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Introduction SVM

Support Vector Machines

» a.k.a. maximum margin classifiers

v

a family of related

\{

supervised

v

learning methods

v

for classification and regression

v

try to minimize the classification error

v

while maximizing the geometric margin
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Introduction SVM

Hype

SVMs are very popular today

» often the best solutions on classification benchmarks
» can handle large data sets

> an active research area

> but don't believe the hype (at least, all of it)

» good performance is not guaranteed
» selection of feature maps is critical
» requires prior knowledge and experiments

» and fine-tuning of parameters
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Introduction SVM

Overall concept and architecture

> select a feature space H and a mapping function ® : x — ®(x)
> select a classification (output) function o

y(x) = (32 0i(®(x), ®(xi)))

» during training, find the support-vectors xi . .. X
» and weights 1 which minimize the classification error

map test input x to ®(x)
calculate dot-products (®(x)P(x;))
feed linear combination of the dot-products into o

vV v v Y

get the classification result
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Introduction SVM

Block-diagram

handwritten digit recognition

output G (Zv; k (x.X,))

weights

dot product <®(x),D(x>= k(x.X;)
mapped vectors @(x), P(x)

SUppOrt Vectors X, ... X,

test vector X

Figure 1.9 Architecture of SVMs and related kernel methods. The input x and the expan-
sion patterns (SVs) x; (we assume that we are dealing with handwritten digits) are nonlin-
early mapped (by ®) into a feature space H where dot products are computed. Through
the use of the kernel k, these two layers are in practice computed in one step. The results
are lmearly combmed usmg welghts vy, found by solvmg a quadratic program (in pattern
= v; = a — ;) or an eigenvalue problem
(Kernel PCA) The lmear combination is fed into the funcnon o (in pattern recognition,
o(x) = sgn(x + b); in regression estimation, o(x) = x + b; in Kernel PCA, o(x) = x).
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Introduction SVM

Example: learning a checkers board
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Introduction SVM

History

Three revolutions in machine learning (Shawe-Taylor & Cristianni 2004)

» 1960s: efficient algorithms for (linear) pattern detection
> e.g., Perceptron (Rosenblatt 1957)
» efficient training algorithms
» good generalization
> but insufficient for nonlinear data
» 1980s: multi-layer networks and backpropagation
» can deal with nonlinear data
> but high modeling effort, long training times
» and risk of overfitting

» 1990s: SVMs and related Kernel Methods
» “all in one” solution

» considerable success on practical applications
» based on principled statistical theory
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Introduction SVM

History: SVM

» seminal work by Vladimir Vapnik

» B.E.Boser, |I. M. Guyon, and V.N. Vapnik, A training algorithm
for optimal margin classifiers., 5th Annual ACM Workshop on
COLT, pages 144-152, Pittsburgh, 1992

» C. Cortes and V. Vapnik, Support-Vector Networks, Machine
Learning, 20, 1995.
http://www.springerlink.com /content/k238jx04hm87j80g/

» H.Drucker, C.J.C. Burges, L. Kaufman, A.Smola, and
V. Vapnik Support Vector Regression Machines, Advances in
Neural Information Processing Systems 9, NIPS 1996, 155-161

» The "bible”: V.Vapnik, The Nature of Statistical Learning
Theory, Springer, 1995
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References

» V.Vapnik, The Nature of Statistical Learning Theory, Springer,
1995

N. Cristianini, J. Shawe-Taylor, Introduction to Support Vector
Machines and other kernel-based learning methods, Cambridge
University Press, 2000

J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern
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v

v

v

v
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References: web resources
» www.kernel-machines.org/

