

64-040 Modul IP7: Rechnerstrukturen 9. Register-Transfer Ebene, Integrierte-Schaltungen

Norman Hendrich

Universität Hamburg MIN Fakultät, Department Informatik Vogt-Kölln-Str. 30, D-22527 Hamburg hendrich@informatik.uni-hamburg.de

WS 2013/2014

Inhalt

1. Register-Transfer Ebene

Speicherbausteine Register-Transfer Ebene Halbleitertechnologie CMOS-Schaltungen Programmierbare Logikbausteine Entwurf Integrierter Schaltungen Literatur

Motivation: Aufbau kompletter Rechensysteme

- bisher:
 - Gatter und Schaltnetze
 - Flipflops als einzelne Speicherglieder
 - Schaltwerke zur Ablaufsteuerung
- jetzt zusätzlich:
 - Speicher
 - Register-Transfer-Komponenten eines Rechners
 - Ablaufsteuerung (Timing, Mikroprogrammierung)
 - Halbleitertechnologie
 - CMOS-Schaltungen
 - Entwurf integrierter Schaltungen

Speicher

- System zur Speicherung von Information
- als Feld von N Adressen mit je m Bit
- typischerweise mit *n*-bit Adressen und $N = 2^n$
- Kapazität also $2^n \times m$ Bits

Klassifikation:

- Speicherkapazität
- Schreibzugriffe möglich?
- Schreibzugriffe auf einzelne Bits/Bytes oder nur Blöcke?
- Information flüchtig oder dauerhaft gespeichert?
- Zugriffszeiten beim Lesen und Schreiben
- Technologie

Speicherbausteine: Varianten

Туре	Category	Erasure	Byte alterable	Volatile	Typical use
SRAM	Read/write	Electrical	Yes	Yes	Level 2 cache
DRAM	Read/write	Electrical	Yes	Yes	Main memory
ROM	Read-only	Not possible	No	No	Large volume appliances
PROM	Read-only	Not possible	No	No	Small volume equipment
EPROM	Read-mostly	UV light	No	No	Device prototyping
EEPROM	Read-mostly	Electrical	Yes	No	Device prototyping
Flash	Read/write	Electrical	No	No	Film for digital camera

ROM: Read-Only Memory

ヘロット 白マット ホリット くロッ

RAM: Random-Access Memory

Speicher, der im Betrieb gelesen und geschrieben werden kann

- Arbeitsspeicher des Rechners
- für Programme und Daten
- keine Abnutzungseffekte
- Aufbau als Matrixstruktur
- ▶ *n* Adressbits, konzeptionell 2^{*n*} Wortleitungen
- ▶ *m* Bits pro Wort
- Realisierung der einzelnen Speicherstellen?
 - statisches RAM: 6-Transistor Zelle
 - dynamisches RAM: 1-Transistor Zelle

(SRAM)
(DRAM)

RAM: Blockschaltbild 4 × 4 bit, 2-bit Adresse, 4-bit Datenwort

□ > < 日 > < 三 > < 三 > < 0 < 0</p>

RAM: RAS/CAS-Adressdekodierung

- Aufteilen der Adresse in zwei Hälften
- ras "row address strobe" wählt eine "Wordline"
- cas "column address strobe" für die "Bitline"
- ▶ je ein 2^(n/2)-bit Decoder/Mux statt ein 2ⁿ-bit Decoder

SRAM: statisches RAM

- Inhalt bleibt dauerhaft gespeichert
- solange Betriebsspannung anliegt
- sechs-Transistor Zelle zur Speicherung
 - weniger Platzverbrauch als Latches/Flipflops
 - kompakte Realisierung in CMOS-Technologie (s.u.)
 - zwei rückgekoppelte Inverter zur Speicherung
 - zwei n-Transistoren zur Anbindung an die Bitlines
- schneller Zugriff: Einsatz f
 ür Caches
- deutlich höherer Platzbedarf als DRAMs

SRAM: Sechs-Transistor Speicherstelle ("6T")

イロト イロト イヨト イヨト 少へで

SRAM: Hades Demo

- nur aktiv, wenn nCS=0 (chip select)
- Schreiben, wenn nWE=0 (write enable)
- Ausgabe, wenn nOE=0 (output enable)

tams.informatik.uni-hamburg.de/applets/hades/webdemos/50-rtlib/40-memory/ram.html

SRAM: Beispiel IC 6116

- integrierte Schaltung, 16 kbit Kapazität
- Organisation als 2K Worte mit je 8-bit
- 11 Adresseingänge (A10 .. A0)
- ▶ 8 Anschlüsse für gemeinsamen Daten-Eingang/-Ausgang
- 3 Steuersignale
 - $\overline{\text{CS}}$: chip-select: Speicher nur aktiv wenn $\overline{\text{CS}}=0$
 - ► WE: write-enable: Daten werden an gewählte Adresse geschrieben
 - ► OE: output-enable: Inhalt des Speichers wird ausgegeben
- interaktive Hades-Demo zum Ausprobieren

tams.informatik.uni-hamburg.de/applets/hades/webdemos/40-memories/40-ram

DRAM: dynamisches RAM

- Information wird in winzigen Kondensatoren gespeichert
- pro Bit je ein Transistor und Kondensator
- jeder Lesezugriff entlädt den Kondensator
- Leseverstärker zur Messung der Spannung auf der Bitline
- Schwellwertvergleich zur Entscheidung logisch 0/1
- Information muss anschließend neu geschrieben werden
- auch ohne Lese- oder Schreibzugriff ist regelmässiger Refresh notwendig (Millisekunden)
- DRAM wird f
 ür hohe Kapazit
 ät optimiert
- minimaler Platzbedarf, aber ca. 10X langsamer als SRAM

DRAM: vs SRAM

- 6 Transistoren/bit
- statisch (kein refresh)
- schnell
- 10 .. 50X DRAM-Fläche

- 1 Transistor/bit
- C=10fF: ~200.000 Elektronen
- langsam (sense-amp)
- minimale Fläche

< □ > < □ > < □ > < 三 > < 三 > < ○ < ○ </p>

DRAM: Stacked- und Trench-Zelle

Abb. 7: Prototyp von Speicherzellen (Stapelkondensatoren) für zukünftige Speicherchips wie den Ein-Gigabit-(Dip. Da für DRAM-Chips eine minimale Speicherkapazität von 25 fr notwendig ist, bringt es erhebliche Platzvorteile, die Kondensatorelemente vertikal übereinander zu stapeln. Die Dicke der Schichten beträgt etwa 30 nm. (Foto: Siemens)

- zwei Bauformen: "stacked" und "trench" (Siemens 1 Gbit DRAM) (IBM CMOS-6X embedded DRAM)
- ▶ jeweils $C \approx 10 fF$: etwa 200.000 Elektronen

$\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle$

DRAM: Layout

< ロ > < 母 > < 三 > < 三 > の Q Q 、

DRAM: Varianten

- veraltete Varianten
 - FPM: fast-page mode
 - EDO: extended data-out
 - . . .
- heute gebräuchlich:
 - SDRAM: Ansteuerung synchron zu Taktsignal
 - DDR-SDRAM: double-data rate: Ansteuerung wie SDRAM, aber Daten werden mit steigender und fallender Taktflanke übertragen
 - DDR-2, DDR-3: Varianten von DDR mit höherer Taktrate
 - aktuell Übertragungsraten bis ca. 6 GByte/sec

