

64-189

Projekt: Entwurf eines Mikrorechners

https://tams.informatik.uni-hamburg.de/ lectures/2025ws/projekt/mikrorechner

- Einführung -

Andreas Mäder, Norman Hendrich

Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

30. Oktober 2025

Organisation

Organisation

Motivation

Systemrealisierui

weiteres vorgen

Termine

Zeit Donnerstag, 14:00 – 18:30 Uhr Raum F-522 + F-525

- 1. Plenum
 - Einführung am Anfang
 - Vorstellung von (Zwischen-) Ergebnissen
- praktische Arbeit in Kleingruppen
 Selbstorganisation der Arbeitsgruppen
- Info im Moodle
 https://lernen.min.uni-hamburg.de
 lokale Web-Seiten
 https://tams.informatik.uni-hamburg.de/lectures/2025ws/projekt/mikrorechner

Motivation

Systemrealisierui

weiteres vorgene

- Entwurf und Programmierung eines Mikrorechners
- Schnittstelle zwischen Assembler-Befehlen (ISA) und Hardware
- aktuelle Architekturkonzepte
 - RISC-artiger Befehlssatz (Load-/Store-Architektur)
 - Assemblerbefehle in Pipeline verarbeiten
 - Pipeline Forwarding
 - Sprungvorhersage
 - Superskalarität (parallele Ausführungseinheiten)
 - Caches
 - virtueller Speicher
 - Interrupts
 - Stack

..

Rechnerarchitektur

ganisation Motivation

Systemrealisierun

weiteres vorgenei

Zwei Aspekte der Rechnerarchitektur

- Hardwarestruktur: Art und Anzahl der Hardware-Betriebsmittel und deren Verbindungsstruktur
 - = Mikroarchitektur, hier z.B. Harvard-Architektur
- 2. Operationsprinzip: das funktionelle Verhalten der Architektur
 - = ISA Instruction Set Architecture
 - = Programmierschnittstelle
- ⇒ Möglichkeiten zur Arbeit in dem Projekt

Arbeit in dem Projekt

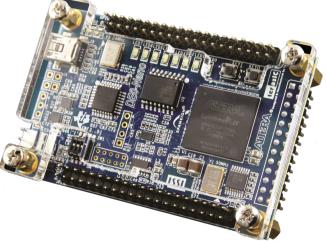
ganisation Motivation

Systemrealisierui

weiteres vorgenei

- 1. Hardware-Bezug
 - VHDL-Implementation der zugrundeliegenden Architektureinheiten
 - Simulation der Hardwareeinheiten
 - Synthesewerkzeuge zur Implementation
- 2. Software-Bezug
 - Assembler
 - Demonstrations- / Anwendungsprogramm
 - Compiler
 - Betriebssystemfunktionalität

Realisierung des Systems


Organication

Motivation

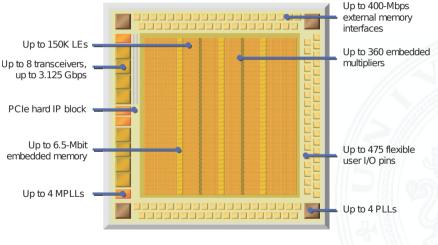
Systemrealisierung

weiteres vorgenen

FPGA-Prototypenplatine

Organisation Motivation Systemrealisierung weiteres Vorgehen

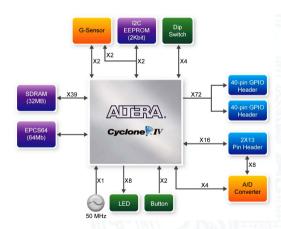
Field Programmable Gate Array


"Programmierbare Hardware": kann durch Konfiguration so geschaltet und verbunden werden, dass sich beliebige Netzlisten aus logischen Gattern, Flipflops, Addierern, etc. realisieren lassen

- 1. Schaltnetze ⇒ boole'sche Funktionen
- 2. Schaltwerke \Rightarrow endliche Automaten
- 3. komplexe Systeme \Rightarrow Prozessoren, etc.

