Finn-Thorben Sell

Integration of Software Development
Testing Practices in Robotics

UH
e
L2 Y Universitait Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Hamburg Bit-Bots and RoboCup

UH

it)

L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Motivation

=" Complex software

=" Much time spent testing

= Many people involved

UH

it)

L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Background and Requirements

" Environment

ROS (Robot Operating System)
Python

C++
= System tests
= Component tests
= Automation
= Unified interface

UH

ifi .
L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Related Work

2018 TEEE | Ith International Conference on Software Testing, Verification and Validation

Crashing simulated planes is cheap: Can simulation
detect robotics bugs early?

Christopher Steven Timperley”, Afsoon Afzal*, Deborah $. Katz", Jam Marcos Hernandez' and Claire Le Goues*

“Carne
1State Uni

Abstraci—Robotics and autonomy systems are becoming in-
creasingly unpnmm. moving trom specialised factory domalns
to general and
such systems grow ubiquitous, there is 4 commensurate pon
to prolect against potentially catastrophic harm. Systenmv-level
testing in simulation is a particularly promising approach for
assuring robotics systems, allowing for more extensive testing in
bugs that may not manifest at
such testing could find critical bugs well
required. However, simulations
<can only model coarse environmental abstractions, contributing
to & common perception that robotics bugs can only be found in
ve deployment. To address this gap, we conduct an empirical
study on bugs that have been fixed in the widely used, open-
source ARDUPILOT system. We identify bug-fixing commits by
exploiting commenting conventions in the version-control history.
We provide a quantitative and qualitative evaluation of the bugs,

our surprise, we find that the majority of bugs manifest under
simple conditions that can be easily reproduced in software-based
simulation. Conversely, we find that system configurations and
forms of input play an important role in triggering bugs. We
use these results fo inform a novel framework for festing for
these and ether bugs i smulaion, conssently and reproducibl.

automated testing of mbnlus systems, with m g\nl of finding
bugs early and cheaply, without incurring the costs of physically
testing for bugs in live systems.

index Terms—automated esting, empirical study, robotics,
autonomous vehicles, dataset, repository mining, ARDUPILOT

Mellon University. Pittsburgh. PA
ty of New York at Potsdam, Potsdam. NY
Email: ctimperley @emu.edu, afsoona@cs.cru.edu, dskatz@cs.cmu.edu, j

rck96 @gmail.com. clegoues@cs.cmu.edu

However, as safety-critical systems, failures in robotics
systems can be expensive and, in some cases, deadly. As
potentially dangerous robotics and autonomeus systems in-
creasingly come into contact with humans, it is essential (o
develop effective quality-assurance methods. Field testing, unit
testing, and verification remain important to quality assurance
in robots, but they cannot cover all situations a system may
potentially encounter. Field testing is especially critical in
safety-critical systems and can identify key issues, but failures
at this late stage can be enormously expensive. One notable
example of the need for simulation testing is the ExoMars
Lander. which crashed in October 2016 at an approximate
cost of $350 million in materials and time. Afier the crash.
ors were able to recreate the circumstances of the
crash in simulation, which led to the simulated vehicle also
crashing (exo. 2016).

Instead. ideally. bugs can be identified as early as possible,
reducing the cost of finding and fixing them. and before they
have manifested in physical systems (Williamson, 2008).

Automated full-system testing (e.g. Liu and Mei 2014) in
simulation will ideally assist in addressing these deficiencies.
Indeed. this is our long-term research ambition: 1o produce
highly effective techniques for automatically detecting bugs
in real-world robotic systems through the use of softwarc-
based simulation, dramatically reducing the cost of such
bugs by avoiding the need of costly deployment. However,
simulation, by necessity. represents a simplified abstraction of

Sollware (esting.

A Survey of Unit Testing
Practices

(ompanies
participated in o
survey to define
unit testing and
evaluate their
strengths and
weaknesses at
upplying if. Others
can vse the survey
to judge and
improve their

own pracfices.

Per Runeson, Lund University

nit testing is testing of individual units or groups of related
units.”! You know the definition by the book, but what does it

mean to you? What are a company’s typical strengths and weak-

nesses when applying unit testing? Per Beremark and I surveyed

unit testing practices on the basis of focus group discussions in a software

process improvement network (SPIN) and launched a questionnaire to val-

idate the results. T aimed to go beyond standard terminology definitions and

investigate what practitioners. refer to whe
they talk about unit testing. Based on this
mon understanding, | also investigated unit
testing practices” strengehs and weaknesses.
“The survey revealed a consistent view of
unit testing’s scope, but participants didn’t

agree on whether the test environn
isolated harness or a partial software sy
Furthermore, unit testing is clearly a develaper

sssuc, both practically and stratcgically. Nei-
ther test management nor quality management
scem to impact unit testing strategics o prac-
Uit tests are structural, ar white-box