SDRAM: Lesezugriff auf sequentielle Adressen

イロト イヨト イミト イミト のへで

Flash

- ähnlich kompakt und kostengünstig wie DRAM
- non-volatile: Information bleibt beim Ausschalten erhalten
- spezielle floating-gate Transistoren
 - das floating-gate ist komplett nach außen isoliert
 - einmal gespeicherte Elektronen sitzen dort fest
- Auslesen beliebig oft möglich, schnell
- Schreibzugriffe problematisch
 - intern hohe Spannung zum Überwinden der Isolierung des floating-gate erforderlich
 - Schreibzugriffe einer "0" nur blockweise
 - ▶ pro Zelle nur einige 10.000 .. 100.000 Schreibzugriffe möglich

Typisches Speichersystem 32-bit Prozessor, je 4 8-bit SRAMs und ROMs

Norman Hendrich

・ロッ (聞) (目) (目) ろへで

Typisches Speichersystem: Adressdekodierung

<ロ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inhalt

- Speicher
- Register-Transfer-Ebene
- Halbleitertechnologie
- CMOS-Schaltungen
- Entwurf Integrierter Schaltungen

Register-Transfer-Ebene

Modellierung eines digitalen Systems als Schaltung aus

- Speichergliedern:
 - Registern
 - Speichern

Rechenwerken:

- Addierer, arithmetische Schaltungen
- logische Operationen
- "random-logic" Schaltnetzen
- Verbindungsleitungen:
 - Busse / Leitungsbündel
 - Multiplexer und Tri-state Treiber

(Flipflops, Register, Registerbank) (SRAM, DRAM, ROM, PLA)

Hauptblockebene: typisches ARM SoC System

diese und viele folgende Abbildungen: (Furber, ARM Soc Architecture)

RT-Ebene: ALU des ARM-7 Prozessors

- Register f
 ür die Operanden A und B
- Addierer und separater Block f
 ür logische Operationen

$\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle$

Multi-Port-Registerbank: Zelle

- Prinzip wie 6T-SRAM: rückgekoppelte Inverter
- mehrere (hier zwei) parallele Lese-Ports
- mehrere Schreib-Ports möglich, aber kompliziert

Multi-Port Registerbank: Floorplan/Chiplayout

イロン イロン イヨン イロン

Kompletter Prozessor: ARM-3

- Registerbank (inkl. Program Counter)
- Incrementer
- Adress-Register
- ALU, Multiplizierer, Shifter
- Speicherinterface (Data-In, Data-Out)

Steuerwerk

Floorplan ARM-3 Prozessor

イロン イロン イヨン イロン

ARM-3 Datentransfers: Register-Operationen

< ロ > < 母 > < 目 > < 日 > < 日 > < の < つ > <

ARM-3 Datentransfers: Funktionsaufruf/Sprungbefehl

イロン 〈母 〉 〈 臣 〉 〈 臣 〉 クタぐ

MIN-Fakultät Fachbereich Informatik

Rechnerstrukturen

ARM-3 Datentransfers: Store-Befehl

イロト イロト イヨト イヨト ろくや

ARM-3 Datentransfers: Timing

イロン イロン イヨン イロン

IJVM Java-Prozessor: Timing

- ▶ Datenfluss: Register \rightarrow BUS \rightarrow ALU \rightarrow Shifter \rightarrow Bus \rightarrow Register
- ▶ Details: Tanenbaum, Structured Computer Organization, 4.1.1

Ablaufsteuerung mit Mikroprogramm

- als Alternative zu direkt entworfenen Schaltwerken
- ► *Mikroprogrammzähler* µ*PC*: Register für aktuellen Zustand
- μPC adressiert den Mikroprogrammspeicher μROM
- μROM konzeptionell in mehrere Felder eingeteilt
 - die verschiedenen Steuerleitungen
 - ein oder mehrere Felder für Folgezustand
 - ggf. zusätzliche Logik und Multiplexer zur Auswahl unter mehreren Folgezuständen
 - ggf. Verschachtelung und Aufruf von Unterprogrammen: "nanoProgramm"
- siehe Praktikum Rechnerstrukturen

Mikroprogramm: Beispiel Ampel

- μPC adressiert das μROM
- "next"-Ausgang liefert den Folgezustand (Adresse 0: Wert 1, Adresse 1: Wert 2, usw)
- andere Ausgänge steuern die Schaltung (hier die Lampen der Ampel)

Mikroprogramm: Beispiel zur Auswahl des Folgezustands

- Mulitplexer erlaubt Auswahl des μPC Werts
- "nextA", "nextB" aus dem μROM, externer "XA" Wert
- "xs" Eingang erlaubt bedingte Sprünge

Mikroprogramm: Befehlsdekoder des ARM-7 Prozessors

Bus: elektrische und logische Verbindung

- zwischen mehreren Geräten
- oder mehreren Blöcken innerhalb einer Schaltung
- Bündel aus Daten- und Steuersignalen
 - ▶ elektrische Realisierung: Tri-State-Treiber oder Open-Drain
- Bus-Arbitrierung: wer darf wann wie-lange senden?
- Master-Slave oder gleichberechtigte Knoten
- ▶ synchron: mit globalem Taktsignal vom "Master"-Knoten
- ▶ asynchron: Wechsel von Steuersignalen löst Ereignisse aus

Datenbus

Control

Bus: Mikroprozessorsysteme

typisches *n*-bit Mikroprozessor-System:

- ▶ *n* Adress-Leitungen, also Adressraum 2^{*n*} Bytes Adressbus
- n Daten-Leitungen

Steuersignale

- clock: Taktsignal
- read/write: Lese-/Schreibzugriff (aus Sicht des Prozessors)
- wait: Wartezeit/-zyklen f
 ür langsame Ger
 äte
- ▶ ...
- um Leitungen zu sparen, teilweise gemeinsam genutzte Leitungen sowohl f
 ür Adressen als auch Daten. Zus
 ätzliches Steuersignal zur Auswahl Adressen/Daten

(ロ > < □ > < □ > < □ > < □ >

Adressbus: Evolution beim Intel x86

- > 20-bit: 1 MByte Adressraum, 24-bit: 16 MByte, 32-bit: 4 GByte
- alle Erweiterungen abwärtskompatibel

$\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle \Box$

Synchroner Bus: Timing

- alle Zeiten über Taktsignal Φ gesteuert
- ▶ MREQ-Signal zur Auswahl Speicher oder I/O-Geräte
- RD signalisiert Lesezugriff
- Wartezyklen, solange der Speicher WAIT aktiviert

Synchroner Bus: typische Zeit-Parameter

Symbol	Parameter	Min	Max	Unit
T _{AD}	Address output delay		4	nsec
T _{ML}	Address stable prior to MREQ	2		nsec
T _M	$\overline{\text{MREQ}}$ delay from falling edge of Φ in T_1		3	nsec
T _{RL}	RD delay from falling edge of Φ in T ₁		3	nsec
T _{DS}	Data setup time prior to falling edge of $\boldsymbol{\Phi}$	2		nsec
Т _{МН}	$\overline{\text{MREQ}}$ delay from falling edge of Φ in T_3		3	nsec
T _{RH}	$\overline{\text{RD}}$ delay from falling edge of Φ in T_3		3	nsec
T _{DH}	Data hold time from negation of \overline{RD}	0		nsec

