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Motivation

Motivation B s Methods Results

What robots can do

Pick (Grasp)

Place

Move

Push

Interact with humans

VVvVVYyVYYVYY

Figure: Robot conducting Buddhist
funeral [Mat]

[SK16]



Motivation (cont.)

and toss
» Zheng et al. presented TossingBot in 2019
» End-to-end formalism for grasping and throwing

» Deployed to an URb5 robot

Figure: UR5 throws a banana [Zen19]



Motivation (cont.)

Motivation Basics

Paper:

TossingBot: Learning to Throw Arbitrary Objects
with Residual Physics [Zen+19]

» Developed at Google Al and the Princeton University
» by Andy Zhang
» Other contributors from Columbia University and the MIT

> Best Systems Paper Award, Robotics Science and Systems
(2019)



Motivation (cont.)

Motivation Basics 1 Results Conclusion

Characteristics:
» (Self-) supervised learning

» Trial and error learning
» Main components:

» Deep Neural Networks
» Physics controller
» Key aspects:
> Joint learning of grasping and throwing policies

> Residual learning of throw release velocities



Motivation (cont.)

Motivation Basics

Conclusion

P> Not the only tossing approach

Benefits

» Exploit dynamics to increase robot's capabilities
» Extends the operation radius

» Increase the frequency for pick and place

» Can outperform humans



Motivation (cont.)

Motivation Basics Methods

Conclusion

Challenges

» Acquisition of reliable pre-throw conditions
> e.g grasp of the object

» Handling of object-centric properties

P> e.g. mass distribution, friction and shape

» and dynamics

> e.g. aero-dynamics [Gra]
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Self Supervised Learnlng

Basics Y% Results Conclusion

» Supervised learning example: Support Vector Machines
» Efforts manual labeling

» (Too) many possibilities for an object to grasp

» Human notions are biased by semantics

» Datasets are restricted in quantity and quality
— overfitting

[PG16]



Self Supervised Learning (cont.)

Basics I Results Conclusion

> Self-supervised learning tends to limit human involvement

P> Task is framed into special form to predict only subset of
information

» All information has been provided by the input

> Self-generating its labels

[PG16; Wen19]



Self Supervised Learning (cont.)

Basics 1 Results Conclusion

» Trial and error training obtains ground truth labels y; and d;
P> At each training step a visual input is fed into the network

» Grasping and throwing parameters are predicted
» Ground truth grasp success label y; generated either
» by gripper distance threshold or

> by throwing success (target hit)

Input === Prediction === Execution

L

Figure: Training circle
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Self Supervised Learnlng (cont.)

Motivation Basics Resi Conclusion References Appendix

> After throw the landing location is measured

» Landing location p and release velocity v is sampled

> Ground truth residual label &; is obtained by [[vg || — |0yl

P Training environment is independently reset by the robot

Figure: Reset training environment [Zen19]
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Joint Learning of Policies

Basics Methods Conclusion

» DNN! maps from visual observations to control parameters:
» Likelihood of grasping success

» Throwing release velocities
» Grasping directly supervised by throw accuracy
» Throws directly conditioned on specific grasps

» Stable grasps <= predictable throws and throwing velocities

C i !
Network

Figure: DNN black box [Zen+19]

1Deep Neural Network



Learning of release velocities

Basics Methods Conclusion

> Physics controller predict throw velocities ©
> Based on ideal ballistic motion
» Residual § is (learned) corrective factor

» Final release velocity: v =049

Figure: Different projectile trajectories [Zen+19]
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Network

» Neural Network: f(I,p) 2
» Output: Prediction of parameters ¢, and ¢;
P> Parameters used by grasping and throwing motion primitives

» Objective: Optimize parameter prediction for a hit

- Network

Figure: DNN black box [Zen+19]

2] = visual observation, p = landing location

- 15/29




Perception Module

» Input: RGB-D heightmap |
» Output: Spatial feature representation p

» Used by grasping and throwing module

*16 orientations
q {per grasping angle}

Perception H
Module =
(FCH Rashat.T)

RGB-D Heightmap I

Figure: Input to perception module [Zen+19]
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Grasplng Module

Methods Results Conclusion

» Outputs a probability map @, (grasping scores)
» Each pixel value represents probability of grasping success
» Input heightmap is rotated 16 x
» Pixel with highest probability determine ¢,
» Grasping primitive takes ¢4 = (z, )
where x = pixel location, § = rotation angle

