
Norman Hendrich

HADES Tutorial

version 0.92 — 21st December 2006



Contact:

University of Hamburg
Computer Science Department
Norman Hendrich
Vogt-Koelln-Str. 30
D-22527 Hamburg
Germany

hendrich@informatik.uni-hamburg.de

version 0.92
21st December 2006



Contents

1 Introduction 1
1.1 How to read this Tutorial. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 What is Hades?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Showcase and demos 5
2.1 Hamming Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Carry-Lookahead Adder. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Traffic-light controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 TTL-series 74xx components. . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 RTLIB 16-bit counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 RTLIB user-defined ALU. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 D*CORE processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.8 MIDI-controller using a PIC16C84 microcontroller. . . . . . . . . . . . . . 13
2.9 Micropipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
2.10 Switch-level Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.11 Applet Website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

3 Installation 17
3.1 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
3.2 System requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Choosing a Java virtual machine. . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Hades Download. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3.5 Recommended file structure. . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 Installation with JDK/JRE 1.4. . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Installation with other JVMs. . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 User preferences and configuration. . . . . . . . . . . . . . . . . . . . . . . 23
3.9 Registering .hds files on Windows. . . . . . . . . . . . . . . . . . . . . . . 24
3.10 Jython. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
3.11 Multi-user installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12 Applet installation and issues. . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.13 Developer Installation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Hades in a Nutshell 29
4.1 Running Hades. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
4.2 Using the Popup-Menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Creating Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Adding I/O-Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Component Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6 Display Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
4.7 Creating Wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
4.8 Adding Wire Segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9 Connecting existing Wires. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.10 Moving Wire Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.11 Deleting Wires or Wire Segments. . . . . . . . . . . . . . . . . . . . . . . 37
4.12 Changing Signal Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.13 Editor Bindkeys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4.14 Loading and Saving Designs. . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.15 Digital Simulation and StdLogic1164. . . . . . . . . . . . . . . . . . . . . 39
4.16 Interactive Simulation and Switches. . . . . . . . . . . . . . . . . . . . . . 40
4.17 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
4.18 Tip: Restarting the Simulation. . . . . . . . . . . . . . . . . . . . . . . . . 41
4.19 Tip: Unexpected Timing Violations. . . . . . . . . . . . . . . . . . . . . . 42

i



5 Advanced editing 43
5.1 Hierarchical Designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Editor bindkeys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
5.3 Printing and fig2dev export. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 VHDL export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

6 Waveforms 51
6.1 Probes and the waveform viewer. . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Waveform types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
6.3 Using the waveform viewer. . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Searching waveform data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.5 Saving and loading waveform data. . . . . . . . . . . . . . . . . . . . . . . 55
6.6 Bindkeys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
6.7 Scripting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

7 Model libraries 58
7.1 Model library organization. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 Accessing simulation components. . . . . . . . . . . . . . . . . . . . . . . 59
7.3 Colibri Browser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
7.4 Label component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
7.5 Interactive I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
7.6 VCC, GND, Pullup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.7 Basic and complex logic gates. . . . . . . . . . . . . . . . . . . . . . . . . 64
7.8 Flipflops. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
7.9 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
7.10 ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
7.11 RTLIB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
7.12 TTL 74xx series models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.13 System-level components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.14 PIC 16C84 microcontroller. . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.15 MIPS IDT R3051 core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Scripting and Stimuli 71
8.1 Java-written scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2 Batch-mode simulation and circuit selftests. . . . . . . . . . . . . . . . . . 73
8.3 Jython. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
8.4 Generating simulation stimuli. . . . . . . . . . . . . . . . . . . . . . . . . . 77
8.5 Stimuli files and class StimuliParser. . . . . . . . . . . . . . . . . . . . . . 79

9 Writing Components 81
9.1 Overview and Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 81
9.2 Simulation Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
9.3 Graphics: Static Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.4 A Simple Example: Basic AND2 Gate. . . . . . . . . . . . . . . . . . . . . 88
9.5 A D-Flipflop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
9.6 Wakeup-Events: The Clock Generator. . . . . . . . . . . . . . . . . . . . . 93
9.7 Dynamic Symbols and Animation. . . . . . . . . . . . . . . . . . . . . . . 96
9.8 PropertySheet and SimObject User Interfaces. . . . . . . . . . . . . . . . . 98
9.9 Assignable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
9.10 DesignManager. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
9.11 DesignHierarchyNavigator. . . . . . . . . . . . . . . . . . . . . . . . . . .102
9.12 Logging messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

10 FAQ, tips and tricks 103
10.1 Frequently asked questions. . . . . . . . . . . . . . . . . . . . . . . . . . .103

10.1.1 The documentation is wrong?. . . . . . . . . . . . . . . . . . . . .103
10.1.2 The editor hangs?. . . . . . . . . . . . . . . . . . . . . . . . . . . .103
10.1.3 The popup menu is dead. . . . . . . . . . . . . . . . . . . . . . . .103
10.1.4 How do I cancel a command?. . . . . . . . . . . . . . . . . . . . .103
10.1.5 I can’t get it running . . . . . . . . . . . . . . . . . . . . . . . . . .103

ii



10.1.6 How to check whether my hades.jar archive is broken?. . . . . . . . 104
10.1.7 I get a ClassNotFoundError. . . . . . . . . . . . . . . . . . . . . .104
10.1.8 The editor starts, but I cannot load design files. . . . . . . . . . . . 104
10.1.9 The Java virtual machine crashes. . . . . . . . . . . . . . . . . . . .104
10.1.10 The editor crashes. . . . . . . . . . . . . . . . . . . . . . . . . . .105
10.1.11 I cannot double-click the hades.jar archive. . . . . . . . . . . . . . .105
10.1.12 I got an OutOfMemoryError. . . . . . . . . . . . . . . . . . . . . .105
10.1.13 What are those editor messages?. . . . . . . . . . . . . . . . . . . .106
10.1.14 Missing components after loading a design. . . . . . . . . . . . . .106
10.1.15 Editor prints hundreds of messages while loading. . . . . . . . . . . 106
10.1.16 Something strange happened right now. . . . . . . . . . . . . . . .106
10.1.17 ghost components, ghost signals. . . . . . . . . . . . . . . . . . . .106
10.1.18 How can I disable the tooltips?. . . . . . . . . . . . . . . . . . . . .106
10.1.19 Why is this object off-grid? Why won’t the cursor snap to the object?107
10.1.20 Why can’t I connect a wire to this port?. . . . . . . . . . . . . . . .107
10.1.21 Hades won’t let me delete an object. . . . . . . . . . . . . . . . . .107
10.1.22 Why don’t the bindkeys work?. . . . . . . . . . . . . . . . . . . . .107
10.1.23 I get timing violations from my flipflops. . . . . . . . . . . . . . . .107
10.1.24 Why won’t the editor accept to rename a component/signal?. . . . . 107
10.1.25 Why doesn’t the cursor represent the editor state?. . . . . . . . . . . 107
10.1.26 Operation X is slow . . . . . . . . . . . . . . . . . . . . . . . . . .107
10.1.27 Remote X11-Display is very slow. . . . . . . . . . . . . . . . . . .107
10.1.28 The simulation is suddenly very slow. . . . . . . . . . . . . . . . .108
10.1.29 GND, VCC, and Pullup components do not work. . . . . . . . . . . 108
10.1.30 The simulator reports undefined values. . . . . . . . . . . . . . . .108
10.1.31 How can I automatically restore editor settings?. . . . . . . . . . . . 109
10.1.32 My waveforms get overwritten?. . . . . . . . . . . . . . . . . . . .109
10.1.33 How can I edit a SimObject symbol?. . . . . . . . . . . . . . . . .109

10.2 Tips and tricks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
10.2.1 What other programs are in hades.jar? How to run them?. . . . . . . 109
10.2.2 User-settings in .hadesrc. . . . . . . . . . . . . . . . . . . . . . . .110
10.2.3 How to enable or disable glow-mode for individual signals?. . . . . 110
10.2.4 What can I do to debug my circuits?. . . . . . . . . . . . . . . . . .110
10.2.5 I need a two-phase clock. . . . . . . . . . . . . . . . . . . . . . . .110
10.2.6 How can I print my circuit schematics?. . . . . . . . . . . . . . . .110
10.2.7 Printing problems. . . . . . . . . . . . . . . . . . . . . . . . . . . .111
10.2.8 How can I export my circuit schematics via fig2dev?. . . . . . . . . 111
10.2.9 I cannot initialize my circuit. . . . . . . . . . . . . . . . . . . . . .111
10.2.10 Simulation does not appear deterministic. . . . . . . . . . . . . . .111
10.2.11 I took a schematic from a book, but the circuit does not work. . . . . 111
10.2.12 VHDL export. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

10.3 Known bugs and features. . . . . . . . . . . . . . . . . . . . . . . . . . . .112
10.3.1 How should I report bugs?. . . . . . . . . . . . . . . . . . . . . . .112
10.3.2 Spurious objects displayed. . . . . . . . . . . . . . . . . . . . . . .112
10.3.3 Repaint algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . .113
10.3.4 Repaint bugs, DirectDraw. . . . . . . . . . . . . . . . . . . . . . .113
10.3.5 How to get rid of an unconnected signal?. . . . . . . . . . . . . . .113
10.3.6 The ’run for’ simulator command may deadlock. . . . . . . . . . . . 113

Bibliography 115

A SetupManager properties 116
A.1 Hades properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
A.2 jfig default properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

B Index 121

iii



List of Figures

1 DCF77 radio controlled clock . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Hades software architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Hamming code demonstration. . . . . . . . . . . . . . . . . . . . . . . . . 6
4 CLA adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Traffic-light controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 TTL circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7 RTLIB 16-bit counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8 User-defined ALU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
9 D*CORE processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
10 MIDI controller with PIC16C84 microprocessor. . . . . . . . . . . . . . . . 13
11 Micropipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
12 Switch-level simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
13 The Applet Website. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
14 Design directories (Linux). . . . . . . . . . . . . . . . . . . . . . . . . . . 20
15 Design directories (Windows). . . . . . . . . . . . . . . . . . . . . . . . . 21
16 Hades default properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
17 Registering .hds as a new file type on Windows 98. . . . . . . . . . . . . . . 25
18 Registering .hds as a new file type on Windows ME (German). . . . . . . . 25
19 Editor popup menu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
20 Creating a NAND2 gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
21 The D-latch components. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
22 The clock generator with its property sheet. . . . . . . . . . . . . . . . . . . 33
23 Selecting the magnetic grid. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
24 The D-latch with components and wires. . . . . . . . . . . . . . . . . . . . 36
25 The stdlogic values and glow-mode colors. . . . . . . . . . . . . . . . . . 39
26 The NOT and AND functions of the stdlogic system (IEEE 1164). . . . . . 39
27 Interactive I/O components. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
28 D-Latch with probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
29 1-bit adder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
30 CLA block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
31 8-bit adder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
32 Important bindkeys in Hades, sorted alphabetically. . . . . . . . . . . . . . 47
33 WaveStdLogicVector waveforms. . . . . . . . . . . . . . . . . . . . . . . . 52
34 Waveform viewer window . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
35 Waveform viewer bindkeys. . . . . . . . . . . . . . . . . . . . . . . . . . . 56
36 Colibri browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
37 ROM with memory editor window. . . . . . . . . . . . . . . . . . . . . . . 66
38 testbench for LFSR-based signature analysis. . . . . . . . . . . . . . . . . . 74
39 Using StimuliGenerator to drive a D-latch circuit. . . . . . . . . . . . . . . 79
40 Hades architecture overview. . . . . . . . . . . . . . . . . . . . . . . . . . 81
41 simobject class hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
42 simulation kernel and events. . . . . . . . . . . . . . . . . . . . . . . . . . 84
43 simulation event processing. . . . . . . . . . . . . . . . . . . . . . . . . . . 85
44 simobject port and signal connections. . . . . . . . . . . . . . . . . . . . . 86
45 package hades.symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

iv



1

1 Introduction

This section introduces the concepts behind Hades, the “Hamburg Design System”, a portablevisual simulation
Java-based visual simulation environment. While Hades can be used for any type of discrete-
event based simulation, the main focus is currently on the simulation of digital logic systems
on gate-level up to system level, including efficient hardware-software cosimulation.

The remainer of this introduction is organized as follows. For the impatient reader, section1.1
sketches the contents of the later chapters of this tutorial. It also recommends the order of
reading for first-time users, experienced users, and developers.

Subsection1.2 explains the need and goals for Hades. A short overview of related work,
covering existing simulation frameworks, digital simulation, and visualization, is presented
in subsection1.4. Subsection1.3contains a summary of the functionality of Hades, together
with a list of the features planned for the near future.

1.1 How to read this Tutorial

For a quick start, browse through the installation instructions in chapter3 and then read getting started
section4, “Hades in a Nutshell”. It presents the user interface and step by step explanations
of the basic editor commands and thestd logic system for digital logic simulation. Should
you encounter trouble, browse through the FAQ in chapter10 and use the index to locate
more detailed information.

Chapter5 builds upon chapter4 and includes information for advanced users already familiaradvanced users
with digital simulation and the basic Hades functionality. It describes how to create hier-
archical designs, lists the common shortcutbindkeys, and the printing and export options.
Chapter6 explains the Hades waveform viewer, chapter7 lists some of the available simula-
tion models, and chapter8 demonstrates scripting.

Chapter9 explains how to write your own simulation models. Three examples are studied indevelopers
detail. First, a simple AND gate is presented as a quasi “minimal” example. Next, a D-flipflop
is shown to demonstrate the interaction between simulation components and the simulator.
The third model, a clock generator, is used to explain access to the simulator, graphics, mouse
input, I/O, and configuration.

1.2 Concept

Our main intention is to provide a simple and portable design and simulation environmentsimple and portable
that may be used by students without long training, and that allows them to “play” with
digital circuits. To this end, Hades—like DIGLOG [Gillespie & Lazzaro 96]—includes an
interactive simulation mode, where circuit inputs can be toggled via mouse-clicks or the
keyboard in real-time. This allows to set the input values while the simulation is running,
without the need to write an external stimulus file, and without lengthy edit-compile-simulate-
analyze cycles. Also, Hades includes a higher degree of animation capabilities than found in
most other electronic design systems.

On the other hand, Hades fully supports hierarchical designs, and all functions can be
scripted, so that experienced users can create and simulate complex systems without the need
for (possible expensive) design software.

Unlike some other systems, where simulation models have to be written in some specialized
internal programming language, all Hades simulation models are directly written in Java.
This gives the designer full access to a modern object-oriented programming language with
a rich class library, including full network access and portable graphics. Despite the lack
of special syntax, simulation models written in Java are not necessarily more verbose than
models written in simulation languages like VHDL [IEEE-93a]. See chapter9 about how to
write your own Hades simulation models.

The combination of a powerful language, a visual editing environment with animation sup-
port, and full access to the simulation kernel makes for new design and debug possibilities.



2 1 INTRODUCTION

Figure 1: A Hades example design: The toplevel schematic of a DCF-77 radio controlled
digital clock, showing basic gates, interactive switches, animated seven segment displays,
subdesigns, and behavioral components including the DCF-77 sender.

For example, writing complete and interactive system-level testbenches for digital system
simulation can be much easier than with other design systems. Additionally, the Hades frame-
work offers full access to its simulation kernel, which can also be replaced by user-defined
simulation algorithms. For example, thehades.models.pic.SmartPic16C84microprocessor
core uses this feature to efficiently synchronize its internal period-oriented operation with ex-
ternal logic running in the discrete-event based simulation kernel. Compared to the traditional
way of running the microprocesor core under control of the discrete-event based simulation
kernel, speedups of a factor of 5 have been observed using this feature.

Also, due to the full object-oriented design of each of the key modules, including all
simulation objects, signals, the simulation engine and the editor, it should be easy to
use Hades for other application areas than just digital system design. For example, the
hades.models.imagingincludes a few image-processing operators written as Hades simula-
tion components.



1.3 What is Hades? 3

events

control
simulation

waveforms

editors

browser
component

component

user−interface system model

graphics editor
and visualization

Design (schematic)

LC−display

(interactive, real−time, VHDL)
simulation kernel

. . .

. . .

SimObject

SimObject

Design

Design

RAM 

ROM

IDT R3051

Figure 2: The software architecture of the Hades framework. Adesignrepresents a hier-
archical collection of simulation models, which interact under control of the event-driven
simulation kernel. The user interface consists of the main graphicaleditor, the component
and librarybrowser, simulation componentproperty dialogsand editors, awaveform viewer,
and thesimulation control.

1.3 What is Hades?

The major components of the Hades framework are shown in figure2. It consists of the
simulation engine, the simulation experiment built from a set of pre-defined simulation com-
ponents, the graphical editor and several other user interface blocks. With the current version
of Hades, you can:

• design and simulate digital electronic circuits,

• on gate level, RT level, and system level,

• based on thestd logic andstd logic vectormulti-level logic system, including buses
with resolution functions,

• visually compose and configure your designs,

• include behavioral and system level components,

• co-simulate hardware and software systems, where software may be either native Java
code or software running on embedded processors,

• write your own models, and include them seamlessly with other components,

• export your designs to RTL and gate-level VHDL (Synopsys compatible),

• annotate your designs with all graphical objects available from the xfig or jfig graphics
editors [xfig 3.2]. This includes the option to export your schematics in high quality to
color Postscript format.



4 1 INTRODUCTION

Naturally, the application spectrum of any design system depends largely on the collection ofavailable libraries
available component libraries. In the current version 0.92 of Hades, the following models are
available:

• basic gates and complex-gates with up to six inputs,

• all standard flipflops,

• a variety of I/O models, including interactive switches and animated components like
LEDs or seven-segment displays,

• behavioral models for many 74xx TTL circuits,

• a large library of RTL components (based on stdlogic vector),

• memories (RAM, ROM, microcode) with graphical memory editors,

• LC-display models, a text terminal (VT52/VT100), UART,

• interfaces to our state-machine editor applet,

• PIC16Cxxx and MIPS R3000 family microcontroller cores,

• LFSR- and BILBO-registers for circuit selftest and signature analysis.

At the moment, all models use a simplified generic timing as might be typical for a 1.0µm
CMOS library. If necessary, subclasses with detailed timing data could be generated to model
a specific ASIC library accurately. See chapter9 on how to write your own Hades simulation
models.

1.4 Related Work

Some commercial general-purpose simulation environments are built upon special simula-ModSIM, KHOROS
tion languages. One example is the SIMGRAPHICS-II environment with its proprietary
simulation language called MODSIM-III [CACI 97]. Most tools, however, use standard pro-
gramming languages like Modula, C/C++ or still FORTRAN for their simulation models, and
provide function or class libraries optimized for specific application areas. Perhaps the best
known example is the KHOROS [Khoral 97] environment for the simulation and visualiza-
tion of image processing tasks.

In electronic design automation, interactive schematics and layout editors have been aroundprofessional
EDA tools for years. However, most commercial design systems like Cadence’s Design Framework

[Cadence 97] or Synopsys VSS [Synopsys 97] are targeted towards professional design engi-
neers. Therefore, they concentrate on functionality and performance, while ease of use is of
little concern. Usually, support for interactive (instead of batch mode) simulation is limited
in these frameworks.