Asynchroner Bus: Lesezugriff

► Steuersignale: MSYN: Master fertig, SSYN: Slave fertig

flexibler f
ür Ger
äte mit stark unterschiedlichen Zugriffszeiten

・ロッ (四) ・ 言 > (日 > (日 >

Bus-Arbitrierung

- immer nur ein Transfer zur Zeit möglich
- mehrere sendende Geräte müssen aufeinander warten
- diverse Strategien:
 - Prioritäten f
 ür verschiedene Ger
 äte
 - "round-robin" Verfahren
 - "Token"-basierte Verfahren
 - usw.
- I/O-Geräte oft höher priorisiert als die CPU
 - I/O-Zugriffe müssen schnell/sofort behandelt werden
 - Benutzerprogramm kann warten

Bus: Arbitrierung

(b)

PCI-Bus

Peripherial Component Interconnect (Intel 1991):

- 33 MHz Takt (optional 64 MHz Takt)
- 32-bit Bus-System
- gemeinsame Adress-/Datenleitungen
- Arbitrierung durch Bus-Master
- Auto-Konfiguration
 - angeschlossene Geräte werden automatisch erkannt
 - eindeutige Hersteller- und Geräte-Nummern
 - Betriebssystem kann zugehörigen Treiber laden
 - automatische Zuweisung von Adressbereichen und IRQs

(optional auch 64-bit)

(CPU)

Register-Transfer Ebene - Register-Transfer Ebene

Rechnerstrukturen

PCI-Bus: Peripheriegeräte (Linux)

tams12> /sbin/lspci 00:00.0 Host bridge: Intel Corporation 820963/0965 Memory Controller Hub (rev 02) 00:01.0 PCI bridge: Intel Corporation 82Q963/Q965 PCI Express Root Port (rev 02) 00:1a.0 USB Controller: Intel Corporation 82801H (ICH8 Family) USB UHCI #4 (rev 02) 00:1a.1 USB Controller: Intel Corporation 82801H (ICH8 Family) USB UHCI #5 (rev 02) 00:1a.7 USB Controller: Intel Corporation 82801H (ICH8 Family) USB2 EHCI #2 (rev 02) 00:1b.0 Audio device: Intel Corporation 82801H (ICH8 Family) HD Audio Controller (rev 02) 00:1c.0 PCI bridge: Intel Corporation 82801H (ICH8 Family) PCI Express Port 1 (rev 02) 00:1c.4 PCI bridge: Intel Corporation 82801H (ICH8 Family) PCI Express Port 5 (rev 02) 00:1d.0 USB Controller: Intel Corporation 82801H (ICH8 Family) USB UHCI #1 (rev 02) 00:1d.1 USB Controller: Intel Corporation 82801H (ICH8 Family) USB UHCI #2 (rev 02) 00:1d.2 USB Controller: Intel Corporation 82801H (ICH8 Family) USB UHCI #3 (rev 02) 00:1d.7 USB Controller: Intel Corporation 82801H (ICH8 Family) USB2 EHCI #1 (rev 02) 00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev f2) 00:1f.0 ISA bridge: Intel Corporation 82801HB/HR (ICH8/R) LPC Interface Controller (rev 02) 00:1f.2 IDE interface: Intel Corporation 82801H (ICH8 Family) 4 port SATA IDE Controller (rev 02) 00:1f.3 SMBus: Intel Corporation 82801H (ICH8 Family) SMBus Controller (rev 02) 00:1f.5 IDE interface: Intel Corporation 82801H (ICH8 Family) 2 port SATA IDE Controller (rev 02) 01:00.0 VGA compatible controller: ATI Technologies Inc Unknown device 7183 01:00.1 Display controller: ATI Technologies Inc Unknown device 71a3 03:00.0 Ethernet controller: Broadcom Corporation NetXtreme BCM5754 Gigabit Ethernet PCI Express (rev 02)

Register-Transfer Ebene - Register-Transfer Ebene

Rechnerstrukturen

PCI-Bus: Konfiguration einiger Geräte (Linux)

- tams12> /sbin/lspci -v 00:00.0 Host bridge: Intel Corporation 82Q963/Q965 Memory Controller Hub (rev 02) Flags: bus master, fast devsel, latency 0 00:1a.0 USB Controller: Intel Corporation 82801H (ICH8 Family) USB UHCI #4 (rev 02) (prog-if 00 [UHCI]) Flags: bus master, medium devsel, latency 0, IRQ 169 I/O ports at ff20 [size=32] 00:1f.2 IDE interface: Intel Corporation 82801H (ICH8 Family) 4 port SATA IDE Controller (rev 02) (prog-if 8f [Master SecP SecO PriP PriO]) Flags: bus master, 66MHz, medium devsel, latency 0, IRQ 209 I/O ports at fe00 [size=8] I/O ports at fe10 [size=4] I/O ports at fe20 [size=8] I/O ports at fe30 [size=4] I/O ports at fec0 [size=16] 01:00.0 VGA compatible controller: ATI Technologies Inc Unknown device 7183 (prog-if 00 [VGA]) Flags: bus master, fast devsel, latency 0, IRQ 169 Memory at c0000000 (64-bit, prefetchable) [size=256M] Memory at dfde0000 (64-bit, non-prefetchable) [size=64K] I/O ports at dc00 [size=256]
 - Expansion ROM at dfe00000 [disabled] [size=128K]

. . .

PCI-Bus: Leitungen ("mandatory")

Signal	Lines	Master	Slave	Description
CLK	1			Clock (33 MHz or 66 MHz)
AD	32	×	×	Multiplexed address and data lines
PAR	1	×		Address or data parity bit
C/BE	4	×		Bus command/bit map for bytes enabled
FRAME#	1	×		Indicates that AD and C/BE are asserted
IRDY#	1	×		Read: master will accept; write: data present
IDSEL	1	×		Select configuration space instead of memory
DEVSEL#	1		×	Slave has decoded its address and is listening
TRDY#	1		×	Read: data present; write: slave will accept
STOP#	1		×	Slave wants to stop transaction immediately
PERR#	1		/	Data parity error detected by receiver
SERR#	1			Address parity error or system error detected
REQ#	1			Bus arbitration: request for bus ownership
GNT#	1			Bus arbitration: grant of bus ownership
RST#	1			Reset the system and all devices

イロト イロト イヨト イロト

Register-Transfer Ebene - Register-Transfer Ebene

Rechnerstrukturen

PCI-Bus: Transaktionen

RS-232: Serielle Schnittstelle

- Anzani Datenbits 5, 6, 7,
- Anzahl Stopbits
 1, 2
- Parität none, odd, even
- minimal drei Leitungen: GND, TX, RX (Masse, Transmit, Receive)
- oft weitere Leitungen f
 ür erweitertes Handshake

イロシ イヨシ イヨシ うみぐ

Inhalt

- Speicher
- Register-Transfer-Ebene
- Halbleitertechnologie
- CMOS-Schaltungen
- Entwurf Integrierter Schaltungen

Erinnerung

Das **Konzept** des Digitalrechners (von-Neumann Prinzip) ist völlig unabhängig von der Technologie:

- mechanische Rechenmaschinen
- pneumatische oder hydraulische Maschinen
- ▶ Relais, Vakuumröhren, diskrete Transistoren
- molekulare Schaltungen
- usw.

