
University of Hamburg

MIN Faculty

Department of Informatics

SVM

Support Vector Machines
VL Algorithmisches Lernen, Teil 3a

Norman Hendrich & Jianwei Zhang

University of Hamburg
MIN Faculty, Dept. of Informatics

Vogt-Kölln-Str. 30, D-22527 Hamburg
hendrich@informatik.uni-hamburg.de

12/05/2010

1

University of Hamburg

MIN Faculty

Department of Informatics

SVM

Outline

Introduction
Review of the linear classifier
Maximum margin classification
Soft-margin classification
Kernels and feature maps

2

University of Hamburg

MIN Faculty

Department of Informatics

Introduction SVM

Support Vector Machines

I a.k.a. maximum margin classifiers

I a family of related

I supervised

I learning methods

I for classification and regression

I try to minimize the classification error

I while maximizing the geometric margin

3

University of Hamburg

MIN Faculty

Department of Informatics

Introduction SVM

Hype

SVMs are very popular today

I often the best solutions on classification benchmarks

I can handle large data sets

I an active research area

I but don’t believe the hype (at least, all of it)

I good performance is not guaranteed

I selection of feature maps is critical

I requires prior knowledge and experiments

I and fine-tuning of parameters

4

University of Hamburg

MIN Faculty

Department of Informatics

Introduction SVM

Overall concept and architecture

I select a feature space H and a mapping function Φ : x 7→ Φ(x)

I select a classification (output) function σ

y(x) = σ(
∑

i ϑi 〈Φ(x),Φ(xi)〉)

I during training, find the support-vectors x1 . . . xn
I and weights ϑ which minimize the classification error

I map test input x to Φ(x)

I calculate dot-products 〈Φ(x)Φ(xi)〉
I feed linear combination of the dot-products into σ

I get the classification result

5

University of Hamburg

MIN Faculty

Department of Informatics

Introduction SVM

Block-diagram
handwritten digit recognition

6

University of Hamburg

MIN Faculty

Department of Informatics

Introduction SVM

Example: learning a checkers board

7

University of Hamburg

MIN Faculty

Department of Informatics

Introduction SVM

History
Three revolutions in machine learning (Shawe-Taylor & Cristianni 2004)

I 1960s: efficient algorithms for (linear) pattern detection
I e.g., Perceptron (Rosenblatt 1957)
I efficient training algorithms
I good generalization
I but insufficient for nonlinear data

I 1980s: multi-layer networks and backpropagation
I can deal with nonlinear data
I but high modeling effort, long training times
I and risk of overfitting

I 1990s: SVMs and related Kernel Methods
I “all in one” solution
I considerable success on practical applications
I based on principled statistical theory

8

University of Hamburg

MIN Faculty

Department of Informatics

Introduction SVM

History: SVM

I seminal work by Vladimir Vapnik

I B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm
for optimal margin classifiers., 5th Annual ACM Workshop on
COLT, pages 144-152, Pittsburgh, 1992

I C. Cortes and V. Vapnik, Support-Vector Networks, Machine
Learning, 20, 1995.
http://www.springerlink.com/content/k238jx04hm87j80g/

I H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and
V. Vapnik Support Vector Regression Machines, Advances in
Neural Information Processing Systems 9, NIPS 1996, 155-161

I The “bible”: V. Vapnik, The Nature of Statistical Learning
Theory, Springer, 1995

9

University of Hamburg

MIN Faculty

Department of Informatics

Introduction SVM

References

I V. Vapnik, The Nature of Statistical Learning Theory, Springer,
1995

I N. Cristianini, J. Shawe-Taylor, Introduction to Support Vector
Machines and other kernel-based learning methods, Cambridge
University Press, 2000

I J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern
Analysis, Cambridge University Press, 2004

I B. Schölkopf, A. J. Smola, Learning with Kernels, MIT Press,
2002

I L. Bottou, O. Chapelle, D. DeCoste, J. Weste (Eds), Large-Scale
Kernel Machines, MIT Press, 2007

