

Freeform Cellular Robots: Design, Modeling, Sensing and Control

Guanqi LIANG 2024/10/22

Background

II Design

I

III

Modeling

V Control

IV Sensing

Background

Design

I

V Control

IV Sensing

III Modeling

Background

- ◆ Fixed-configuration robots have set functions and lack flexibility.
- ◆ Reconfigurable robots can change shape to adapt to different tasks.
- ◆ Science fiction explores imaginative uses for these reconfigurable robots.

Background

Modularity + Reconfigurability:

By reconfiguring the allocation of modules, the robotic system can attain varied morphologies.

Limitations

Requires precise face-to-face docking

◆ Configuration/Motion restricted by constraints

G. Liang, D. Wu, Y. Tu, T. L. Lam,"Decoding Modular Reconfigurable Robots: A Survey on Mechanisms and Design," **International Journal of Robotics Research (IJRR),** 2024

Background

II Design **V Control**

IV Sensing

III Modeling

Inspiration

⚫ Buckyball can freely combined and changed into different forms

⚫ Groups of slime mold cells can morph into different shapes

We hope to give such characteristics to modular reconfigurable robots

Design of FreeBOT

G. Liang, H. Luo, M. Li, H. Qian and T. L. Lam,"FreeBOT: A Freeform Modular Self-reconfigurable Robot with Arbitrary Connection Point – Design and Implementation,"**IROS 2020**

Movements of FreeBOT

G. Liang, H. Luo, M. Li, H. Qian and T. L. Lam,"FreeBOT: A Freeform Modular Self-reconfigurable Robot with Arbitrary Connection Point – Design and Implementation,"**IROS 2020**

FreeBOT Prototype

FreeBOT: A Freeform Modular Self-reconfigurable Robot with **Arbitrary Connection Point - Design and Implementation**

> Guangi Liang, Haobo Luo, Ming Li, Huihuan Qian, and Tin Lun Lam

The Chinese University of Hong Kong, Shenzhen and The Shenzhen Institute of Artificial Intelligence and Robotics for Society

- ◆ Instant and faulttolerant connection
- ◆ Move and connect freely among spheres

IROS Best Paper Award on Robot Mechanisms and Design (1/2996)

G. Liang, H. Luo, M. Li, H. Qian and T. L. Lam,"FreeBOT: A Freeform Modular Self-reconfigurable Robot with Arbitrary Connection Point – Design and Implementation,"**IROS 2020**

Challenges in Energy sharing

- ◆ MRR systems depend on each module energy levels and require energy sharing
- ◆ Most MRR systems use fixedposition connectors for realtime energy channels
- ◆ FreeBOT's spherical cover complicates battery and energy management.

Energy sharing Mechanisms

Brush

- \triangle The switchable brush mechanism extends the battery port outward
- \blacklozenge The polarity conversion circuit matches the battery's polarity to the external one

Spherical Gear

Slippage between spheres impacts the relative motion of modules

- Extend planar gear concepts into 3D
- **Globally meshed Spherical Gear** combining lat. & long. engagements
- Tangent pitch spheres defined by the $D_B=T_B\times M_B$ basic teeth number & basic module:
- \blacklozenge Achieve latitudinal meshing by combining $T_{B}+1$ bevel gear
- Pitch circle diameter of $D_i = D_B \times \sin(\beta_i), i \in Z, i \in [1, T_B + 1]$ each bevel gear is:

\n- Tech number of each\n
$$
T_i = \left[\frac{D_i}{M_B} \right], i \in \mathbb{Z}, i \in [1, T_B + 1]
$$
\n
\n

G. Liang, L. Zong, T. L. Lam,"DISG: Driving-Integrated Spherical Gear Enables Singularity-Free Full-Range Joint Motion,"**IEEE Transactions on Robotics (T-RO),** 2023.

