

64-040 Modul InfB-RS: Rechnerstrukturen

https://tams.informatik.uni-hamburg.de/ lectures/2015ws/vorlesung/rs

Kapitel 6 –

Norman Hendrich

Universität Hamburg
Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

Wintersemester 2015/2016

Universität Hamburg

Kapitel 6

Logische Operationen

Boole'sche Algebra

Boole'sche Operationen

Bitweise logische Operationen

Schiebeoperationen

Anwendungsbeispiele

Literatur

Nutzen einer (abstrakten) Algebra?!

Analyse und Beschreibung von

- ▶ gemeinsamen, wichtigen Eigenschaften
- mathematischer Operationen
- mit vielfältigen Anwendungen

Spezifiziert durch

- ▶ die Art der Elemente (z.B. ganze Zahlen, Aussagen, usw.)
- die Verknüpfungen (z.B. Addition, Multiplikation)
- zentrale Elemente (z.B. Null-, Eins-, inverse Elemente)

Anwendungen: z.B. fehlerkorrigierende Codes auf CD/DVD

Boole'sche Algebra

- ▶ George Boole, 1850: Untersuchung von logischen Aussagen mit den Werten true (wahr) und false (falsch)
- ▶ Definition einer Algebra mit diesen Werten
- Vier grundlegende Funktionen:
 - NEGATION (NOT)
 - UND
 - ODER
 - XOR

Schreibweisen:
$$\neg a$$
, \overline{a} , $\sim a$

-"- $a \wedge b$, $a \& b$

-"- $a \vee b$, $a \mid b$

-"- $a \oplus b$, $a \wedge b$

Claude Shannon, 1937: Realisierung der Boole'schen Algebra mit Schaltfunktionen (binäre digitale Logik)

Grundverknüpfungen

- ▶ zwei Werte: wahr (true, 1) und falsch (false, 0)
- vier grundlegende Verknüpfungen:

- alle logischen Operationen lassen sich mit diesen Funktionen darstellen
- ⇒ vollständige Basismenge

Anzahl der binären Funktionen

insgesamt 4 Funktionen mit einer Variable $f_0(x) = 0$, $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = \neg x$

- ▶ insgesamt 16 Funktionen zweier Variablen
- \triangleright allgemein 2^{2^n} Funktionen von n Variablen
- später noch viele Beispiele

(s. Beispiel)

Anzahl der binären Funktionen (cont.)

x = y =					Bezeichnung	Notation	Alternativnotation	Java/C-Notation
,	0	0	0	0	Nullfunktion	0		0
	0	0	0	1	AND	$x \cap y$		x&&y
	0	0	1	0	Inhibition	y > x		y>x
	0	0	1	1	ldentität y	y		у
	0	1	0	0	Inhibition	x > y		x>y
	0	1	0	1	Identität ×	x		х
	0	1	1	0	XOR	$x \oplus y$	$x \neq y$	x!=y
	0	1	1	1	OR	$x \cup y$		x y
	1	0	0	0	NOR	$\neg(x \cup y)$!(x y)
	1	0	0	1	Äquivalenz	$\neg(x \oplus y)$	x = y	x==y
	1	0	1	0	NICHT x	$\neg x$	x'	! x
	1	0	1	1	Implikation	$x \leq y$	$x \to y$	y>=x
	1	1	0	0	NICHT y	$\neg y$	y'	! y
	1	1	0	1	Implikation	$x \ge y$	$x \leftarrow y$	x>=y
	1	1	1	0	NAND	$\neg(x \cap y)$! (x&&y)
	1	1	1	1	Einsfunktion	1		1

Boole'sche Algebra

- ▶ 6-Tupel $\langle \{0,1\}, \vee, \wedge, \neg, 0, 1 \rangle$ bildet eine Algebra
- ▶ {0,1} Menge mit zwei Elementen
- ▶ ∨ ist die "Addition"
- ► ∧ ist die "Multiplikation"
- ▶ ¬ ist das "Komplement" (nicht das Inverse!)
- ▶ 0 (false) ist das Nullelement der Addition
- ▶ 1 (true) ist das Einselement der Multiplikation