10

University of Hamburg

MIN Faculty

Department of Informatics

Introduction SVM

References: web resources

I www.kernel-machines.org/

I A. W. Moore, Support Vector Machines,
www.cs.cmu.edu/˜awm, 2003

I S. Bloehdorn, Maschinelles Lernen,
http://www.aifb.uni-karlsruhe.de/WBS/pci/ML/SVMs.pdf

I C.-C. Chang & C.-J. Lin, libsvm
http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

I W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,
Numerical Recipes – The Art of Scientific Computing,
Cambridge University Press, 2007 (all algorithms on CD-ROM)

11

University of Hamburg

MIN Faculty

Department of Informatics

Review of the linear classifier SVM

Review: binary classification

task:

I classify input test patterns x

I based on previously learned training patterns

I simplest case is binary classification,

I two-classes y(x) = {+1,−1}

A first example algorithm:

I classify based on distance to the

I center-of-mass of the training pattern clusters

I result can be written as y = sgn(
∑

i wi · xi + b)

12

University of Hamburg

MIN Faculty

Department of Informatics

Review of the linear classifier SVM

Simple classification example

13

University of Hamburg

MIN Faculty

Department of Informatics

Review of the linear classifier SVM

Simple classification example (cont’d)

I two classes of data points (’o’ and ’+’)

I calculate the means of each cluster (center of mass)

I assign test pattern x to the nearest cluster

I can be written as y = sgn(
∑m

i=1 αi 〈x , xi 〉+ b)

I with constant weights αi = { 1
m+
, 1
m−
}

14

University of Hamburg

MIN Faculty

Department of Informatics

Review of the linear classifier SVM

Simple classification example (cont’d)

I centers of mass:
c+ = 1

m+

∑
{i |yi=+1} xi ,

c− = 1
m−

∑
{i |yi=−1} xi ,

I boundary point c: c = (c+ + c−)/2

I classification: y = sgn〈(x − c),w〉
I norm: ||x || :=

√
〈x , x〉

I rewrite: y = sgn(〈(x , c+)〉 − 〈(x , c−)〉+ b)
with b = (||c−||2 − ||c+||2)/2

I all together:

y = sgn
(1

m+

∑
{i |yi=+1}

xi 〈x , xi 〉 −
1

m−

∑
{i |yi=−1}

xi 〈x , xi 〉+ b
)

15

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Linear classification

denotes +1

denotes -1

fx y

I find w and b, so that y(x ,w , b) = sgn(w · x − b)

16

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Linear classification

denotes +1

denotes -1

fx y

I one possible decision boundary

17

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Linear classification

denotes +1

denotes -1

fx y

I and another one

18

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Linear classification

denotes +1

denotes -1

fx y

which is best?

I which boundary is best?

19

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Remember: Perceptron

I can use the Perceptron learning algorithm

I to find a valid decision boundary

I convergence is guaranteed,

I iff the data is separable

I algorithm stops as soon as a solution is found

I but we don’t know which boundary will be chosen

20

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Perceptron training algorithm

21

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

The classifier margin

check the "margin"!

which is best?

yx f

denotes -1

denotes +1

I define the margin as the width that the boundary could be
increased before hitting a data point.

22

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

The classifier margin

denotes +1

denotes -1

fx y

which is best?

I a second example: margin not symmetrical

23

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Maximum margin classifier

yx f

denotes -1

denotes +1

I the classifier with the largest margin
I the simplest kind of SVM (called the linear SVM)

24

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Support vectors

"support vectors"

denotes +1

denotes -1

fx y

I data points that limit the margin are called the support vectors

25

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Why maximum margin?

