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Particle Filter
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▶ approximate belief about state with particles
▶ update particles

▶ prediction
▶ measurement
▶ resampling

▶ state here: (x , y , θ)

Jasper Güldenstein – Deep Learning Based Measurement Modelfor Monte Carlo Localizationin the RoboCup Humanoid League 4 / 45



Particle Filter steps
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Steps of the particle filter from [BBR19]
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▶ Rhoban [ABB+24] - field features and goalposts
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▶ CIT [HKK+23] - lines and goalposts
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▶ StarKit [DKL+22] - Hough Transformed Lines
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Interlude - Inverse Perspective Mapping
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[Gül19]
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Related Work - RoboCup
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▶ Reprojection Problematic [dSdAMY+24]
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Jonschkowski et al.: Differentiable Particle Filters[JRB18]

Jasper Güldenstein – Deep Learning Based Measurement Modelfor Monte Carlo Localizationin the RoboCup Humanoid League 11 / 45



Related Work
Motivation Particle Filter Introduction Related Work Baseline Approach Evaluation Conclusion References

Karkus et al.: Particle Filter Networks with Application to Visual Localization [KHL18]
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Karkus et al.: Particle Filter Networks with Application to Visual Localization [KHL18]
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Lu et al.: L3-Net: Towards Learning based LiDAR Localization for Autonomous Driving [LZW+19]
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Robot incorrectly localized using baseline approach.
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Approach - Overview
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YOEO Line Mask

Camera Image

Our Measurement
Model

UpdateOdometry

Head Joint States Resample

State Extraction

Estimated Pose

System Overview
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Approach - Example Input
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Example YOEO [VGBZ21] output image
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Approach - Network Architecture
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CNN architecture
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Data Generation
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Approach - Style Transfer
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Style Image Perspective
Transformation Result

Style transfer using CAST [ZTD+23]
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Approach - Data Generation
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▶ draw 128 poses from normal distribution around generation pose
▶ calculate distances ∆x , ∆y , ∆yaw as labels
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Approach - Training
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▶ ~8 hours on perspective transformation
▶ ~12 hours fine tuning on style transfer (mostly caused by inefficient programming)
▶ on RTX4090
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Approach - Integration
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▶ Serialize PyTorch model using TorchScript
▶ C++ Torch bindings
▶ more painful than you think
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Approach - Weighing Function
Motivation Particle Filter Introduction Related Work Baseline Approach Evaluation Conclusion References

ωp = 1
|∆xp| + |∆yp| + |∆yawp|

▶ ωp weight of particle p
▶ ∆xp estimated linear distance in x direction between particle and robot pose
▶ ∆yp estimated linear distance in y direction between particle and robot pose
▶ ∆yawp estimated angular distance around z axis between particle and robot pose
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Approach - Video
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Video Time
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Three experiments
▶ Global Localization
▶ Pose Tracking
▶ Angular Error
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Evaluation
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Evaluation Environment
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Global Localization - Experiment Setup
Motivation Particle Filter Introduction Related Work Baseline Approach Evaluation Conclusion References

1. Robot is placed at random pose
2. Particle filter is initialized
3. 10 seconds is allowed for convergence
4. Distance between particle filter estimate and ground truth is measured
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Global Localization - Initialization
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Particles after initialization on one field half.
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Global Localization - Example
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Robot incorrectly localized using baseline approach.
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Global Localization - Example
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Robot correctly localized
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Global Localization - Results
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Quantitative results for global localization.
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Performance of the global localization experiment for Euclidean distance error d and absolute angle error α.

Approach median d mean d σ d median α mean α σ d
Baseline 2.711 2.605 1.672 1.475 1.347 1.078
Ours w/o style transfer 0.793 1.660 1.723 0.467 0.961 0.948
Ours 0.263 1.332 1.982 0.383 0.669 0.737
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Pose Tracking - Example
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Example trajectory of the Pose Tracking experiment
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Pose Tracking - Experiment Setup
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1. Robot is placed at random pose
2. Localization is initialized and allowed to settle
3. Sequence of generated velocities is commanded to walking engine
4. Pose produced by localization and ground truth is measured each step
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Pose Tracking - Results
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Quantitative pose tracking localization.

Jasper Güldenstein – Deep Learning Based Measurement Modelfor Monte Carlo Localizationin the RoboCup Humanoid League 36 / 45



Pose Tracking - Results
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Performance of the pose tracking experiment for Euclidean distance d and absolute angle error α.

Approach median d mean d σ d median α mean α σ d
Baseline 0.201 0.331 0.353 0.043 0.100 0.228
Ours w/o style transfer 0.329 0.393 0.286 0.088 0.140 0.209
Ours 0.307 0.346 0.211 0.077 0.110 0.167
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Angular Error - Motivation
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▶ Baseline approach relies on good calibration
▶ Many falls → bad calibration
▶ Especially problematic for long distance measurements
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Angular Error - Example Pose Tracking
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Ground truth blue, ours green, baseline orange
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Angular Error - Results
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Head
Tilt Error

Approach median d mean d σ d median α mean α σ d

0◦ Baseline 0.201 0.331 0.353 0.043 0.100 0.228
Ours 0.307 0.346 0.211 0.077 0.110 0.167

3◦ Baseline 0.229 0.402 0.416 0.047 0.166 0.505
Ours 0.334 0.393 0.254 0.075 0.122 0.208

−3◦ Baseline 0.245 0.393 0.461 0.045 0.116 0.240
Ours 0.316 0.440 0.920 0.080 0.115 0.164

5◦ Baseline 0.530 0.826 0.756 0.179 0.404 0.706
Ours 0.364 0.436 0.334 0.085 0.148 0.227

−5◦ Baseline 0.384 0.702 0.738 0.105 0.186 0.266
Ours 0.369 0.413 0.270 0.092 0.135 0.189
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▶ better global localization
▶ worse performance in pose tracking in idealized conditions
▶ better robustness to significant angular error
▶ (better computational performance)
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Future Work
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▶ introduce IMU measurement to better take orientation into account in network
▶ vision transformers
▶ style transfer and deploy on real robot
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