Deep Imitation Learning with Virtual Reality for Robot Manipulation Tasks

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics

Intelligent Robotics

Moath Qasim

11.11.2019
1. Motivation
2. Imitation Learning
3. Demonstrations
4. Learning
5. Experiments
6. Conclusion
Motivation

Goal

Acquiring robotic manipulation skills in real world environment through learning neural network policies by using Deep Imitation Learning

Challenges

Imitation Learning is an effective approach for skills acquisition, however:

- Obtaining high-quality demonstration is difficult
- Complex kinesthetic teaching and trajectory optimisation
- Expensive tele-operation system
Definition

Imitation learning is a class of methods for acquiring skills by observing demonstrations.

A robot observe a human instructor performing a task and imitating it when needed.

It is also referred to deep imitation learning as programming by demonstration.
Main Focus

Imitation learning focuses mainly on three issues:

- Efficient motor learning
- The connection between action and perception
- Modular motor control in form of movement primitives
Presenting Imitation Learning

In order to describe a learning process as imitation learning

1. The imitated behaviour is new for the imitator

2. The same task strategy as that of the demonstrator is employed

3. The same task goal is accomplished
Motivation

Imitation Learning

Demonstrations

Learning

Experiments

Conclusion

Viewpoint of Neuroscience

A connection between the sensory systems and the motor systems is essential.

Some neurones were active both when:

a) The monkey observed a specific behaviour

b) When it executed it itself

Those particular neurones are called “Mirror Neurones”
Viewpoint of Robotics and AI

How imitation learning was approached and represented?

- Symbolic Approaches to Imitation Learning
- Inductive Approaches to Imitation Learning
- Imitation Learning of Novel Behaviours
- Implications for Computational Models of Imitation Learning
Imitation Learning

Motivation

Imitation Learning

Demonstrations

Learning

Experiments

Conclusion

Imitation learning system

Fig. 2: https://www.researchgate.net/figure/Conceptual-sketch-of-an-imitation-learning-system-The-right-side-of-the-figure-contains_fig3_24379198
Examples

Fig. 3: Autonomous helicopter flight

Fig. 4: Autonomous driving

Fig. 4: Gesturing and manipulation
Imitation learning Related Work

- Behavioural cloning
 Which performs supervised learning from observations to actions

- Inverse reinforcement learning
 Where a reward function is estimated to explain the demonstrations as (near) optimal behaviour
Collecting Demonstrations

- Kinesthetic teaching

In this method, the teacher physically manoeuvres the robot.

https://www.youtube.com/watch?v=SCy4hdP-IeY
Demonstrations

Collecting Demonstrations Cont.

▶ Teleoperation

This method is performed with the help of haptic device.

https://www.youtube.com/watch?v=YLEUBFu5qgI
Collecting Demonstrations Cont.

- Teleoperation with Virtual Reality

 This mode is also performed with the help of haptic device in addition to VR Headset

https://www.youtube.com/watch?v=Bae0rvgySBg
VR Teleoperation

Virtual Reality teleoperation allows:

- Direct **mapping of observations** and actions between the teacher and the robot
- Leveraging the natural manipulation instincts that the human teacher possesses
- Eliminating the possibility of **hidden information** for both parties
- Preventing any **visual distractions** from entering the environment
Demonstrations

VR Teleoperation Models

- Microsoft Kinect Version 2
- Oculus Rift Development Kit 2
- SensorGlove
- The Humanoid Robot iCub

Fig. 5: Control Architecture

"First-person tele-operation of a humanoid robot".

Fig. 5: https://www.semanticscholar.org/paper/First-person-tele-operation-of-a-humanoid-robot-Fritsche-Unverzag/47a9dedab44f2c7f1b7da16d24ae05bc2630723d
VR Teleoperation Models Cont.

- Vive VR system
- PR2 robot
- Primesense Carmine 3D Cam
- Vive hand controllers

Fig. 6: Control Architecture

Fig. 6: https://techxplore.com/news/2017-11-startup-robots-puppets.html
Motivation

Imitation Learning

Demonstrations

Learning

Experiments

Conclusion

Learning

Behavioural Cloning

“Performs supervised learning from observations to actions”

- Deploying behavioural cloning algorithm to learn neural network control policies

- Collecting and presenting a data set which consist of:
 1. Observation
 2. Corresponding controls

\[D_{task} = \left\{ (o_t^{(i)}, u_t^{(i)}) \right\} \]

\[\pi_\theta (u_t | o_t) \]
Neural Network Control Policies

\[\mathbf{o}^t = (\mathbf{I}_t, \mathbf{D}_t, \mathbf{p}_{t-4:t}) \]

as an input

\[\mathbf{I} \in \mathbb{R}^{160 \times 120 \times 3} \]
\[\mathbf{D}_t \in \mathbb{R}^{160 \times 120} \]
\[\mathbf{p}_{t-4:t} \in \mathbb{R}^{45} \]