On the other hand, several public-domain and shareware tools intended for beginners areDigLOG
available for the design and simulation of electronic circuits. A well known example are the
DigLOG and AnaLOG simulators [Gillespie & Lazzaro 96] from the University of Berkeley.
Both simulators use a simple visual editor and provide libraries for all standard components
and most of the 74xx series. The simulation models are accurate and highly optimized, result-
ing in high simulation performance. Behavioural or complex models, however, are difficult
to write, because DiGLOG models use a very simple internal language, and support for hi-
erarchical designs is limited. Also, the graphical capabilities are limited, because DigLOG
uses a proprietary user interface without access to the standard GUI components.

Digsim [DIGSIM] is a digital simulator written injava which supports interactive simulation
of simple gate-level circuits. However, support for more complex or hierarchical designs is
limited.



5

2 Showcase and demos

This chapter presents a few Hades design examples as an overview of the editor and simulator
features. The screenshots used in the following pages were taken on both Windows and
Linux systems, with several different windows managers and versions of Java, to underline
the portability of the Hades software.

The first example is a simple gate-level circuit, which illustrates interactive simulation andgate-level
glow-mode. The carry lookahead adder from [Hennessy & Patterson] shows how to use de-
sign hierarchy and custom symbols. The next examples demonstrate the interactive state-
machine editor and a typical 74xx series circuit.

Three examples are then used to explain the register-transfer level simulation models avail-register-transfer level
able in Hades. A simple 16-bit counter and a user-defined ALU show the individual com-
ponents, while the third example presents a complete 16-bit microprocessor with micropro-
grammed control, multiport register bank, and external memories.

Next, a MIDI controller based on a PIC16C84 microcontroller demonstrates hardware/soft-cosimulation
ware-cosimulation. Due to the small number of pins on the microcontroller, the keypad and
display are multiplexed, which poses interesting problems for visualization.

Finally, an asynchronous micropipeline circuit is presented. The complex handshaking usedscripting
in the micropipeline is an excellent demonstration of the use of interactive simulation. Under
the hood, the simulation models for the C-gates and the registers were written in the Jython
scripting language.

Further design examples are used and explained in the later chapters. Archive files with
most of the examples presented here are available for download at the Hades homepage. See
section3 for details on downloading.

The chapter closes with a short overview of the interactive applet collection on our Hadesonline
appletswebsite, which includes over 300 ready-to-run circuits ranging from basic gates and flipflops

to full system-level simulation of 32-bit MIPS-based systems.



6 2 SHOWCASE AND DEMOS

2.1 Hamming Code

Figure 3: Four-bit Hamming code demonstration. The circuit consists of three parts. On the
left are the input switches and the XOR-gates for the Hamming code encoder. On the right is
the decoder with the output and status LEDs. The XOR-gates and switches in the middle of
the screen allow simulating channel faults on each of the seven transmitted signals.

This simple gate-level circuit realizes a 4-bit Hamming-code encoder and decoder. It demon-gate-level circuits
strates the use of interactive simulation and the visualization with glow-mode.

Use the four switches on the left to set the input value for the encoder, and observe theinteractive simulation
decoded value on the four output LEDs. A simple click on the switch will toggle the corre-
sponding signal between the0 and1 values. In glow-mode, the logical value of a signal is
indicated by the signal’s color, which provides immediate visual feedback about the circuitglow-mode
behaviour. Different colors are used for the nine values of thestd logic multi-level logic sys-
tem used by Hades for gate level simulation. For example, cyan color indicates theX value,
allowing to detect un-initialized parts of the circuit at one glance.

The switches and XOR-gates in the middle of the screen allow to invert the signal transmitted
to the decoder, simulating a channel fault on each of the seven transmission signals. Note that
the circuit will correct any single channel-fault, but is unable to detect or correct all double
(or higher) faults.

Another feature of the simulator is the real-time simulation mode which intentionally slowsreal-time mode
the simulation down. This can be used to demonstrate gate-delays and hazards.



2.2 Carry-Lookahead Adder 7

2.2 Carry-Lookahead Adder

Figure 4: Eight-bit carry lookahead adder circuit.

This eight-bit carry lookahead circuit is the interactive version of the carry lookahead adderhierarchical designs
presented in [Hennessy & Patterson]. The example illustrates a design hiearchy, consisting
of eight instances of thesum.hds and seven instances of thecla.hds sub-designs.

A bottom-up design style was used to build the circuit, as the 1-bit adder and 1-bit carry-bottom-up design
generate blocks where designed first. The graphical symbols, required to integrate the sub-
designs blocks into the top-level schematics, can be created automatically. However, custom
graphical symbols are used in the example, to help with algorithm visualization. The steps
required to design hierarchical circuits in Hades are presented in section5.1on page43.

The CLA circuit also includes animated hex-switches and -displays for input and output. Useswitches and displays
the four HexSwitches to select the summand valuesa<7.4>, a<3:0> andb<7:4>, b<3:0>.
Then click thecarry_in switch to set the input value for the adder, and observe the output
value on the seven-segment displays and thecarry_out andcarry_propagate LEDs.



8 2 SHOWCASE AND DEMOS

2.3 Traffic-light controller

Figure 5: Traffic-light controller, realized using the Hades interactive state-machine editor.

This example shows a simple traffic-light controller, realized as an instance of the Hades state-state-machine editor
machine editor. This interactive editor is also available standalone as an applet ontech-www
.informatik.uni-hamburg.de /applets/java-fsm/.

The GUI of the editor is available after selection of the state-machine type (Mealy or Moore)
and the definition of the inputs and outputs of the machine. It is shown in the left part of the
above screenshot and allows to create, edit, and delete states and transitions. Note that the
graphical symbol for the state-machine used in Hades highlights both the active state and the
active transitions of the FSM.

The example circuit also includes theClockGen andPowerOnReset components, as well asclock generator
coloredLEDs.



2.4 TTL-series 74xx components 9

2.4 TTL-series 74xx components

Figure 6: One example of the 74xx series components available in Hades: The internals of
the 7476 JK flipflop.

The above screenshot shows the internal structure of (one half of) the 7476 dual-JK flipflop.TTL 74xx series models
Many of the TTL 74-series components are available as Hades simulation models, some of
which are realized as standard sub-designs, while others are written as behavioural models.

This also allows to design and simulate many legacy circuits, which are often based on thelegacy circuits
74xx series. The only complication is that some circuits don’t use explicit reset logic and rely
on random initialization of the real electronics. Such circuits require either additional reset
logic in Hades, or the use of themetastableflipflops.

Other system-level simulation models in Hades include RAM and ROM memories, a VT52-system-level models
compatible terminal (with serial or parallel interface), standard text and graphics LCD dis-
plays, and measurement equipment like counters or hazard-detectors.



10 2 SHOWCASE AND DEMOS

2.5 RTLIB 16-bit counter

Figure 7: A simple counter circuit built with the RTLIB simulation models.

Besides the standard gate-level simulation models like basic gates and flipflops, Hades alsoregister-transfer level
includes a variety of simulation models for register-transfer level operations. The screenshot
above shows a simple 16-bit synchronous counter with selectable maximum value, built from
a register, an incrementer, a multiplexer, and a comparator.

The input switches used in the example allow incrementing or decrementing their current
value via mouse-clicks. Also, the input values can be set directly via the switch property
sheets. All RTLIB components support bus-widths in the range of 1 to 63 bits.

A special feature is the glow-mode for the bus signals. As with glow-mode for single-bitRTLIB glow-mode
signals, the color is used to encode and visualize the value on the signal. Naturally, using
65536 different colors for a 16-bit signal is not a realistic options. Instead, the encoding
scheme selects a color based on the the last decimal digit of the integer value of the signal.
The colors are chosen as the DIN/IEC code used for resistor marking. For example, integer
values 2, 12, 22, . . . will be encoded with red color, 3, 13, 23, . . . with orange, etc. This very
simple algorithm works surprisingly well and also allows to follow datatransfers in quite
complex circuits (see below).



2.6 RTLIB user-defined ALU 11

2.6 RTLIB user-defined ALU

Figure 8: Interactive demonstration of an user-defined arithmetic-logical-unit. All functions
of the ALU can be changed interactively via the ALU property sheet.

Simple demonstration of a multi-function arithmetic-logical unit. The interactive switchesALU operations
are used to generate input values for the data inputsA, B, Cin and the control inputSEL. The
ALU model supports a 4-bit control input to select 16 different operations out of a set of
about 30 possible operations.

The screenshot also shows the property editor of the ALU simulation model. It allows toproperty sheet
specify the component name and the global parameters bit-width and propagation delay. The
rest of the GUI is used to select the mapping of ALU function codes (opcodes) to the actual
operations. For example, the opcode 9 selects theA AND B.

A similar but more complex example is the datapath circuit used in our T3 lab-course which
combines the user-defined ALU with a multiport register-file.



12 2 SHOWCASE AND DEMOS

2.7 D*CORE processor

Figure 9: A 16-bit microprocessor used for teaching. This circuit features a complete 16-bit
microcprocessor with microprogrammed control unit, three-port register file, multi-function
ALU, bus-interface, address-decoder, RAM, ROM, and I/O components.

This example demonstrates a complex register-transfer level design, built from dozens ofRT-level
RTLIb components. It implements a complete 16-bit microprocessor with datapath and mi-
croprogrammed control, as well as the external memories.

The processor is currently used in our third-semester lab-course on computer architecturemicrocode
and operating system principles. After a set of initial exercises which explain the individual
parts of the processor (e.g. the datapath alone), the students are given the complete hardware
structure shown in the above figure. However, the microcode is initally blank and must be
written by the students. Unlike text-based processor simulators, Hades allows us visualize allvisualization
datatransfers required for the instruction cycle, and the integrated editor for the microprogram
memory allows to modify the microcode without recompilation or restarting the simulator.

The students then proceed to write some assembly programs for their processor, thereby
learning about all levels of machine and program architecture. The memory editor in the top
right corner of the screenshot shows includes the option to disassemble the memory contents,
and it highlights current read and write accesses.

Also, the circuit includes the bus-interface registers and models typical gate-delays and mem-overclocking
ory access times, which can even be used for an overclocking experiment.



2.8 MIDI-controller using a PIC16C84 microcontroller 13

2.8 MIDI-controller using a PIC16C84 microcontroller

Figure 10: A MIDI-controller circuit based on the PIC 16C84 microcontroller core with
multiplexed bus, interactive switches and displays, and a software-controlled RS232 (32.125
KHz) serial communication to the MIDI port.

Based on a PIC16C84 microcontroller, this MIDI (musical instruments digital interface)cosimulation

”
footswitch“ controller demonstrates cosimulation in Hades. The software running on the

microcontroller periodically samples the keypad including debouncing, displays the selected
program number, and generates the corresponding MIDI control messages. The serial com-
munication at 32.125Kbaud is software controlled. The PIC16C84 controller is attractive for
low-cost prototyping because it is EEPROM based and in-circuit programmable. Also, very
cheap programmers are available.

To improve simulation performance, several variants of the PIC16C84 core model are pro-cycle-based simulation
vided. The slowest models uses the external clock input and provides fully accurate timing
for all instructions and interrupts. The faster models use a cycle-based implementation to run
the processor core independently of the event-driven simulation kernel for the I/O signals.
The necessary synchronization is possible using direct method calls to the simulation kernel.

The design also demonstrates the use of thestd_logic logic system to model the buses withmultiplexed displays
weak pullups and multiplexed open-drain switches. A special simulation model is used for
the seven-segment displays, in order to integrate the multiplexed input values for continuous
display.



14 2 SHOWCASE AND DEMOS

2.9 Micropipeline

Figure 11: An asynchronous micropipeline built from Muller C-gates. The simulation mod-
els in this example were written in the Jython scripting language, illustrating the seamless
integration of external simulation models into Hades.

This circuit demonstrates part of an asynchronous micropipeline and allows to play with theasynchronous
complex handshaking protocol between the pipeline stages. It also shows the initialization
problems inherent in asynchronous system design. Using the default simulation models,
with their undefined (std_logic ’U’) initial state, the circuit can only be made to work by
explicit initialization via the command shell or a script.

While this can not been seen on the above screenshot, the simulation models for the mi-Jython
cropipeline were written in the Jython scripting language. A similar approach is possible
with all programming languages that provide a binding to the Java object model. The advan-
tage of a scripting language like Jython is the rapid prototyping style of development. Unlikerapid prototyping
Java-based simulation models, which usually cannot be changed during a simulation run, the
scripts can be re-read and modified even at simulator runtime.



2.10 Switch-level Simulation 15

2.10 Switch-level Simulation

Figure 12: One stage of the adder circuit used by Konrad Zuse in his Z2 and Z3 relais ma-
chines. The dual-rail encoding and wiring ensures that the external carry-input signal prop-
agates instantly through all stages of the adder. Therefore, the total delay of a multi-stage
adder is just one cycle.

Since version 0.98, the Hades framework also integrates support forswitch-level simulation. switch-level
simulationBased on an improved simulation algorithm, the new switch-level components (including

switches, relais, and transmission gates) can be mixed freely with all existing simulation
components. Also, switch-level components can use the whole stdlogic 1164 logic model
and arbitrary gate-delays. No separate simulator or a complex coupled-simulator setup is
required. Instead, the editor ensures that switch-level components are connected via special
signals which manage the extra bookkeeping when switches open or close.

The screenshot above shows a one-bit adder built from two relais. The circuit is based on theZuse adder
clever scheme used by Konrad Zuse in his historical Z2 and Z3 machines. Based on a dual-
rail encoding (both positive and negated polarity) of the carry signal and clever connection to
the relais contacts, multiple stages of the adder can be cascaded without extra logic. Because
the propagation delay through closed contacts is much faster than the switching time of a
relay, the total delay of a multi-stage adder is practically the same as for the one-bit adder.

The screenshot also shows theview-modevariant of the user-interface, where the main menu-view-mode
bar and most edit-controls are hidden from the user. This mode is useful when students are
expected to study and analyse the behaviour of given circuits instead of building their own
circuits.



16 2 SHOWCASE AND DEMOS

2.11 Applet Website

Figure 13: Screenshot of the Hades applet website index page. The applet collection on the
Hades homepage currently includes well about 300 different circuits, each ready to run and
with its own documentation.

Since the widespread availability of high-speed internet access via DSL and similar tech-applet version
niques, it finally proved practical (during 2005) to allow users running the Hades simulator
as applet or via the Java webstart protocol. Our website currently hosts a collection of about
300 individual interactive demonstration applets, each embedded into a webpage with de-
tailed explanation and cross-references to other applets and external web content. The applets
can be accessed with every Java-enabled web-browser and should run without installation.

To keep the downloading times as short as possible, the applet version of Hades consists of
a core software archive of about 2 Megabytes only. This includes editor, simulator, and a
set of basic simulation components. The remaining simulation models and utility classes are
packaged into separate archive files which are downloaded on demand, when the user visits
the corresponding webpages.

In addition to the webpage with embedded applet, we also offer a separateJava webstartlink
for each demonstration circuit. This allows the user to automatically download, install, and
run the full Hades editor without the manual installation (described in detail in chapter3).

The screenshot above shows part of thevisual-indexpage of our website collection, wherevisual index
thumbnail images allow the user to quickly find and access particular applets. Clicking a
thumbnail opens the corresponding web-page.



17

3 Installation

This section presents all steps required to get the Hades editor and simulator to work. Itinstallation
overviewfirst discusses the system requirements and the selection of a suitable Java virtual machine.

Sections3.4and3.5describe the software download and the setup of a working directory for
your designs. Two examples show how to register the Hades.hds files as a new file type
on Windows systems. Finally, section3.11and3.10describe multi-user setup and the steps
involved to script Hades from Jython.

To get Hades running on your system, follow these steps:

1. check that your computer meets the system requirements.
2. verify that you have a suitable Java virtual machine, namely JDK/JRE 1.4.2 or higher.
3. visit the Hades homepage and download the software, documentation, and examples.
4. create a suitable working directory for the design examples and your own designs.
5. optionally, create script files to start the Hades editor with your favorite options. You

may also want to register.hds design files with your operating system.
6. use the software. See the next chapter4 for a walk-through on a simple design example.
7. if you experience problems, see the FAQ (section10) for help.

The Hades editor can also be used as an applet in any Java compatible web browser without
extra installation. However, due to the tight security checks for applets, several functions of
the editor are disabled unless you explicitly override those security settings. The details of
changing the security settings for applets are discussed in section3.12.

3.1 Quick Start

If a suitable Java virtual machine (JDK/JRE 1.4.2 or higher) is already installed on your sys-Webstart
installationtem, you can download and start Hades very easily. Unless you want to modify the simulator

and write and debug your own simulation models, it is probably best to first try theJava
Webstartinstaller. If Java Webstart is setup and enabled in your browser:

• Visit http://tams-www.informatik.uni-hamburg.de/applets/hades/

• Follow the link to thewebstartpage,

• Click thedownload and run Hadesbutton, and wait until the download has completed.

• When prompted by the Webstart installer, agree to run the editor. The installer might
also offer to create desktop and start-menu entries for Hades.

Otherwise, download thehades.jar software archive manually: manual
download

• Visit http://tams-www.informatik.uni-hamburg.de/applets/hades/

• Follow the link to thedownloadpage,

• Use your browser to download thehades.jar archive file (right click, then selectsave
link asor similar). Remember where you save the file.

• Open a command shell, change to the directory that contains thehades.jar file and
run the editor via the command

java -jar hades.jar

Double-clicking thehades.jar file might also start the editor (depending on your
desktop settings).



18 3 INSTALLATION

3.2 System requirements

Hades is written in the Java programming language [Sun 97] and uses features first introduced
with JDK/JRE 1.4. It should run without modification on every computer system that offers
a compatible Java virtual machine (JVM). This includes PCs or workstations running either
Windows XP, Windows 95/98/ME, Linux, most commercial versions of Unix including So-
laris or AIX, and the Apple Mac OS X. In principle, Hades should also work on systems like
fast PDAs and organizers if a JVM is available for that system.

Because of the user interface with the graphical editor, a large and high-resolution monitor isscreen size
recommmended for running Hades. A display of 1024x768 pixels should be ok, but the higher
the better. Depending on your font setup, some dialog windows may not fit on the screen at
resolutions of 800x600 or lower. However, the simulator can also be run as a standalone
application in text-mode without user interface if necessary.

For acceptable performance, a fast processor (Pentium, Athlon) and 256 MBytes of mainperformance
memory are recommended. However, a Pentium-II 300 system with 64 MBytes is more
than adequate to run most of our educational designs. Naturally, the simulation of larger
circuits with thousands of gates may require 256MB of memory or more. On a modern
PC or workstation with a current JVM, the simulator performance should surpass one million
events per second. While Hades should also run on older hardware like a 486 or microSPARC
processor, you probably won’t like the performance.

When running a simulation, Hades stresses many parts of the JVM and operating system,OS versions
especially the graphics system due to frequent full-screen repainting, but also the thread syn-
chronization and memory management including garbage-collection. Should you experience
problems with the simulator, please ensure that your operating system libraries and device
drivers (graphics card) are up-to-date. Note that no stable Java virtual machines are available
for Windows 3.11 and older version of Linux (e.g. kernels 2.0.x).