I intuitively, feels safest

I least chance of misclassification if the decision boundary is not
exactly correct

I statistical theory (“VC dimension”) indicates that maximum
margin is good

I empirically, works very well

I note: far fewer support-vectors than data points (unless
overfitted)

I note: the model is immune against removal of all
non-support-vector data points

26

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

The geometric interpretation

27

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Step by step: calculating the margin width

M

"predict class = +1 zone"

"predict class = -1 zone"

classifier decision boundary

"plus" plane

"minus" plane

I how to represent the boundary (hyperplane)

I and the margin width M

I in m input dimensions?

28

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Calculating the margin width

M

"predict class = +1 zone"

"predict class = -1 zone"

classifier decision boundary

"plus" plane

"minus" plane

I plus-plane: {x : w · x + b = +1}
I minus-plane: {x : w · x + b = −1}
I classify pattern as +1 if w · x + b ≥ +1

and −1 if w · x + b ≤ −1

29

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Calculating the margin width

M X-

X+ wx + b = 0

wx+b = +1

wx+b = -1

"predict class = +1 zone"

"predict class = -1 zone"

I w is perpendicular to the decision boundary

I and the plus-plane and minus-plane

I proof: consider two points u and v on the plus-plane and
calculate w · (u − v)

30

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Calculating the margin width

M X-

X+ wx + b = 0

wx+b = +1

wx+b = -1

"predict class = +1 zone"

"predict class = -1 zone"

I select point X + on the plus plane

I and nearest point X− on the minus plane

I of course, margin width M = |X + − X−|
I and X + = X− + λw for some λ

31

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Calculating the margin width

M X-

X+ wx + b = 0

wx+b = +1

wx+b = -1

"predict class = +1 zone"

"predict class = -1 zone"

I w · (X− + λw) + b = 1

I w · X− + b + λw · w = 1

I −1 + λw · w = 1

I λ = 2
w ·w

32

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Calculating the margin width

M w¢w= = 2M
X-

X+ wx + b = 0

wx+b = +1

wx+b = -1

"predict class = +1 zone"

"predict class = -1 zone"

I λ = 2
w ·w

I M = |X + − X−| = |λw | = λ|w |
I M = λ

√
w · w = 2/

√
w · w

33

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Training the maximum margin classifier

Given a guess of w and b we can

I compute whether all data points are in the correct half-planes

I compute the width of the margin

So: write a program to search the space of w and b to find the
widest margin that still correctly classifies all training data points.

I but how?

I gradient descent? simulated annealing? . . .

I usually, Quadrating programming

34

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Learning via Quadratic Programming

I QP is a well-studied class of optimization algorithms

I maximize a quadratic function of real-valued variables

I subject to linear constraints

I could use standard QP program libraries

I e.g. MINOS
http://www.sbsi-sol-optimize.com/asp/sol products minos.htm

I e.g. LOQO http://www.princeton.edu/˜rvdb/loqo

I or algorithms streamlined for SVM (e.g. large data sets)

35

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Quadratic Programming

General problem:

I find arg maxu
(
c + dTu + 1

2 uTRu
)

I subject to n linear inequality constraints
a11u1 + a12u2 + · · ·+ a1mum ≤ b1

a21u1 + a22u2 + · · ·+ a2mum ≤ b2

. . .
an1u1 + an2u2 + · · ·+ anmum ≤ bn

I subject to e additional linear equality constraints
a(n+1)1u1 + a(n+1)2u2 + · · ·+ a(n+1)mum = bn+1

. . .
a(n+e)1u1 + a(n+e)2u2 + · · ·+ a(n+e)mum = bn+1

36

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

QP for the maximum margin classifier

Setup of the Quadratic Programming for SVM:

I M = λ
√

w · w = 2/
√

w · w
I for largest M, we want to minimize w · w

I assuming R data points (xk , yk) with yk = ±1

I there are R constraints:
w · xk + b ≥ +1 if yk = +1
w · xk + b ≤ −1 if yk = −1

37

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

QP for the maximum margin classifier

I solution of the QP problem is possible

I but difficult, because of the complex constraints

Instead, switch to the dual representation

I use the “Lagrange multiplier” trick

I introduce new dummy variables αi

I this allows to rewrite with simple inequalities αi ≥ 0

I solve the optimization problem, find αi

I from the αi , find the separating hyperplane (w)