\(\mathbf{I} \): current RGB image

\(\mathbf{D} \): current depth image

\(\mathbf{p} \): three points on the end effector

\(t - 4 : t \)
Neural Network Control Policies Cont.

\[u_t = \pi_{\theta}(o_t) \]

as an output

\[\omega \in R^3 \]
\[v \in R^3 \]
\[g \in \{0, 1\} \]

\(\omega \): angular velocity

\(v \): linear velocity

\(g \): desired gripper
Neural Network Architecture

The neural network architecture can be decomposed into three modules:

\[\theta = (\theta_{vision}, \theta_{aux}, \theta_{control}) \]

\[f_t = \text{CNN}(I_t, D_t; \theta_{vision}) \]

\[s_t = \text{NN}(f_t; \theta_{aux}) \]

\[u_t = \text{NN}(p_{t-4:t}, f_t, s_t; \theta_{control}) \]
Neural Network Architecture Cont.

The neural network architecture overview:

Fig. 7: Architecture of the neural network policies

Fig. 7: https://www.semanticscholar.org/paper/Deep-Imitation-Learning-for-Complex-Manipulation-Zhang-McCarthy/b864f89eaa91120e04e8c62eb0b36568ab4244a8
Manipulation Tasks

A range of challenging manipulation task were chosen:

(a) reaching (b) grasping (c) pushing (d) plane (e) cube

Fig. 8: Examples of successful trials

Fig. 8: https://www.semanticscholar.org/paper/Deep-Imitation-Learning-for-Complex-Manipulation-Zhang-McCarthy/b864f89eaa91120e04e8c62eb0b36568ab4244a8/figure/5
Manipulation Tasks Cont.

(f) nail (g) grasp-and-place (h) grasp-drop-push (i) grasp-place-x2 (j) cloth

Fig. 9: Examples of successful trials
Results

<table>
<thead>
<tr>
<th>task</th>
<th>reaching</th>
<th>grasping</th>
<th>pushing</th>
<th>plane</th>
<th>cube</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>91.6%</td>
<td>97.2%</td>
<td>98.9%</td>
<td>87.5%</td>
<td>85.7%</td>
</tr>
<tr>
<td>demo time (min)</td>
<td>13.7</td>
<td>11.1</td>
<td>16.9</td>
<td>25.0</td>
<td>12.7</td>
</tr>
<tr>
<td>avg length (at 10 Hz)</td>
<td>41</td>
<td>37</td>
<td>58</td>
<td>47</td>
<td>37</td>
</tr>
<tr>
<td># demo</td>
<td>200</td>
<td>180</td>
<td>175</td>
<td>319</td>
<td>206</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>task</th>
<th>nail</th>
<th>grasp-and-place</th>
<th>grasp-drop-push</th>
<th>grasp-place-x2</th>
<th>cloth</th>
</tr>
</thead>
<tbody>
<tr>
<td>test</td>
<td>87.5%</td>
<td>96.0%</td>
<td>83.3%</td>
<td>80%</td>
<td>97.4%</td>
</tr>
<tr>
<td>demo time (min)</td>
<td>13.6</td>
<td>12.3</td>
<td>14.5</td>
<td>11.6</td>
<td>10.1</td>
</tr>
<tr>
<td>avg length (at 10 Hz)</td>
<td>38</td>
<td>68</td>
<td>87</td>
<td>116</td>
<td>60</td>
</tr>
<tr>
<td># demo</td>
<td>215</td>
<td>109</td>
<td>100</td>
<td>60</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 1: Success rates and statistics of training data

Table. 1: [Deep Imitation Learning for Complex Manipulation](https://www.semanticscholar.org/paper/Deep-Imitation-Learning-for-Complex-Manipulation-Zhang-McCarthy/b864f89eaa91120e04e8c62eb0b36568ab4244a8/figure/7)
Conclusion and Future Work

- VR teleoperation system facilitates collecting high-quality demonstrations
- Imitation learning can be quite effective in learning deep policies
- Achieving high success rate regardless of small data size

Further work can be investigated such as:

- Collecting additional demonstration signals
- Introducing richer feedback to demonstrators such as haptics and sound
- Learn policies with bimanual manipulation or hand-eye coordination
Resources

Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, Pieter Abbeel
Deep, “Imitation Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation”, 2017,
https://arxiv.org/abs/1710.04615