3.3 Choosing a Java virtual machine

Since its introduction in 1995, the Java platform has evolved dramatically from the first
JDK 1.0 release to the current JDK/JRE 1.5 (Java 5) and the upcoming next release (Java 6).
The current version of Hades uses large parts of the Java class libraries, including some
methods and classes first introduced with JDK/JRE 1.4. Therefore, you need a Java virtual
machine that supports Java 1.4 or higher to run the Hades software.

The following short list shows which JVMs are known to work with Hades on Windows,recommendations
Linux/x86, and Solaris systems:

Windows 95/98/ME Sun JDK 1.4.2
IBM JDK 1.4.1

Windows 2000/XP Sun JDK 1.5.0
Sun JDK 1.4.2
IBM JDK 1.4.1

Linux (x86) Sun JDK 1.5.0
Sun JDK 1.4.2
IBM JDK 1.4.1
Blackdown JDK 1.4.2

Solaris (Sparc) Sun JDK 1.5.0

MacOS X Apple JDK 1.4.2

Current versions of the JDK/JRE are available for download from the Sun Microsystems Java
website,www.javasoft.com. For other systems, please contact your system vendor for the
availability of a suitable Java virtual machine.



3.4 Hades Download 19

3.4 Hades Download

Unless you receive the Hades software on CDROM or magnetic media, please visit the HadesHades homepage
homepage,http://tams-www.informatik.uni-hamburg.de/applets/hades/ for in-
formation, design examples, and software downloads.

Follow the link to thedownloadpage, then download and save a copy of thehades.jar file. hades.jar
This archive is in executable JAR/Zip-format and includes the complete Hades software and
simulation components.

After downloading,do not unpackthe archive file, unless you want to modify the software.
All current Java virtual machines work much faster when accessing classes and resources
from the packed archive file, instead of loading hundreds of individual files. Also, the signa-
tures and main-class attributes stored in the archive will not work after unpacking. However,
if you suspect that thehades.jar file was damaged during download, you can use your fa-
vorite packer tool to list the archive contents. For example, try to open the archive in WinZip,
or use thejar-utility program from the JDK,jar tf hades.jar. This should print or list
several hundred files.

The download area on the Hades homepage also offers some documentation and design ex-docs and examples
amples. All recent documentation files use the PDF document format, while older files are
available in (compressed) Postscript format. The design examples archive files are in ZIP-
format and should be downloadable with all current browsers.

3.5 Recommended file structure

The next step is to create a directory for your own design files as well as the examples designUnix/Linux
files. Figure14 shows the recommended file structure with a subdirectory calledhades
below your home directory on a Linux system. In the screenshot, the newly created directory
is called/home/hendrich/homework/hades and is used to hold thehades.jar executable
JAR-archive with the Hades software. Below that directory, thet3 subdirectory holds some
.hds design files, e.g./home/hendrich/homework/hades/t3/datapath.hds. Another
subdirectory,examples holds a few other subdirectories with Hades design examples, e.g.
thebilbo/bilbo.hds file.

A similar directory structure should be used on Windows systems. The screenshot in fig-Windows
ure 15 shows the recommended setup with the\hades subdirectory, the location of the
\hades\hades.jar executable JAR-archive, and the\hades\examples and\hades\t3
example directories.

If possible, try to avoid special characters or spaces in directory and file names. Such names
are difficult to enter via the command line, and some versions of the JDK/JRE have bugs that
may result in obscure problems. For example, the default location for a user’s home directory
on a German Windows XP system isC:\Dokumente und Einstellungen\username\
Eigene Dateien\, which is very long and contains three space characters. A new direc-
tory like C:\users\username\ might be a better alternative.

Unlike thehades.jar archive, which should be kept packed, the design examples archiveunpacking examples
files must be unpacked before using the examples. When unpacking with a Windows based
packer program like WinZip, always select the option to preserve the directory structure from
the archive. If you uncheck the option, the Hades editor may not be able to load subdesign
.hds files in hierarchical designs or resources referenced by design files. See the above
screenshots for examples on how the final directory structure should look like.

Note that the directory structure used in the example archives is not always consistentavoid hades/hades/
(but cannot be changed easily for compatibility with older Hades versions). For exam-
ple, the standardhades-examples.zip file includes the full directory structure,/hades/
examples/x/y.hds. When unpacking this archive, please avoid to create a nested directory
structure (hades/hades/examples/), because this will not work with (older) versions of
Hades. For example, with the directory structure shown in figure15, you should unpack the
hades-examples.zip file to theC:\Eigene Dateien directory.



20 3 INSTALLATION

Figure 14: Example directory structure for single-user Hades installation on Linux.

3.6 Installation with JDK/JRE 1.4

Default installation

The default installation of the JDK or JRE on Windows changes theWindows search pathWindows
to include the main Java executables (java.exe andjavaw.exe, the latter without console
window). Therefore, you can call the Java executable without further settings. For example,
with the directory structure shown in figure15and the JDK 1.4 installed, you would start the
Hades simulator from a command (DOS) shell with the following commmand line:

java -jar "C:\Eigene Dateien\hades\hades.jar"

The double-quotes are required because of the space character inside the directory name.



3.6 Installation with JDK/JRE 1.4 21

Figure 15: Example directory structure for single-user Hades installation on Windows.

If you call thejava executable directly from your design directory, you can avoid to type the
full path to thehades.jar, because the VM will then find the file in the current directory.
Please check the release notes for your JDK to learn about additional command line options.
For example, in order to increase the memory limit for the virtual machine, you could use the
following command:

cd "C:\Eigene Dateien\hades"
java -Xmx256M -jar hades.jar

For long-running simulations, it might also be useful to select the so-calledservervirtual
machine instead of the defaultclientVM, if the former is available on your system. While the
client VM is is optimized for quick application startup and desktop performance, the server
VM uses more aggressive optimizations which often results in higher simulation speed:

java -server -Xmx512M -jar hades.jar"

On Windows systems with JDK 1.4 or higher, you should also be able to run JAR-archivesdouble-clicking
hades.jarby double-clicking the archive file. Therefore, you can drop a link from thehades.jar

archive to your desktop or start-menu, allowing you to start the Hades editor just like any
other windows application.

If double-clicking thehades.jar archive does not work, please check that the JAR-archive
itself is intact — see the FAQ (10.1.6). Second, another program might have registered itself
as the application for the.jar filename extension. This frequently happens when installing
a packer program after installing the JDK. If such cases, you may have to un-install and
re-install the JDK (this is probably easier than editing the Windows registry directly).

The situation on Linux and Unix platforms is a little bit more complicated, due to differencesUnix and Linux
between the vendor’s virtual machines and the directory structure used by your operating sys-
tem. For example, the JDK 1.4 could be installed in/opt/jdk1.4, /opt/sfw/j2sdk1.4.2,
/usr/lib/jdk1.4, etc.

Also, thejava executable might not even be included in your default search path, especially
when multiple versions of the JDK/JRE are installed. In that case, simply use the absolute
path to reference and call the Java virtual machine executable. For example:

cd /home/hendrich/homework/hades
/usr/lib/jdk1.4.2/bin/java -jar hades.jar



22 3 INSTALLATION

Using the JDK extension package mechanism

Instead of manually setting the CLASSPATH environment variable, all versions of the JDKJava extension packages
since 1.2.2 also support theJava extension mechanism. Basically, the trick is that the JDK
automatically searches a special directory for.jar archives when looking for Java classes.
Therefore, it is not necessary to set the CLASSPATH environment variable for JAR archives
copied to the extension directory.

On current Windows and Unix versions of the JDK or JRE, this magic directory is calledJDKDIR/jre/lib/ext
<JDKDIR>/jre/lib/ext and is initially empty after a default JDK or JRE installation
(where<JDKDIR> means the base directory of the JDK installation, e.g.C:\jdk1.4.2 or
/opt/j2sdk1.4.2). Just copy thehades.jar file into this directory and change the file
permission flags to allow read access for all users, if necessary. Note that theext directory
may only be writable for the system administrator. If you plan to use Jython for scripting you
may also want to copy thejython.jar to the ext directory, see section3.10.

For example, the resulting JDK directory structure may look like the following on a Windows
system:

C:\jdk1.5.0
C:\jdk1.5.0\jre
C:\jdk1.5.0\jre\bin
C:\jdk1.5.0\jre\bin\java.exe -- Java executable with window
C:\jdk1.5.0\jre\bin\javaw.exe -- Java executable w/o window
C:\jdk1.5.0\jre\bin\...
C:\jdk1.5.0\jre\lib
C:\jdk1.5.0\jre\lib\ext
C:\jdk1.5.0\jre\lib\ext\hades.jar -- Hades and jfig
C:\jdk1.5.0\jre\lib\ext\jython.jar -- Jython (optional)
C:\jdk1.5.0\jre\lib\ext\... -- more .jar files

You could then run the Hades editor and any other applications from thehades.jar archiveother applications
in hades.jar just by giving the main class name as the argument to thejava executable. For example, you

could enter the following commands into a command (DOS) shell:

java hades.gui.Editor -- Hades editor
java hades.models.pic.PicAssembler -- PIC 16 series assembler
java jfig.gui.Editor -- jfig graphics editor
...
java org.python.util.jython -- jython interpreter
...

Naturally, it is possible to write short script files to execute the above commands, to avoidwindows script
typing the command again and again. For example, to start the Hades editor you could write
the following file and save it ashades.bat,

rem file hades.bat
rem run the Hades editor with JDK (1.4+), no CLASSPATH required,
rem because hades.jar is in JDKDIR\jre\lib\ext\hades.jar,
rem allow up to 256 MByte of memory
rem
javaw -Xmx256M hades.gui.Editor

Here is a similar script for Unix. Set the execute permission (x) bits for the script file andUnix
copy it to one of the directories in your search path:

# hades.bin
java -Xmx256M hades.gui.Editor -file $1



3.7 Installation with other JVMs 23

The obvious advantage of using the extension mechanism is that all classes in the exten-
sion packages are instantly useable by all Java applications, without any further complicated
CLASSPATH setup. The disadvantage is the possible conflict between classes installed lo-
cally and the classes in the extension directory. Therefore, the extension mechanism should
only be used for stable packages, but not during development.

3.7 Installation with other JVMs

The current version of Hades uses large parts of the Java class libraries, including the so-
called Swing-based user-interface and Java2D-based graphics. Also, it relies on a few meth-
ods only introduced with release 1.4 of the JDK/JRE. Despite several ongoing efforts to
provide alternative Java virtual machines, none of those projects has yet delivered a runtime
that fully and reliably provides all functions rerquired by Hades.

The following list summarizes the situation:

• JDK 1.3 and older: these versions of the Java runtime are obsolete and have been
replaced by newer versions. Please use the JDK 1.4 or higher.

• Microsoft VM(jview): This VM originated as a complete Java runtime environment for
Windows, with good performance and several interesting features, but lacking compat-
ibility. Discontinued due to legal issues. Not suitable for running Hades anymore.

• Kaffe, jamvm+classpath, etc: Theclasspathproject strives to provide a complete reim-
plementation of the original Java class libraries as free and open-source software. The
classpath libraries can be combined with several different virtual machines to provide
a full Java runtime environment.

Despite major improvements during 2005, it is not yet possible to reliably run Hades on
top of theclasspathlibraries, mostly due to a few subtle bugs in Swing and Graphics2D.

• gcj+classpath: The gnu compiler for Javaallows compiling Java classes to native
executable programs on a variety of platforms. Asgcj is also based on theclasspath
libraries, the same restrictions are explained in the preceding paragraph apply.

3.8 User preferences and configuration

At application startup, the Hades editor first reads a global configuration file included in theeditor startup
hades.jar archive, and then searches for user-defined configuration files. This allows to
change the default configuration and editor behaviour to your preferences. Currently, the edi-
tor uses the following sequence to read the configuration data. It first reads the default config-
uration from the file/hades/.hadesrc contained in thehades.jar archive. (If necessary,
you can use thejar tool from JDK with the update option to change the global configuration
file inside thehades.jar, but you should be careful to keep sensible default values.) Next,
the editor tries to read a file called.hadesrc in your home directory. Finally, it tries to read
a .hadesrc file in the current working directory. This hierarchy means that you can have
global (default) attributes, your user preferences, and also local preferences for each Hades
design or project.

For example, you can decide whether the simulator should start automatically after a design
file has been loaded, you can specify the initial window size and position, colors to be used
for glow-mode, etc. See appendixA on page116 for the list of the available property keys
and their default values.

To edit the configuration files, start the Hades editor and then selectMenu. Special. Show
properties. . . to open the properties viewer. The screenshot in figure16 shows the Hades
properties viewer window, together with some property keys and values. The bottom part
of the properties viewer window shows the filenames for your user- and local- (working
directory) properties files. Clicking on one of the buttons will export all properties from
the dialog window to the corresponding file. Note that the propertiews viewer only exports
property keys whose values start with"hades" or "jfig". Naturally, you can also write and
edit the.hadesrc startup files directly with your favorite editor.



24 3 INSTALLATION

Figure 16: Screenshot of the Hades properties viewer, showing a few of the properties which
control the editor and simulator startup behaviour.

3.9 Registering .hds files on Windows

If you prefer a document-oriented style of working, you may want to register a new file type
for Hades design files and to associate that file type with your JVM and the Hades editor.
Upon double-clicking a.hds design file, your operating system would then start the Java
virtual machine, initialize the Hades editor and then load the design file into the editor.

Naturally, the actual GUI settings required to change the file associations depend on your
version of Windows, your language settings, and your Java virtual machine. As examples,
figures17 and 18 show the GUI settings for a Windows 98 system (English) and a Win-
dows ME system (German language), but the steps are similar for Windows XP. You first
open theFolder optionsdialog window from anExplorer window or theControl Panel. In
the dialog window you select theFile Typespanel. SelectNew Typeto create the.hds file
type orEdit if it already exists. Enter the file type description, possibly a MIME type, and
then select theOpenaction. Provide the corresponding command line, depending on your
JVM, JVM installation path,hades.jar location, and any additional options like the maxi-
mum memory limit for the JVM.

Note that the Hades editor only understands a few command line options and exits with an
error message if the options or parameters are wrong. This can be hard to debug, because
the error messages will not be visible when running with the window-lessjavaw.exe JVM.
If the editor works when started manually, but instantly dies when called via the file-type
mechanism, be sure to check the command line (especially the-file option).

You can also directly useregedit to create the necessary registry keys, but the required
steps depend on your version of Windows and cannot be described here. For other operating
systems, consult the systems documentation about how to create and register file types with
your file manager and desktop environment.

3.10 Jython

While many scripting languages are available for Java, Jython is certainly one of the best. Itscripting
is an implementation of the high-level, dynamic object-oriented language Python written in



3.10 Jython 25

Figure 17: Screenshot showing the Windows folder options and file types dialog. Follow the
instructions in the text to register the Hades design files (.hds) as a new Windows file type.

Figure 18: Screenshot showing the Windows folder options and file types dialog. Follow the
instructions in the text to register the Hades design files (.hds) as a new Windows file type.



26 3 INSTALLATION

100% Pure Java, and seamlessly integrated with the Java platform. See chapter8 for details
about the integration of Hades and Jython.

To install Jython, visit the project homepage atwww.jython.org and download the installer.
Follow the instructions from thewww.jython.org website through the installation process.
It creates a directory structure, holding ajython startup script, the mainjython.jar soft-
ware archive, and several examples and library directories. The startup script will include the
platform- and JVM-dependent CLASSPATH settings. In order to use the Jython with Hades,
you will have to edit the startup script to include thehades.jar archive with the (possibly
quite long) CLASSPATH statement. To start the Hades editor, substitutehades.gui.Editor
as the main-class for theorg.python.util.jython class.

When using Jython regularly, you might consider copying thejython.jar archive to the
extension package directory, which makes most functions of Jython available to all your Java
software without extra CLASSPATH settings. See section3.6on page22 for details.

3.11 Multi-user installation

The installation instructions from the above sections are meant for single-user machines.sharing resources
Naturally, installing a separate copy of thehades.jar archive for each user on a multi-user
machine will work, but this is not always the optimal solution. A similar arguments holds for
the Hades example files, which might also be shared among many users.

The standard solution is to install the shared files, namely thehades.jar and the default
example files, into a shared directory, e.g. a Windows network drive. Each user would still
set up a private design directory.

When using the JDK, the administrator could copy thehades.jar archive file into the ex-
tension directory, which makes the software available to all users. Otherwise, it might be a
good idea to provide a script to start the editor, and to put this into a system directory (like
/usr/bin).

3.12 Applet installation and issues

The Hades editor and simulator can also be run as an applet inside most current web browsers,browsers
including Internet Explorer, Mozilla, Firefox, or Opera. However, as explained above, your
browser will have to support at least Java version 1.4 in order to run Hades. We recommend
to install and use JDK/JRE 1.5.0 (or higher) as the Java plugin for your browser; see your
browser documentation for details. Please note that running the Hades applets will not work
with obsolete browsers like Netscape 4.x. If you are running and older version of the Internet
Explorer, please check that you are using the external Java plugin instead of the built-in
Microsoft virtual machine (jview).

When you first visit a web page that includes an applet, the browser will automatically down-download times
load the required applet class archive file(s) and then attempt to start the applet. In the case
of Hades, this implies an initial download of about 5 MB size for the fullhades.jar class
archive file. While this corresponds to only a few seconds of delay over a broadband con-
nection, it translates into several minutes of download time over a typical modem connection.
Please be patient! After the first download, your browser should have cached the class archive
file, so that subsequent visits of the applet pages will load much faster.

To reduce download time, we use a special stripped version of the simulator packed into a file
calledhades-applet.jar in our demonstration applets. This reduces the initial download
to about 2 MB filesize.

The default security settings used by the JDK/JRE for applets prohibit all potentially danger-security
and file access ous operations, including all access to files on your own computer. Therefore, you cannot

load or save design files when running Hades as an applet, unless you change the security
settings. If you want to enable file access for the Hades applet, you will have to edit theJava
Policy filecalled.java.policy and located in your home directory. The JDK includes an
extra program,policytool, to edit the policy file. If you don’t like the GUI of policytool,



3.13 Developer Installation 27

you can also edit the policy file directly with your favorite text editor. However, the JVM
SecurityManager is sensitive to syntax errors in the policy file and will (silently) deny access
to resources.

The following example shows how to enable full file access (read, write, delete, and execute)policy file
to all files on your local machine. Naturally, these settings are not recommended due to the
security problems:

/* AUTOMATICALLY GENERATED ON Thu Oct 04 11:12:41 CEST 2001*/
/* DO NOT EDIT */

grant {
permission java.io.FilePermission "<<ALL FILES>>",

"read, write, delete, execute";
};

A much more secure way is to grant applet access only to applets from specified servers, and
only to specified files, for example:

grant codeBase "http://tams-www.informatik.uni-hamburg.de/applets" {
permission java.io.FilePermission "/home/hendrich/homework/hades/",

"read, write";
};

Substitute the corresponding names for the applet server, the permissions (e.g. read only),
and the files (e.g. your Hades design directory).

3.13 Developer Installation

While the Hades framework includes the most common simulation models for digital system
simulation, you might want to add new, specialized simulation models or even editing func-
tions. Given the Java concept of dynamic class loading, it is not only possible but very easy
to extend the framework with your own classes.

