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Motivation: 6-DoF Object Pose Estimation
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CloudPose: Details
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CloudPose: Details
Adapted from PointNet by Qi et al.
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C. R. Qi and H. Su and K. Mo and L. J. Guibas. PointNet: Deep learning
on point sets for 3D classification and segmentation, in CVPR, 2017.



Performance Video
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Problem (very likely) of Object Rotational Symmetry

Ours
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Rotational Symmetry and Supervised Learning
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Rotational Symmetry and Supervised Learning

Point Cloud Ground Truth
Segment Rotation

Minimizing
Example 1 Ground Truth 1 Loss

“rotate o around Z axis”

Prediction
“rotate o+90 around Z axis”




Proposed Approach

Ground Truth

Rotation Equally Good Rotations

e

With M at an initial pose Ry, there exists n rotations

that rotate the object model to different end poses Rn =
{RlRo, RoRy, ..., RNR()} and satisfying
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where n € {1...INV}, and x1, X2 are two points on the object
model.



Proposed Approach

Point Cloud Set of Ground Truth Rotations
Segment
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Proposed Approach

Point Cloud Set of Ground Truth Rotations
Segment

Example 1 Ground Truth 1 Ground Truth 2 Ground Truth N

Kinda works, nothing too significant on
the dataset



Possible Issues

Ground Truth Rotation Equally Good Rotations
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Rotational Symmetry Aware Pose Regression from Point Clouds

Ge Gao, Mikko Lauri, Jianwei Zhang and Simone Frintrop b O rt e d

Abstract— (NOT READY) 6D object pose estimation for
known objects is a widely studied problem, and many ap-
proaches are based on supervised learning. Artificial objects
often exhibit rotational symmetry which causes ambiguity dur-
ing the learning process. Meanwhile, the rotational symmetry
properties of objects are well defined. Most existing solutions ...
In this work we propose an analytically approach for solving
this issue. We evaluation the proposed method on the YCB
video datasets with many daily objects which exhibit rotational
symmetry. We show that our simple yet effective approach
alleviates the learning ambiguity and improves the systems
performance.

I. INTRODUCTION

6D object pose estimation of known objects has been
a widely explored topic, and it is important for robotic
applications such as object grasping and dexterous manip-
ulation. Many recently proposed methods are supervised
learning based approaches [7], [13], [17], [16], [15], [18].
Supervised learning algorithms rely on datasets containing
training examples, and each example is associated with a
label [S]. The algorithm is expected to learn a one-to-
one mapping between the training examples and associated
labels. However, for the 6D object pose estimation prob-
lem, the one-to-one mapping requirement sometimes cannot
be fulfilled. Many artificial objects in the household and
industrial environment have 3D shapes with the rotational
symmetry property. Rotational symmetry is a property that
the 3D shape of an object is equivalent before and after
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(a) Problem caused by rotational symmetry. For two
examples with the same visual appearance, when the
ground truth rotations are different, the network learns
to predict an average value.
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(b) Proposed solution. For each example, we provide a set of ground truth
annotations which represent equally good rotations for learning.

Fig. 1. The problem caused by rotational symmetry and our proposed
solution. The axes in red (x), green (y), blue (z) colors denotes object
rotations in right-handed coordinate systems.



Overview

6D object pose estimation via supervised learning on point clouds (Complete)
Extension: handling object’s rotational symmetry (Aborted)

Extension: delving deeper into 6D object pose estimation

Extension: online data augmentation



Overview

6D object pose estimation via supervised learning on point clouds (Complete)
Extension: handling object’s rotational symmetry (Aborted)

Extension: delving deeper into 6D object pose estimation

Extension: online data augmentation



Things should/could be done

e Look at good & bad examples w.r.t. performance of a trained network
o How to enhance the current approach?

e More insights on 6D pose estimation from 3D information (point clouds)
o E.g. which part of an object are more important for inferring a good pose?
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Good & Bad Examples

Going through pose estimation results ...

e Set a threshold for (rotation) error for picking samples for inspection

e For each sample picked
o Use ground truth pose to transform test segment into a canonical pose
o Superimpose all the test segment



Good & Bad Examples

model e_rot<10°  10°<e_rot<20° e_rot > 20°
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Things should/could be done

e Look at good & bad examples w.r.t. performance of a trained network
o How to enhance the current approach?

e More insights on 6D pose estimation from 3D information (point

clouds)
o [E.g. which part of an object are more important for inferring a good pose?




“Grad-CAM” for Visual Explanation

Ramprasaath et al., [JCV 19
Ramprasaath et al., ICCV 17

(b) Guided Backprop ‘Cat’ (c) Grad-CAM ‘Cat’

(g) Original Image (h) Guided Backprop ‘Dog’ (1) Grad-CAM ‘Dog’



“Grad-CAM” for 6D Pose Regression on Point Cloud

Gradient w.r.t. each point
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“Grad-CAM” for 6D Pose Regression on Point Cloud

Gradient w.r.t. each point
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General Issues

e Unclear problem formulation
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