» A.W.Moore, Support Vector Machines,
www.cs.cmu.edu/~awm, 2003

v

S. Bloehdorn, Maschinelles Lernen,
http://www.aifb.uni-karlsruhe.de/WBS /pci/ML/SVMs.pdf

C.-C.Chang & C.-J.Lin, libsvm
http://www.csie.ntu.edu.tw/"cjlin/libsvm/

v

» W.H.Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,
Numerical Recipes — The Art of Scientific Computing,
Cambridge University Press, 2007 (all algorithms on CD-ROM)
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Review of the linear classifier SVM

Review: binary classification

task:
» classify input test patterns x
» based on previously learned training patterns
» simplest case is binary classification,
> two-classes y(x) = {+1,—1}

A first example algorithm:
» classify based on distance to the
» center-of-mass of the training pattern clusters

> result can be written as y = sgn(>; w; - x; + b)

o = = = o 12
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Review of the linear classifier SVM

Simple classification example

Figure 1.1 A simple geometric classification algorithm: given two classes of points (de-
picted by ‘0" and ‘+’), compute their means ¢, ,c_ and assign a test pattern x to the one
whose mean is closer. This can be done by looking at the dot product between x — ¢ (where
¢ =(cs +¢.)/2) and w:= c; — c_, which changes sign as the enclosed angle passes through
/2. Note that the corresponding decision boundary is a hyperplane (the dotted line) or-
thogonal to w.

o> 13
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Review of the linear classifier

Simple classification example (cont'd)

» two classes of data points (‘o' and '+')
» calculate the means of each cluster (center of mass)
> assign test pattern x to the nearest cluster

» can be written as y = sgn(>."; ai(x,x;) + b)

1

» with constant weights «; = {m+, p—

[m] = = = o

SVM

14



UH MIN Facult
iti Department of Informatic:
L2 University of Hamburg

Review of the linear classifier SVM

Simple classification example (cont'd)

> centers of mass:

€+ = g Lfily=s1} X

= m_l— Z{iD’i:—l} Xi»

boundary point ¢: ¢ = (¢ +c_)/2
classification: y = sgn((x — ¢), w)
norm: ||x|| := v/(x, x)

rewrite: y = sgn({(x, c;)) — ((x,c-)) + b)
with b = (le_ |2 — |les |P)/2

» all together:

yzsgn(i Z x,~<x,x,->—i Z xi(x, i) + b)

m m_
* {ilyi=+1} {ily=—1}

vV v.v Y
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Maximum margin classification SVM

Linear classification

° ° °
®  denotes +1
°
L4 o O denotes -1
° ° o o
o
°
° o
x
. y
o
o o o
o o
o
o o
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Maximum margin classification SVM

Linear classification

° ° °
®  denotes +1
°
L4 o O denotes -1
° ° o o
o
°
° o
x
. y
o
o o o
o o
o
o o

» one possible decision boundary

[m] = = o> 17



UH
L2 University of Hamburg

Maximum margin classification

Linear classification

° [ ] [
L]
[
L] o
[¢]
L]
[
[
[¢]
[¢]
[¢]
[¢]

®  denotes +1

o O denotes -1

x =1y

» and another one

o>
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Maximum margin classification SVM

Linear classification

®  denotes +1

O denotes -1

which is best?

o> 19
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Maximum margin classification

Remember: Perceptron

» can use the Perceptron learning algorithm

» to find a valid decision boundary

> convergence is guaranteed,

» iff the data is separable

» algorithm stops as soon as a solution is found

» but we don’t know which boundary will be chosen

[m] = = = o

Department of Informatic:

SVM
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Maximum margin classification SVM

Perceptron training algorithm

Input: data &
Initialize: w—0,b—0
1: repeat
2 err + 0
3 fori=1,...,¢ do
4 compute f(z;) = sign({w, #(x;)) + b)
5 if f(z;) # y; then
6:
7
8
9

w — w+ y;0(z;)
b bty
err = err + 1
end if
10: end for
11: until err =0
12: return w,b

[m] = = = o 21
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Maximum margin classification SVM

The classifier margin

®  denotes +1

O denotes -1

which is best?

check the "margin"!