Rechenregeln: Ring / Algebra

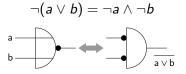
Eigenschaft	Ring der ganzen Zahlen	Boole'sche Algebra
Kommutativgesetz	a+b=b+a	$a \lor b = b \lor a$
	a imes b = b imes a	$a \wedge b = b \wedge a$
Assoziativgesetz	(a+b)+c=a+(b+c)	$(a \lor b) \lor c = a \lor (b \lor c)$
	$(a \times b) \times c = a \times (b \times c)$	$(a \wedge b) \wedge c = a \wedge (b \wedge c)$
Distributivgesetz	$a \times (b+c) = (a \times b) + (a \times c)$	$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
Identitäten	a + 0 = a	$a \lor 0 = a$
	$ extbf{a} imes 1 = extbf{a}$	$a \wedge 1 = a$
Vernichtung	$a \times 0 = 0$	$a \wedge 0 = 0$
Auslöschung	-(-a)=a	$\neg(\neg a) = a$
Inverses	a+(-a)=0	_

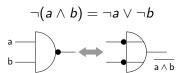
Rechenregeln: Ring / Algebra (cont.)

6.1 Logische Operationen - Boole sche Algebra 64-040 Rechnerstrukturen

Eigenschaft	Ring der ganzen Zahlen	Boole'sche Algebra
Distributivgesetz		$a \lor (b \land c) = (a \lor b) \land (a \lor c)$
Komplement	-	$a \lor \neg a = 1$
	<u> </u>	$a \wedge \neg a = 0$
Idempotenz	_	$a \lor a = a$
	<u> </u>	$a \wedge a = a$
Absorption	-	$a \lor (a \land b) = a$
	-	$a \wedge (a \vee b) = a$
De-Morgan Regeln	_	$\neg(a \lor b) = \neg a \land \neg b$
	-	$\neg(a \land b) = \neg a \lor \neg b$

De-Morgan Regeln





- 1. Ersetzen von *UND* durch *ODER* und umgekehrt ⇒ Austausch der Funktion
- 2. Invertieren aller Ein- und Ausgänge

Verwendung

- bei der Minimierung logischer Ausdrücke
- beim Entwurf von Schaltungen
- siehe Abschnitte: "Schaltfunktionen" und "Schaltnetze"

XOR: Exklusiv-Oder / Antivalenz

⇒ entweder a oder b (ausschließlich) a ungleich b

- $(\Rightarrow Antivalenz)$
- $ightharpoonup a \oplus b = (\neg a \land b) \lor (a \land \neg b)$ genau einer von den Termen a und b ist wahr
- $ightharpoonup a \oplus b = (a \lor b) \land \neg (a \land b)$ entweder a ist wahr, oder b ist wahr, aber nicht beide gleichzeitig
- \triangleright $a \oplus a = 0$

Logische Operationen in Java und C

- Datentyp für Boole'sche Logik
 - ► Java: Datentyp boolean
 - ► C: implizit für alle Integertypen
- Vergleichsoperationen
- Logische Grundoperationen
- Bitweise logische Operationen
 - = parallele Berechnung auf Integer-Datentypen
- Auswertungsreihenfolge
 - Operatorprioritäten
 - Auswertung von links nach rechts
 - ► (optionale) Klammerung

Vergleichsoperationen

- ▶ a == b wahr, wenn a gleich b
 - a != b wahr, wenn a ungleich b
 - wahr, wenn a größer oder gleich b a >= b
 - a > bwahr, wenn a größer b
 - a < b wahr, wenn a kleiner b
 - wahr, wenn a kleiner oder gleich b $a \le b$
- Vergleich zweier Zahlen, Ergebnis ist logischer Wert
- ▶ Java: Integerwerte alle im Zweierkomplement
 - Auswertung berücksichtigt signed/unsigned-Typen

Logische Operationen in C

- ▶ zusätzlich zu den Vergleichsoperatoren <, <=, ==, !=, >, >=
- drei logische Operatoren:
 - ! logische Negation
 - & logisches UND
 - | | logisches ODER
- Interpretation der Integerwerte: der Zahlenwert 0 ⇔ logische 0 (false) alle anderen Werte ⇔ logische 1 (true)
- ⇒ völlig andere Semantik als in der Mathematik
 Achtung!
- ⇒ völlig andere Funktion als die bitweisen Operationen

Logische Operationen in C (cont.)