*16 orientat |or|s =16
f) sk =srag el Grasping

Module’ P
(FCN ResNot- 7} -4
Perception | H

Module
(FCN RasNat-T)

RGB-D Heightmap I

Figure: Grasping module [Zen+19]



Throwing Process

Methods

» Predict release position r of throwing primitive
> Distance /72 + 2 for point of release to base is fixed

» Predict release velocity v of throwing primitive

» Throw release angle 6 constrained to 45°

» Only ||vg,y] is unknown

x16 orientations
q {per grasping angle)

Overhead Camera i SRS g | | Perccpuon | X
. Module Grasping Scores
(FCN RosNot. 7) l (pmlmxphmgzunkilgﬂw

Throwing o

Module

(FCN ResNot.7)
t

Throwing Release Velocity
{par pixal wisa samplod grasp)

Physics-based
Coniroller

Sim. throwing velocity ©

Figure: Throwing process [Zen+19]



Physics-Based Controller

Methods
» Physic based controller predicts ||7y,,||
> Assume a grasp on the center of mass of the object

» Analytically solves back for ¢ given p and r

x16 orientations
0 {per grasping angle)

Perception | H

Module Grasping Scores
e, [T7] Smmngsas

Throwing 15

Module

(FCN Resiot.7)
t

Throwing Release Velocity
{por pixal veise sampled grasp)

Physics-based
Controller

Sim. throwing velocity ¢

Figure: Throwing process [Zen+19]



Methods Results Conclusion

» Qutput is an image Q¢

Each pixel holds prediction for residual value 6;

8; added on top of ||,,,||

>
>
> Final release velocity: [|vg || = |02y + 6
>

Throwing primitive takes ¢y = (r,v)

Throwing

Module
(FCN ResNot-T)

x16

Throwing Release \'elncaq,r
{per pizalwisa sampled grasp)

Figure: Throwing module [Zen+19]
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Conditionin

Motivation Basics Methods R Conclusion

> Release velocity ¥ is also feed in the grasping and throwing
network

P 1 concatenated with k-channel image where each pixel holds
value of ¥

» Conditions the grasping and throwing predictions on ©

» Supervising grasps by accuracy of throws leads to better grasps

*16 orientations *16
ey ”) {per grasping angle) Grasping
¥ Module
R (FCN ResNot 7} £
AT Ol perception | K T

Maodule
(FCN ResNat-7) i @uﬁlﬁﬂjﬁﬂrﬁw
x16

Throwing

Module
(FEN Rosbot 7)
t
Physics-based .
Eisppenitien Sim. throwing velocity ¢ m':?,‘::ﬂ “El:iﬁz‘;;b;]‘w

Figure: Release velocity feed [Zen+19]

RGB-D Heightmap I




Full Network

Motivation Basics

Methods Conclusion

» Self-supervision from trial and error

» Tracking ground truth landing position of thrown objects

Not a single network that maps states to actions

Four modules that provide intermediate (differentiable) results
Output are factors that does not directly control the actuator

Complex systems are hard to control

[Glal7]



Full Network (cont.)

Methods

%16 orientations
Q {per grasping angla}

Grasping
Maodule
(FON ReshNoe 7}

Overhead Camera

Perception | T

Module
le Grasping Scores
=, | i

Throwing D

Maodule
(FCN HosNot. 7}

RGB-D Heightmap I

Physics-based
Coniroller

Throwing Release Velocity

Sim. throwing velocity © {por piabvwisa samplod grasp)

Figure: Overview [Zen+19]
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Experimental Setup

Results

» Evaluation metrics
> Grasping success (% rate of succesfull grasps)

» Throwing success (% rate of target hits)
P 12 various objects are grasped and thrown
P> Target are 12 boxes outside kinematic range
» Real world: UR5 robot with RG2 gripper

| CERZOSS '
-y \

Owerhead Camoral ; - . ’b\ﬁ

Figure: RG2 gripper [Onr]

Figure: Workspace [Zen+19]
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Simulation

Results

» 8 different objects (4 seen, 4 unseen), 12 in total
» Varying center of mass (CoM)
» Simulated environment does not account for aerodynamics

» Real world experiments are conducted

TABLE [
THROW ING PERFORMANCE IN SIMULATION (MEAN %)