» define the margin as the width that the boundary could be

increased before hitting a data point.
[m] = = = o

N
N
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Maximum margin classification SVM

The classifier margin

° ° °
®  denotes +1
°
L4 o O denotes -1
° ° o o
o
°
° o
x
. y
o
o o o
o o L
o which is best?
o o

> a second example: margin not symmetrical

o> 23
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Maximum margin classification SVM

Maximum margin classifier

° ° °
®  denotes +1
°
L4 o O denotes -1
° ° o o
o
°
' ©
x
. y
o
o o o
o o
o
o o

» the classifier with the largest margin
> the simplest kind of SVM (caIIed the linear SVM)

= Q> 24
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Maximum margin classification

Support vectors

O

MIN Faculty
Department of Informatics

» data points that limit the margin are called the support vectors

[m] =

SVM
®  denotes +1
O denotes -1
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Maximum margin classification SVM

Why maximum margin?

> intuitively, feels safest

» least chance of misclassification if the decision boundary is not
exactly correct

» statistical theory (“VC dimension”) indicates that maximum
margin is good

» empirically, works very well

» note: far fewer support-vectors than data points (unless
overfitted)

» note: the model is immune against removal of all
non-support-vector data points

o = = = o 26



UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

Maximum margin classification SVM

The geometric interpretation

Note:
<Wx>+b=+1
<WX>+b=-1
=  <wE-xp= 2

2

= <l D=

Figure 1.5 A binary classification toy problem: separate balls from diamonds. The optimal
hyperplane (1.23) is shown as a solid line. The problem being separable, there exists a weight
vector w and a threshold b such that y;((w,x;) +b) > 0 (i = 1,...,m). Rescaling w and
b such that the point(s) closest to the hyperplane satisfy |(w,x;) +b| = 1, we obtain a
canonical form (w,b) of the hyperplane, satisfying y:((w,x;) +b) > 1. Note that in this
case, the margin (the distance of the closest point to the hyperplane) equals 1/||w]|. This
can be seen by considering two points x;,X, on opposite sides of the margin, that is,
(w,x1) +b=1,(w,x) + b = —1, and projecting them onto the hyperplane normal vector
w/|wl.

Q> 27
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Maximum margin classification SVM

Step by step: calculating the margin width

o
P 10“ " "
= plus" plane

S
ed\c“"\a‘5
pt classifier decision boundary
/ "minus" plane
2 /
\

_AT
QeSS
giet©
wpre

» how to represent the boundary (hyperplane)
» and the margin width M

» in m input dimensions?

[m] = = = o 28
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Maximum margin classification SVM

Calculating the margin width

o
P 10“ " "
= plus" plane

S
ed\o“"\a‘5
pt classifier decision boundary
/ "minus" plane
2 /

_AT
QeSS
giet©
wpre

> plus-plane: {x:w-x+b=+1}
> minus-plane: {x:w-x+b=-1}
» classify patternas +1if w-x+b> +1

and —1lifw-x+b< -1

[m] = = = o 29
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Maximum margin classification

Calculating the margin width

200"
=+ wx+b = +1

g 0es
. ea\c\c‘
p‘/)(.-i/ wx+b=0
/ wx+b = -1
% /
_q2on®
o=

. p(ed‘c‘ o

» w is perpendicular to the decision boundary

» and the plus-plane and minus-plane

» proof: consider two points v and v on the plus-plane and
calculate w - (u — v)

[m] = = = o

SVM
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Maximum margin classification SVM

Calculating the margin width

2o0¢
=+ wx+b = +1

g 0es
N eaxc\c\
p‘/x:/ wx+b=0
/ wx+b = -1
% /
_q2on®
o=

N ‘,(ed‘c‘ o

» select point X on the plus plane

» and nearest point X~ on the minus plane
» of course, margin width M = | X — X |
» and XT = X~ + Aw for some A

o = = = o il
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Maximum margin classification SVM