I from the hyperplane, find b

38

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

The dual optimization problem

39

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Dual representation

40

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Dual representation of Perceptron learning

41

University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Summary: Linear SVM

I based on the classical linear classifier

I maximum margin concept

I limiting data points are called Support Vectors

I solution via Quadratic Programming

I dual formulation (usually) easier to solve

42

University of Hamburg

MIN Faculty

Department of Informatics

Soft-margin classification SVM

Classification of noisy input data?

I actual “real world” training data contains noise
I usually, several “outlier” patterns
I for example, mis-classified training data

I at least, reduced error-margins
I or worse, training set not linearly separable
I complicated decision boundaries

I complex kernels can handle this (see below)
I but not always the best idea
I risk of overfitting

I instead, allow some patterns to violate the margin constraints

43

University of Hamburg

MIN Faculty

Department of Informatics

Soft-margin classification SVM

The example data set, modified

what should we do?

denotes +1

denotes -1

fx y

I not linearly separable!
I trust every data point?

44

University of Hamburg

MIN Faculty

Department of Informatics

Soft-margin classification SVM

Example data set, and one example classifier

what should we do?

denotes +1

denotes -1

fx y

I three points misclassified
I two with small margin, one with large margin

45

University of Hamburg

MIN Faculty

Department of Informatics

Soft-margin classification SVM

Noisy input data? Another toy example
LWK, page 10

I allow errors?
I trust every data point?

46

University of Hamburg

MIN Faculty

Department of Informatics

Soft-margin classification SVM

Soft-margin classification
Cortes and Vapnik, 1995

I allow some patterns to violate the margin constraints

I find a compromise between large margins

I and the number of violations

Idea:

I introduce slack-variables ξ = (ξi . . . ξn), ξi ≥ 0

I which measure the margin violation (or classification error)
on pattern xi : y(xi)(w · Φ(xi) + b) ≥ 1− ξi

I introduce one global parameter C which controls the
compromise between large margins and the number of
violations

47

University of Hamburg

MIN Faculty

Department of Informatics

Soft-margin classification SVM

Soft-margin classification

I introduce slack-variables ξi
I and global control parameter C

maxw ,b,ξ P(w , b, ξ) = 1
2 w 2 + C

∑n
i=1 ξi

subject to:
∀i : y(xi)(w · Φ(xi) + b) ≥ 1− ξi
∀i : ξi ≥ 0

I problem is now very similar to the hard-margin case

I again, the dual representation is often easier to solve

48

University of Hamburg

MIN Faculty

Department of Informatics

Soft-margin classification SVM

Slack parameters ξi , control parameter C
(LSKM chapter 1)

49

University of Hamburg

MIN Faculty

Department of Informatics

Soft-margin classification SVM

Lagrange formulation of the soft-margin SVM

50

University of Hamburg

MIN Faculty

Department of Informatics

Soft-margin classification SVM

Dual formulation of soft-margin SVM

51

University of Hamburg

MIN Faculty

Department of Informatics

Soft-margin classification SVM

The optimization problem

52

University of Hamburg

MIN Faculty

Department of Informatics

Soft-margin classification SVM

How to select the control parameter?

I of course, the optimization result depends on the specified
control parameter C

I how to select the value of C ?