Spherical Gear

◆ Prototypes of various parameters

- ◆ No-slip rolling between spheres
- ◆ Extensive motion range & dexterous joint applications.

G. Liang, L. Zong, T. L. Lam,"DISG: Driving-Integrated Spherical Gear Enables Singularity-Free Full-Range Joint Motion,"**IEEE Transactions on Robotics (T-RO),** 2023.

Background

Design

V Control

IV Sensing

III Modeling

Spherical Rolling Contact Modeling

FreeBOT's unique motion mode surpasses existing model descriptions

- ◆ FreeBOT adheres to the constraint of rolling without sliding
- ◆ Virtual tangent plane briefly describes.
- \blacklozenge The first spatial rolling contact motion

L. Zong, **G. Liang**, T. L. Lam,"Kinematics Modeling and Control of Spherical Rolling Contact Joint and Manipulator," **IEEE Transactions on Robotics (T-RO),** 2023.

Chain Modeling

Rotation matrix
$$
{}^{I}R_{B_n} = {}^{I}R_{B_0} \prod_{i=1}^{n} {B_{i-1}R_{B_i} \choose \underline{I}}
$$

\nPosition ${}^{I}r_{B_i} = {}^{I}r_{B_0} + \sum_{j=1}^{i} {I R_{B_{j-1}} \frac{B_{j-1}}{B_{j-1}} r_{B_j} \choose \underline{I}R_{B_{j-1}} \Phi_{j\omega} \begin{bmatrix} B_{j-1} \\ P_j \end{bmatrix}$
\nAngular velocity ${}^{I}L_{B_i} = \sum_{j=1}^{i} {I R_{B_{j-1}} \Phi_{j\omega} \begin{bmatrix} B_{j-1} \\ P_j \end{bmatrix} \begin{bmatrix} B_{j-1} \\ P_j \end{bmatrix} \begin{bmatrix} B_{j-1} \\ P_j \end{bmatrix} + {}^{I}L_{B_0}$

Linear velocity $\mathbf{u}_I \mathbf{v}_{B_i} = \frac{1}{I} \mathbf{v}_{B_0} + \frac{1}{I} \mathbf{r}_{0i}^{\times} \mathbf{u}_I \boldsymbol{\omega}_{B_0} + \boldsymbol{J}_{B_i v} \boldsymbol{\omega}$

- ◆ Modeling FreeBOT Chain Configuration
- **Enhanced Dexterity & Extensive Motion Range**
- Dexterous Manipulation with High DoF

L. Zong, **G. Liang**, T. L. Lam,"Kinematics Modeling and Control of Spherical Rolling Contact Joint and Manipulator," **IEEE Transactions on Robotics (T-RO),** 2023.

Background

Design

IV Sensing

V Control

III Modeling

Challenges in Sensing

- ◆ MRR systems reconfigure module placements for task mobility
- ◆ Traditional MRR systems use specialized joint driver, enabling measurement via encoders
- ◆ FreeBOT's novel motion mode & spherical coverage present challenges in sensing

Magnetic Sensor Array

- FreeBOT features magnetic sensor array
- Detect the magnetic field on the sphere
- Pinpoint the magnetic connection points

Magnet position determines the magnetic field

 $B_{\text{sens}} = f(\phi_1, \theta_1, \dots, \phi_N, \theta_N)$

Calculate magnet position based on sensed field

 $(\phi_1, \theta_1, \ldots, \phi_N, \theta_N) = f^{-1}(B_{\text{sens}})$

Y. Tu, **G. Liang,** T. L. Lam,"Graph Convolutional Network based Configuration Detection for Freeform Modular Robot Using Magnetic Sensor Array," **ICRA 2021.**

Magnetic Localization

- ◆ 3D magnetic sensors densely cover the sphere
	- Connection alters sensor readings
- Sampling characteristics across the full sphere
- ◆ GCN to classify & merge
- ◆ Real-time Localization

Y. Tu, **G. Liang,** T. L. Lam,"Graph Convolutional Network based Configuration Detection for Freeform Modular Robot Using Magnetic Sensor Array," **ICRA 2021.**

Sensing Results

- ◆ Real-time, good-performance FreeBOT connection point determination.
- ◆ Multiple FreeBOTs connect simultaneously
- ◆ Lightweight onboard computing resources

Y. Tu, **G. Liang,** T. L. Lam,"Graph Convolutional Network based Configuration Detection for Freeform Modular Robot Using Magnetic Sensor Array," **ICRA 2021.**

Background

.........................