Calculating the margin width

200"
=+ wx+b = +1

g 0es
. eaxc\c\
p‘/x:/ wx+b=0
/ wx+b = -1
% /
_q2on®
o=

. ‘,(ed‘c‘ o

w-(XT+Aw)+b=1
w- X" +b+Aw-w=1
“1+xw-w=1

A= 2

2
w-w

v vV VvV

[m] = = = o 52
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Maximum margin classification SVM

Calculating the margin width

20n€’
Lo = wx+h = +1

Jict
! e

/ wx+b=0

/ wx+b =-1

Y e
&

_A 200

. ‘,(ed‘c‘ o

_ 2
>A_W-W

» M =|XT =X = w|=Aw|
> M=XAJ/w-w=2/yw-w

[m] = = = o 83}
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Maximum margin classification SVM

Training the maximum margin classifier

Given a guess of w and b we can
» compute whether all data points are in the correct half-planes

» compute the width of the margin

So: write a program to search the space of w and b to find the
widest margin that still correctly classifies all training data points.

> but how?
» gradient descent? simulated annealing? ...

» usually, Quadrating programming

o = = = o 34
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Maximum margin classification SVM

Learning via Quadratic Programming

» QP is a well-studied class of optimization algorithms
» maximize a quadratic function of real-valued variables

> subject to linear constraints
» could use standard QP program libraries
» e.g. MINOS
http://www.sbsi-sol-optimize.com /asp/sol_products_minos.htm

> e.g. LOQO http://www.princeton.edu/~rvdb/logo

» or algorithms streamlined for SVM (e.g. large data sets)

o = = = o B5]
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Maximum margin classification SVM

Quadratic Programming

General problem:
» find argmaxu(c—i—dTu—i— %uTRu)

> subject to n linear inequality constraints
aiiuy + apto + -+ aimtm < by
ariuy + axppur + - -+ amtm < by

apiuy + apptiz + -+ + apmtm < by

» subject to e additional linear equality constraints
a(n+1)1U1 + d(n+1)2U2 +o A(n+1)mUm = bn+1
A(nte)1Ul + A(nre)2t2 + -+ A(nye)mlm = bn+1

[m] = = = o 36
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Maximum margin classification

SVM

QP for the maximum margin classifier

Setup of the Quadratic Programming for SVM:
» M=X\/w-w=2/y/w-w

» for largest M, we want to minimize w - w

» assuming R data points (xk, yx) with y, = £1
» there are R constraints:
w-xxk+b>4+1 ify,=+1
w-xxk+b< -1 ify,=-1

o = = = o 37
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Maximum margin classification SVM

QP for the maximum margin classifier

» solution of the QP problem is possible
» but difficult, because of the complex constraints

Instead, switch to the dual representation

> use the “Lagrange multiplier” trick

» introduce new dummy variables «;

> this allows to rewrite with simple inequalities a;; > 0
» solve the optimization problem, find «;

» from the «;, find the separating hyperplane (w)

» from the hyperplane, find b

o = = = o 38
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Maximum margin classification

The dual optimization problem

Directly solving this problem is difficult because the constraints are quite complex.
The mathematical tool of choice for simplifying this problem is the Lagrangian
duality theory (e.g., Bertsekas, 1995). This approach leads to solving the following
dual problem:

n 1 n
max D(a) = Zai -3 Z Vit Y <I>(xi)T<I>(xj)
i=1

vI=t (1.2)
Vi a; >0,

> yia = 0.

Problem (1.2) is computationally easier because its constraints are much simpler.
The direction w* of the optimal hyperplane is then recovered from a solution a*
of the dual optimization problem (1.2).