Organisation Motivation **Systemrealisierung** weiteres Vorgeher

Altera CycloneIV


FPGA (cont.)

Systemrealisierung Register Chain Register Bypass LE Routing from LAB-Wide Synchronous LAB-Wide previous LE Programmable Load Synchronous Reaister LE Carry-In Clear data 1 -Row, Column. data 2-► And Direct Link Synchronous Look-Up Table Carry data 3 ---Load and Routing (LUT) Chain Clear Logic ENA CLRN data 4 -Row, Column, And Direct Link Routing labclr1 labclr2 Asynchronous Chip-Wide Local Clear Logic Routing Reset Register Feedback (DEV CLRn) Clock & Register Chain Clock Enable Output Select labclk1-LE Carry-Out labclk2labclkena1labclkena2Motivation

Systemrealisierung

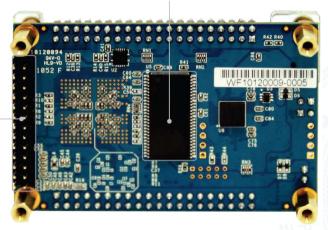
weiteres Vorgehei

- programmierbare Hardware: FPGA
 - Cyclone IV EP4CE22F17C6N [60 nm Prozess, 2009]
 - 153 I/O Pins, gesamt 256 Pins
 - 22 320 LEs ≈ 270 000 Gatter
 - 594 Kbit (interner) Speicher
 - 66 HW-Multiplizierer: 18 × 18 bit
 - 4 PLLs
- On-Board Speicher
 - 32MB SDRAM
 - 2Kbit I²C EEPROM
- Konfiguration
 - über USB Schnittstelle
 - Power-On Konfig. aus Flash (EPCS64)

DEO-Nano (cont.)

Organisation Motivation Systemrealisierung weiteres Vorgeher

- Ein-/Ausgabe
 - 8 LEDs
 - 2 Taster
 - 4 DIP Schalter
- Beschleunigungssensor: ADXL 345, 3-Achsen, 13-bit Auflösung
- A/D Wandler: ADC128S022, 8-Kanal, 12-bit Auflösung
- Erweiterungsstecker
 - ullet 2 × 40-Pin: 72 I/O Pins + Spannungsversorgung; 5V, 3,3V, Gnd
 - 26-Pin: 16 I/O Pins + 8 analoge Eingänge
 - z.B. Verbindung zu (Character-) Display
 - vordefinierte IP-Schnittstelle: cDisp14x6
 - 14 × 6 Zeichen



DEO-Nano (cont.)

Systemrealisierung FPGA Serial Configuration Device (EPCS) 32 MB 8 Green LEDs 40-pin GPIO Header SDRAM 2 Push-buttons USB Type mini-AB Port Altera Cyclone IV EP4CE22F17C6N ANTERA. **FPGA** 26-pin Header 2Kb I2C EEPROM 4 Dip Switches A/D Converter 40-pin GPIO Header 2-pin External Digital 50MHz Clock Power Header Accelerometer Oscillator

Organisation Motivation Systemrealisierung weiteres Vorgehe

2X13 Pin

Header

Ablauf

Organisation Motivation Systemrealisierung **weiteres Vorgehe**n

- Grundlagenvermittlung / Vorlesung
- 1. Festlegung der ISA
- 2.a Hardwareentwurf
- 2.b Softwareentwurf
 - Koordination
 - Diskussion der Ergebnisse
- ⇒ Projektbericht als Abschluss

Plenum

Plenum Kleingruppen

Kleingruppen

Plenum

Plenum

Terminplanung

ganisation Motiv

systemrealisierung

weiteres Vorgehen

- 16.10. Vorbereitung (Hausarbeit)
- 23.10. "Rechnerarchitektur: ISA / Pipelining / Speicher" "VHDL-Einführung / HDL-Übersicht"
- 30.10. Projektvorstellung, Fragen
 - + praktische Vorführung: VHDL-Simulation, FPGA-Entwurf
- 06.11. Bildung der Arbeitsgruppen / Festlegung der ISA...

..

