8 10</td>
</tr>
<tr>
<td>16</td>
<td>chocolate bar</td>
<td>AF prec</td>
<td>5 10</td>
<td>10 10</td>
</tr>
<tr>
<td>17</td>
<td>folding rule</td>
<td>2F prec</td>
<td>4 10</td>
<td>10 10</td>
</tr>
<tr>
<td>18</td>
<td>voltage tester</td>
<td>2F prec</td>
<td>3 9</td>
<td>8 9</td>
</tr>
<tr>
<td>19</td>
<td>eraser</td>
<td>2F prec</td>
<td>4 10</td>
<td>9 10</td>
</tr>
<tr>
<td>20</td>
<td>bunch of keys</td>
<td>AF prec</td>
<td>0 0</td>
<td>1 2</td>
</tr>
<tr>
<td>21</td>
<td>pencil</td>
<td>2F prec</td>
<td>0 0</td>
<td>0 8</td>
</tr>
</tbody>
</table>

[RHSR07]
Grasp recording while teleoperating the robot (shadow hand):

- Using a CyberGlove 2 for teleoperating
- On series of objects
- Human can compensate calibration errors
- Using precision grasps

The goal was to get a mean grasp and use the variance for in-hand manipulation. And also the reduction of complexity for the grasps.

http://www.cyberglovesystems.com/cyberglove-ii/
Conclusion

▶ Good grasp
 ▶ Stable grasps
 ▶ Forces inside of friction cones

▶ Grasping strategy
 ▶ Computing grasps is to slow
 ▶ Standard grasps
 ▶ 6 phases of grasping
 ▶ Teleoperated grasps
Future work

These ways of grasping solve just small parts from a complex grasping problem.

Potential Research:

▶ Computing human like intuitive grasps
▶ Grasping without pre-grasp posture
▶ Real-time grasping
Precision grasp synergies for dexterous robotic hands.
In *2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)*. Institute of Electrical and Electronics Engineers (IEEE), dec 2013.

Planning optimal grasps.
In *Proceedings 1992 IEEE International Conference on Robotics and Automation*. Institute of Electrical and Electronics Engineers (IEEE).

Grasplt!

Power grasp planning for anthropomorphic robot hands.
In *2012 IEEE International Conference on Robotics and Automation*. Institute of Electrical and Electronics Engineers (IEEE), may 2012.