If you are using the JDK, you even have all the required tools, including thejavac Java JDK or IDE?
compiler and thejar archiver. While the JDK tools are fine for small projects, you may prefer
to use your favorite integrated development enviroment (IDE). Popuplar examples of Java
IDEs are Eclipse and Netbeans. Please consult the documentation for your IDE about how to
import existing Java classes and how to setup the build environment. Most IDEs provide the
option to directly import Java classes and packages form JAR- or ZIP-archive files. After the
import, the class and source files should show up in your IDE’s class browser.

If you are working with the JDK, the following setup has proven useful.

• Due to the Java class naming convention, it is possible to have a single root directory
for all your Java projects. Create such a directory, if you don’t already have it, e.g.
C:\users\hendrich\java (Windows) or/home/hendrich/java (Unix, Linux)

• Unpack thehades.ziparchive file into that directory. This will create several new sub-
directories, namely thehades (simulation framework and models) andjfig (graphics)
directories.

• Set theCLASSPATHenvironment variable to point to the root directory. That way,
the Java virtual machine will be able to find and load all classes in your development
directory tree. You may also want to include the current working directory, e.g.

set CLASSPATH=c:\users\hendrich\java;.

• Edit Java source files with your favorite editor:
cd c:\users\hendrich\java
emacs hades\models\gates\Nand2.java



28 3 INSTALLATION

• Compile the Java sources with thejavaccompiler from the JDK or any other compati-
ble Java compiler. For example, thejikes is much faster thanjavac.

javac hades\models\gates\Nand2.java

• On Unix platforms, you can use the Hadesmakefileas a template to automate the build
process. Just add new entries for all your new packages and classes.

Naturally, when using an IDE you would use its integrated debugger to test and debug yourdebugging
new classes. Because all classes in thehades.ziparchive are compiled with full debug in-
formation, this will also allow you to traceback and analyze errors that occur inside the core
Hades classes. Debugging with the plain JDK is a little more difficult, because the debugger
included in the JDK is neither very powerful nor user-friendly. Therefore, it is often prefer-
able to use an external Java debugger likejswat(www.bluemarsh.com/java/jswat) to analyze
the behaviour of your code.

When testing your new classes, it might also be useful to switch-on the debug messages (and
exception traces) from the Hades editor. The corresponding flag can be set at runtime via
calling the staticsetEnabled()method in classjfig.utils.ExceptionTracer. From the editor,
you can use the’!’ bindkey to toggle the status. Another way to activate the debug messages
is to start the editor with the-vv command line option,java hades.gui.Editor -vv.
Some Hades classes additionally provide their own debug options. Check the list of
properties in the editor, viamenu. special. show properties, and look for properties like
Hades.DesignManager.VerboseMessages.

Unfortunately, the error and warning messages are not handled fully consistently throughout
the Hades framework. Some classes will log their messages to the Hades console window
(open via the editor menu,menu. special. show messages), while other messages are di-
rectly written to the stdout and stderr output streams. To see all such messages, you should
start the Hades editor from a shell.



29

4 Hades in a Nutshell

This chapter introduces the basics of creating and running a Hades simulation, including the
most common editing and simulation commands available via the Hades editor user inter-
face. In order to present a simple but complete example, a D-latch flipflop circuit will be
constructed and simulated throughout the following sections. These topics are covered in this
chapter:

• starting the editor

• loading a design or creating a new design

• basic editor settings like zoom or glow-mode

• adding simulation components to a design, for example logic gates, flipflops, switches

• wiring the components

• interactive simulation and simulation control

• using waveforms

4.1 Running Hades

Please install and start the Hades editor following the steps in the previous chapter, for exam-
ple by double-clicking thehades.jar archive file. If everything goes well, the main editor
window of Hades will appear on the screen after a few seconds.

Initially, the Hades editor window should look similar to figure19. The main part of the editor window
explainedwindow is occupied by theobject canvasused for editing. The panel above the object canvas

displays the design name (if any) and status messages. If Hades ever seems to hang or behaves
unexpectedly, check the status message. Typically, you have initiated a command and Hades
just needs (and waits for) more data to complete the command. You can interrupt and cancel
each editing command via theEdit. Cancelmenu item or by pressing theESCkey. Note that
the editor window needs to have the keyboard focus in order to react to keystrokes.

The panel below the object canvas contains several buttons that control the simulation engine.simulation control
From left to right, the buttons have the following functions:�� ��i the info button prints information about the simulator status, including the current

simulation time and the number of executed and pending events,�� ��<< rewindstops and resets the simulator,�� ��|| pausesthe simulator,�� ��>| single stepexecutes the next pending event�� ��>> startsor restarts the simulator, running “forever” until stopped or paused,�� ��> run intervalwill run the simulation for the selected time interval

In the default setup, the simulation will automatically be started in interactive mode directly
during application startup, so that you can begin to edit and simulate right away. The

”
traffic

light“ at the right provides immediate visual feedback about the simulator status, whether
running, paused, or stopped. The remaining, leftmost control on the simulation control panel
can be used to select one of several available simulation algorithms. For the simulation of
digital systems, the preferred settings areVHDL or VHDL (batch)mode.

4.2 Using the Popup-Menu

Once Hades is running, most editing commands are available from either themain menu menu, popup, bindkeys
bar (on top of the editor window), a context-sensitivepopup-menuon the editing canvas, or
bindkeys(shortcut keys) for the most important functions. While bindkeys are the preferred
way to invoke editing commands for experienced users, the best way to start is to use the
popup-menu. Moreover, in the current version of Hades, a few commands are only available
via the popup-menu. Because the Hades editor relies on the Java AWT window toolkit, which



30 4 HADES IN A NUTSHELL

Figure 19: The Hades editor at start-up, with activated popup-menu. The main portion of the
window is used by theobject canvaswhich displays the current simulation setup (circuit).
The panel above the object canvas displays the design name and status messages. The bottom
panel is used to control (start/stop) the simulation.

tries to provide the native look and feel for each platform, the way to activate a popup-menu is
platform dependent. For example, to activate the popup-menu on a Linux or Unix workstation
running X-windows, you have to click and hold down the right mouse button until the menu
appears. You can then move the mouse to the menu item you want to execute, and release
the right mouse button. On a PC running Windows, click and release the right mouse button.
The popup menu will appear and you can select an item by clicking with left mouse button.
On most platforms, the popup menu can also be activated with a combination of pressing a
modifierkey (e.g.Metaor Alt) and then clicking the left mouse button. Please consult your
system documentation for the details on your system and Java virtual machine.

Now try to activate the popup-menu. It will appear at the current mouse position and should
look similar to figure19. It provides the following items:

wire invokes a submenu used to create and edit wires (signals). See section4.7below for
details.

create create a new component. This actually is the root menu item for a tree of submenus
to create gates, flipflops, I/O components, subdesigns, and several other simulation
objects.

zoom activates a submenu that allows to change the current zoom factor.
move move a component to a new position.
copy copy a component and select a position for the copy.
edit edit a component. This command will open a dialog window that allows to edit all

user-settable properties of the given component.
name change the name of a component.
delete delete the component at the mouse position.

Note that some menu items are hierarchical. Once you move the mouse to the little arrownested submenus
symbols in one of these menu items, another popup-menu with additional menu items will
appear. To show the selection of commands from the nested menus a notation with little arrow
symbols is used in this tutorial. For example, thepopup. name signalcommand (compare
figure19) is used to rename a signal in the current design.



4.3 Creating Components 31

Figure 20: Selecting a two-input NAND gate from the editor popup-menu.

4.3 Creating Components

As usual, digital circuits in Hades are constructed from predefined simulation objects orcom-
ponents. The complexity of components may vary in a wide range, from simple logic gates
and flipflops to complex system-level models like memories or processors.

In order to build a D-latch flipflop, just four NAND gates are needed. (the finished completecreating components
D-latch circuit is shown in figure28 on page42). To create a NAND gate, activate the
popup-menu and select the create submenu. A new popup-menu should appear which in turn
contains additional submenus calledIO, gates, complexgates, flipflops, etc. As you might
expect, the menu item to create a two input NAND gate is to be found in thegatessubmenu.
Move the mouse to theNAND2menu item and select it, see figure20. This instructs the editor
to load both the simulation model (the Java code) and the symbol (graphical representation
in the object canvas) of the requested gate.

Note that the creation of the first simulation component can take a few seconds, because
Java enforces lazy program initialization and the virtual machine might have to load and
verify several dozen classes when the first simulation model is requested. Naturally, overall
performance depends largely on processor speed, but subsequent object creation should be
much faster.

The popup menu will disappear, and the editor will switch to a rubberbanding mode, display-placing components
ing a small rectangle at the mouse position. This rectangle indicates the bounding box of the
gate symbol and can be moved to the desired position using the mouse. Click the left mouse
button to place the NAND gate (top left corner) at the selected position, which will then be
shown with its complete symbol.

Often, several instances of the same simulation model type are required for a design. Tomultiple instances
speed up this frequent operation, the editor will automatically create a new instance of the
selected type (here the NAND gate), once the previous one has been placed. Therefore, just



32 4 HADES IN A NUTSHELL

Figure 21: The D-latch design with all components before wiring

move the mouse to the target position for the next gate and click the left mouse button again
to add another component to the current design. Finally, click the right mouse button or press
theESCkey to cancel thecreateoperation, as soon as you have created all required instances.

If you have dropped a component in a wrong position, you can always move it to a newmoving components
bindkey m position. If necessary, cancel any ongoing command (likecreate). Then, position the mouse

on one of the component symbol corners and select thepopup. movecommand or type them
bindkey. The bounding box rectangle will appear at the mouse positon and you can move the
component. Click the mouse to drop the component at the current mouse position. Just try to
move one of the NAND gates a little bit to the right, and then back to its original position.

Another way to create multiple components of the same type is to use thecopycommandcopying components
instead of thecreatecommand. Move the mouse to the source object and selectpopup. copy
or type thec bindkey. The editor will create a new instance of the selected component class,
and display its bounding box rectangle at the mouse position. Move the mouse to the position
you want to place the new object and click the left mouse button. Because the mouse now is
positioned over the new object, you can instantly repeat the process to create the next object.

As you might have guessed, you can also delete components from your designs. Positiondeleting components
the mouse on one of the corners of the component to delete and selectpopup. delete. The
editor will delete the component without further notice, but in an emergency you should be
able to undo the delete command by selectingundofrom theEdit menu. In theory, the editorundo and redo
supports unlimited recursiveundoandredooperations. Unfortunately,undodoes not work
reliably under all circumstances yet.

4.4 Adding I/O-Components

Next, it is necessary to specify the inputs and outputs of your design. As most design systems,I/O pins
Hades uses special components to indicate the inputs and outputs of a design. The most
important of these areIpin for an input pin andOpin for an output pin of a design, which are
accessed via thepopup. create. IO . Ipin andOpinmenu items. Ipin and Opin are also used
to build up hierarchical designs and to specify input values to your design during simulation.
The D-latch design requires two Ipin components for the D (data) and C (clock) inputs, and an



4.5 Component Properties 33

Figure 22: An example of the visual editing capabilities in Hades: A clock generator and its
property sheet, allowing you to set and change its name and its timing parameters.

Opin component for the Q (stored flipflop data) output. Another Opin can be used for the NQ
(inverted flipflop data) output. Use the popup-menu to create and place these components.

Next, move the mouse to one corner of the data input Ipin symbol, activate the popup-menu,changing names
and selectpopup. name. A dialog window appears that allows you to specify or change the
name for the component. While Hades will create unique component names automatically,
names like “I42” are not usually considered good style, and are certainly not acceptable for
key components like I/O pins. Good practice demands that the inputs for flipflops are called
D, C or clk, while the outputs are normally calledQ andNQ. Change the names of the Ipins
and Opins correspondingly. Your design should now look similar to figure21.

In order to keep the popup menu simple, not all available simulation models are also listedcreate by name
in the popup. createsubmenus. One way to access and create any component available to
Hades is to use thepopup. create. create by namecommand, which takes a Java class name
and uses the Java reflection mechanism to create instances of that class. See section7.2 on
page59 for a detailed explanation.

4.5 Component Properties

Most simulation components in Hades offer their own user interface to access and specifyproperties and
configurationtheir (user-settable) parameters. Just position the mouse over a component and select the

popup. edit popup menu item to open theproperty sheetdialog window for that simulation
component. The dialog window is not modal, so that you can open many property dialogs
(for different components) at once. Click theApplybutton to change the object’s properties
as specified, but to keep the dialog window open. ClickOK to apply the values and to close
the dialog, or clickCancelto just close the dialog window.

One example of the property dialog for aclock generatorcomponent is shown in figure22.
The clock generator allows to change its name and all of its timing parameters. As another
example, you can specify the gate delay of the basic and complex gates interactively. You
might try to specify delays in the range of seconds in combination withglow-mode(see
below) to get a feeling of both discrete event simulation, and the behavior of digital circuits.



34 4 HADES IN A NUTSHELL

Figure 23: Selecting the magnetic grid

4.6 Display Control

You will have noticed that Hades actually displays two cursors: the standard mouse cursortwo cursors
that traces the mouse position exactly, and a little cross which indicates the nearestmagnetic
grid point next to the mouse position. Because the little cross is snapped to the nearest grid
point, it is much easier to position exactly than the system cursor. This helps a lot to place
and align components, and to connect and align wires (see below).

Unfortunately, it is not possible to hide the system cursor in Java 1.1, so you have to livemagnetic grid
with both cursors. Some operations, like activating the popup-menu, use the system mouse
position, but most editing commands use the grid-snapped cursor. You can change both the
grid display and the magnetic grid via the main editor menu. Select theWindowmenu and
either theSelect Grid. . .or theMagnetic Grid. . .submenus. The default is to snap the cursor
to points 1/4th of an inch apart, which is useful for almost all Hades components. However,
some components like the four-input NAND gate actually use ports that lie on a 1/8th inch
grid. To use such components you may have to change the magnetic grid to 1/8th of an inch,
compare figure23.

To change the currentviewport, that is, the area visible on the screen of a large cir-zooming and panning
cuit schematic, use the corresponding menu items from either theWindow menu or the
popup. zoomsubmenu from the popup menu. For thezoom-regioncommand you are
prompted to click on two opposite corners of the region to zoom into. Thezoom fitcommand
tries to fit the whole design into the current viewport and thezoom 1:1command restores the
default zoom-factor, where visible coordinates on a 72dpi screen should match the real size.
It also restores the origin of the viewport to the point(0,0). The rulers on the top and right
sides of the object canvas mark the current coordinates (in inches). To move the viewport
over a large schematic, either use the cursor keys or the scrollbars.

While the Hades editor allows you to place objects anywhere you choose, you should prob-negative coordinates
ably restrict objects to the positive quadrant. For example, older versions of thefig2dev
utility program used to export Hades schematics to output formats like Postscript or PDF
silently clips objects with negative coordinates. If necessary, select theEdit. Move/fit design
to positive quadrantcommand to prepare your schematics for printing.



4.7 Creating Wires 35

One very effective visualization aid towards the understanding of digital systems is the color-glow-mode
encoding of the logical values on wires during simulation. This idea,glow-mode, was bor-
rowed from [Gillespie & Lazzaro 96]. Hades supportsglow-modecolor encoding for all val-
ues of thestd logic simulation model and for buses, too. To toggle glow-mode for all signals
in the current design during a simulation, just select theDisplay. Glow Modemenu item or
press theg bindkey anywhere in the object canvas. Sometimes, it is useful to select glow-bindkeys g and h
mode for a subset of signals only, for example to emphasize to critical signals or to switch off
animation for unimportant signals. To this end, position the mouse over the target signal and
press theh bindkey to toggle glow-mode for that signal only. Note that scripting can be used
to automate the glow-mode settings instead of manual selection, see chapter8.

Unfortunately, the disadvantage of usingglow-modeis the greatly reduced simulator per-performance
formance, because the frequent screen updates easily take more processor cycles than the
simulation itself. Also, graphics operations are still very slow and even unreliable on many
Java virtual machines. Therefore, the editor uses a separate thread to minimize the number
of total repaints. Use theWindows. Repaint Frequencysubmenu to select the desiredframe
rateof the editor.

4.7 Creating Wires

After some components are placed in a design, it is time to connect them. In Hades, the log-signal vs. wire
ical connection of simulation components is called asignal, while the namewire is used for
the graphical representation of a signal. A wire consists of one or manywire segmentsand
possiblysolder dots, which indicatewire segmentjunctions. The graphical user interface is
used to connect and manipulatewires, while the editor automatically updates the correspond-
ing internal signal data structures.

A connection of a simulation component to a signal is only possible at points calledports, ports
indicated by small red rectangles on the component’s symbols. To connect a new wire to
a component, move the mouse to the corresponding port position, and click the left mouse
button. This creates a new wire and connects its first end to the component port. If you move
the mouse, you will see that it traces a rubber-band to indicate the current position of the
wire. Click the mouse on any intermediate points (vertices) you need to route the wire, then vertices
move to the destination port for that wire and click the mouse again. This attaches the wire
to the port, and the signal is ready to use.

Try to create the wires between theD andC Ipin components and the corresponding gate
inputs of the NAND gates for the D-latch circuit. Because of the magnetic grid, it should be
quite easy to move the mouse to the component ports and correctly place intermediate points.

At the moment, the Hades editor does not support autorouting; it relies on the user to createno autorouting
wire vertex points where needed. Also, note that Hades won’t enforce Manhattan geometry
for wires. For example, a diagonal routing of the feedback lines in a flipflop circuit can
greatly improve the readability of a circuit schematic.

As described above, the editor will automatically create a new wire (and signal), when it
detects a mouse click on an unconnected simulation component port. This reaction is not
always desirable, the more so as the risk of inadvertent mouse clicks may be high at small
display zoom factors. Use thespecial. disable create signalsmenu command to toggle the
editor behaviour.

4.8 Adding Wire Segments

Many wires, however, are not just a point-to-point connection, but require connection tocomplex wires
multiple ports. For example, in the D-latch circuit the outputs of the SR-flipflop NAND gates
need to be connected to an output Opin and an input of the other NAND gate each. To create
these signals, you would first create a simple point-to-point connection as described above.
Afterwards, additional segments are added to the signal. Move the mouse to one of thevertex
points—either of the start, end, or intermediate points—of the wire, activate the popup-menu
and selectpopup. wire. add segment. The editor will create a new wire segment attached to



36 4 HADES IN A NUTSHELL

Figure 24: The completed D-latch design with all components and wires. During interactive
simulation, you can change the input values to your circuit by clicking on theIpin symbols.

the original wire and switch to the rubberbanding mode. As above, specify any intermediate
points needed, then click on the component port to connect the wire.

Another, and faster, way to trigger thewire. add segmentoperation is via the bindkeyw. Justbindkey w
move the mouse to the position where to connect the new wire segment, press thew key, and
use mouse clicks to specify signal vertices and finally the target port.