W= alyd(x).
K

subject to {

Determining the bias b* becomes a simple one-dimensional problem. The linear
discriminant function can then be written as

g(x) =w" Tx+b* = iyia,v B(x;) T D(x) + b*. (1.3)

[=] = = o>

SVM
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Maximum margin classification SVM

Dual representation

= |n simple Perceptron training, the weight vector w can always
be rewritten as a linear combination of training data points:

¢
w= Z azy'ﬂb(m@) — & w — w + YT
1=1

= Coefficient i says how often xi was misclassified.
= |ndirect evaluation of dot product with weight vector becomes
possible without explicitly representing it.

¢
(w,p(x)) = <Z aiyi¢(mi)a¢(m)>

i=1
¢
= Y o (o), () .
i=1

o & - = DAl 40
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Maximum margin classification SVM

Dual representation of Perceptron learning

Algorithm 1 Perceptron Training (dual form)
Initialize: «1,...,ap«—0,b+<—0

L. repeat _ the only reference to {(x) and
2: err «— O / only for the known data items.
3: fori=1,...,f do i

! - it

4 yz(z_; 1 ajy]@(ﬁj) ¢($2)D+ b) 4 rewrtten

5: |f v <0 then ™~

i6: o —a;+ 1w ..

7 be—b+uwy; Y - rewritten

8: err =err+1 rewritien

9 end if

10: end for
11: until err =0
12: return aq,...,q4,b

o & - = DAl 41
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Maximum margin classification SVM

Summary: Linear SVM

» based on the classical linear classifier

> maximum margin concept

v

limiting data points are called Support Vectors

v

solution via Quadratic Programming

v

dual formulation (usually) easier to solve

o & - = DAl 42
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Soft-margin classification

Classification of noisy input data?

» actual “real world” training data contains noise
» usually, several “outlier” patterns
» for example, mis-classified training data

> at least, reduced error-margins
» or worse, training set not linearly separable
» complicated decision boundaries

» complex kernels can handle this (see below)
» but not always the best idea
» risk of overfitting

> instead, allow some patterns to violate the margin constraints

[=] = = = o

SVM
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Soft-margin classification SVM

The example data set, modified

° ° ° o
®  denotes +1
°
L4 o O denotes -1
° ° ° o o
o
°
° o
x i
° ° y
o
o o o
o o
o what should we do?
o o

» not linearly separable!

» trust every data point?
[m] = = = o 44
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Soft-margin classification SVM

Example data set, and one example classifier

®  denotes +1

o O denotes -1

what should we do?

> three points misclassified

» two with small margin, one with large margin
[m] = = = o 45
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Soft-margin classification SVM

Noisy input data? Another toy example
LWK, page 10

Figure1.2 2D toy example of binary classification, solved using three models (the decision
boundaries are shown). The models vary in complexity, ranging from a simple one (left),
which misclassifies a large number of points, to a complex one (right), which “trusts” each
point and comes up with solution that is consistent with all training points (but may not
work well on new points). As an aside: the plots were generated using the so-called soft-
margin SVM to be explained in Chapter 7; cf. also Figure 7.10.

» allow errors?

> trust every data point?
[m] = = A 46
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Soft-margin classification SVM

Soft-margin classification
Cortes and Vapnik, 1995

» allow some patterns to violate the margin constraints
» find a compromise between large margins

» and the number of violations

Idea:
» introduce slack-variables £ = (§;...&n), & >0

» which measure the margin violation (or classification error)
on pattern x;:  y(x;)(w-®(x;)+b) >1—¢;

» introduce one global parameter C which controls the
compromise between large margins and the number of

violations
[m] = = = o> 47
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Soft-margin classification SVM

Soft-margin classification

» introduce slack-variables &;

» and global control parameter C

maxy, pe P(w, b, &) = 3w? + C Y7, &

subject to:
Vi y(xi)(w-®(xj)+b) =1-¢
Vi: &>0

» problem is now very similar to the hard-margin case

» again, the dual representation is often easier to solve

[m] = = = o 48
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Soft-margin classification SVM

Slack parameters &;, control parameter C
(LSKM chapter 1)

Optimal hyperplanes (section 1.2.1) are useless when the training set is not lin-
early separable. Kernel machines (section 1.2.2) can represent complicated decision
boundaries that accomodate any training set. But this is not very wise when the
problem is very noisy.