- verkürzte Auswertung von links nach rechts (shortcut)
 - Abbruch, wenn Ergebnis feststeht
 - kann zum Schutz von Ausdrücken benutzt werden
 - kann aber auch Seiteneffekte haben, z.B. Funktionsaufrufe
- Beispiele
 - ▶ (a > b) || ((b != c) && (b <= d))

•		Wert		
			0x41	0x00
			00x0	0x01
		!!	00x0	00x0
	0x69	&&	0x55	0x01
	0x69		0x55	0x01

Logische Operationen in C: Logisch vs. Bitweise

- ▶ der Zahlenwert $0 \Leftrightarrow logische 0$ (false) alle anderen Werte ⇔ logische 1 (true)
- \triangleright Beispiel: x = 0x66 und y = 0x93

bitweise O	peration	logische Operation	
Ausdruck	Wert	Ausdruck	Wert
х	01100110	х	0000 0001
у	1001 0011	у	0000 0001
х & у	00000010	х && у	0000 0001
х у	11110111	x y	0000 0001
~x ~y	1111 1101	!x !y	0000 0000
x & ~y	01100100	x && !y	0000 0000

Logische Operationen in C: verkürzte Auswertung

- ▶ logische Ausdrücke werden von links nach rechts ausgewertet
- Klammern werden natürlich berücksichtigt
- Abbruch, sobald der Wert eindeutig feststeht (shortcut)
- Vor- oder Nachteile möglich (codeabhängig)
 - + (a && 5/a) niemals Division durch Null. Der Quotient wird nur berechnet, wenn der linke Term ungleich Null ist.
 - + (p && *p++) niemals Nullpointer-Zugriff. Der Pointer wird nur verwendet, wenn p nicht Null ist.

Ternärer Operator

- ▶ ⟨condition⟩ ? ⟨true-expression⟩ : ⟨false-expression⟩
- ▶ Beispiel: (x < 0) ? -x : x Absolutwert von x

Logische Operationen in Java

- Java definiert eigenen Datentyp boolean
- elementare Werte false und true
- alternativ Boolean. FALSE und Boolean. TRUE
- ▶ **keine** Mischung mit Integer-Werten wie in C
- ► Vergleichsoperatoren <, <=, ==, !=, >, >=
- verkürzte Auswertung von links nach rechts (shortcut)

Ternärer Operator

- ▶ ⟨condition⟩ ? ⟨true-expression⟩ : ⟨false-expression⟩
- ▶ Beispiel: (x < 0) ? -x : x Absolutwert von x

Bitweise logische Operationen

Integer-Datentypen doppelt genutzt:

- 1. Zahlenwerte (Ganzzahl, Zweierkomplement, Gleitkomma) arithmetische Operationen: Addition, Subtraktion, usw.
- 2. Binärwerte mit w einzelnen Bits (Wortbreite w) Boole'sche Verknüpfungen, bitweise auf allen w Bits
 - Grundoperationen: Negation, UND, ODER, XOR
 - Schiebe-Operationen: shift-left, rotate-right, usw.

Bitweise logische Operationen (cont.)

- ▶ Integer-Datentypen interpretiert als Menge von Bits
- ⇒ bitweise logische Operationen möglich
 - ▶ in Java und C sind vier Operationen definiert:

Negation
$$\sim x$$
 Invertieren aller einzelnen Bits UND x&y Logisches UND aller einzelnen Bits OR $x \mid y$ -"- ODER -"- XOR $x \mid y$ -"- XOR -"-

▶ alle anderen Funktionen k\u00f6nnen damit dargestellt werden es gibt insgesamt 2^{2ⁿ} Operationen mit n Operanden

Bitweise logische Operationen: Beispiel

x = 00101110

y = 10110011

 $\sim x = 11010001$ alle Bits invertiert

 \sim y = 0100 1100 alle Bits invertiert

x & y = 00100010 bitweises UND

 $x \mid y = 10111111$ bitweises ODER

 $x \wedge y = 10011101$ bitweises XOR

卣

Schiebeoperationen

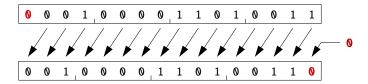
- Ergänzung der bitweisen logischen Operationen
- ▶ für alle Integer-Datentypen verfügbar
- ▶ fünf Varianten