4.9 Connecting existing Wires

Sometimes, it is necessary to connect two existing wires together. To this end, you wouldshift+mouse click
move the mouse to a vertex of the first wire and then selectpopup. wire. add segment(or
use thew bindkey) as described above. Next, move to the mouse to an intermediate vertex or
an endpoint of the second wire. Finally, hold down theSHIFT-key and click the left mouse
button to connect the two wires. Note that a simple mouse click (without the shift key)
will not work, as the editor creates a new signal vertex and waits for another mouse click.
(The reason for enforcingshift+click to connect wires is that this makes it more difficult to
inadvertently create short-circuits between wires. Also, it allows to route many wires one over
another without automatically connecting them, which can often greatly inprove the clarity
of complex schematics. For example, all of the microprogram output signals in figure9 on
page12 are routed as a single line, to keep the visual

”
overhead“ of the control lines to a

minimum.)

4.10 Moving Wire Points

You may also want to move signal vertices after initial placement. This is possible with themoving wire points
popup. wire. move pointcommand. Position the mouse over the wire vertex you want to
move, activate the popup menu, select thewire. . . submenu, then themove pointcommand.
Move the mouse to the new position for the wire vertex and click the left mouse button. The
editor will move all wire segments connected to that vertex from the old to the new position.
Another way to invoke themove pointcommand is theo bindkey. Just position the mouse onbindkey o



4.11 Deleting Wires or Wire Segments 37

the vertex to move, press theo key, move the mouse to the new position, and click the left
button. The rubber-banding for themove pointcommand is implemented only partially yet.

If you want to insert a newvertexpoint into an existing wire, for example to improve thebindkey v
signal routing, just move the mouse onto or near to (nearer than the magnetic grid spacing)
that position. Then, selectpopup. wire. insert vertexor use thev bindkey, which instantly
creates the new vertex. Of course, the new vertex will only be visible if it is not exactly in-line
with the previous wire routing.

Note that the Hades editor will try to keep all wire segments connected if you move a compo-
nent (this feature can also be useful to check the connectivity of your circuits). However, the
editor does not contain an auto-router to find new and visually appealing paths for the wires.
Instead, the editor will only move the very last vertex of each wire to the new position of the
component’s port it is connected to. Therefore, after moving a component, you may want to
move other (intermediate) vertices of a wire too, to update your circuit schematic.

4.11 Deleting Wires or Wire Segments

To delete a wire completely (including all its wire segments and all its connections to simula-deleting wires
tion components), move to a vertex or endpoint of the wire and selectpopup. delete. Please
make sure to position the mouse exactly, as the editor searches for the nearest graphical object
to decide which object to delete (wire or simulation component). If necessary, you can try the
edit. undomenu item to restore a deleted signal and its previous connections to simulation
objects. Unfortunately, theundooperation does not work reliably in all circumstances, so
you might have to save and re-load your design. In any case, as the simulator cannot restore
the events for the signal, you will have to restart the simulation after anundooperation.

Use thepopup. wire. delete segmentcommand or thex bindkey to delete a single wire seg- deleting wire segments,
bindkey xment nearest to the mouse position. The editor recognizes if the wire is split into two separate

parts as a result of deleting the wire segment, and it will automatically update its internal data
structures (creating a new splitsignal if necessary).

Now create all the wires necessary for the D-latch circuit. Because adding segments to wirescompleting the example
is a very frequent operation, even in this small example, you might want to know use the
w bindkey to initiate theadd segmentoperation. Once you are finished with all wires, your
schematic should look similar to figure28.

4.12 Changing Signal Names

Whenever a new signal is created, the editor will also automatically assign a unique namedefault
signal namesto it. The default algorithm just numbers the signals based on the prefixn (for net) and the

current count of signals, so that the initial signal names aren0, n1, n2, etc.

In many cases, you might not care about the exact name of a signal, and the default names
are as good as any. However, descriptive signal names are essential when you plan to use the
waveform viewer (see chapter6) to analyse and debug your circuits. Even in small circuits,
meaningful names likeclk, nreset, carryoutor addr.enableare much better to work with than
n213, n10, andn42. But even worse, the numbering scheme is applied to each subdesign. If
you debug a circuit with many subdesigns, the waveform viewer will list many signals called
n or n17, which are only distinguished by their full hierarchical name.

Therefore, it is good practice (but not required) to select meaningful descriptive names at leastnaming a signal
for all essential signals in your designs. To do this, position the mouse near to a wire segment
of the signal, and type the bindkeyn, or activate the popup-menu and selectpopup. name.
Enter the new name for the designated signal, and pressOK to apply the new name.

The editor also includes a utility method calledrenameToplevelSignalsAfterDrivers()that
can be called via scripting (see section8) or from the editor menu viamenu. options. Call a
method, and then entering the stringrenameToplevelSignalsAfterDrivers nullinto the dialog
window. This automatically renames all signals based on the name of the component that
drives the signal. The idea is that names likeflipflop3.Qor xor2.Ymight be better thann7and



38 4 HADES IN A NUTSHELL

n112. Still, you should ensure that all your simulation components have descriptive names
(see section4.4on page33) before calling this method.

4.13 Editor Bindkeys

The following table lists the default bindkeys for the most important Hades editor operations.
Note that the editor only reacts to keypresses when it has the keyboard focus. Also, some
Java virtual machines still have bugs in the keyboard input, especially in combination with
non-US keyboard layouts.

ESC escape cancel current operation
DEL delete delete component or wire
BSP backspace delete component or wire

c copy copy component
e edit edit component parameters
m move move component
n name name component

w wire add wire segment
v vertex insert vertex into wire
o mOve vertex move wire vertex
x delete segment delete wire segment
N Name name wire
W Wire create new wire at mouse pos.

(without port connection yet)

4.14 Loading and Saving Designs

This is a good time to save your design. At the moment, Hades stores design data as plainsaving designs
ASCII text files, one file perdesignor schematic, which means that you can also use your
favorite text editor to view or modify the design files. Because you did not specify a name
for the design until now, you should selectSave As. . .from theFile menu which will open
the standard file selector dialog. Therefore, enter a suitable filename, e.g.dlatch.hds, and
click the OK button. For a larger project with many subdesigns, you might want to create
and use subdirectories. By convention we use the extension.hds for Hades design files,
which matches the German pronunciation of Hades. Moreover, we use filenames of the form.hds extension
designname.sym for the Hades symbol corresponding to a designdesignname.hds.

Once you have saved your design, the editor will remember the filename, so that you can
use theFile . Savemenu command to save the design again. TheSaveoperation does
not overwrite the previous version of a design file, but automatically renames the exist-
ing file before saving the current design. The naming pattern used for the backup files is
designname.hds_<number>. For example, the first two backups ofdlatch.hdswill be called
dlatch.hds1 anddlatch.hds2. By the way, the default filename isunnamed.hds in the cur-
rent working directory.

As you have saved your design now, you might as well try to read it back. Select theNewloading designs
menu item from theFile menu, which instructs Hades to delete all current editor objects and
start a new design. Now select theOpenmenu item from theFile menu, which again will
open a file selector dialog. Enter the file name for your D-latch design and clickOK.

Despite the overhead of parsing the design files and object creation, loading a small design
file should only take a few seconds on current PCs or workstations. Naturally, loading larger
hierarchical circuits with many subdesigns and thousands of simulation components can take
much longer, especially when the Java virtual machine runs short of memory and needs to
start garbage collections during circuit initialization.



4.15 Digital Simulation and StdLogic1164 39

value meaning color
U undefined and never initializedcyan
X undefined during simulation magenta
0 logic ’0’ light gray
1 logic ’1’ red
Z not driven, high impedance yellow
L weak logic ’0’ middle gray
H weak logic ’1’ dark red
W weak undefined yellow
D undefined, but don’t care —

Figure 25: The logic values used in Hades, based onstd logic and their associated default
colors inglow-mode.

NOT a

a y

U U

X X

000 111
111 000
Z X

W X

L 1

H 0

- X

a AND b

a / b U X 000 111 Z W L H -

U U U 0 U U U 0 U U

X U X 0 X X X 0 X X

000 0 0 000 000 0 0 0 0 0

111 U X 000 111 X X 0 1 X

Z U X 0 X X X 0 X X

W U X 0 X X X 0 X X

L 0 0 0 0 0 0 0 0 0

H U X 0 1 X X 0 1 X

- U X 0 X X X 0 X X

Figure 26: The NOT and AND functions of the stdlogic system. Note that both functions
include the standard boolean operations with arguments0 and1 as a subset (shown in bold-
face). Also note that many input combinations result inU or X outputs.

4.15 Digital Simulation and StdLogic1164

While the Hades framework can be used for all types of discrete-event simulation, most ofmodeling issues
the available simulation components circuit as well as the different simulation engines are
targeted towards digital circuit simulation. The goal of every simulation is to study the be-
haviour of some real system from a set of idealised models. This allows for a variety of
descriptions with greatly differing levels of abstraction and detail. One very successful ab-
straction is switch-level simulation, where the complex, non-linear and time-continous be-
haviour of electronical circuits is modeled with a set of discrete logical values that change at
discrete times.

The most simple simulation model is the Boolean algrebra with its two logical values0 and
1 and the well-known switching functions (AND, OR, etc.). Unfortunately, this model often
is too restrained; for example it is impossible to model important situations like short-circuits
or undefined input values. Therefore, multi-level logic systems are often used to model and
simulate digital circuits. Several tools support a three-level model with the values0, 1, and
X, where theX level is included to model undefined values during circuit initialization or to
indicate errors like a bus with multiple confliciting drivers.

However, even more complex logic systems are required to model situations like open-std logic
collector output gates or buses with tri-state drivers and pullup resistors. Therefore, all gate-
level simulation components in Hades use the de-facto industry standard logic model, the
nine-valuedstd logic system [IEEE 93b] used in the VHDL simulation language [IEEE-93a].
Please skip the next few paragraphs if you are already familiar with digital simulation and the
std logic multilevel logic.

Figure25 shows the nine logic values fromstd logic and their meanings; these are imple-
mented in classhades.models.StdLogic1164together with the basic logical operations. At



40 4 HADES IN A NUTSHELL

Figure 27: A collection of interactive I/O components: Ipin (switch), pulse switch, power on
reset, clock generator, hex switch, Opin (LED), LED, and hex display.

the start of a simulation, all signals and gates are initialized to theU state (undefined) in
StdLogic1164. Because any logic gates will propagateU values if they receiveU values, the
circuit won’t start to work, unless it is correctly initialized, e.g. by applying reset signals to
all flipflops in the circuit.

Another important example of the use of multiple valued logic systems is the reaction ofX propagation
flipflop models to a timing violation. In a pure0/1 logic system, a flipflop cannot signal any
timing problems to the rest of the circuit, and such errors would therefore pass unnoticed.
In StdLogic1164, however, a flipflop whose hold- or setup-times are violated will simply
generate aX value at its outputs, and propagate this value to all gates connected to its outputs.
BecauseX values, likeU values, will spread around your circuit, the errors are not only easily
spotted, but rather hard to ignore. This behavior might seem annoying at first, but it really
helps debugging circuits, especially under tight timing constraints.

4.16 Interactive Simulation and Switches

Most digital simulators run the simulation in batch-mode. After designing your circuit you
have to compile it into the internal representation used by the simulator. Next, you have write
a file with theinput stimuli, that is a description of the values to apply to the input pins at
specified times. This file is fed into the simulator, which in turn generates a trace of all values
you requested. Finally, you would use other tools to analyze the simulation trace.

While Hades supports batch-mode simulation, the preferred way to explore and debug yourinteractive simulation
circuits is toplay with the circuit in interactive simulation— at least in the early design
phases. In this mode, allIpin components and several other components from the HadesI/O
library work like small switches. Figure27 shows a collection of theinteractiveinput and
output simulation models. You use theIpin, pulse switch, power on reset, clock generator,
andhex switchcomponents to generate input values for your circuit. TheOpin, LED, and
HexDisplaycomponents allow to visualize the output values generated by your circuit.

If you click the left mouse button on anIpin, it will toggle its state and propagate the corre-Ipin = switch
sponding value to the circuit. The current state of theIpin is displayed in the same colors as
signal values inglow-mode(see above). This means that an undefined switch (never clicked



4.17 Waveforms 41

on since the start of the simulation) will be shown in magenta, an inactive switch (‘0’ level)
in gray, and an active switch (‘1’ level) in red.

Note that allIpins are initialized to theundefined(U) state at the start of the simulation. On0 - 1 - 0
the first click, anIpin will change its state to0, on the second click to1. Afterwards, it will
toggle between1 and0. Because theIpins start inU state, you will usually have to click on all
Ipins at least once to initialize your circuit with useful values. However, any stdlogic value
can be selected as the default start value for anIpin via its property dialog, when appropriate.
If you hold down theSHIFT-key while clicking on anIpin, it will use another sequence of 0 - 1 - Z - X - 0
states, namelyU to 0 to 1 to Z to X to 0, etc. This allows you to specifyZ or X inputs to your
circuits if necessary.

Some other models from theI/O library also work as switches, or can be controlled by click-pulse switch
ing with the mouse. Each time you click on apulse switchcomponent, it will send out a short
1 pulse, before returning to the0 state. The duration of the1 pulse can be specified in the
pulse switchproperties from theedit. . . popup menu.

In normal operation, thepower on resetcomponent sends out oneU - 0 - 1 pulse at the power on reset
start of the simulation. After this pulse is finished, you can set the output value of thepower
on resetjust like an ordinary switch. Again, the current output value of apower on reset
instance is indicated by a gray or red circle.

Clicking on aClockGencomponent, however, will not directly set its output value. Insteadclock generator
the clock generator’s internal state is toggled between started (indicated by a red circle) or
stopped (indicated by a gray circle). Note that a startedClockGengenerates simulation events
even when no other components are connected to its output. Therefore, it may be useful to
stop all clock generators while you are editing and restart them for simulation only.

Similarly, theOpin instances in your design work like little LEDs, displaying the value ofOpin = LED
their input signal. If you want to visualize some signal value in your circuit without having
an explicit output connection, you should useLED components instead ofOpins. Note that
you can select the color of LED components.

The hex switchandhex displaycomponents are useful to control and display hexadecimalhex switch,
hex display(sedecimal) values. Click on a value in thehex switchto select the corresponding four-bit

output values. Thehex switchgenerates a four-bitU signal until you first select one of the0
to F values.

4.17 Waveforms

Naturally, the Hades framework also includes functions to collect and display waveform data
for logical signals. Figure28 shows the D-latch circuit with probes added to the signals.
Please refer to chapter6 on page51 for a detailed description on how to use waveforms and
the waveform viewer.

Again, please remember to change the default signal names to descriptive names before using
the waveform viewer, especially when your circuit contains nested subdesigns. See the tip in
section4.12on page37on how to rename the signals.

4.18 Tip: Restarting the Simulation

While the Hades editor and simulator try to fully support all edit operations during a run-VCC, GND problems
ning simulation, this is not always possible. For example, restoring the simulator event list
after deleting a component and then undoing the delete is problematic. Also, somestatic
simulation components create events only under special conditions or only at the start of a
simulation. The latter is true for theVCC or GND components, which only generate their
(constant) output value once at the beginning of a simulation. Edit operations that involve
such simulation components, for example connecting a wire to aVCC instance during a run-
ning simulation, may result in inconsistent signal values. Often, such conditions are easily to
spot inglow-mode, because un-initialized signals are highlighted incyan(U) or magenta(X)
colors. Use the simulation control panel to re-initialize the circuit by first pressing therewind
button and then therun button.



42 4 HADES IN A NUTSHELL

Figure 28: The D-Latch circuit with active waveform probes

4.19 Tip: Unexpected Timing Violations

During interactive simulation, all events generated internally by your design are scheduledsynchronisation
problems together with the user-events generated by clicking on input components likeIpins. On any

user-generated event, the current simulation time is used as its time stamp. This behaviour
may result in unexpected faults in your simulation wheneven the events feeds the input of
a flipflop or similar component, which might detect a setup- or hold-time violation with
respect to its clock signal. Usually, the flipflop will then generate aX value on its output
which propagates to the rest of the circuit.

If such a timing violation occurs, you may have to re-initialize the flipflops concerned or even
the whole circuit, and to restart part of your simulation. Unfortunately, there is no simple
solution to this problem except to use batch-mode simulation, where all input changes occur
on predefined times with respect to the simulation time. Note that real circuits also suffer
from these timing problesm, because the timing of input changes can never be guaranteed.
However, real flipflops won’t signal the timing problem with a definedX state, but may enter
an undefinedmetastablestate with unpredictable duration and output value.



43

5 Advanced editing

This section introduces a few of the advanced editor commands and features of the Hades
framework. First, section5.1 motivates and explains how to create hierarchical designs in
Hades. Next, section5.2 lists the most useful editor bindkeys. Section5.3 demonstrates
printing via both the Java native printing functions and the external fig2dev program. Fi-
nally, section5.4 shows how to export gate-level circuits to VHDL for simulation and logic
synthesis with external EDA tools.

5.1 Hierarchical Designs

For circuits with more than a few dozen gates, most designers will prefer ahierarchical subdesigns
design, where the complete circuit is partitioned into smaller blocks. These blocks, often
calledsubdesigns, are built from either the basic components like gates or nested subdesigns
in turn. Obviously, the whole design then forms a tree with the top-level design at the root, an
arbitrary set of subdesigns as internal nodes, and basic components as the tree’s leaves. Each
subdesign is a complete Hades design in itself, but only it’ssymbolis displayed in the circuit
schematic of the parent design.

The main advantages of a hierarchical design style are to reduce design complexity and toadvantages
increase design reuse. First, each of the subdesigns is designed as a separate circuit, with a
much lower number of components and subdesigns than the complete design. Second, each
subdesign can be simulated for itself, catching most errors very soon in the design cycle and
in small circuits. Third, subdesigns can often be reused both in one top-level design or among
several separate top-level designs. Naturally, the most prominent examples of reusable com-
ponents are the basic gates, complex gates, and flipflops. Other well-known examples are
special registers, functional units like counters, encoders, decoders, and interface compo-
nents.

Often, two different approaches to build the design hierarchy are distinguished. Thetop- top-down
bottom-updownapproach starts to partition the specification of the complete circuit into smaller units,

which in turn are further partitioned, until each subdesign is small enough to be realized
from basic components. Thebottom-upapproach starts to build small subdesigns from basic
components, and integrates these subdesigns to larger subdesigns, and finally to the complete
circuit. Often, both design styles are mixed, because several iterations through the design
phases are required. Also, refinements to the original specification further tend to hide the
differences. Hades supportsbottom-updesign directly, while atop-downdesign methodology
is more difficult to achieve.

As an example, the remainder of this section will use the 8-bit carry lookahead adder first8-bit CLA adder
presented in figure4 on page7. An excellent description of this circuit including the theory
and performance aspects of the different kinds of adders is found in [Hennessy & Patterson].
The hierarchical version of the adder circuit shown in the figure consists of eight instances
of the 1-bit adder and seven instances of the carry generate and propagate block. While the
8-bit adder is still a very small circuit, theflat design variant would already fill one very large
schematic with several dozen gates.

Thebottom updesign of the 8-bit CLA adder starts with the small building blocks, here the1-bit adder
1-bit adder and the 1-bit CLA block. The very simple schematic for the 1-bit adder is shown
in figure 29. The Ipin switches and connectors define the external inputsain, bin, andcin,
while theOpin connectors define thesi (sum),gi (generate) andpi (propagate) outputs. The
two XOR gates calculate the one bit sum of the three inputs while the AND or OR gates are
used to calculate thegi (generate) andpi (propagate) signals.