Cortes and Vapnik (1995) show that noisy problems are best addressed by
allowing some examples to violate the margin constraints in the primal problem
(1.1). These potential violations are represented using positive slack variables
£ =(&...&,). An additional parameter C controls the compromise between large
margins and small margin violations.

n
max P(w,b,€) = %w” +CY &
o i=1 1.4
Vi yi(w ®(x;) +b)>1-¢ 49

subject to
Vi & >0

The dual formulation of this soft-margin problem is strikingly similar to the dual
formulation (1.2) of the optimal hyperplane algorithm. The only change is the
appearance of the upper bound C for the coefficients c.

o> 49
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Soft-margin classification SVM

Lagrange formulation of the soft-margin SVM

The difficulty of the primal problem (1.4) lies with the complicated inequality
constraints that represent the margin condition. We can represent these constraints
using positive Lagrange coefficients a; > 0.

L(w,b,€ a)= —w +CZ£, Zal(y,w ®(x;) +b)— 1+ &).

=1 i=1
The formal dual objective function D(a) is defined as
D) = mli)réL(w, b€, a) subject to Vi & >0. (1.8)
w,0,

This minimization no longer features the complicated constraints expressed by the
Lagrange coefficients. The &; > 0 constraints have been kept because they are easy
enough to handle directly. Standard differential arguments yield the analytical
expression of the dual objective function.

() = { I T %Ziu’ viai yjoy Kij  if 3, yiay =0 and Vi o; < C,

D
—00 otherwise.

o> 50
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Soft-margin classification SVM
Dual formulation of soft-margin SVM

The rest of this chapter focuses on solving the soft-margin SVM problem (1.4)

using the standard dual formulation (1.5),
n 1 n
max D(a) =Y ai— 5 > wiaiyjo; K
i=1 ig=1
. Vi 0<a; <C,
subject to
Yiyiai =0,

where K;; = K(x;,x;) is the matrix of kernel values.

After computing the solution a*, the SVM discriminant function is

n
) =W Tx b =Y oK (xi, %) + b (16)
i=1

The optimal bias b* can be determined by returning to the primal problem, or,
more efficiently, using the optimality criterion (1.11) discussed below.

It is sometimes convenient to rewrite the box constraint 0 < a; < C as a box
constraint on the quantity y;a;:

0,C if y; = +1
yiai € [Ai, Bi] = [0.0] S ' (L.7)
[-C,0] ify; =-1.
o & = Da v 51
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Soft-margin classification

The optimization problem

ij=1

n n

1
max D(a) = Zl:a; -3 E yie; v K(xi, ;)
Vi¢B al=a, (1.19)
VieB 0<al<C,
> yia = 0.
We can rewrite (1.19) as a quadratic programming problem in variables a;, i € B
and remove the additive terms that do not involve the optimization variables a’:

- %ZZM? yja; Kij (1.20)

subject to

max Y af | 1-u Y vioy Ky
i€B 3 i€B jE€B
subject to Vi € B 0<a.<C and Eyiaﬁ =— Z iy
i€B ig€B

= o
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Soft-margin classification SVM

How to select the control parameter?

» of course, the optimization result depends on the specified
control parameter C

» how to select the value of C?