Aber:

- nur hochintegrierte Halbleiterschaltungen ("VLSI") erlauben die billige Massenfertigung mit Milliarden von Komponenten
- Halbleiter und Planarprozess sind essentielle Basistechnologien

Halbleiter

Halbleiter stehen zwischen Leitern (z.B.: Metalle) und Isolatoren.

- bei Raumtemperatur quasi nicht-leitend
- ► Leitfähigkeit steigt mit der Temperatur ⇒ Heißleiter
- physikalische Erklärung über Bändermodell siehe http://de.wikipedia.org/wiki/Halbleiter

Kristallstruktur aus 4-wertigen Atomen

- elementare Halbleiter: Ge, Si
- Verbindungshalbleiter: GaAs, InSb

Rechnerstrukturer

Leitung im undotierten Kristall

- Paarentstehung: Elektronen lösen sich aus Gitterverband Paar aus Elektron und "Loch" entsteht
- Rekombination: Elektronen und Löcher verbinden sich quasistatischer Prozess
- \blacktriangleright Eigenleitungsdichte n_i : temperatur- und materialabhängig

Rechnerstrukturen

Dotierung mit Fremdatomen

Ein kleiner Teil der vierwertigen Atome wird durch fünf- oder dreiwertige Atome ersetzt.

Dotierung mit Fremdatomen (cont.)

- Donatoren, Elektronenspender: Phosphor, Arsen, Antimon
- Akzeptoren: Bor, Aluminium, Gallium, Indium

Dotierungsdichten	Stärke		Fremdatome [<i>cm</i> ⁻³]
	schwach	n-, p-	$10^{15} \dots 10^{16}$
	mittel	n, p	$10^{16} \dots 10^{19}$
	stark	n^+ , p^+	10 ¹⁹

Beweglichkeit μ : materialspezifische Größe

T = 30	0° <i>K</i>	Si	Ge	GaAs	$[cm^2/(Vs)]$
Elektronen	μ_n	1500	3900	8500	
Löcher	μ_{p}	450	1500	400	

Leitfähigkeit: ergibt sich aus Material, Beweglichkeit und Ladungsträgerdichte(n) $K = e(n_n \mu_n + n_p \mu_p)$

Rechnerstrukturen

Dotierung mit Fremdatomen (cont.)

 selbst bei hoher Dotierung ist die Leitfähigkeit um Größenordnungen geringer als bei Metallen

Si 1 freier Ladungsträger pro 500 Atome $(10^{19}/5 \cdot 10^{22})$ Metall mindestens 1 Ladungsträger pro Atom

 Majoritätsträger: Ladungsträger in Überzahl (i.d.R. Dotierung) Minoritätsträger: Ladungsträger in Unterzahl n_i² = n_n · n_p

Register-Transfer Ebene - Halbleitertechnologie - Herstellung von Halbleitermaterial

Halbleitertechnologie

Übersicht in: http://de.wikipedia.org/wiki/Silicium

Rohsilizium

- Siliziumoxid (SiO₂): Sand, Kies...
 ca. 20% der Erdkruste
- ► Herstellung im Lichtbogenofen: Siliziumoxid + Koks SiO₂ + 2C → Si + 2CO
- amorphe Struktur, polykristallin
- ▶ noch ca. 2 % Verunreinigungen (Fe, Al...)

Solarsilizium

Ziel: Fremdatome aus dem Silizium entfernen

1. Chemische Bindung des Siliziums

 $Si + 3HCI \rightarrow SiHCl_3 + H_2$

Reaktion mit Salzsäure erzeugt

SiHCl ₃	Trichlorsilan
SIHCI ₃	Trichlorsilan

*SiCl*₄ Siliziumchlorid (10%)

*SiH*₂*Cl*₄ div. andere Chlorsilane/Silane

FeCl₂, AlCl₃ div. Metallchloride

 Verschiedene Kondensations- und Destillationschritte trennen Fremdverbindungen ab, hochreines Trichlorsilan entsteht < 1ppm Verunreinigungen

Solarsilizium (cont.)

- 3. CVD (Chemical Vapour Deposition) zur Abscheidung des Trichlorsilans zu elementarem Silizium $4SiHCl_3 \rightarrow Si + 3SiCl_4 + 2H_2$
- ⇒ polykristallines Silizium< 0,1ppm Verunreinigungen

Siliziumeinkristall

Weitere Ziele

- Einkristalline Struktur erzeugen
- Reinheit für Halbleiterherstellung erhöhen
 <,

 1ppb
- ggf. Dotierung durch Fremdatome einbringen

Es gibt dazu mehrere technische Verfahren, bei denen das polykristalline Silizium geschmolzen wird und sich monokristallin an einen Impfkristall anlagert.

Siliziumeinkristall (cont.)

Czochralski-Verfahren (Tiegelziehverfahren)

・ロ > ・ 雪 > ・ ヨ > ・ 白 > ・ 白 >

Siliziumeinkristall (cont.)

Zonenschmelz- / Zonenziehverfahren

Schutzgas

Norman Hendrich

Wafer

- weitere Bearbeitungsschritte: zersägen, schleifen, läppen, ätzen, polieren
- Durchmesser bis 30 cm 2012: 45 cm(ITRS 07)
 Dicke < 1mm
 - $\mathsf{Rauhigkeit}\qquad\approx\mathsf{nm}$
- Markieren: Kerben, Lasercodes... früher "flats"

Technologien

Technologien zur Erstellung von Halbleiterstrukturen

- Epitaxie: Aufwachsen von Schichten
- Oxidation von Siliziumoberflächen: SiO₂ als Isolator
- Strukturerzeugung durch Lithografie
- Dotierung des Kristalls durch Ionenimplantation oder Diffusion
- Ätzprozesse: Abtragen von Schichten

Lithografie

Übertragung von Strukturen durch einen Belichtungsprozess

- 1. Lack Auftragen (Aufschleudern)
 - Positivlacke: hohe Auflösung \Rightarrow MOS
 - Negativlacke: robust, thermisch stabil

Lithografie (cont.)

- 2. "Belichten"
 - Maskenverfahren: 1:1 Belichtung, Step-Verfahren UV-Lichtquelle
 - Struktur direkt schreiben: Elektronen- / Ionenstrahl
 - andere Verfahren: Röntgenstrahl- / EUV-Lithografie
- 3. Entwickeln, Härten, Lack entfernen
 - ▶ je nach Lack verschiedene chemische Reaktionsschritte
 - Härtung durch Temperatur
- ... weitere Schritte des Planarprozess

Rechnerstrukturen

Dotierung

Fremdatome in den Siliziumkristall einbringen

- Diffusion
 - Diffusionsofen ähnlich CVS-Reaktor
 - gaußförmiges Dotierungsprofil

Konzentration der Dotieratome nimmt ab

・ロシ ・日 ・ ・ 日 ・ ・ 日 ・ うへで

Register-Transfer Ebene - Halbleitertechnologie - Planarprozess

Dotierung (cont.)