Once the above 1-bit adder circuit is complete, save the design under a suitable name, forsymbol creation
examplesum.hds, using theFile . Save asmenu command in the Hades editor. Next, select
theEdit. Create Symboleditor command, which automatically creates thegraphical symbol
required to display a subdesign in the toplevel design. The symbol data is written to a text file
whose name is constructed from the current design name and the.symextension. In the ex-
ample, the symbol file forsum.hdsis calledsum.symand written to the same directory as the
sum.hdsdesign file. The automatically created symbol file includes port connections for all



44 5 ADVANCED EDITING

Figure 29: 1-bit adder with carry generate and propagate signals

Figure 30: CLA block for the 8-bit CLA adder



5.1 Hierarchical Designs 45

Figure 31: A region of the full CLA adder schematic, showing the connection of the adder
blocks (on top) and the cascade of CLA blocks (below). The figure also shows the custom
designed block symbols and the 2D placement on the schematic.

Ipin switches andOpindisplays. (Technically, the symbol creation algorithm creates ports for
all simulation components that implement thehades.models.IpinConnectorandOpinConnec-
tor interfaces.) The port positions on the default symbol correspond to the relative positions
of theIpin andOpincomponents in the circuit schematic. After finishing thesum.hdsdesign
and creating a thesum.symsymbol, the next step is to create the carry lookahead block shown
in figure30. The circuit consists of two AOI21 gates, one AND gate, and two inverters. The
input and output names, likecin i, Pin ij or cout i indicate the function and the cascading
of the corresponding signals. Again, save the design ascla.hdsand afterwards selectcreate
symbolcommand to create thecla.symsymbol.

If necessary, you can edit the symbol file with a text editor, to update or change the symbolediting symbols
representation. Unfortunately, the planned symbol editor is not available yet. The default
layout of an automatically created symbol uses the standard left-to-right dataflow direction,
with all inputs on the left side and all outputs on the right. This simple layout is not optimal
for the CLA circuit, because a two-dimensional layout shows the underlying tree-structure
much better. Therefore, the symbol files shown in figure31were actually hand edited.

You are now ready to design the complete eight-bit adder circuit. First, select theEdit. New creating subdesigns
menu command to start with a new, blank design. To create a subdesign component, move
the mouse to an appropriate position and selectpopup. create. create subdesign. Shortly,
the file selector dialog will appear. Change to the correct subdirectory, if necessary, then
enter the name of the subdesign (sum.hdsor cla.hds) and select theOK button. The Hades
editor will now load the subdesign and its symbol, and it will place the symbol at the selected
position. Each subdesign is labeled with an unique instance name which can be changed
via thepopup. nameitem from the popup menu. To create the remaining adder and carry
lookahead block subdesigns, you can either repeat the above steps, or use thepopup. copy
command. Position the subdesigns with themovecommand to find a visually appealing
layout. Finally, createIpin andOpin components (or the hex-switches and displays) to drive
the subdesigns.

Despite the additional steps like symbol creation, using the hierarchical design style willhierarchical or flat?
already be much faster than drawing aflat design even in this small example. The advantages
of hierarchical designs become much more noticeable for larger projects. Note that you can



46 5 ADVANCED EDITING

easily repeat the process by creating additional levels of hierarchy, for example by combining
four 1-bit adders to one 4-bit adder, four 4-bit adders to a 16-bit adder, etc. Also, you may
have noticed that the Hades editor gets much slower when the number of visible objects is
large, because of the large number of individual graphical objects (labels, boxes, lines, etc.).
With a hierarchical design, only the few top-level symbols and objects are visible, which
dramatically improves editing speed. In short, use design hierarchy as much as possible.

Here, again, are the steps to build a hierarchical circuit inbottom uporder:

1. Design the subdesign and save it (subdesign.hds).

2. ExecuteEdit. Create Symbolthe menu command.

3. Design the toplevel design.

4. Exceute thepopup. create. create subdesigncommand and select the subdesign file
name (subdesign.hds) to create an instance of the subdesign.

Because the editor can only refer to available components, a pure top-down design style is
impossible in Hades (or any other component based simulation framework). Naturally, you
can use empty designs as placeholders:

1. Use the editor to create an otherwise empty design with just the I/O-components for
your subdesign. For example, createIpin andOpin components for all toplevel con-
nections of your subdesign.

2. ExecuteEdit. Generate Symbolfrom the menu to generate a symbol for the (still
empty) subdesign.

3. Include the subdesign into your toplevel design and edit the toplevel design.

4. Fill in the remaining components of the subdesign(s).

5.2 Editor bindkeys

To improve the usability of the schematics editor, Hades provides several standardbindkeysefficient editing
as shortcuts for the most important editing and drawing functions. Similar to the popup-
menu behaviour, all commands are automatically applied to the object nearest to the mouse
position, without the need to expcicitly select an object. Typically, you will keep one hand on
the mouse while pressing the bindkeys with the other hand, which allows for very fast editing.
Unfortunately, the standard Motif or Windows accelerator key mapping is not optimal in this
case, because these accelerators combine theALT and CNTL keys with other keys, many
of which require both hands on the keyboard. Therefore, the Hades editor uses only a few
ALT+X combinations, while most shortcuts are directly available via simple key presses.
Figure 32 shows the table of the available predefined bindkeys. In the current version of
Hades, the mapping is hard-coded in classhades.gui.KeyHandlerand can not be changed at
runtime.

5.3 Printing and fig2dev export

While the Java runtime environment includes a printing function, the quality of the resultingprinting issues
output is still far from optimal and depends on the Java version being used. Older Java virtual
machines up to 1.1.x only support the base AWT graphics calls and use a fixed graphics reso-
lution of 72 dpi. The resulting output should be readable, but several objects (like the curved
symbols used for OR and XOR gates) will look very poor. The Hades editor automatically
detects, when the newer and higher quality Java2D graphics library is available. If so, the
Java2D printing system will be used, which theoretically results in better output quality. In
some cases, however, the printing may still produce bad output or even crash, due to Java2D
bugs and printer driver issues.



5.3 Printing and fig2dev export 47

Key Function
0 set a signal to ’0’ level
1 set a signal to ’1’ level
c copy a component
e edit a component’s properties
f zoom fit
F zoom full (100%)
g toggle glow-mode (all signals)
h toggle glow-mode (one signal)
I create an Ipin component
m move a component
M move a signal vertex
N change a signal name
n change a component name
o move a signal vertex
O create an Opin component
p add a probe to a signal
P delete a probe from a signal
r force a redraw
U undo the last command
v insert a new vertex into a wire
w create a wire segment attached to a signal vertex
W create a wire (possibly unconnected) at the mouse position
x delete a wire segment
y zoom out (71%)
z zoom out, centered (71%)
Z zoom in, centered (141%)
BSP, DEL delete a component/wire
ESC interrupt and cancel any command

Figure 32: Important bindkeys in Hades, sorted alphabetically

To test the Java native printing, simply select theFile . Print menu command from the editor
menu bar. This will open the platform specific print options dialog, which allows to select
the printer, paper size and orientation, etc. Click theOK button in the dialog window to start
the printing.

The recommended way to print Hades schematics or to convert them into other graphicalFIG format,
transfigformats is via the FIG-format export functions. The schematics editor relies on the graphical

objects provided by thejfig graphics editor class libraries. For example, the graphicalsymbols
for logic gates are implemented as a subclass of theFigCompoundclass, which in turn col-
lects several individual graphical objects like polylines, rectangles, or labels. See section9.3
on page86 for an overview over the available graphics object classes. While several Hades
graphics objects add support for animation, it is very easy to convert Hades schematics into
FIG graphics files, and you can use several external tools to further process the FIG files.
The most important of these tools is probably thefig2devconverter program included in the
transfigprogram package. As the name indicates, thefig2devprogram reads a FIG file and
translates this into one of several important output formats, including Postscript, Encapsu-
lated Postscript, and PDF. Other options are LaTeX drawing commands, EPIC commands, or
the HP-GL language used to control plotter devices.

On most Unix and Linux machines, thefig2devprogram will usually be available as part fig2dev options
of the default installation. The most recent version can be downloaded fromftp.x.org/con-
trib/applications/drawingtools/transfig, if necessary. A pre-compiled binary for Windows
is available for download on thejfig homepage,tech-www.informatik.uni-hamburg.de. Run
thefig2dev -helpcommand to list which output languages and options are supported by your
version of fig2dev. For printing, you will probably select either Postscript-L ps or PDF-L
pdf format. For example, the following command converts thedlatch.figFIG file into encap-
sulated Postscript, scaling to 33% of the original size:



48 5 ADVANCED EDITING

fig2dev -help
fig2dev -L eps -m 0.33 dlatch.fig > dlatch.ps

Several export options are directly available via the Hades editor user interface. Select theexport options dialog
Export. Settingsmenu command to open the export options dialog window. This window
includes user interface components to select the output format and several options for the
fig2dev export. Usually you would fill in the options from top to bottom.

First, select the output language and the color options. The three settings control the conver-color options
sion of the Hades internal graphics to the intermediate FIG format file. The full color option
exports the current schematics without any color modification. The black and white option
substitutes the all colors used for component symbols and signals (even in glow-mode) with
black. This improves the image quality when using a b/w laser printer, where the default
raster algorithm often result in too bright and low contrast for the full color schematics. The
third option keeps the colors only for the input and output components (Ipins andOpins),
while all other components and signals are rendered in black and white. This setting is some-
times useful to produce a high-contrast b/w output which still allows to read input and output
values.

The remaining export options control the output page orientation, size, and offset. Use thesize, orientation
A4, landscape, centeredbutton to rescale the current schematics to A4 paper size. Next, type
in a filename or click thebrowseand use the file dialog to select the output filename. Finally,
click theexport nowbutton to actually start the export process.

Note that the output filename does not change when you load a new design or press theexportFIG editing
nowbutton many times. Always make sure to select a new filename unless you actually want
to overwrite a previously generated output file! The editor does not delete the intermediate
FIG file created as the first step of the export process. This allows you to use a FIG editor like
xfig or jfig to edit the graphics file, for example to include additional annotation, to highlight
parts of the schematics, to change colors, or fonts, etc.

It is also possible to usefig2devas a filter to generate an output in one of several well-knownscreenshots
image formats, including PPM, PCX, PNG, TIFF, and GIF. Please check your version of
fig2devto see which image formats are supported. Another way to generate a screenshot is
the editorExport. GIF menu command which translates the current object canvas 1:1 into
a GIF format image file. However, this command will only work if you have the required
GIFEncoderclasses installed on your system (and included in the classpath setup). Due to
licensing issues around the GIF format, it is impossible to include theGIFEncoderclasses in
thehades.jararchive.

5.4 VHDL export

As the main focus of Hades is on simulation, it does not include logic synthesis functions.VHDLWriter
Therefore, you may want to export your circuits to another design system, for example to
realize your design as an FPGA prototype. To this end, the packagehades.utils.vhdlincludes
a few utility classes that allow converting Hades design files into VHDL descriptions. The
main class ishades.utils.vhdl.VHDLWriter, which reads a Hades design and writes an equiva-
lent VHDL description including the full design hierarchy and structural (netlist) information.
Naturally, due to the complexity involved, the automatic conversion of Java program code (as
used by Hades simulation components into equivalent VHDL code is impossible. However,
the export generates behavioral architectures for almost all gate-level components, which can
then be used for both VHDL simulation and logic synthesis.

At the moment, there is no user interface forVHDLWriter. Instead, you have to use the
shell (or a script) to call the export. The export process generates one VHDL file per Hades
design and subdesign and one behavioral file per simulation component used. Therefore, the
VHDLWriter expects the name of the VHDL working directory as its first argument, and the
name of the (top-level) Hades design file as its second argument:

# Unix csh/tcsh example command
# VhdlWriter <directory> <designname> [<classmapfile>]



5.4 VHDL export 49

#
cd /home/joe/hades/examples
setenv CLASSPATH /home/joe/hades/hades.jar
java hades.utils.vhdl.VHDLWriter /tmp/dlatch dlatch.hds

Signal and component names in Hades designs may be of arbitraty length and can use thename mangling
full Unicode character set. The external name encoding in the.hdsdesign files uses the
\uxxxx escape notation to represent such names in ASCII compatible files. When nec-
essary, the utility classhades.utils.NameManglercan be used to encode or decode such
names. On the other hand, names in VHDL are restricted to a subset of ASCII, are case-
insensitive, length-limited, and certain character combinations (like a double underscore) are
forbidden. Therefore, the conversion of Hades designs often requires a complex renaming
of signal, component, and design names into valid and unique VHDL names. TheVHDL-
Writer class uses a built-in algorithm to this end. The name mangling algorithm knows the
VHDL language keywords and tries to detect and avoid name collisions if possibly, but the
name mangling may result in very long VHDL names. See the class documentation for class
hades.utils.vhdl.VHDLNameManglerfor details.

Unless you want to write your own VHDL packages with gate-level simulation models,library mapping
you may need to map the Hades component names to the names of the equivalent simula-
tion models from your favorite VHDL library. This requires a mapping from Java class-
names likehades.models.gates.Nand3or hades.models.flipflops.Dffrto VHDL names like
ecpd10.NAND3or cmos7x.DFFR, but possibly also a mapping from Hades subdesign names
to VHDL package and entity names. Both mappings can be specified in a text file, which
is then added as the third command line parameter toVHDLWriter. The following lines
are taken from the example mapping file,/hades/utils/vhdl/vhdl-classmap.txtincluded in the
hades.jararchive:

# example Java classname to VHDL entity name mapping file.
# Note that the Java class names do not carry an extension.
#
hades.models.gates.And2 gate_and2
hades.models.gates.And3 gate_and3
hades.models.gates.Inv inverter
hades.models.gates.InvSmall inverter_small
hades.models.gates.Nand2 gate_nand2
#
# and so on, e.g. some flipflops
#
hades.models.flipflops.Dffr dffr
hades.models.flipflops.Latchr latchr
#
# or hades.models.io components:
#
hades.models.io.ClockGen CLOCKGEN
hades.models.io.HexDisplay hex_display
hades.models.io.LED led
#
# use the following to re-map Hades designs/subdesigns.
# note that we map a file name (with .hds extension)
# to VHDL names:
#
examples/simple/dlatch.hds examples_dlatch
/hades/examples/dcf77/Shifter59.hds shifter_59

During the export process, theVHDLModelFactoryclass is used to actually generate VHDLVHDLModelFactory
behavioural descriptions for each of the simulation components. Currently,VHDLModelFac-
tory supports the basic gates with up to four inputs (AND2..XOR), complex gates with up two
six inputs (AOI21..OAI33), and a few flipflops (DFF, DFFR, Latch, LatchR). Also included



50 5 ADVANCED EDITING

are theVCC, GND, andPullup connections, the configurableClockGenclock generator, and
the PowerOnResetreset pulse generator from thehades.models.iopackage. Naturally,Ipin
switches andOpin outputs are converted to the external interface in the design entity decla-
ration. For other simulation components that are not implemented inVHDLModelFactory,
a valid VHDL entity declaration is automatically generated from the HadesSimObjectport
information, and an empty VHDL architecture is written.

For example, the following VHDL description is created for ahades.models.gates.Nand2:

-- VHDL for Nand2: /D-latch/i3

library IEEE;
use IEEE.std_logic_1164.all;

entity hades_models_gates_Nand2 is
port (

Y : out std_logic_1164;
A : in std_logic_1164;
B : in std_logic_1164

);
end hades_models_gates_Nand2;

architecture SIMPLE of hades_models_gates_Nand2 is
begin
Y <= not (A and B);

end SIMPLE;

configuration cfg_hades_models_gates_Nand2
of hades_models_gates_Nand2 is
for SIMPLE
end for;

end cfg_hades_models_gates_Nand2;

To include a VHDL export option into your own Java written simulation models, you haveVHDLExportable
to implement thehades.utils.vhdl.VHDLExportableinterface and implement its methods like
writeEntity(), writeArchitecture()etc. During the VHDL export,VHDLModelFactorywill
check whether a simulation component implementsVHDLExportableand call the corre-
sponding methods to generate the VHDL instead of using its default implementation.



51

6 Waveforms

Signalwaveforms, or the plot of signal values as a function of simulation time, are an essentialwaveforms:
signals vs. timetool for the understanding and debugging of digital circuits. Most importantly, waveforms

allow tracing and analysing the timing of signal changes and their dependencies during the
simulation. However, it is generally not practical to record the signal changes for all signals,
due to the sheer amount of generated data. Therefore, waveform data is only kept for signals
explicitly marked by so-calledprobes.

Section6.1 first describes the overall concept of signal probes and section6.2 lists the dif-
ferent types of waveform data currently supported. The user interface and basic operation
of the waveform viewer is desribed in section6.3, while section6.4 explains how to search
the waveform traces for specific events and values, and section6.5sketches how to save and
later reopen waveform data. Next, section6.6 lists the predefined bindkeys of the waveform-
viewer. Finally, section6.7 shows how to use scripting functions to automatically activate
probes for signals and to control the waveform viewer.

6.1 Probes and the waveform viewer

While the Hades simulator needs to keep track of the most recent value of each signal to
propagate this value to all components connected to a signal, the simulator normally does not
store any previous values. The obvious reason for this behaviour is the enormous amount of
data generated during a simulation run. On a current workstation, the simulation may process
up to a few million events per second, where each event might need a dozen bytes (or more)
to represent it. This translates into memory requirements of several MBytes per second to
store the full simulation data, which is simply not practical in most cases.

Therefore, you have to explicitly mark each signal that you want to observe by adding aprobe probes
to it. As usually only a few signals are selected with probes, this greatly reduces the amount
of data collected by the simulator. Internally, adding a probe to a signal automatically creates
a correspondingwaveformobject, which is then used to record all subsequent changes on
that signal. The relation between signal and waveform is unidirectional. While a signal has a
reference to its waveform, the waveform has no reference back to the signal. This architecture
allows to save waveform data to a file and to restore and browse the waveforms later without
the need to also fully restore the simulator.

As explained above, the Java runtime has to store all event data generated by the simulatormemory usage
and memory limitfor all probed signals. Obviously, this is no problem in small circuits, where input events are

generated by interactive switches every few seconds, but a single probe on the output signal
of clock-generator component set to 1 MHz will consume about 12 MBytes of memory per
second. In such situations, the default upper memory limit of about 64..256 MBytes enforced
by the Java runtime can be consumed very quickly, and you should consider to start the Java
virtual machine with an increased value of the memory limit. For example, on most current
Java virtual machines, the-Xmx512m command line option increases the upper memory limit
to 512 MBytes, e.g.:

java -Xmx512m hades.gui.Editor -file clock.hds

Naturally, even with an increased upper limit, all available memory will be consumed soonerpurging
or later when probing signals with lots of activity during a long simulation. To avoid crashing,
the waveform viewer will automatically delete the oldest part of waveform data whenever it
detects an out-of-memory situation. This means that the waveform viewer keeps as much
recent event history as possible, but earlier simulation traces are lost.

To avoid the purging of old waveform data, you can run the simulator for specified time
intervals via therun for option and command instead of running continuously in interactive
mode. That way the simulator will stop one the specified time interval is over, and you can
clear the waveform data manually after analysing it.