Shift-Left shl
Logical Shift-Right srl
Arithmetic Shift-Right sra
Rotate-Left rol
Rotate-Right ror

- Schiebeoperationen in Hardware leicht zu realisieren
- auf fast allen Prozessoren im Befehlssatz

Shift-Left (sh1)

- ▶ Verschieben der Binärdarstellung von x um n bits nach links
- ▶ links herausgeschobene *n* bits gehen verloren
- ▶ von rechts werden *n* Nullen eingefügt

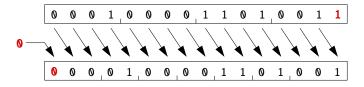


- ▶ in Java und C direkt als Operator verfügbar: x << n
- ▶ sh1 um *n* bits entspricht der Multiplikation mit 2ⁿ

6.4 Logische Operationen - Schiebeoperationen

Logical Shift-Right (srl)

- ▶ Verschieben der Binärdarstellung von x um n bits nach rechts
- rechts herausgeschobene *n* bits gehen verloren
- ▶ von links werden *n* Nullen eingefügt

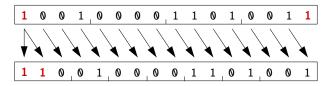


in Java direkt als Operator verfügbar: x >>> n in C nur für unsigned-Typen definiert: x >> n für signed-Typen nicht vorhanden

6.4 Logische Operationen - Schiebeoperationen

Arithmetic Shift-Right (sra)

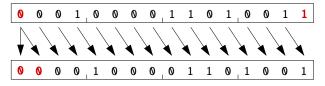
- ▶ Verschieben der Binärdarstellung von *x* um *n* bits nach rechts
- rechts herausgeschobene *n* bits gehen verloren
- von links wird n-mal das MSB (Vorzeichenbit) eingefügt
- ► Vorzeichen bleibt dabei erhalten (gemäß Zweierkomplement)



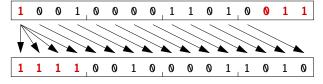
- in Java direkt als Operator verfügbar: x >> n
 in C nur für signed-Typen definiert: x >> n
 sra um n bits ist ähnlich der Division durch 2n
- 52 u a... .. 5.00 lot a.....o.. uo. 5.1.10.01. uo

Arithmetic Shift-Right: Beispiel

 \rightarrow x >> 1 aus 0x10D3 (4307) wird 0x0869 (2153)



x >> 3 aus 0x90D3 (-28460) wird 0xF21A (-3558)



Arithmetic Shift-Right: Division durch Zweierpotenzen?

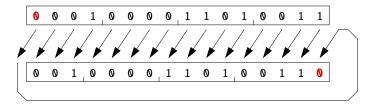
- **b** positive Werte: $x \gg n$ entspricht Division durch 2^n
- negative Werte: x >> n Ergebnis ist zu klein (!)
- gerundet in Richtung negativer Werte statt in Richtung Null:

```
1111 1011 (-5)
1111 1101 (-3)
```

▶ in C: Kompensation durch Berechnung von (x + (1 << k)-1) >> kDetails: Bryant, O'Hallaron [BO14]

Rotate-Left (rol)

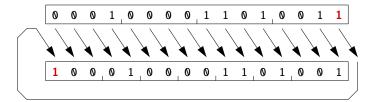
- ▶ Rotation der Binärdarstellung von x um n bits nach links
- herausgeschobene Bits werden von rechts wieder eingefügt



- in Java und C nicht als Operator verfügbar
- Java: Integer.rotateLeft(int x, int distance)

Rotate Right (ror)

- ▶ Rotation der Binärdarstellung von x um n bits nach rechts
- herausgeschobene Bits werden von links wieder eingefügt



- ▶ in Java und C nicht als Operator verfügbar
- ▶ Java: Integer.rotateRight(int x, int distance)

Shifts statt Integer-Multiplikation

- ► Integer-Multiplikation ist auf vielen Prozessoren langsam oder evtl. gar nicht als Befehl verfügbar
- Add./Subtraktion und logische Operationen: typisch 1 Takt Shift-Operationen: meistens 1 Takt
- ⇒ eventuell günstig, Multiplikation mit Konstanten durch entsprechende Kombination aus shifts+add zu ersetzen
 - ▶ Beispiel: $9 \cdot x = (8+1) \cdot x$ ersetzt durch (x << 3) + x
 - viele Compiler erkennen solche Situationen

Beispiel: bit-set, bit-clear

Bits an Position p in einem Integer setzen oder löschen?