» depends on the application and training data
» Numerical Recipes recommends the following
» start with C =1
> then try to increase or decrease by powers of 10
» until you find a broad plateau where the exact value of C doesn’t
matter much
» good SVM solution should classify most patterns correctly,
» with many a; = 0 and many «a; = C, but only a few in between

o = = = o 55}
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Soft-margin classification SVM

Summary: soft-margin SVM

» same concept as the linear SVM
> try to maximize the decision margin
» allow some patterns to violate the margin constraints

» compromise between large margin and number of violations

» introduce a control parameter C
» and new inequality parameters ; (slack)
> again, can be written as a QP problem

» again, dual formulation easier to solve

o = = = o 54
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Nonlinearity through feature maps

General idea:

» introduce a function ® which maps the input data into a higher
dimensional feature space

d:xeX—d(x)eH

» similar to hidden layers of multi-layer ANNs

» explicit mappings can be expensive in terms of CPU and/or
memory (especially in high dimensions)

» "“Kernel functions' achieve this mapping implicitly

» often, very good performance

o = = = o 55}
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Example 1-dimensional data set

® denotes +1

o oo co o 0O O O denotes -1

» what would the linear SVM do with these patterns?

[m] = = = o 56
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Kernels and feature maps SVM

Example 1-dimensional data set

classification boundary
=—""—=—1 margin ® denotes +1
e oo 00 0 00 O O denotes -1
x=0

» what would the linear SVM do with these patterns?

> not a big surprise!

» maximum margin solution

[m] = = = o 57
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Harder 1-dimensional data set

® denotes +1

o oo 0co O e e e O denotes -1

» and now?

» doesn't look like “outliers”

» so, soft-margin won't help a lot

[m] = = = o 58
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Harder 1-dimensional data set

®  denotes +1

O denotes -1

x=0
» permit non-linear basis functions

> 2z = (X, X7)

[m] = = = o 59
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Harder 1-dimensional data set

®  denotes +1

° O denotes -1

— 2
> 2z = (X Xg)
» data is now linearly separable!

o = = = o 60
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Similar for 2-dimensional data set

o @ denotes+1

O denotes -1

» clearly not linearly separable in 2D
» introduce z, = (Xk,yk, \/§Xkyk)

[m] = = = o 61
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Common SVM feature maps

basis functions

> z, = ( polynomial terms of xjx of degree 1 to q)
» z, = ( radial basis functions of xx)

> z, = ( sigmoid functions of xy)
» combinations of the above
Note:

» feature map ® only used in inner products

» for training, information on pairwise inner products is sufficient

[m] = = = o 62
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Kernel: definition

Definition 1 (Kernel): A Kernel is a function K, such that for all

X,z € X:
K(x,z) = (¢(x), ¢(2))-

where ® is a mapping from X" to an (inner product) feature space

F.

[m] = = = o

SVM
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Example: polynomial Kernel

» consider the mapping:
®(x) = (x,V2x1x2,x3) € R3

» evaluation of dot products:
(®(x), &(2))
= <(X12, \/§X1X2,X22), (212’ \/521227222»
= xle2 + 2x1x02120 + xzzzf
= (x1z1 + x022)? = (x, 2)? = K(x, 2)

» kernel does not uniquely determine the feature space:
P(x) = (x2,x3, x1x2, x2x1) € R*

also fits to k(x,z) = (x, z)?

o & - = DAl 64
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Example: quadratic kernel, m dimensions

> X = (X1y. ..y Xm)

o) =
V20V, A B,

2,2 2
X{y X5y Xim

\/_X1X27 \/_X1X37 RN} \/§Xm_]_Xm )

v

v

constant, linear, pure quadratic, cross quadratic terms
in total (m+ 2)(m + 1)/2 terms (roughly m?/2)
so, complexity of evaluating ®(x) is O(m?)

v

v

v

for example, m = 100 implies 5000 terms. ..

o = = = o 65



UH MIN Faculty [
iti Department of Informati
L2 University of Hamburg

Kernels and feature maps SVM

Example: quadratic kernel, scalar product

1 1
\/§X1 \/5}/1
\/§X2 \/5)/2
X ylz
O(x) - d(y) = x5 : v3 =
\/§X1X2 \/5}/1)/2
V2x1x3 V2y1ys
\/ixm—lxm \/iym—l}/m