52 6 WAVEFORMS

Figure 33: Screenshot of the Hades waveform viewer, showing theStdLogicVectorwave-
forms for the RTLIB 16-bit counter circuit presented in figure2.5on page10.

6.2 Waveform types

Naturally, the waveform representation for signals of different types should be optimized for
that signal type. For example, a waveform for astd logic value should graphically represent
the nine logic levels ofstd logic, while a waveform for a bus carrying an integer value should
indicate this integer value. Also, different search options corresponding to the signal type
should be provided. In Hades, this is achieved by a class hierarchy consisting of an abstract
base classhades.styx.Waveformand separate subclasses ofWaveformfor individual signal
types. Currently, Hades provides four waveform subclasses for the following signal types:

• WaveInteger, a waveform to store and render integer values

• WaveStdLogic1164, used forstd logic values

• WaveStdLogicVector, for RTLIBbuses of typehades.models.StdLogicVector.

• WaveString, a waveform which stores string values.

The screenshot shown in figure33 demonstrates the waveforms for both scalarstd logic sig-
nals andstd logic vectorbuses. The waveforms in the example are taken from a simulation
of the 16-bit counter presented in section2.5on page10.

Should you want to support a new waveform type, you can just write a new subclass ofWave-
form with corresponding methods to store, search, and paint the actual payload of the signal.
Unfortunately, the current implementation ofWaveformVieweruses a hardcoded mapping of
signal types to waveform classes instead of the factory design pattern. To add a new wave-
form type, you will also have to edit and recompile classhades.styx.WavwformViewer.

6.3 Using the waveform viewer

A screenshot of the Hades waveform viewer is shown in figure34. The main window uses awindow layout
conventional

”
waveform viewer“ layout with a menu bar, the time panel at the top, the stack

of waveforms with scrollbars, and a set of control buttons. At the bottom of the window is
the status message panel. A cross-hatch cursor is used in the main waveform canvas, which
helps to compare the timing relationship between waveforms across the screen.

The name panel at the left part of the main window displays the names of the waveforms.waveform names
When a waveform is first created, its name is set form the full name of the corrsponding sig-
nal. Starting from the root of the design hierarchy (/), the full name lists the instance names of



6.3 Using the waveform viewer 53

Figure 34: Annotated screenshot of the Hades waveform viewer window. The waves are for
the D-latch circuit from figure28. The main panel shows the waveform names, the waveform
data, and the time scale. The status panel shows the value and time corresponding to the
current mouse position (or the full signal name). Use the control buttons to select zooming
and panning, and to re-order the waveforms.

any intermediate subdesigns and finally the signal name inside the leaf subdesign. Originally
written long before Swing with its was available, the size of the name panel is fixed, and
only the last part of the full waveform name is displayed in it. For example, short namecout
would be displayed for a signal with the full path/cpu/alu/adder8.3/adder1.1/cout. However,
the full (hierarchical) name of the waveform at the current mouse position is displayed in the
status message panel on the bottom of the waveform viewer window.

When you build a new circuit in the Hades editor, default names are created for each newsettting
signal names
is important!

simulation component and signal, which consist of an initial string followed by a number
to ensure that names are unique. For signals, the default names aren0, n1, n2, etc., and
those names will also show up in the waveform viewer. It is therefore good practice to
select meaningful names for all signals that you want to trace, before adding probes to those
signals. Use thename signaloperation described in section4.7 on page35 to change the
signal names. If necessary, e.g. for documentation purposes, you can use scripting functions
to directly access and change the name of a waveform.

In order to provide the best simulator performance, the Hades framework will not automati-no automatic
repaintingcally update the waveform viewer display during a running simulation. While Java graphics

operations are pretty fast on most platforms today, a single repaint can still take several sec-
onds, when large amounts of waveform data are involved. Naturally, the waveform viewer
will repaint only those parts of the waveform traces that are visible at the current zoom factor,
but it cannot (yet) optimize away drawing operations from the visible parts of the waveforms.
For example, doing a zoom-fit on waveform traces with a million events will result in as
many drawing operations, and the whole user-interface will be inactive during the repaint-
ing. Therefore, you have to request a waveform repaint explicitly via a call to theWavefor-
mViewer.redraw()method or by selection theEdit. Update Wavescommand from the menu.
Naturally, all commands that scroll through the waveform data or change the current wave-
form zoom factor also result in a redraw.

As usual, the scrollbars on the waveform viewer window are used to navigate through thescrolling
waveform data. The vertical scrollbar allows browsing through the list of active waveforms.
The horizontal scrollbar changes the time range visible in the viewer. While the leftmost
position corresponds to the constant timet = 0.0, the rightmost position of the scrollbars
changes during a simulation to reflect the current simulation time. This maximum value,
however, is only updated when a user input event occurs.

Instead of dragging the scrollbars with the mouse, you can also navigate using thecursor- cursor keys
keys. This also allows to keep the mouse at a fixed position, in order to compare the value of
multiple waveforms which are not visible on one screen.



54 6 WAVEFORMS

Use thezoom fitbutton to update the current waveform viewer transformation so as to make
the whole waveform data visible. This is the fourth button from the left on the waveform
viewer control panel (the single button marked with the the circular arrows). Clicking the
zoom fitbutton often is the best way to update the waveforms. However, once the amount
of waveform data gets large, using the zoom fit command may become (very) slow, as the
operation results in a redraw ofall waveform data.

To change the zoom-factor, simply press one of the fiveZoom-buttons on the waveformzoom in, zoom out
viewer control panel. From left to right, these buttons activate thezoom out 1:4, zoom out
1:2, zoom in by 2:1, zoom in by 4:1, and thezoom to selectionfunctions. The first four of
those buttons work by changing the zoom factor of the waveform viewer window, while the
selected simulation time (in the center of the window) remains constant.

To select the time interval for a zoom operation interactively, first move the mouse to the startzoom region
time of the desired interval and than drag the mouse to the end time. The waveform viewer
will highlight the selected interval and the status panel indicates the duration of the selected
time range. Finally, click on thezoom to selectionbutton (the rightmost control button) to
execute the operation.

Note that an interactive simulation may use events at very different time scales. For example,time scales
the default gate delays of the basic gates from thehades.models.gatespackage are a few
nanoseconds, while user-generated events occur in the range of seconds. The simulator has
no problem with this, but the very different time scales imply that you may have to zoom into
the waveforms by a very large factor before details of the circuit timing become visible. For
example, you might have to click thezoom in 2:1buttons up to 30 times to change from the
range of seconds to the gates nanosecond range (because 230≈ 19).

To zoom into an interesting range of waveform data, you first move the crosshair cursor tozoom auto
the center of the corresonding time range, and then select the zoom-auto function (type the
key a). This function automatically searches for the nearest events just before and just after
the current cursor position, and recalculates the zoom-factor so that those events are a few
pixels apart. When different timescales are involved, this function automatically streches the
zoom so that subsequent events (the small timescale) are clearly separated. You can then use
the zoom-in and zoom-out functions to fine-tune the zoom-factor.

6.4 Searching waveform data

Often, it is much more efficient to search for certain waveform events than to just browse
through the data manually. For example, you may want to warp directly to the next or previ-
ous event on a certain signal, or to look at the next rising edge of a signal, without changing
the zoom factor and without having to scroll tediously through idle periods of that signal.

Our initial user interface concept for those seearch operations was based on context-sensitive
popup menus on the individual waveforms, with the search base time specified by the mouse
position when activating the popup menu. However, most of the originally planned search
functions were never fully implemented, because the popup-menu approach turned out to
be less user-friendly then expected. For example, having to re-invoke a menu often is quite
cumbersome when trying to browse a large data set.

The current version of the waveform viewer offers only a minimal set of functions via the
mainSearchmenu, and usesbindkeys(accelerators) for everything else. This means that you
have to learn those bindkeys first, but most operations can be selected much quicker than via
menus. A summary of the bindkeys is listed in section6.6on page56.

All search operations start at thesearch base time, and every successful search operationsearch base time
also automatically updates the search base time. This makes it possible to quickly browse
through the waveform data by just repeating a search operation. The search base time is
initialized totsearch= 0. To chage its current value to a designated numerical value, first select
menu. search. set base timefrom the menu, and then type in the corresponding value as a
decimal number (without units) into the dialog window. Alternatively, scroll the waveform
window and position the crosshair cursor at the designated time, then type theS (shift+s)
bindkey to update the search base time.



6.5 Saving and loading waveform data 55

To provide visual feedback of search operations, the search base time is highlighted by thesearch marker
search marker, a red vertical line, after each (successful) search operation. Use the corre-
sponding commands,menu. search. show search markerto enable the marker (which also
autoscrolls to the corresponding time) andhide search markeror typeR to disable the marker.

The global search operations can be used to step through subsequent events across all wave-next event
previous eventforms, starting from the current search base time. Selectmenu. search. next eventor previ-

ous eventfrom the main menu, or type the bindkeysN andP respectively. Should multiple
events occur at exactly the same time, duplicates are disregarded, and only one of those events
is considered during searching.

You can also search for the next or previous events on a selected waveform, instead of search-
ing across all waveforms. Just position the crosshair cursor on the designated waveform and
then type then or p keys to search the next or previous event on that waveform.

Searching specific values

To search for specific values in the waveform data, you first specify the designated search pat-specify search value
tern as a string. Either selectmenu. search. set search patternfrom the main menu, or type
theV (shift+v) bindkey to bring up the search value dialog, and then enter the value. For ex-
ample, enter the (lowercase) charactersu, x, 0, 1, etc. to search for specific logical values on a
WaveStdLogic1164waveform, type a decimal integer to search on aWaveInteger, or an arbi-
trary string to search aWaveString. The search pattern forWaveStdLogicVectorsupports the
different number formats supported by theparsemethod of classStdLogicVector, including
the standard decimal notation, and the prefixes0b and0x for binary and hexadecimal nota-
tion. You can also use the suffixes_b, _h, for example0xcafe or 0000101011111110_b.

Please note that the search functions don’t support substrings, wildcard characters, or regular
expressions for the search pattern.

Once you have set the search pattern, position the crosshair cursor over the waveform andsearching:
cursor position
selects direction

type thev bindkey to initiate the search. The search proceeds in positive direction (next
events) when the cursor is in the right half of the waveform window, and towards earlier
times (previous events) when the cursor is in the left half of the waveform window. This trick
was chosen to avoid wasting bindkeys or a separate search-direction control, and should work
well enough with a little bit of practice. After a successful search, the search marker line will
appear at the middle of the waveform window.

Searching for std logic values

As most of the gate-level simulation models in Hades are based on thestd logic 1164logic
model, the single-bit signals of classSignalStdLogic1164are the most common. To help
searching for the different logic values, a few extra search functions are provided for the
corresponding waveform typeWaveStdLogic1164.

Just type the (lowercase) keysu, x, 0, 1, z, w, l andh to search for the corresponding logical
value on the currently selected waveform. As with the search value functions explained in
the previous section, the direction of the search is taken from the current crosshair cursor
position. Move the mouse to the right half of the waveform window to search for the next
events (forward in time), and to the left half of the window to search for earlier events.

For example, to search for the next rising edge on astd logic 1164signal, just position the
crosshair cursor over the right half of waveform, and type0 followed by1.

6.5 Saving and loading waveform data

To save the current set of waveforms to a file, simply select theFile . Save As. . .menu item saving
waveform dataand select the output file. This will save the waveform names and the full waveform data,

but no references to the Hades editor or simulator. This means that the waveform data can be
restored for displaying, but not for simulation.



56 6 WAVEFORMS

SelectFile . Load. . . to load a previously saved set of waveform data. You can now zoom
and search through the data same as in the realtime mode during a simulation.

To start the waveform viewer as a standalone application, include thehades.jarclass archive
file into your CLASSPATH and run the following command in a shell:

java hades.styx.WaveformViewer

For very large waveform data files, you might have to increase the memory limit of your Java
runtime via the corresponding option, for example-Xmx512m. After the program comes up,
use theloadmenu item to open a previously stored waveform file, and study the waveforms.

6.6 Bindkeys

When studying waveforms with more than a few signals and events, controlling the waveform
viewer via the menus and scrollbars can become quite time-consuming. It is usually much
quicker to just type one of the predefinedbindkeys(accelerators) instead of selected some
function over and over again from the menu. The combination of

The following table lists the available bindkeys:

Key Function
left scroll waveform window left (decrease time)
right scroll waveform window right (increase time)
up scroll waveform window up (index)
down scroll waveform window down (index)
f zoom fit (whole simulation time)
y zoom out (50%)
Y zoom in (200%)
s zoom into selected area (mark with mouse-dragging)
S set search time from cursor position
R remove (hide) search marker line
N search next event (all waveforms)
P search previous event (all waveforms)
n search next event on selected waveform
p search previous event on selected waveform

Note: search direction for the following is controlled
by the mouse position — positive when cursor is in
the right half of the waveform window.

V specify search value/pattern
v search next/previous occurence of selected value

u search next/previous stdlogic 1164 U value
x search next/previous stdlogic 1164 X value
0 search next/previous stdlogic 1164 0 value
1 search next/previous stdlogic 1164 1 value
z search next/previous stdlogic 1164 Z value
w search next/previous stdlogic 1164 W value
l search next/previous stdlogic 1164 L value
h search next/previous stdlogic 1164 H value

Figure 35: Waveform viewer bindkeys



6.7 Scripting 57

6.7 Scripting

When using waveforms to debug or demonstrate a circuit, it is often necessary to select the
same set of probes for several runs of the simulator, which can become very cumbersome via
the GUI. Instead, you may want to automate this task by scripting. For details about scripting
the Hades editor and simulator with Java or Jython see section8 on page71. The following
code example shows the principle of selecting probes via a Jython script:

# Jython/Python script for waveform initialization
...

# create an editor and load a design into the editor
#
from hades.gui import Editor
editor = Editor()
editor.doOpenDesign( "designname.hds", 1 )

# create probes for selected signals
#
design = editor.getDesign()
signalNames = [ ’D’, ’C’, ’i1.y’, ’i0.y’, ’Q’, ’NQ’ ]
for i in range( len( signalNames )):

signal = design.getSignal( signalNames[i] )
if (signal != None):

editor.addProbeToSignal( signalNames[i] )

# create and show the waveform viewer
#
editor.doShowWaves()
waveformViewer = editor.getWaveformViewer()
waveformViewer.setBounds( 450, 50, 500, 400 )
...

# update waveform viewer display
#
waveformViewer.updateTrafo()
waveformViewer.getWaveCanvas().zoomFit()
waveformViewer.redraw()
...



58 7 MODEL LIBRARIES

7 Model libraries

This chapter presents an overview of the simulation models currently available in Hades, in-
cluding the most frequently used models for basic and complex logic gates, flipflops, and
interactive switches. Additionally, a few of the RTLIB components for register-transfer-level
modelling are also decribed here. Last but not least, the PIC16 and MIPS R3000 micropro-
cessor cores for hardware/software cosimulation are presented.

A first overview of the model library organization is given in section7.1, while section7.2
explains how to access the simulation components from the editor via the popup-menu or the
create by namecommand. Next, section7.3 describes Colibri, our component and library
browser and its configuration.

The remaining sections in this chapter present an overview of the available simulation com-
ponents:

• label to annotate your schematics7.4
• interactive switches and displays7.5
• power and ground connectors7.6
• basic and complex logic gates7.7
• flipflops7.8
• registers7.9
• memories including RAM and ROM7.10
• RTLIBcomponents operate onstd logic vectorsignals7.11
• TTL-series components7.12
• system-level components7.13like serial terminals or animated displays
• PIC16 processor7.14
• MIPS R3000 microprocessor7.15

The default installation of Hades includes many more simulation models, for example switch-
level simulation components or image-processing filters, but these are not described in this
tutorial.

7.1 Model library organization

The Java classhades.simulator.SimObjectis the common base class of all simulation com-SimObject
ponents in Hades. ASimObjectimplements the interfacehades.simulator.Simulatablewhich
defines the basic operations — theelaborate()andevaluate()methods — for discrete event
simulation. All remaining Java classes and resources used for simulation models are orga-
nized in a Java package hierarchy starting withhades.models.

The second most important class ishades.models.Design, the central abstraction of a digitalDesign
circuit. A Designis derived fromSimObjectand provides all the functionality to organize
a set ofSimObjects(including otherDesigns as nested sub-components) into a circuit. The
Hades editor always operates on the current toplevelDesign, but aDesigncan also be opened
and used without the editor user interface, for example to perform a batch-mode simulation
without GUI overhead.

All other simulation models are currently organized in subpackages ofhades.models. For ex-Class hierarchy
ample, the basic gates like AND, OR, XOR are collected in packagehades.models.gates, the
complexgates inhades.models.complexgates, and several flipflops inhades.models.flipflops.
The packagehades.models.iocontains the switches and display components used for inter-
active simulation. A separate hierarchy for register-transfer level components starts with
packagehades.models.rtlib. These models are introduced in section7.11on page67.

For a list of available simulation models including documentation see the Hades class doc-
umentation or the interactive library browserColibri, described in section7.3 below. Natu-
rally, you can also directly list the contents of thehades.jar archive file and look for the
hades.modelsdirectory and its subdirectories to find the available simulation models.



7.2 Accessing simulation components 59

The Java environment currently does not enforce the package names. (If it did,hades.models
would probably have to be calledDE.uni-hamburg.informatik.tams.hades.models, etc.) This
means that you can use arbitrary class and package names when writing your own simulation
models. While packages are not write protected, you should not add new components into
existing packages, however.

7.2 Accessing simulation components

As explained above in section4.3on page31, the editor popup-menu provides the easiest waypopup . create
to add simulation components to the current design. However, in most cases only a subset
of all simulation models available in the Hades software archive (hades.jar) will also be
listed in the popup-menu. For example, we restrict the popup-menu entries to only a few
basic gates, flipflops, and switches for our own undergraduate courses. The reduced range of
simulation components helps the students to quickly select components, and avoids the use
of more advanced components that would bypass the intended answers.

However, you can also easily customize the entries in the popup-menu. The contents of theconfiguring
the popup-menupopup-menu are not hardcoded into the software, but are generated at runtime from a config-

uration file. When starting the Hades editor as a standalone application, the default configu-
ration file is called/hades/gui/PopupMenu.txt, while /hades/gui/ViewModePopupMenu.txtis
used in view-mode or for applets. Both files are included in thehades.jarclass archive, and
you are free to copy and modify those files (for example via thejar -u command).

Alternatively, you can set the propertyhades.gui.Editor.PopupMenuResourcein your Hades
startup configuration file,$home/.hadesrc. If this property is set, the editor will parse the
specified file instead of the default files to build the popup menu. This allows you to cus-
tomize the popup-menu and to add or remove entries.

However, you can still access and use all simulation components available on your systemcreate by name
directly from the editor user-interface, even if those are not listed in the popup-menu. To this
end, activate the popup menu and select the menu itempopup. create. create by name. This
command in turn opens a dialog window which prompts you for the full Java class name of the
simulation model in question. Just enter the full class name, e.g.hades.models.gates.Nand3,
to create a new instance of the corresponding class. As the Java classloader resolves class
names at runtime and searches the whole CLASSPATH, this command also lets you access
your own newly written classes or any third-party simulation models. Here are a few exam-
ples of possible class names:

hades.models.io.ClockGen - clock generator
hades.models.gatter.And4 - AND4 gate, german DIN symbol
hades.models.gates.Xor2 - XOR2 gate, standard US symbol
hades.models.flipflops.Dffr - D-type flipflop with reset
hades.models.meta.Label - label for annotations
hades.models.FigObject - embedded FIG drawing
hades.models.rtl.ROM_64Kx8 - ROM, 64K words a 8 bit
hades.models.rtlib.arith.Adder - n-bit adder
hades.models.rtlib.memory.RAM - configurable RAM
hades.models.pic.Pic16C84 - PIC16C84 microcontroller
...