I depends on the application and training data
I Numerical Recipes recommends the following

I start with C = 1
I then try to increase or decrease by powers of 10
I until you find a broad plateau where the exact value of C doesn’t

matter much
I good SVM solution should classify most patterns correctly,
I with many αi = 0 and many αi = C , but only a few in between

53

University of Hamburg

MIN Faculty

Department of Informatics

Soft-margin classification SVM

Summary: soft-margin SVM

I same concept as the linear SVM

I try to maximize the decision margin

I allow some patterns to violate the margin constraints

I compromise between large margin and number of violations

I introduce a control parameter C

I and new inequality parameters ξi (slack)

I again, can be written as a QP problem

I again, dual formulation easier to solve

54

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Nonlinearity through feature maps

General idea:

I introduce a function Φ which maps the input data into a higher
dimensional feature space

Φ : x ∈ X 7→ Φ(x) ∈ H

I similar to hidden layers of multi-layer ANNs

I explicit mappings can be expensive in terms of CPU and/or
memory (especially in high dimensions)

I “Kernel functions” achieve this mapping implicitly

I often, very good performance

55

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Example 1-dimensional data set

x=0

denotes +1

denotes -1

I what would the linear SVM do with these patterns?

56

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Example 1-dimensional data set

M margin

classification boundary

denotes -1

denotes +1

x=0

I what would the linear SVM do with these patterns?

I not a big surprise!

I maximum margin solution

57

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Harder 1-dimensional data set

x=0

denotes +1

denotes -1

I and now?

I doesn’t look like “outliers”

I so, soft-margin won’t help a lot

58

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Harder 1-dimensional data set

denotes +1

denotes -1

x=0

I permit non-linear basis functions

I zk = (xk , x
2
k)

59

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Harder 1-dimensional data set

x=0

denotes -1

denotes +1

I zk = (xk , x
2
k)

I data is now linearly separable!

60

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Similar for 2-dimensional data set

denotes -1

denotes +1

I clearly not linearly separable in 2D

I introduce zk = (xk , yk ,
√

2xkyk)

61

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Common SVM feature maps
basis functions

I zk = (polynomial terms of xk of degree 1 to q)

I zk = (radial basis functions of xk)

I zk = (sigmoid functions of xk)

I . . .

I combinations of the above

Note:

I feature map Φ only used in inner products

I for training, information on pairwise inner products is sufficient

62

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Kernel: definition

Definition 1 (Kernel): A Kernel is a function K , such that for all
x , z ∈ X :

K (x , z) = 〈φ(x), φ(z)〉.

where Φ is a mapping from X to an (inner product) feature space
F .

63

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Example: polynomial Kernel

I consider the mapping:
Φ(x) = (x2

1 ,
√

2x1x2, x
2
2) ∈ IR3

I evaluation of dot products:
〈Φ(x),Φ(z)〉

= 〈(x2
1 ,
√

2x1x2, x
2
2), (z2

1 ,
√

2z1z2, z
2
2)〉

= x2
1 z2

1 + 2x1x2z1z2 + x2
2 z2

2

= (x1z1 + x2z2)2 = 〈x , z〉2 = κ(x , z)

I kernel does not uniquely determine the feature space:
Φ′(x) = (x2

1 , x
2
2 , x1x2, x2x1) ∈ IR4

also fits to k(x , z) = 〈x , z〉2

64

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Example: quadratic kernel, m dimensions

I x = (x1, . . . , xm)

I Φ(x) = (
1,√

2x1,
√

2x2, . . .
√

2xm,
x2

1 , x
2
2 , . . . x

2
m,√

2x1x2,
√

2x1x3, . . . ,
√

2xm−1xm)

I constant, linear, pure quadratic, cross quadratic terms

I in total (m + 2)(m + 1)/2 terms (roughly m2/2)

I so, complexity of evaluating Φ(x) is O(m2)

I for example, m = 100 implies 5000 terms. . .