- ▶ Maske erstellen, die genau eine 1 gesetzt hat
- be dies leistet (1 \ll p), mit $0 \le p \le w$ bei Wortbreite w

Beispiel: Byte-Swapping network to/from host

Linux: /usr/include/bits/byteswap.h

```
...
/* Swap bytes in 32 bit value. */
#define __bswap_32(x) \
  ((((x) & 0xff000000) >> 24) | (((x) & 0x00ff0000) >> 8) |\
        (((x) & 0x0000ff00) << 8) | (((x) & 0x000000ff) << 24))
...
```

Linux: /usr/include/netinet/in.h

```
# if __BYTE_ORDER == __LITTLE_ENDIAN
# define ntohl(x) __bswap_32 (x)
# define ntohs(x) __bswap_16 (x)
# define htonl(x) __bswap_32 (x)
# define htons(x) __bswap_16 (x)
# endif
```

Beispiel: RGB-Format für Farbbilder

Farbdarstellung am Monitor / Bildverarbeitung?

- \blacktriangleright Matrix aus $w \times h$ Bildpunkten
- additive Farbmischung aus Rot, Grün, Blau
- pro Farbkanal typischerweise 8-bit, Wertebereich 0..255
- ► Abstufungen ausreichend für (untrainiertes) Auge
- ▶ je ein 32-bit Integer pro Bildpunkt
- typisch: 0x00RRGGBB oder 0xAARRGGBB
- ▶ je 8-bit für Alpha/Transparenz, rot, grün, blau
- java.awt.image.BufferedImage(TYPE_INT_ARGB)

Beispiel: RGB-Rotfilter

```
public BufferedImage redFilter( BufferedImage src ) {
 int w = src.getWidth();
  int h = src.getHeight();
  int type = BufferedImage.TYPE_INT_ARGB;
 BufferedImage dest = new BufferedImage( w, h, type );
  for( int y=0; y < h; y++ ) {      // alle Zeilen</pre>
    for (int x=0; x < w; x++) { // von links nach rechts
      int rgb = src.getRGB( x, y ); // Pixelwert bei (x,y)
                                    // rgb = 0xAARRGGBB
      int red = (rgb & 0x00FF0000); // Rotanteil maskiert
      dest.setRGB( x, y, red );
  return dest;
```

Beispiel: RGB-Graufilter

```
public BufferedImage grayFilter( BufferedImage src ) {
  for (int y=0; y < h; y++) { // alle Zeilen
    for( int x=0; x < w; x++ ) { // von links nach rechts</pre>
      int rqb = src.getRGB( x, y );  // Pixelwert
      int red = (rqb & 0x00FF0000) >>>16; // Rotanteil
      int green = (rgb & 0x0000FF00) >>> 8; // Grünanteil
      int blue = (rgb & 0x000000FF);  // Blauanteil
      int
          gray = (red + green + blue) / 3; // Mittelung
      dest.setRGB(x, y, (gray << 16) | (gray << 8) | gray );
```

Beispiel: Bitcount (mit while-Schleife)

Anzahl der gesetzten Bits in einem Wort?

- Anwendung z.B. für Kryptalgorithmen (Hamming-Abstand)
- Anwendung für Medienverarbeitung

```
public static int bitcount( int x ) {
  int count = 0:
  while( x != 0 ) {
    count += (x & 0x00000001); // unterstes bit addieren
                                // 1-bit rechts-schieben
    x = x >>> 1:
  }
  return count;
```

Beispiel: Bitcount (parallel, tree)

- Algorithmus mit Schleife ist einfach aber langsam
- schnelle parallele Berechnung ist möglich

```
int BitCount(unsigned int u)
{ unsigned int uCount;
  uCount = u - ((u >> 1) & 033333333333)
             - ((u >> 2) & 011111111111);
  return ((uCount + (uCount >> 3)) & 030707070707) % 63;
```