The survey

SPIN-syd is a noncommercial network fo-
cused on software process improvement issucs.
It comprises representatives from 50 companies
with software as a major part of their business
The companies range from consultancy firms
with one employee to regional branches of
multinational companies with hundreds of de
velopers. The nerwork represents various applic

cation domains with a focus on embedded sys
tems. Lund University researchers and PhD
students also belong to the network. The net-
work has & monthly three-hour meeting and oc-

A Generic Testing Framework for Test Driven
Development of Robotic Systems

Ali Paikan, Silvio Traversaro, Francesco Nori, and Lorenzo Natale

Istituto Italiano di Tecnologia (IIT), Genova, Italy
{ali.paikan, silvie.traversaro, francesco.nori, lorenzo.natale}@
iit.it

Abstract. This paper proposes a generic framework for test driven development
of robotic systems. The framework provides functionalities for developing and
running unit tests in a language and middleware independent manner. Tests are
developed as independent plug-ins to be loaded and executed by an automated
tool. Moreover, a fixture manager prepares the setup (e.g., running robot drivers
or simulator) and actively monitors that all the required resources are available
before and during the execution of the tests. These functionalities effectively ac-
celerate the development process and cover different levels of robotic system test-
ing. The paper describes the framework and provides realistic examples to show
how it has been used to support software development on our robotic platform.

Soft-

Keywords: Robot testing fr
ware engineering, Robotics

. Unit testing, Test-dri P

1 Introduction

Autonomous robots have evolved in complex systems that are increasingly difficult to
engineer and develop. A possible approach to tame such complexity is to divide the sys-
tem into simpler units that are independently developed, tested and integrated at a later
stage. Further testing is consequently performed on the whole system: this may trig-
ger re-development or debugging of the individual components in an iterative process.

a
L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Choosing a Testing Framework (Python)

" nosetest for Python
ROS support
Extension of unittest
Auto-Discovery
Established but discontinued
Minimal when writing tests

register tests

catkin run_tests |

catkin nosetest test.py
|
nosetest test.py :
discover tests i
list of tests
run tests
P
test results
ommmm e -
xml results '

a
L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Choosing a Testing Framework (C++)

= GoogleTest for C++
ROS support
Popular
Supports many use cases

catkin

register tests

catkin run_tests

compiled test

binary

run test binary

xml results

run tests

a
L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Choosing a Testing Framework (System Tests)

= rostest for System-Tests catin rostest testpy

ROS SuUu p po rt . register tests > :

catkin run_tests

Launch-File with <test/> tag

start ros nodes

Minimal when writing tests i

A 4

run tests

stop ros nodes

xml results %
S -

a
L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Requirements?

"Environment

= System tests

= Component tests
= Automation

= Unified interface

v

UH
e

L2 Y Universitait Hamburg
EHRE | DER BILDUNG

bitbots _test Library

= Auto-Discovery for C++ and rostests
= Test classification

= New assertions

= Common utilities

10

a
L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Requirements?

"Environment

= System tests

= Component tests
= Automation

= Unified interface

v

11

a
L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Build Automation Platform

Requirements

= Support our environment
= Jobs as config

" On-Premise runners -
=" ow budget

12

UH

L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Build Automation in Action

Pre: Update
Start Pre: Checkout Rosdeps Parallel End "
—© P umen... ~@ © O—re 'Jen Kins

Build Document Publish

humanoid_leagu... humanoid_leagu... humanoid_leagu...

B S e " bitbots_jenkins_librar.

Build Document Publish y

humanoid_leagu... humanaid_leagu... humanoid_leagu... —

A . a— " rosdep definitions for our

humanaid_leagu... humanaid_leagu... humanoid_leagu...
= nrer. - @ o— ackages
Build Document Publish

humanoid_leagu... humanoid_leagu... humanoid_leagu...

UH

it)

L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Requirements?

"Environment

= System tests

= Component tests
= Automation

= Unified interface

D N N N N

14

a
L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Qualitative Evaluation

= Testing Event to write tests

Guided Introduction
Documentation
Accompanying Survey

-

Testing will be easier
Quality will improve

Participants would like to use
bitbots test

Reproducibility issues
Debugqging tests is hard

15

a
L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Ongoing Work Future Work
" Improve Reproducibility " Implement interactive tests
= Quantitative analysis " Integrate pytest and noseZ2

" Generalize bitbots jenkins_library
" Upstream parts of bitbots test

= Nightly Tests

= |inting

16

a
L2 Y Universitait Hamburg
DER FORSCHUNG | DER LEHRE | DER BILDUNG

Conclusion

= Abstraction and utilities with
bitbots test

= Automation with Jenkins
="Tied into ROS and GitHub