65

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Example: quadratic kernel, scalar product

Φ(x) · Φ(y) =



1√
2x1√
2x2

. . .
x2

1

x2
2

. . .√
2x1x2√
2x1x3

. . .√
2xm−1xm



·



1√
2y1√
2y2

. . .
y 2

1

y 2
2

. . .√
2y1y2√
2y1y3

. . .√
2ym−1ym



=

1 +
∑m

i=1 2xiyi +
∑m

i=1 x2
i y 2

i +
∑m

i=1

∑m
j=1 2xixjyiyj

66

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Example: scalar product

I calculating 〈Φ(x),Φ(y)〉 is O(m2)

I for comparison, calculate (x · y + 1)2 :

I (x · y + 1)2 = ((
∑m

i=1 xi · yi) + 1)2

=
(∑m

i=1 xiyi
)2

+ 2
(∑m

i=1 xiyi
)

+ 1

=
∑m

i=1

∑m
j=1 xiyixjyj + 2

∑m
i=1 xiyi + 1

=
∑m

i=1(xiyi)
2 + 2

∑m
i=1

∑m
j=1 xiyixjyj + 2

∑m
i=1 xiyi + 1

= Φ(x) · Φ(y)

I we can replace 〈Φ(x),Φ(y)〉 with (x · y + 1)2, which is O(m)

67

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Polynomial kernels

I the learning algorithm only needs 〈Φ(x),Φ(y)〉
I for the quadratic polynomial, we can replace this by

(〈x , y〉+ 1)2

I optional, use scale factors: (a〈x , y〉+ b)2

I calculating one scalar product drops from O(m2) to O(m)
I overall training algorithm then is O(mR2)

I same trick also works for cubic and higher degree
I cubic polynomial kernel: (a〈x , y〉+ b)3,

includes all m3/6 terms up to degree 3
I quartic polynomial kernel: (a〈x , y〉+ b)4 includes all m4/24

terms up to degree 4
I etc.

68

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Polynomial kernels

I for polynomial kernel of degree d , we use (〈x , y〉+ 1)d

I calculating the scalar product drops from O(md) to O(m)

I algorithm implicitly uses an enourmous number of terms

I high theoretical risk of overfitting

I but often works well in practice

I note: same trick is used to evaluate a test input:
y(xt) =

∑R
i=1 αkyk(〈xk , x〉+ 1)d)

I note: αk = 0 for non-support vectors, so overall O(mS) with
the number of support vectors S .

69

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Kernel “Design”

How to get up a useful kernel function?

I derive it directly from explicit feature mappings

I design a similarity function for your input data, then check
whether it is a valid kernel function

I use the application domain to guess useful values of any kernel
parameters (scale factors)

I for example, for polynomial kernels make (a〈x , y〉+ b) lie
between ±1 for all i and j .

70

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Kernel composition

Given Kernels K1 and K2 over X × X , the following functions are
also kernels:

I K (x , z) = αK1(x , z), α ∈ IR+;

I K (x , z) = K1(x , z) + c , c ∈ IR+;

I K (x , z) = K1(x , z) + K2(x , z);

I K (x , z) = K1(x , z) · K2(x , z);

I K (x , z) = x ′Bz ,X ⊆ IRn,B pos. sem.-def.

71

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Gaussian Kernel

K (x , z) = exp
(
−||x − z ||2

2σ2

)
I with “bandwidth” parameter σ

I kernel evaluation depends on distance of x and z

I local neighborhood classification

I initialize σ to a characteristic distance between nearby patterns
in feature space

I large distance implies orthogonal patterns

72

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

The Kernel “Trick”

I rewrite the learning algorithm

I such that any reference to the input data happens from within
inner products

I replace any such inner product by the kernel function

I work with the (linear) algorithm as usual

I many well-known algorithms can be rewritten using the kernel
approach

73

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Summary: Kernels

I non-linearity enters (only) through the kernel

I but the training algorithm remains linear

I free choice of the kernel (and feature map)

I based on the application

I polynomial or Gaussian kernels often work well

I some examples of fancy kernels next week

74

University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

Summary: Support Vector Machine

I based on the linear classifier

Four new main concepts:

I maximum margin classification

I soft-margin classification for noisy data

I introduce non-linearity via feature maps

I kernel-trick: implicit calculation of feature maps

I use Quadratic Programming for training

I polynomial or Gaussian kernels often work well

75

	Introduction
	Review of the linear classifier
	Maximum margin classification
	Soft-margin classification
	Kernels and feature maps