Ionenimplantation

- "Beschuss" mit Ionen
- Beschleunigung der Ionen im elektrischen Feld
- Über die Energie der Ionen kann die Eindringtiefe sehr genau eingestellt werden
- "Temperung" notwendig: Erhitzen des Einkristalls zur Neuorganisation des Kristallgitters

Rechnerstrukturen

Register-Transfer Ebene - Halbleitertechnologie - Planarprozess

Register-Transfer Ebene - Halbleitertechnologie - Planarprozess

Planarprozess

- Der zentrale Ablauf bei der Herstellung von Mikroelektronik
- Ermöglicht die gleichzeitige Fertigung aller Komponenten auf dem Wafer
- Schritte
 - 1. Vorbereiten / Beschichten des Wafers: Oxidation, CVD, Aufdampfen, Sputtern...
 - 2. Strukturieren durch Lithografie
 - 3. Übertragen der Strukturen durch Ätzprozesse
 - 4. Modifikation des Materials: Dotierung, Oxidation
 - 5. Vorbereitung für die nächsten Prozessschritte...

Rechnerstrukturen

Register-Transfer Ebene - Halbleitertechnologie - Planarprozess

Planarprozess: Schema

< ロ > < 団 > < 三 > < 三 > の Q ()

Inhalt

- Speicher
- Register-Transfer-Ebene
- Halbleitertechnologie
- CMOS-Schaltungen
- Entwurf Integrierter Schaltungen

MOS-Transistor

- MOS: Metal On Silicon
 FET : Feldeffekttransistor
 - http://olli.informatik.uni-oldenburg.de/weTEiS/ weteis/tutorium.htm
 - http://de.wikipedia.org/wiki/Feldeffekttransistor
 - http://de.wikipedia.org/wiki/MOSFET

Literatur: Weste&Eshragian, Tietze&Schenk, usw.

 unipolarer Transistor: nur eine Art von Ladungsträgern, die Majoritätsträger, ist am Stromfluss beteiligt

MOS-Transistor (cont.)

イロン イロン イヨン イロン

 Funktionsweise: die Ladung des Gates erzeugt ein elektrisches Feld. Durch Inversion werden Ladungsträger unterhalb des Gates verdrängt und ein leitender Kanal zwischen Source und Drain entsteht

 Schwellspannung U_P: abhängig von der Dotierungsdichte, den Parametern des MOS-Kondensators (Dicke und Material der Gate-Isolationsschicht)...

 U_P möglichst klein: 0,3...0,8 V früher: deutlich mehr

- ► $U_{DS} \ll U_{GS} U_P$ normaler Betrieb (Triodenbereich)
- ► U_{DS} = U_{GS} U_P Kanalabschnürung Spannungsabfall zwischen S und D durch den Kanalwiderstand

• $U_{DS} > U_{GS} - U_P$ Kanalverkürzung (Sättigungsbereich) Der Kanal wird weiter verkürzt, die Spannung U_{DS} bewirkt ein virtuell größeres Drain durch Inversion.

 I_D wächst nur noch minimal.

- ⇒ kurze Kanäle aktueller Submikronprozesse können allein durch hohe Spannungen U_{DS} leitend werden (Durchgreifbetrieb)
- \Rightarrow einer der Gründe für sinkende Versorgungsspannungen

MOS-Transistor (cont.)

Kennlinienfeld

MOS-Transistor: Schaltsymbole

<ロ> < □ > < □ > < □ > < 三 > < 三 > のへで

Inhalt

- Speicher
- Register-Transfer-Ebene
- Halbleitertechnologie
- CMOS-Schaltungen
- Programmierbare Logikbausteine
- Entwurf Integrierter Schaltungen

CMOS-Technologie

Complementary Metal-Oxide Semiconductor: die derzeit dominierende Techologie für alle hochintegrierten Schaltungen:

- Schaltungsprinzip nutzt n-Kanal und p-Kanal Transistoren
- alle elementaren Gatter verfügbar
- effiziente Realisierung von Komplexgattern
- Transmission-Gate als elektrischer Schalter
- effiziente Realisierung von Flipflops und Speichern
- sehr hohe Integrationsdichte möglich
- sehr schnelle Schaltgeschwindigkeit der Gatter
- sehr geringer Stromverbrauch pro Gatter möglich
- Integration von digitalen und analogen Komponenten

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: Überblick

- Schaltungsprinzip
- Inverter und nicht-invertierender Verstärker
- NAND, NAND3, NOR (und AND, OR)
- XOR
- Komplexgatter
- Transmission-Gate
- Beispiele f
 ür Flipflops
- SRAM

CMOS: Schaltungsprinzip von "static CMOS"

- Transistoren werden als Schalter betrachtet
- > zwei zueinander komplementäre Zweige der Schaltung
- nur n-Kanal Transistoren zwischen Masse und Ausgang y
- nur p-Kanal Transistoren zwischen VCC und Ausgang y
- der p-Kanal Zweig ist komplementär ("dualer Graph") zum n-Kanal Zweig: jede Reihenschaltung von Elementen wird durch eine Parallelschaltung ersetzt (und umgekehrt)
- immer ein direkt leitender Pfad von entweder VCC (1) oder Masse (0) zum Ausgang
- niemals ein direkt leitender Pfad von VCC nach Masse
- kein statischer Stromverbrauch im Gatter

CMOS: "static" CMOS-Gatter

- Schaltungen: negierte monotone boole'sche Funktionen
- ▶ Beliebiger schaltalgebraischer Ausdruck *ohne Negation*: ∨, ∧
- ▶ Negation des gesamten Ausdrucks: Ausgang *immer* negiert
- ▶ je Eingang: ein Paar p-/n-Kanal Transistoren
- ► Dualitätsprinzip: n- und p-Teil des Gatters n-Teil p-Teil Logik, ohne Negation seriell ⇔ parallel ≡ ∧ / und parallel ⇔ seriell ≡ ∨ / oder
- Konstruktion
 - 1. n-Teil aus Ausdruck ableiten
 - 2. p-Teil dual dazu entwickeln

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: n- und p-Kanal Transistor, Inverter, Verstärker

< ロ > < 母 > < 三 > < 三 > < の へ へ へ し > <

CMOS: Inverter

Funktionsweise

- selbstsperrende p- und n-Kanal Transistoren
- komplementär beschaltet
- Ausgang: Pfad über p-Transistoren zu Vdd –"– n-Transistoren zu Gnd
- genau einer der Pfade leitet
- ► Eingang Trans_P Trans_N Ausgang $a = 0 \rightarrow \text{leitet} / \text{sperrt} \rightarrow \text{über } T_P \text{ mit } Vdd \text{ verbunden} = 1$ $a = 1 \rightarrow \text{sperrt} / \text{ leitet} \rightarrow \text{über } T_N \text{ mit } Gnd \text{ verbunden} = 0$

MIN-Fakultät Fachbereich Informatik

CMOS: Leistungsaufnahme

Leistungsaufnahme

- 1. $U_{in} = 0$, bzw. Vdd: Sperrstrom, nur μA \Rightarrow niedrige statische Leistungsaufnahme
- Querstrom beim Umschalten: kurzfristig leiten beide Transistoren ⇒ Forderung nach steilen Flanken
- 3. Kapazitive Last: Fanout-Gates Energie auf Gate(s): $W = \frac{1}{2}C_T V dd^2$ Verlustleistung_(0/1/0): $P = C_T V dd^2 \cdot f$

Rechnerstrukturen

CMOS: NAND- und AND-Gatter

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

- ▶ NAND: n-Transistoren in Reihe, p-Transistoren parallel
- AND: Kaskade aus NAND und Inverter

tams.informatik.uni-hamburg.de/applets/hades/webdemos/05-switched/40-cmos

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: NAND-Gatter mit drei Eingängen

n-Transistoren in Reihe, p-Transistoren parallel

normalerweise max. 4 Transistoren in Reihe (Spannungsabfall)