Method Halls Cubes Rods Hammer Seen Unseen

Regmssion TO9 4EB 375 318 418 2E4
Regmssion-PoF  S61 7315 518 418 52 350
Phy sics-only 0Eé EIS TI2 T4 E26 500
Eesidual-physics 996 Ba3  B6d4 BL2 LT ]

TAELE 1l
CiRASPING PERFORMANCE 1N SIMULATION (MEAN &)
Methed Balls Cubes Rods Hammers Seen Unmeen
Begression 04 992 B0 BTE 056 604

Regmssion-FoP 007 980 808 &T0 a4 T0S
Flysics-only 0.4 992 E.6 B52 WG &40
Residml.physics 988 992 802 B4R a0 T4s

Figure: [Zen+19]




Real World

Basics Methods Results

P 15,000 steps training, 1,000 steps testing

> Average grasping and throwing success rates

TABLE IIT
(IRASPING AND THROWRNG PEHRFORMANCE [N REAL (MEARK &)
Urasping Thruwing
Method Seen Umseen Seen Unseen
Human-baszline - - - CRES TS
Regression-Fol! B4 Ti6 542 520
Physics-only BST Thd 6l.3 k1%
Resicual physics 849 T3.2 BAT BEL1
TABLE IV
PICKING SPEED VY STATH-OF-THE- ART SYSTHMY
Syslem Mean Ficks Per Hour (MPPH)
Cartman [24] 120
Dex-Met 20 [20] 250
FCAGQUCNN [T7] 24
Dex-MNet 40 [21] 312
Tossingol (w/ Placing) 432
TossingBot (e Throsing) 514

Figure: [Zen+19]



Performanc

Motivation Basics Methods Results Conclusion

> Residual physics outperforms by learning residual throwing
velocities

» Compensate for for grasping offsets from objects CoM

1.0 x v v v 1
— Emzidusl-phyzicz
—  Fhymca-enly
a.8H — Esgreszion-BoF —
o
& — Esgreszion me,f’
& o, s
E R ™|
Eag .| ._.ﬂ -
£ i =,
lgn' A P "
= g e W - ]
R e e A 4
£ [y o S S P
'E 0.2 1 1
1 e
o ' ' ' - 1
3000 [ 000 12000 15000

Mumber of Tralning Steps

Figure: Throwing performance on hammers[Zen+19]




Methods

Motivation asics Methods Results Conclusion

P 2 variants of grasp success label y;
» Grasping supervised by throwing yields best throwing results

> Supervised grasps are more restricted, resulting in more
dexterous throws

Eesidual Physics Residual Physics Phiysics Cnly

T Eperwied by MeEC] TR iepervieed b D a0r ey (Thps Eapervisad by Trosy sIOeeoy

LN ]

Figure: Histograms of succesfull grasps[Zen+19]
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Conclusion

Motivation d Conclusion

P Paper provides new perspectives on throwing
» Relationship of throwing to grasping
» Throwing correlates with grasp quality
» Learning by combining physics with trial and error

P> Synergies between grasping and throwing is exploited

» Residual Physics leverage advantages of physic based
controllers while maintaining the capacity to account for
dynamics

» Generalization via analytic models

» Data-driven residual corrects the real world projectile velocity



Questions

Motivation Basics

Thank you for your attention!

Questions?



Motivation

[Glal7]
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Appendix - Learning of release velocities
i B el e Conor s e

Video

Ballistics [Zen19]



Appendix - Future Work

Motivation Basics Methods Results Conclusion References

» Train networks to predict motions that account for fragile
objects

» Explore additional sensing modalities such as force-torque
» How should robots learn semantics of the visual world?

» Classic computer vision: predefined semantics using manually
constructed class categories

» Here: Implicitly learn object-level semantics from physical
interactions



Appendix - Video

Appendix

Video

[Zen19]



Appendix - Loss Function

Motivation Basics Methods Results Conclusion

» Loss function for network training:
> Binary cross-entropy error L, from predictions of grasping success

» Huber-loss £; from its regression of §; for throwing

(2) Ly = —(yilog q; + (1 — y;) log(1 — ¢;))
les. _ 5.)2 5
(3) Li= { 3 (0 —8)°, for |6i — 0| <1,

|6; — 0;| — &, otherwise

where y; is the binary ground truth grasp success label,
q; and d; are the predicted values and §; is the ground truth
residual label



Appendix (cont.)