14+ 307 2%y + 30T xEyE + 30 D0 2Xix5yiy

[m] = = = o 66



UH MIN Facult
iti Department of Informatic:
L2 University of Hamburg

Kernels and feature maps

Example: scalar product

v

calculating (®(x), ®(y)) is O(m?)
for comparison, calculate (x -y +1)? :

v

v

(x-y+1)? = ((CZy xi - yi) +1)2

=X, Xi)’i)2 +2(3X0 xiyi) +1

=>4 jm:1 Xiyixiyj + 230 xiyi + 1

= S (i) + 2300 S xiyixgyy 2 200 xiyi + 1
= O(x) - o(y)

v

we can replace (®(x), ®(y)) with (x - y + 1)2, which is O(m)

[m] = = = o

SVM
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Polynomial kernels

» the learning algorithm only needs (®(x), ®(y))

» for the quadratic polynomial, we can replace this by
({x,y) +1)?

» optional, use scale factors: (a(x,y) + b)?

» calculating one scalar product drops from O(m?) to O(m)

» overall training algorithm then is O(mR?)

» same trick also works for cubic and higher degree

» cubic polynomial kernel: (a(x,y) + b)3,
includes all m®/6 terms up to degree 3

» quartic polynomial kernel: (a(x,y) + b)* includes all m*/24
terms up to degree 4

> etc.

o = = = o 68
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Polynomial kernels

» for polynomial kernel of degree d, we use ({x,y) + 1)¢
» calculating the scalar product drops from O(m9) to O(m)

» algorithm implicitly uses an enourmous number of terms
» high theoretical risk of overfitting

» but often works well in practice

» note: same trick is used to evaluate a test input:
R
y(xe) = 2ty owyr({xc, ) + 1)9)

> note: o, = 0 for non-support vectors, so overall O(mS) with
the number of support vectors S.
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Kernel “Design”

How to get up a useful kernel function?
» derive it directly from explicit feature mappings

» design a similarity function for your input data, then check
whether it is a valid kernel function

> use the application domain to guess useful values of any kernel
parameters (scale factors)

» for example, for polynomial kernels make (a(x, y) + b) lie
between +1 for all j and j.

[m] = = = o

SVM
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Kernel composition

Given Kernels K1 and K> over X x X, the following functions are

also kernels:

» K(x,z) = aKi(x,z),a € RT;

» K(x,z) = Ki(x,z) + ¢,c e RT;

» K(x,z) = Ki(x, z) + Ka(x, 2);

» K(x,z) = Ki(x, z) - Ka(x, 2);

» K(x,z) =x'Bz,X CIR", B pos. sem.-def.

[m] = = = o 71
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Gaussian Kernel

[Ix — 2|f?
K(x,z) = exp(—%)

» with "bandwidth” parameter o

» kernel evaluation depends on distance of x and z

» local neighborhood classification

> initialize o to a characteristic distance between nearby patterns
in feature space

» large distance implies orthogonal patterns

[m] = = = o
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The Kernel “Trick”

» rewrite the learning algorithm

» such that any reference to the input data happens from within
inner products

» replace any such inner product by the kernel function

» work with the (linear) algorithm as usual

» many well-known algorithms can be rewritten using the kernel
approach

[m] = = = o 7S
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Summary: Kernels

» non-linearity enters (only) through the kernel

v

but the training algorithm remains linear

\{

free choice of the kernel (and feature map)

v

based on the application

v

polynomial or Gaussian kernels often work well

» some examples of fancy kernels next week

o & - = DAl 74
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Summary: Support Vector Machine

>

based on the linear classifier

Four new main concepts:

>

>

maximum margin classification
soft-margin classification for noisy data
introduce non-linearity via feature maps

kernel-trick: implicit calculation of feature maps

use Quadratic Programming for training

polynomial or Gaussian kernels often work well

[m] = = = o
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