- viele Algorithmen: bit-Maskierung und Schieben
 - http://gurmeet.net/puzzles/fast-bit-counting-routines
 - http://graphics.stanford.edu/~seander/bithacks.html
 - ▶ D. E. Knuth: *The Art of Computer Programming*: Volume 4A, Combinational Algorithms: Part1, Abschnitt 7.1.3 [Knu09]
 - java.lang.Integer.bitCount()
- viele neuere Prozessoren/DSPs: eigener bitcount-Befehl

Tipps & Tricks: Rightmost bits

D. E. Knuth: The Art of Computer Programming, Vol 4.1 [Knu09]

Grundidee: am weitesten rechts stehenden 1-Bits / 1-Bit Folgen erzeugen Überträge in arithmetischen Operationen

- Integer x, mit $x = (\alpha \ 0 \ [1]^a \ 1 \ [0]^b)_2$ beliebiger Bitstring α , eine Null, dann a+1 Einsen und b Nullen, mit a > 0 und b > 0.
- Ausnahmen: $x = -2^b$ und x = 0

$$\Rightarrow x = (\alpha \, 0 \, [1]^{a} \, 1 \, [0]^{b})_{2}$$

$$\overline{x} = (\overline{\alpha} \, 1 \, [0]^{a} \, 0 \, [1]^{b})_{2}$$

$$x - 1 = (\alpha \, 0 \, [1]^{a} \, 0 \, [1]^{b})_{2}$$

$$-x = (\overline{\alpha} \, 1 \, [0]^{a} \, 1 \, [0]^{b})_{2}$$

$$\Rightarrow \overline{x} + 1 = -x = \overline{x-1}$$

Tipps & Tricks: Rightmost bits (cont.)

D. E. Knuth: The Art of Computer Programming, Vol 4.1 [Knu09]

$$x = (\alpha \, 0 \, [1]^{a} \, 1 \, [0]^{b})_{2}$$
 $\overline{x} = (\overline{\alpha} \, 1 \, [0]^{a} \, 0 \, [1]^{b})_{2}$
 $x - 1 = (\alpha \, 0 \, [1]^{a} \, 0 \, [1]^{b})_{2}$ $-x = (\overline{\alpha} \, 1 \, [0]^{a} \, 1 \, [0]^{b})_{2}$

$$x\&(x-1) = (\alpha \quad 0[1]^a 0[0]^b)_2$$

$$x\& - x = (0^\infty 0[0]^a 1[0]^b)_2$$

$$x \mid -x = (1^\infty 1[1]^a 1[0]^b)_2$$

$$x \oplus -x = (1^\infty 1[1]^a 0[0]^b)_2$$

$$x \mid (x-1) = (\alpha \quad 0[1]^a 1[1]^b)_2$$

$$\overline{x}\&(x-1) = (0^\infty 0[0]^a 0[1]^b)_2$$

$$((x \mid (x-1)) + 1)\&x = (\alpha \quad 0[0]^a 0[0]^b)_2$$

letzte 1 entfernt letzte 1 extrahiert letzte 1 nach links verschmiert letzte 1 entfernt und verschmiert letzte 1 nach rechts verschmiert letzte 1 nach rechts verschmiert letzte 1-Bit Folge entfernt

Literatur

[BO14] R.E. Bryant, D.R. O'Hallaron: Computer systems – A programmers perspective. 2nd new intl. ed., Pearson Education Ltd., 2014. ISBN 978-1-292-02584-1. csapp.cs.cmu.edu

[TA14] A.S. Tanenbaum, T. Austin: Rechnerarchitektur – Von der digitalen Logik zum Parallelrechner. 6. Auflage, Pearson Deutschland GmbH, 2014. ISBN 978-3-86894-238-5

Literatur (cont.)

[Knu09] D.E. Knuth: The Art of Computer Programming, Volume 4, Fascicle 1, Bitwise Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley Professional, 2009. ISBN 978-0-321-58050-4

[Hei05] K. von der Heide: Vorlesung: Technische Informatik 1 interaktives Skript. Universität Hamburg, FB Informatik, 2005 tams.informatik.uni-hamburg.de/lectures/2004ws/ vorlesung/t1