Motivation

)

\_,‘;:7 b

"/
- 1_TossingBot 1 ImageNet 2 TossingBot
(a) (b) © () (e) 0]
Fig. 10 i ics from i fon. Visualizing pixel-wise deep features j leamned by TossingBot (c.) overlaid on the input heightmap image

(b} generated from an RGB-I) side-view (a) of a bin of objects. (c} shows a heatmap of pixel-wise feature distances (hotter = smaller distance) from the
feature vector of a query pixel on a ping pong ball (labeled 1). Likewise, (¢) shows a heatmap of pixel-wise feature distances from the feature vector of a
query pixel on a pink marker pen (labeled 2). These visualizations show that TossingBot learns features that distinguish object caegonies from each other
without explicit supervision (ie., only task-level grasping and throwing). For reference, the same visualization technique is used on deep features penerated
by a ResNet-18 pre-trained on ImageNet (d,f).

Figure: [Zen+19]



Appendix (cont.) - Image Projection

» Capture RGB-D image from fixed mount camera
» Project data onto 3D-point cloud

» Orthographical back-projection in gravity direction
» color and height-from-bottom channels

» normalization allows sharing of learned convolutional filters

%16 orientations
{per rasping angle}

Perception
Module
(FON RosNet.T)

Physics-based
Controller

Figure: Projection [Zen+19]



Appendix (cont. ) Grlpper Modalities

Motivation Basics ods sults Conclusion

Top-down parallel yaw grasp centered at & = (x5, zy, z,)

Oriented 6° around gravity direction

>
>
» Gripper approaches x until middle point of finger tips meets x
» Gripper closes and lifts upwards

| 4

Planning by stable, collision-free IK-solver



Appendix (cont.) - Release Position

Motivation Basics Methods Conclusion

» Derive release position r from landing location p

> Assume: aerial trajectory is linear on xy-horizontal plane and in
the v, v, direction

» Neglect orthogonal aerodynamic forces
» Parallel aerodynamic forces are compensated

> Making all release positions accessible by robot

> Constants: r, = 0.04 m and distance to base /72 + 72 = 0.7
m in sim, 0.02m and 0.76 m in reality

» Constraint: (rx,y — pm,y)wvx,y =0



Appendix (cont.) - Physics controller

Motivation Basics Methods Results Conclusion

Physics based controller provides a closed form solution
Generalizes well to new landing locations

Serves as consistent approximation for ¥

Simplified model

Neglects aerodynamic drag

vV V. v v v .Y

Gripper release velocity does not directly determine projectile
velocity

» Centripetal forces

1
p:r+ﬁt+§at2 (1)




Appendlx (cont. ) Example Calculation

Motivation ods Conclusion
>
>
4
>
>
>

xr =

URS5 joint speed: 18 = (, = =
Length of lower arm: = 0.49m
Peripheral speed: v = p’ -0.49m ~ 1.54

Ballistic equation projectile range: x = vg - cos@ - t

t = 2-vg-sin 6

Ballistic equation ToF3: 7

Throwing angle § = impact angle = 45°

2-(vg)2-sin (2-6) _ 2-(1.542)2.sin90 __
29 - 2.9.8813&2 ~ 0.24m

3Time-of-Flight



Appendlx (cont. ) Learnlng of release veIOC|t|es

Hn ation

Conclusion

Ballistic calcu atlon

> Ballistic equation projectile range: x = 0 - cosf - t

» Ballistic equation ToF*: t = 2-110%1110

» Throwing angle 6§ = impact angle

N T-g
- = 2
v sin (2 - 0) (2)
0.24m-9.81 7%
e.g. M ~ 1.53"" throwing velocity

[NAS]
*Time-of-Flight




Appendix (cont. ) Learning of release veIOC|t|es

Motivation Basics ods Results Conclusion

> fixed throwing release height r,
fixed release distance from robot base origin ¢y

release vel. angled 45° upwards

landing location p = (pz, Py, =)

vV v. v Y

release position r is fixed at ¢4 = 0.76m and 7, at constant
height ¢, = 0.02m

> Release vel. magnitude ||v||



Appendlx (cont ) Learnlng of release veIOC|t|es

Ba"IStIC calculatlon:

0= arctan(&)
Pz

Ty = Cgsinf

Ty = Cqcos 0

a(p2 + p2)

r:—p:— /it P}




Appendix (cont.) - Self Supervised Learning

Motivation Basics 1 Conclusion

» Pinto and Gupta [PG16] emphasized benefits of large-scale
datasets

P Introduced large robot dataset

» Limit human involvement

P> Execute trial and error grasps

» Image patch of grasp feed to CNN

» Output is the likelihood of the grasp

[PG16]



Appendlx (cont ) Self Superwsed Learnlng

Conclusion

» Trained model is used for next grasping stage
P> Execute grasp along the predicted output
» Grasps are evaluated by gripper's force sensor

» Correct grasp modalities are reinforced

[PG16]



Appendix (cont.) - Self Supervised Learning

Motivation Methods Conclusion

| 2

| 2

better utilizing unlabelled data, while learning in a supervised
learning manner

framing a supervised learning task in a special form to predict
only a subset of information using the rest

all the information needed, both inputs and labels, has been
provided. This is known as self-supervised learning.

> self-generated labels

» To make use of this much larger amount of unlabeled data, one

way is to set the learning objectives properly so as to get
supervision from the data itself.

The self-supervised task, also known as pretext task, guides us
to a supervised loss function.

[Wen19]



Appendlx (cont )

Methods

Algorithm 1 System Pipeline

1: Initialize robor.

2: Initialize policy with model f.

3: Initialize replay buffer.

4: while step i < N and not terminate do
S I* = robot.CaptureState()

6.  p' = robot.SelectTarget()

7: ¢}.¢; = f.Inference(I*,p*)

8: while robot.is_grasping do

9: f.ExperienceReplay(bujfer)

10: yi~! = robot.CheckGraspSuccess()

11: robor.Execute Throw(g;~*,p*~1) = asynchronous
12: while robot.is_throwing do

13: f-ExperienceReplay(buffer)

14: robot. ExeculeGrasp(d)’“) > asynchronous

15¢ g5 L=robor TrackLandmg{)
16: buffer.SaveData(I' =1 pi=1 gi=t ¢~ yi=1 5=
17 i=i+1

Figure: Ideal ballistic equations [Zen+19]



Appendix (cont.)

Glenn

@’ Ballistic Flight Equations  poem,
Center

(no drag - no thrust)
Horizontal Component:

t=time
y = height ° u=u,
x = distance . x=Ugt
. ) Vertical Component:

V =vertical velocity

U=hon?orl.tal velocity W ¥~ Gi
g = gravitational n 4
acceleration ® ] y=Vt-5gt
Weight is only : At highest point:
extemal force : V=0
i h ®
® ; t=V,/ g
B h=5VZig
Coasting : Coasting
At ground impact:

Ascent i Descent

Figure: ldeal ballistic equations [NAS]



Appendix (cont.)

Motivation Basics 1 Conclusion References

Glenn

Vector Components  research

Center

A vector quantity has both magnitude and direction.

components are scalars

|a| = magnitude of a
Y
direction
|a|cos(|) ax=|a|cos¢
| . a ay = |a] sin ¢
ay lal/ |a|sin(|)
a, ' X - direction

Figure: Vector components [NAS]



Appendix (cont.)

Motivation Basics Methods Results

Figure: Denavit-Hartenberg parameters of UR robots [Unil8]



Conclusion

URSe

Kinematics [theta[rad] |a[m] |[d[m] [|alpha[rad] |Dynamics |Mass [kg] |Center of Mass [m]
Joint 1 0 0 0.1625 [m/2 Link 1 3.761 [0,-0.02561,0.00193]
Joint 2 0 -0.425 |0 0 Link 2 8.058 [0.2125, 0, 0.11336]
Joint 3 0 -0.3922 0 0 Link 3 2.846 [0.15,0.0,0.0265]
Joint 4 0 0 0.1333 [m/2 Link 4 1.37 [0,-0.0018,0.01634]
Joint 5 0 0 0.0997 [-1/2 Link 5 1.3 [0, 0.0018,0.01634]
Joint & 0 0 0.0996 |0 Link 6 0.365 [0, 0,-0.001159]

Figure: UR5 Technical specifications [Unil6]
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Appendix (cont.)

Figure: PyBullet simulation [Zen+19]



Appendix (cont.)

Appendix

[Zen19]
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Appendix

[Zen19]
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