Design

III Modeling

V Control

IV Sensing

Control for FreeBOT

Multiple FreeBOTs form manipulator

- ◆ Controlling multi-DOF rolling motion
- ◆ Conceptualized as spheres rolling

Controlling sphere: forward and steering

$$
\begin{cases}\n u_{if} = \frac{r_{i,\text{out}} r_{i,w}}{\sqrt{4 r_{i,\text{in}}^2 - l_{i,w}^2}} (\omega_{ir} + \omega_{il})\n \end{cases}\n u_{if} = u_{if}^r \cos \varphi_{ie},\n \begin{cases}\n u_{is} = u_{is}^r + k_{\varphi_{i,2}} u_{if}^r \sin \varphi_{ie},\n \end{cases}
$$

L. Zong, **G. Liang**, T. L. Lam,"Kinematics Modeling and Control of Spherical Rolling Contact Joint and Manipulator," **IEEE Transactions on Robotics (T-RO),** 2023.

Control for FreeBOT

L. Zong, **G. Liang**, T. L. Lam,"Kinematics Modeling and Control of Spherical Rolling Contact Joint and Manipulator," **IEEE Transactions on Robotics (T-RO),** 2023.

Model-based Chain Control

L. Zong, **G. Liang**, T. L. Lam,"Kinematics Modeling and Control of Spherical Rolling Contact Joint and Manipulator," **IEEE Transactions on Robotics (T-RO),** 2023.

Background

Design

V Control

IV Sensing

III Modeling

MRR Taxonomy

Hybrid MRR Type Lattice
+ Mobile
+ Chain **Truss** Freeform Lattice **Chain Mobile Mobile Lattice Lattice** $+$ Chain + Mobile $+$ Chain Moving
Capability Connecting Morphology Morphology Morphology **Multiple Characteristics Definition by** Capability **Examples** Fracta Polypod **CEBOT-I** J_{L-2} M-Blocks **SMORES** FreeBO₁ Mono. Mono. Mono. Mono. Poly. **Connector** Spatial DoF **Spatial DoF** Joint DoF Spatial DoF Joint DoF **Spatial DoF** Joint DoF **Actuator** Joint DoF **Joint DoF** Heterog. **Homogeneity** (a) (a) Homogeneous System (b) Heterogeneous Systen

Confusion in previous MRR taxonomy Systems fitting into multiple categories

G. Liang, D. Wu, Y. Tu, T. L. Lam,"Decoding Modular Reconfigurable Robots: A Survey on Mechanisms and Design," **International Journal of Robotics Research (IJRR),** 2024

MRR Evolution

G. Liang, D. Wu, Y. Tu, T. L. Lam,"Decoding Modular Reconfigurable Robots: A Survey on Mechanisms and Design," **International Journal of Robotics Research (IJRR),** 2024

- A new paradigm in freeform robots featuring rapid, free module connections for enhanced efficiency and diversity.
- 3D spherical gears that globally mesh, enabling rolling motion without sliding between spheres.
- Control methods for freeform robots aimed at precise and dexterous manipulation.

- ⚫ Motion modes for freeform robots, consolidated into a new spatial rolling contact model.
- Magnetic technology integrating driving and sensing for module position determination.
- A trilateral taxonomy categorizing modular reconfigurable robots over the past 40 years, resolving classification ambiguities.

Acknowledgments