< ロ > < 団 > < 目 > < 目 > < 回 > < 回 > < 三 > の Q ()

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: NOR- und OR-Gatter

- Struktur komplementär zum NAND/AND
- n-Transistoren parallel, p-Transistoren in Reihe
- p-Transistoren schalten träge: etwas langsamer als NAND

- ロ > + 日 > + 三 > + 三 > ク Q Q・

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS-Technologie: Demos

 Interaktive Demonstration der CMOS-Grundgatter (Java): http://tams-www.informatik.uni-hamburg.de/applets/cmos/

$\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle$

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: Beispiel-Layout

< ロ > < 団 > < 三 > < 三 > のへで

CMOS: Komplex-Gatter

Verallgemeinerung des Prinzips von NAND und NOR

- beliebige Parallel- und Serienschaltung der n-Transistoren
- ▶ komplementäre Seriell- und Parallelschaltung der p-Transistoren
- typischerweise max. 4 Transistoren in Reihe
- viele invertierende logische Funktionen effizient realisierbar
- Schaltungslayout automatisch synthetisierbar
- zwei gängige Varianten:
 - AOI-Gatter ("AND-OR-invert")
 - OAI-Gatter ("OR-AND-invert")

Rechnerstrukturen

CMOS-Komplexgatter

Beispiel: $(a \land b \land c) \lor d \lor (e \land f)$

"AOI321-Gatter", AND-OR-INVERT Struktur

- UND-Verknüpfung von (a,b,c)
- UND-Verknüpfung von (e,f)
- OR-Verknüpfung der drei Terme
- anschließend Invertierung
- ▶ direkte Realisierung hätte (6+2)+(0)+(4+2)+4 Transistoren

MIN-Fakultät Fachbereich Informatik

Rechnerstrukturen

CMOS-Komplexgatter

Beispiel: $(a \land b \land c) \lor d \lor (e \land f)$

MIN-Fakultät Fachbereich Informatik

Rechnerstrukturen

CMOS-Komplexgatter

Beispiel: $(a \land b \land c) \lor d \lor (e \land f)$

MIN-Fakultät Fachbereich Informatik

Rechnerstrukturen

CMOS-Komplexgatter

Beispiel: $(a \land b \land c) \lor d \lor (e \land f)$

MIN-Fakultät Fachbereich Informatik

Rechnerstrukt<u>uren</u>

CMOS-Komplexgatter

CMOS-Komplexgatter

イロト イヨト イヨト イヨト 少くや

Rechnerstrukturen

MIN-Fakultät Fachbereich Informatik

Rechnerstrukturen

CMOS-Komplexgatter

MIN-Fakultät Fachbereich Informatik

Rechnerstrukturen

CMOS-Komplexgatter

CMOS: Transmission-Gate

Transmissions-Gatter (transmission gate, t-gate)

- Paar aus je einem n- und p-Kanal MOS-Transistor
- symmetrische Anordnung

- Ansteuerung der beiden Gate-Elektroden mit invertierter Polarität
- entweder beide Transistoren leiten, oder beide sperren
- Funktion entspricht elektrisch gesteuertem Schalter
- effiziente Realisierung vieler Schaltungen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: Transmission-Gate

elektrisch gesteuerter Schalter:

- C = 0: keine Verbindung von A nach B
- C = 1: leitende Verbindung von A nach B
- symmetrisch in beide Richtungen

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: Transmission-Gate Demo

tgate demonstration

▶ Werte an A und B anlegen, Treiber mit enable-Signalen aktivieren

▶ Gatter mit *S* ein- oder ausschalten

tams.informatik.uni-hamburg.de/applets/hades/webdemos/05-switched/40-cmos/tgate.html

イロト イヨト イヨト イヨト 少く(?)

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: Transmission-Gate Tristate-Treiber

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: Tristate-Treiber (Variante)

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: Transmission-Gate Multiplexer

- kompakte Realisierung (4 bzw. 6 Transistoren)
- Eingänge *a* und *b* nicht verstärkt: nur begrenzt kaskadierbar

< ロ > < 母 > < 目 > < 日 > の Q Q - <

Rechnerstrukturen

CMOS: Transmission-Gate XOR-Gatter

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

- kompakte Realisierung des XOR (nur 6 Transistoren)
- Eingang b nicht verstärkt: nur begrenzt kaskadierbar

$\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \rangle \langle \Box \rangle \langle \Box$

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

Rechnerstrukturen

CMOS: D-Latch (quasi-statisch)

- Dateneingang D, Takteingang C
- Transmission-Gates als Schalter:
 - C = 1: Transparent Eingang über die Inverter zum Ausgang
 - C = 0: Speicherung Rückkopplungspfad aktiv

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: D-Latch (Demo)

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: Funktion des T-Gate D-Latch

- Gegentakt-Ansteuerung der beiden T-Gates
- Takteingang C, Inverter erzeugt zusätzlich \overline{C}
- vorderes T-Gate aktiv: direkter Pfad von D nach Q
- ▶ Rückkopplungsschleife: Q zweimal invertiert: also gespeichert

<ロ> < □> < □> < □> < □> < □> < ○<

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: Transmission-Gate D-Flipflop

Flankensteuerung via Master-Slave Prinzip

<ロ> <日> <日> <日> <日> <日> <日</p>

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: Sechs-Transistor Speicherstelle ("6T")

<ロ > < 団 > < 三 > < 三 > の Q ()

Rechnerstrukt<u>uren</u>

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS: Prinzip des SRAM

(ロ > < □ > < 三 > < 三 > クへで

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

- Ein n-Wannen Prozesses
- 1. Ausgangsmaterial: p-dotiertes Substrat
- 2. n-Wanne

- Dotierung f
 ür p-Kanal Transistoren
- Herstellung: Ionenimplantation oder Diffusion

CMOS-Herstellungsprozess (cont.)

3. "aktive" Fläche / Dünnoxid

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

- Spätere Gates und p⁺-/n⁺-Gebiete
- Herstellung: Epitaxie SiO_2 und Abdeckung mit Si_3N_4

Register-Transfer Ebene - CMOS-Schaltungen - CM<u>OS: Schaltungen</u>

- Begrenzt n-Kanal Transistoren
- ▶ p-Wannen Maske, bzw. ¬ n-Wanne
- Maskiert durch Resist und Si₃N₄
- Substratbereiche in denen keine n-Transistoren sind
- Herstellung: p⁺-Implant (Bor)
- n-Kanalstopp aktueller Prozesse: analog dazu

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

- 5. Resist entfernen
- 6. Feldoxid aufwachsen SiO₂

- LOCOS: Local Oxidation of Silicon
- Maskiert durch Si₃N₄
- ► Wächst auch lateral unter Si₃N₄/SiO₂ (aktive) Bereiche engl. bird's beak
- Der aktive Bereich wird kleiner als vorher maskiert
- Herstellung: Epitaxie und Oxidation
- Problem: nicht plane Oberfläche

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

- 7. Si₃N₄ entfernen, Gateoxid bleibt SiO₂
- 8. Transistor Schwellspannungen "justieren"
 - Meist wird das Polysilizium zusätzlich n⁺ dotiert Grund: bessere Leitfähigkeit
 - ► Problem: $U_D(T_N) \approx 0.5...0,7 \text{ V}$ $U_D(T_P) \approx -1.5...-2,0 \text{ V}$
 - Maske: n-Wanne, bzw. p-Wanne
 - Herstellung: Epitaxie einer leicht negativ geladenen Schicht an der Substratoberfläche

CMOS-Herstellungsprozess (cont.)

9. Polysilizium Gate

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

▶ Herstellung: Epitaxie von Polysilizium, Ätzen nach Planarprozess

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS-Herstellungsprozess (cont.)

10. n^+ -Diffusion

- Erzeugt Source und Drain der n-Kanal Transistoren
- Maskiert durch aktiven Bereich, n⁺-Maske und Polysilizium \Rightarrow Selbstjustierung
- Dotiert auch das Polysilizium Gate leicht (s.o.)
- Herstellung: Ionenimplantation, durchdringt Gateoxid

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS-Herstellungsprozess (cont.)

Zusätzliche Schritte bei der Source/Drain Herstellung

- Problem "Hot-Carrier" Effekte (schnelle Ladungsträger): Stoßionisation, Gateoxid wird durchdrungen...
- Lösung: z.B. LDD (Lightly Doped Drain)
 - a. "flaches" n-LDD Implant
 - b. zusätzliches SiO₂ über Gate aufbringen (spacer)
 - c. "normales" n⁺-Implant
 - d. Spacer SiO₂ entfernen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS-Herstellungsprozess (cont.)

11. p^+ -Diffusion

- Erzeugt Source und Drain der p-Kanal Transistoren
- Maskiert durch aktiven Bereich, p⁺-Maske und Polysilizium
 Selbstjustierung
- teilweise implizite p^+ -Maske = $\neg n^+$ -Maske
- wenig schnelle Ladungsträger (Löcher), meist keine LDD-Schritte
- Herstellung: Ionenimplantation, durchdringt Gateoxid

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

- 12. SiO₂ aufbringen, Feldoxid
 - Strukturen isolieren
 - Herstellung: Epitaxie
- 13. Kontaktlöcher

- Verbindet (spätere) Metallisierung mit Polysilizium oder Diffusion
- Anschlüsse der Transistoren: Gate, Source, Drain
- Herstellung: Ätzprozess

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

CMOS-Herstellungsprozess (cont.)

14. Metallverbindung

- Erzeugt Anschlüsse im Bereich der Kontaktlöcher
- Herstellung: Metall aufdampfen, Ätzen nach Planarprozess
- 15. weitere Metalllagen
 - \blacktriangleright Weitere Metallisierungen, bis zu 7 \times Metall
 - Schritte: 12. bis 14. wiederholen

Rechnerstrukturen

Register-Transfer Ebene - CMOS-Schaltungen - CMOS: Schaltungen

- 16. Passivierung
 - Chipoberfläche abdecken, Plasmanitridschicht
- 17. Pad-Kontakte öffnen

Rechnerstrukturen

Inhalt

- Speicher
- Register-Transfer-Ebene
- Halbleitertechnologie
- CMOS-Schaltungen
- Programmierbare Logikbausteine
- Entwurf Integrierter Schaltungen

Programmierbare Logikbausteine

Kompromiss zwischen fest aufgebauter Hardware und Software-basierten Lösungen auf Computern

- Realisierung anwendungsspezifischer Funktionen und Systeme
 - gute bis sehr gute Performance
 - hoher Entwurfsaufwand
 - vom Anwender (evtl. mehrfach) programmierbar
- Klassifikation nach Struktur und Komplexität
 - PROM Programmable Read-Only Memory
 - PAI Programmable Array Logic GAL
 - Generic Array Logic
 - Programmable Logic Array
 - Complex Programmable Logic Device
 - Field-Programmable Gate Array

PLA

CPLD

FPGA

. . .

MIN-Fakultät Fachbereich Informatik

Rechnerstrukturen

PROM: Programmable Read-Only Memory

• Hades Beispiel: n = 4, 16x8 bit

Rechnerstrukturen

PAL: Programmable Array Logic

- disjunktive Form: UND-ODER Struktur
- UND-Ausgänge fest an die ODER-Eingänge angeschlossen
- Eingänge direkt und invertiert in die UND-Terme geführt
- Verknüpfungen der Eingänge zu den UND-Termen programmierbar
- heute durch GAL ersetzt (s.u.)

Rechnerstrukturen

PLA: Programmable Logic Array

- disjunktive Form: logische UND-ODER Struktur
- Eingänge direkt und invertiert in die UND-Terme geführt
- Verknüpfungen Eingänge UND-Terme
- Verknüpfungen UND-Ausgänge zu ODER-Eingängen programmierbar
- in NMOS-Technologie sehr platzsparend realisierbar
- und zwar als NOR-NOR Matrix (de-Morgan Regel!)
- aber statischer Stromverbrauch
- in CMOS-Technologie kaum noch verwendet

MIN-Fakultät Fachbereich Informatik

Rechnerstrukturen

PLA: Programmable Logic Array

(Hades tams.informatik.uni-hamburg.de/applets/hades/webdemos/42-programmable/10-pla/pla.html

Rechnerstrukturen

GAL: Generic Array Logic

- disjunktive UND-ODER Struktur
- externe Eingänge und Ausgangswerte direkt/invertiert
- ▶ "Fuses" verbinden Eingangswerte mit den AND-Termen
- programmierbare Ausgabezellen (OLMC) mit je einem D-Flipflop
- Output-Enable über AND-OR Matrix steuerbar
- drei Optionen
 - synchron/kombinatorisch (Flipflop nutzen oder umgehen)
 - Polarität des Eingangs (D oder D speichern)
 - Polarität des Ausgangs (Q oder Q ausgeben)
- Beispiel: GAL16V8 mit 8 Ausgabezellen, je 7+1 OR-Terme pro Ausgabezelle, 32 Eingänge pro Term.

Rechnerstrukturen

GAL: Blockschaltbild (Ausschnitt)

programmierbare Sicherungen durchnummeriert

- kompakte Darstellung der UND-Terme: je eine Zeile
- Beispiel zweiter Term (ab 0032): $y = 1 \lor 2 \lor \overline{3}$

(ロ > 〈 母 > 〈 臣 > 〈 臣 > 〈 � へ �)

MIN-Fakultät Fachbereich Informatik

Rechnerstrukturen

GAL: Ausgabezelle mit Flipflop OLMC: Output-Logic-Macrocell

Norman Hendrich

< ロ > < 母 > < 三 > < 三 > のへぐ

Rechnerstrukturen

GAL: Beispiel Ampel

イロト イ団ト イミト イミト 少くや

FPGA: Field-Programmable Gate-Array

Sammelbegriff für "große" anwender-programmierbare Schaltungen

- Matrix von kleineren programmierbaren Zellen
- ▶ z.B. 64x1 SRAM als Lookup für Funktionen mit 4 Variablen
- Multiplexer-Netzwerk als programmierbare Verbindung
- zusätzliche "Makrozellen":
 - Multiplizierer
 - schnelle serielle Kommunikation
 - eingebettete Multiplizierer
- ► Komplexität derzeit bis über 400 000 Gatteräquivalente
- Xilinx, Altera, weitere

MIN-Fakultät Fachbereich Informatik

Rechnerstrukturen

FPGA: Altera Prototypenboard

(Altera)

< ロ > < 団 > < 三 > < 三 > ののの

Rechnerstrukturen

Inhalt

- Speicher
- Register-Transfer-Ebene
- Halbleitertechnologie
- CMOS-Schaltungen
- Programmierbare Logikbausteine
- Entwurf Integrierter Schaltungen

Entwurf Integrierter Schaltungen

besonders anspruchsvoller Bereich der Informatik:

- Halbleiterfertigung benötigt vorab sämtliche Geometriedaten
- spätere Änderungen eines Chips nicht möglich
- Durchlauf aller Fertigungsschritte dauert Wochen bis Monate
- Entwürfe müssen komplett fehlerfrei sein
- spezielle Hardware-/System-Beschreibungssprachen
- Simulation des Gesamtsystems
- Analyse des Zeitverhaltens
- ggf. Emulation/Prototyping mit FPGAs
- Kombination von Hardware- oder Softwarerealisierung von Teilfunktionen, sog. HW/SW-Codesign

Rechnerstrukturen

Entwurfsablauf

Wasserfallmodell

- Lastenheft
- Verhaltensmodell (Software)
- Aufteilung in HW- und SW-Komponenten
- funktionale Simulation/Emulation und Test
- Synthese oder manueller Entwurf der HW, Floorplan
- Generieren der "Netzliste" (logische Struktur)
- Simulation mit Überprüfung der Gatter-/Leitungslaufzeiten
- ► Generieren und Optimierung des Layouts ("Tapeout")

Rechnerstrukturen

Y-Diagramm

(Gajski, 1988)

Rechnerstrukturen

Y-Diagramm: Deutung

- drei unterschiedliche Aspekte/Dimensionen:
- 1 Verhalten
- 2 Struktur (logisch)
- 3 Geometrie (physikalisch)
- Ende des Entwurfsprozesses ist die vollständige Geometrie des Chips (ganz innen)
- benötigt für die Halbleiterfertigung (Planarprozess)
- Start möglichst abstrakt, z.B. als Verhaltensbeschreibung
- Entwurfsprogramme ("EDA", electronic design automation) unterstützen den Entwerfer: setzen Verhalten in Struktur und Struktur in Geometrien um

Entwurfsstile

Was ist die "beste" Realisierung einer gewünschten Funktionalität?

- mehrere konkurrierende Kriterien
 - ► Performance, Chipfläche, Stromverbrauch
 - Stückkosten vs. Entwurfsaufwand und Entwurfskosten
 - Zeitbedarf bis zur ersten Auslieferung und ggf. f
 ür Designänderungen
 - Schutz von Intellectual-Property
 - . . .
- - full-custom Schaltungen
 - semi-custom Bausteine: Standardzellen, Gate-Arrays
 - ► anwender-programmierbare Bausteine: FPGA, PAL/GAL, ROM
 - ▶ als Software auf von-Neumann Rechner: RAM, ROM

Rechnerstrukturen

Full-custom ("Vollkunden-Entwurf")

- vollständiger Entwurf der gesamten Geometrie eines Chips
- ▶ jeder Transistor einzeln "massgeschneidert" und platziert
- vorgegeben sind lediglich die Entwurfsregeln (*design-rules*) des jeweiligen Herstellungsprozesses (Strukturbreite, Mindestabstände, usw.)
- gegebenenfalls Verwendung von Teilschaltungen/Makros des Herstellers
- minimale Chipfläche, beste Performance, kleinster Stromverbrauch
- geringste Stückkosten bei der Produktion
- aber höchste Entwurfs- und Maskenkosten
- erste Prototypen erst nach Durchlaufen aller Maskenschritte

Rechnerstrukturen

Semi-custom: Standardzell-Entwurf

- Entwurf der Schaltung mit vorhandenen Grundkomponenten:
 - Basisbibliothek mit Gattern und Flipflops
 - teilweise (konfigurierbare) ALUs, Multiplizierer
 - teilweise (konfigurierbare) Speicher
- Entwurfsregeln sind der Bibliothek berücksichtigt
- Platzierung der Komponenten und Verdrahtung
- ▶ kleine Chipfläche, gute Performance, niedriger Stromverbrauch
- geringe Stückkosten
- hohe Maskenkosten (alle Masken erforderlich)
- erste Prototypen erst nach Durchlaufen aller Maskenschritte
- ▶ nur bei Massenprodukten wirtschaftlich, ab ca. 100.000 Stück
- ► z.B. Speicherbausteine (SRAM, DRAM), gängige Prozessoren

Semi-custom: Gate-Arrays

- Schaltung mit Gattern/Transistoren an festen Positionen
- Entwurf durch Verdrahten der vorhandenen Transistoren
- überzählige Transistoren werden nicht angeschlossen
- mittlere Chipfläche, mittlere Performance, mittlerer Stromverbrauch
- mittlere Stückkosten
- mittlere Maskenkosten (nur Verdrahtung kundenspezifisch)
- Prototypen schnell verfügbar (nur Verdrahtung)
- ▶ ab mittleren Stückzahlen wirtschaftlich, ab. ca. 1000 Stück

Rechnerstrukturen

FPGA: Field-Programmable Gate-Arrays

- Hunderte/Tausende von konfigurierbaren Funktionsblöcken
- Verschaltung dieser Blöcke vom Anwender programmierbar
- Entwurfsprogramme setzen Beschreibung des Anwenders auf die Hardware-Blöcke und deren Verschaltung um
- derzeit bis ca. 1M Gatter-Äquivalente möglich
- ► Taktfrequenzen bis ca. 100 MHz
- zwei dominierende Hersteller: Xilinx, Altera
- nicht benutzte Blöcke liegen brach
- Schaltung kann in Minuten neu programmiert/verbessert werden

Rechnerstrukturen

FPGA: selbstgemacht: Projekt 64-189

- Ideen f
 ür einen Mikrochip? Zum Beispiel f
 ür Bildverarbeitung, 3D-Algorithmen, Parallelverarbeitung, usw.
- ▶ Hereinschnuppern: Projekt 64-189 Entwurf eines Mikrorechners
- eigenen Prozessor mit Befehlssatz etc. entwerfen und auf FPGA realisieren
- Demo-Boards von Altera und Xilinx und Entwurfssoftware sind bei uns am Department verfügbar
- interessante Entwürfe können sofort umgesetzt und getestet werden
- einfach bei TAMS oder TIS vorbeischauen

Register-Transfer Ebene - Literatur

Rechnerstrukturen

Literatur: Quellen für die Abbildungen

- Andrew Tanenbaum, Structured Computer Organization, 5th. edition, Pearson Prentice Hall, 2006
- Steven Furber, *ARM System-on-Chip Architecture*, Addison-Wesley, 2000
- Andreas M\u00e4der,

Vorlesung Rechnerstrukturen und Mikrosysteme (RAM), Universität Hamburg, FB Informatik, 2008

Norbert Reifschneider: CAE-gestützte IC-Entwurfsmethoden.
 Prentice Hall; München, 1998

Literatur: Vertiefung

- Reiner Hartenstein, Standort Deutschland: Wozu noch Mikro-Chips, IT-Press Verlag, 1994 (vergriffen)
- N.E.H. Weste & K. Eshragian, *Principles of CMOS VLSI Design — A Systems Perspective*, Addison-Wesley Publishing, 1993
- G. Nicolescu and P.J. Mosterman (ed.), Model-Based Design for Embedded Systems, CRC Press, 2010
- C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, 1982
- Giovanni de Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994