The third way to access simulation components is via the Hades component and librarycomponent
browserbrowser, which is the topic of the next section.



60 7 MODEL LIBRARIES

Figure 36: Screenshot of the Hades component and library browser, Colibri. The explorer-
like control on the left displays all Hades simulation models, design files, and related design
resources like memory data or assembler files. On the right part of its screen, the browser
displays information about the selected objects.

7.3 Colibri Browser

Thecomponent and library browser(or Colibri for short) allows browsing the Hades simu-Colibri
lation model library and integrates functions for managing design files. While the standard
popop-menu in the editor only includes the most frequently used simulation components, the
browser gives access to the complete set of simulation models via an explorer-like tree-view
of both the built-in model libraries and user-specified design directories. Figure36on page60
shows a screenshot of the browser.

Originally, the first version of the browser was designed as a complete management systemoriginal concept
and history for standalone Java beans components, with support for beans versioning as a central func-

tion. The idea was to support smooth upgrading of simulation components, where custom
classloaders were used to distinguish between different versions of the same class, and to
use multiple versions concurrently in one simulation. Meta-information about simulation
components was (and is) kept in separate text files, with filename extension.clb.

While the custom classloader concept worked fine when running the simulator as a standalone
application, it also meant a lot of overhead and complexity. For example, extra care was
required when comparing objects for equality, or when trying to serialize and de-serialize
objects. Even worse, custom classloaders made it impossible to run the editor and simulator
as an applet on older versions of Java. Even the most recent versions of the Java runtime still
require extra permissions when using custom classloaders. But worst of all, it turned out we
never really had different versions of the same simulation models, because it was better to
just keep and use the most recent version.

User-interface overview

The current version of the browser is still based on the original ideas and even source code,
but it no longer relies on custom classloaders, and it does not include the beans-versioning
functions. The main user-interface consists of the browser window with the components
explorertree-control on the left, and the componentinfo panelon the right. Just navigate the
tree to browse the simulation library. See figure36 for a screenshot of the browser.



7.3 Colibri Browser 61

There are three different ways to start the browser:

• in the Hades editor, selectmenu. edit. open component browser

• in the Hades editor, selectpopup-menu. create. browse. . .

• run java hades.manager.Colibrias the main application.

When you click on a simulation component in the tree, the browser will attempt to load andsingle-clicking
display help information about that component. If available, the browser will also show a
thumbnail image of the selected simulation component or a thumbnail image of the selected
subdesign. The browser also recognized a few other file types, including python scripts (.py)
and assembly source files (.asm). If you select those items in the tree, the file contents will
be shown in the browser info panel.

As noted above, the meta-information about simulation components and design files is kept
in separate text-files with extension.clb. Therefore, you must also write the required.clbfiles
when you write your own simulation components (.class), or when you want to access your
own design files (.hds) as subdesigns/components from the browser.

Double-clicking an item in the tree will execute the default action bound to the correspondingdouble-clicking
type of tree node. As usual, double-clicking a directory node will expand or collapse the
subtree corresponding to the directory. Double-clicking a simulation component will activate
the Hades editor (or the most recently used editor window, if multiple editors are open), and
initiate anadd component to current designoperation. Move the mouse to the target position
of the new component and click the left mouse button to place the component, or click the
right mouse button to cancel the operation. Similarly, double-clicking a Hades design file
will open that design file in the current editor.

For any object in the browser tree, you can also activate a popup-menu whose contents willpopup-menu
correspond to the type of the selected object. For example, the popup-menu will allow you to
open a Hades design file (in the current editor, a new editor, or in view mode) or to include the
design file as a subdesign in the current editor. For Python source files, you can view, edit, or
execute the script, etc. Unfortunately, many menu items are still disabled, because we never
managed to actually implement all the functions. Just drop us a note if you are interested in
helping with this!

Browser setup

The current version of the Colibri browser looks for Hades simulation components and design
files in several different places:

• thebuilt-in simulation components included in thehades.jarclass archive file

• optionally, additional JAR class archive files in your CLASSPATH

• optionally, all JAR class archive files in theextension directoryof your Java virtual
machine

• up to four user-specified directories on your local system

Select themenu. browser setupmenu item in the browser to bring up a dialog window that
lets you select those options and the actual filenames of the four user directories. There is
no use to enable theinclude CLASSPATH JARsor include extension directory JARsoptions
unless you actually have custom JAR archives that contain Hades simulation models or design
files.

In the dialog, you can also select the names of the four directories that should be scanned
for simulation components. The contents of each directory (if it exists) are then shown as
separate subtrees in the browser tree control. If one of the selected directories does not exist,
the browser indicates this with a small red cross in the file-system icon. Similarly, empty
directories are indiciated with a small orange cross.



62 7 MODEL LIBRARIES

Press theapplybutton in the dialog to rebuild the component tree with the currently selection
options and directory names, or press theapply and savebutton to save the current options
and filenames to your$HOME/.hadesrcconfiguration file and then rebuild the component
tree. Finally, click theclosebutton to close the browser setup window.

Note: scanning a directory for Hades design files can take a lot of time if the number of files
is large or if the underlying device is slow (e.g. a network drive or a slow USB device). For
ease of implementation, the updating is done in the main user-interface thread, which means
that the editor and browser are blocked until the file system scan in complete. While selecting
a root directory (like ’C:\’ on Windows or ’/’ on Unix) will work, scanning and updating
the file system can block the editor for minutes. . .

You can also customize the components that are included in thebuilt-in part of the component
tree. Just unpack the filehades/.clblist.txtfrom thehades.jararchive, edit it, and then save as
file $HOME/.hades/clblist.txt, where$HOME stands for your personal home directory. On
startup, the browser will check whether this special file exists, and use the file contents instead
of the default component list. For each entry that you want to include in your component tree,
add one line of text with the resource name of a simulation component (.clb files), Hades
design file (.hdsfiles), or other resource file (like.pyfiles). You will need to restart Hades for
the changes to take effect.

7.4 Label component

This passive simulation component allows to embed an arbitrary one-line text into a de-comments and
annotations sign schematic, for example as a comment. To create a newLabelcomponent, either select

popup. create. special. label from the popup-menu or usecreate by nameand select the
class namehades.models.meta.Label. At the moment, the Hades editor does not support a
special handling ofLabel objects with direct text input. Instead, all newLabel objects are
created with default text and default text attributes. Use theLabelproperty dialog to select
the label text and the text attributes, including text font, font size, alignment, and color.



7.5 Interactive I/O 63

7.5 Interactive I/O

Ipin

The Ipin simulation model (classhades.models.io.Ipin) is an interactive switch for a single-
bit signal. A normal mouse click in the center of the Ipin symbol will toggle the Ipin output
value between the values0 and1. When theSHIFT-key is hold down while clicking the
Ipin, the output value will step through the values0, 1, Z (high impedance) andU (undefined)
instead. The default output value of the Ipin at the start of a simulation (t = 0) is U; but this
initial value can be changed via the property-dialog.

Note that each instance of Ipin also defines an external input for the design schematic, when
this is later used as a subdesign in a hierarchical design. In this case, the name of the Ipin
component (always shown on the Ipin symbol) is used as the name of the external input.

Opin

UseOpin instances to define an external output for a design schematic. As with Ipin, the
name of the Opin component is used to specify the output port name.

The symbol of an Opin component includes a LED which uses theglow-modecolors to
indicate the current input value.

ClockGen

This simulation model represents a clock generator with user-settable parameters for clock
period (frequency), clock duty-cycle, and the initial delay. A mouse-click on the ClockGen
symbol will pause or re-enable the clock generator.

PowerOnReset

A simulation model that generates a singleactive-lowreset impulse at simulation start. This
is very useful to initialize flipflops and registers (likeDFFR or RegR). The timing parame-
ters (initial delay and pulse duration) can be specified in the property dialog. To generate an
acitve-highimpulse just use the combination of PowerOnReset and an inverter. A mouse-
click on the PowerOnReset generator toggles the output value between0 and1, which allows
to use the component as an interactive switch and to generate reset pulses during the simula-
tion.

LED

This component models a simple light emitting diode for visualization. The color for the1
input value can be selected via the property dialog, while theglow-modecolor encoding is
used for the remainingstd logic values.

HexSwitch

An interactive switch with 4-bit output. A mouse-click in one of the areas marked0 to F.
allows to directly select the corresponding hex output value. A mouse-click in the

”
-“ or

”
+“

areas will decrement or increment the current HexSwitch output value.

HexDisplay

A seven segment display with integrated hex decoder, to visualize 4-bit input values from0
to F. For undefined inputs, the display will show a

”
8“ in theU glow-mode color.



64 7 MODEL LIBRARIES

7.6 VCC, GND, Pullup

While the interactive switches can be used to generate logic values, it is still useful to have
sources for constant logic values, for example to create a constant0 value for a carry input.
This is possible via the componentsVCC (supply voltage, logic value1) andGND (ground,
logic value0). ThePullup-resistor generates the output valueH (weak 1), which can be used
to model open-collector circuits or to create a default logic value for buses.

Because these simulation models are passive, they are only activated once at the beginning
of the simulation. This implies that a connection of a signal to aVCC, GND or Pullup
component during a running simulation will not update the signal value. To re-initialize
the signals you will have to stop the current simulation via therewind-button (

�� ��<< ) in the
simulator control panel and the to restart the simulation via therun-button (

�� ��>> ).

7.7 Basic and complex logic gates

Naturally, Hades includes simulation models for all basic and several complex logic gates,
most of which are available with 2 to 4 inputs. All of those simulation models internally
use the nine-valuedstd logic multilevel logic model [IEEE 93b]. Therefore, the gates can be
used for buses and open-collector type logic, and allow to model and detect short-circuit or
open-input conditions.

See the Java packagehades.models.gatesfor thebasic gatessimulations models like AND,
OR, NAND, NOR, XOR and a few multiplexers. The packagehades.models.complexgates
contains the simulation models for complex gates with up to three inputs (AOI21 . . . OAI33).

Additionally, the packagehades.models.gattercontains a second set of basic gates, realized
as direct subclasses of the corresponding classes inhades.models.gateswith exactly the same
behaviour. However, the classes fromhades.models.gatteruse the German DIN-style graph-
ical symbols for the gates, which are often used in German textbooks.

To add a gate to your circuit, just select the corresponding entry from the popup-menu. For
example, selectpopup. create. gates. Nand2to add a two-input NAND-gate to your Hades
design.

AND2 AND-gate, 2 inputs
AND3 AND-gate, 3 inputs
AND4 AND-gate, 4 inputs
AND4NEG2 AND-gate, 4 inputs, 2 of them inverted
...
XOR2 XOR-gate
XNOR2 XNOR-gate
...
Buffer buffer
INV inverter
Demux14 2-bit to 4-bit decoder
Mux21 2:1 multiplexer
Mux41 4:1 multiplexer
...

All gate simulation models allow to change the gate propagation delay. The default values are
set for a typical 1.0µm CMOS library and range from 5. . . 10 ns. Non-inverting gates typically
use the double propagation delay than the inverting gates. However, the gates do not distin-
guish between their different inputs. To visualize gate propagation delays, it is sometimes
helpful to select propagation delays in the range of 0.5 . . . 1 sec. instead of nanoseconds. Just
usepopup. edit to show the property dialog for the gate in question and enter the required
value.



7.8 Flipflops 65

7.8 Flipflops

Apart from the simple and complex gates, Hades also includes simulation models for a variety
of flipflops. These can be accessed from thePopup. Create. Flipflopsmenu. To enforce a
proper design style, a few of the available flipflops might be disabled in the popup-menu.
The symbols in the margin show (top down) the simple D-type flipflopDff, the D-flipflop
with asynchronous active-low resetDffr, and the D-flipflop with asynchronous set and reset
Dffrs. All of these flipflops are clocked with therising edgeof the clock input signal.

At the start of the simulation, all flipflops are initialized to the undefined valueU. If your
circuit contains feedback loops, this implies that an explicit reset or initialization sequence is
required for the flipflops. Therefore, it is often better to use theDffr flipflops with reset input
together with aPowerOnResetgenerator instead of the simpleDff flipflops. See section7.5
for a description of thePowerOnReset-component.

If you need a flipflop that is initialized to the output value1, you can use theDffrs flipflop
and connect itsNR reset input to aVCCcomponent with a constant1 value and theNSset
input to aPowerOnResetgenerator.

The JK-type flipflopJkff is modeled after the TTL-series 74107 type flipflop. Correspond-
ingly, theJkffflipflop is clocked with thefalling edgeof the clock signal.

7.9 Register

This simulation component models a standard n-bit register built from rising-edge triggered
D-flipflops and active-low reset input. The register also works as an interactive switch; a
mouse click inside a bit of the register’s symbol toggles the corresponding bit through the
values0, 1, andX.

As the contents of the register are directly shown on the register’s symbol, this component is
useful for visualization, too. To this end, the registers bits are aligned horizontally with the
MSB on the left and the LSB on the right. The data inputs are on the top and the data outputs
on the bottom. The bit-width (number of bits) of the register can be changed via the register
property dialog.

Shift-register

A simple variant of the register described above, which works as a shift register. On each
rising edge of the clock input signal, the contents of the register are shifted one position to
the left. Unlike the normal D-register, this simulation models has no parallel data inputs, but
only the singleSin(shift-in) input. As with the D-register, the contents of each bit in the shift
register can be toggled by mouse clicks into the corresponding bit position.

7.10 ROM

A ROM read-only memory component is often used to create custom logic functions. The
Hades packagehades.models.rtlincludes simple ROM simulation components of different
capacity, e.g.ROM 64Kx8, ROM 1Kx8, or ROM 256x8, where the first number indicates the
number of words (64K, 1K, 256). Each of those simulation models uses 8-bits per word,
which is the common size used by many real ROM chips.

Also, the ROM components have two additional inputsnCS(active low chip select) andnOE
(active low output enable) which are required to cascade multiple chips in bus-systems. For
circuits with single chips, simply tie those inputs to a constant0 level to activate the ROM, e.g.
by using aGND component. With both select inputs tied to ground, the ROM components
behave exactly like combinatorial circuits and can be used to model the simple ROMs often
used in textbooks.

The screenshot in figure37 shows a small ROM with only 8 memory words (3 address bits)
of 8 databits each. In the screenshot, the third memory word is addressed via the address



66 7 MODEL LIBRARIES

inputsA2 A2 A0, and the corresponding data value0xF2 is output on the ROM data outputs
D7..D0.

The property dialog for the ROM components includes an interactive editor which allows
to save, load, merge, initialize and edit the memory contents. The central part of the editor
window shows the memory contents in the usualhex editorform, with the address on the
left and a line of data values on the right. Use the scrollbar to scroll the visible subset of
the memory data. Subclasses of the editor may also implement additional functionality. For
example, a ROM component used in a system built around a microcontroller might offer the
option to display the memory contents in a disassembled view.

Use a mouse click or theCursorkeys to move the data entry cursor to a new memory address.
Afterwards, you can enter a hex value at the current cursor position directly via the0. . .F
keys, or increment (or decrement) the current value (including carry) using theShift+Cursor-
Up or Shift+Cursor-Downkeys. Using theTab (or Shift+Tab) key, you can move the cursor
to the next (previous) memory address:

mouse click - select active memory address
cursor - select active memory address
0 .. 9 a .. f - data entry for a single hex value
Tab - move to next memory address
shift-Tab - move to previous memory address
shfit-Cursor up/down - increment / decrement data value

To save the current memory contents into a file, select theFile . Save ascommand from the
memory editor menu bar and select a useful filename. UseFile . Load to load memory data
from a file, orFile . Mergeto merge the file data with the current memory contents. Because
the memory data is stored in standard text files, you can also edit those files with your favorite
text editor, or use a program to automatically generate memory data files.

Figure 37: Example for the usage of the ROM components. The nCS and nOE inputs are tied
to 0 level to active the ROM. The property dialog includes the memory editor which allows
to change the memory contents.



7.11 RTLIB 67

7.11 RTLIB

The Hades framework also includes a library (calledRTLIB) of register-transfer levelcom- buses
ponents like arithmetic and logical operators, registers, register files, memories, and a
few interactive I/O components. All of these simulation models use a bus representation
(classhades.models.StdLogicVector) for their multi-bit inputs and outputs and the usualStd-
Logic1164data type for the single bit data.

The Hades graphics editor uses a special color (lilac instead of red) to indicate the bus ports
on RTLIB components. When connecting to such a port, the editor automatically creates a
bus of the corresponding bit-width. When connecting a bus to a bus port, the editor checks
that the bit-width is consistent. The bit-width of all RTLIB components can be changed via
the component’s property editor in the range of 1 to 63 bits. (This limit is imposed by the
implementation inStdLogicVector, which uses a set of long integers to store the individual
bits). In order to avoid inconsistent circuits, the width of RTLIB-models can only be changed
as long as the component is not connected to signals.

In glow-modea simple trick is used to animate and visualize the bus signals. Unfortunately, itglow-mode
is obviously impractical to assign a separate color to each possible value on a bus. Therefore,
the editor calculates the integer value modulo 10 and uses this index into a fixed list of colors,
where the color is taken from the IEC-code for resistor labeling:

X cyan
Z orange

0 black
1 brown
2 red
3 orange
4 light green (instead of yellow)
5 green
6 blue
7 lilac
8 grey
9 blue-gray (instead of white)

Due to the large number of available RTLIB-components, only a few (if at all) are included
in the editor popup-menu. Use either the design browser of thepopup. create. create by
namecommand from the popup-menu to create RTLIB simulation models. For example,
usinghades.models.rtlib.register.RegRErepresent a rising-edge triggered n-bit register with
asynchonous reset and data enable inputs.

Several RTLIB components use animated symbols in the graphics editor. For example, artlib animation
register might indicate its current contents via updating a label on its symbol with the cor-
responding integer value. During simulation, all those labels and animated graphics objects
need to be updated, which requires a lot of processor cycles. Therefore, you may prefer to
disable the animation of RTLIB simulation models viamenu. display. rtlib animationfrom
the editor menu bar. As the animation is stopped completely when switched off, the displayed
values may no longer coincide with the current values of the simulation itself.

IpinVector und OpinVector

The Java packagehades.models.rtlib.iocollects the interactive I/O components of RTLIB.
The most important of those areIpinVectorandOpinVector, which are used to define the
external (bus-) inputs and outputs of a circuit.

IpinVectoris also used as the interactive switch for bus signals. There are two ways to change
the output value of theIpinVector. First, you can use the property dialog to specify any numer-
ical value in the corresponding text field. The current value from the text field is committed
every time theApply- or OK-buttons are pressed. Note that you can specify values in binary,



68 7 MODEL LIBRARIES

decimal, or hex notation. For example, you could select binary format and enter a string like
0010UXZ0HHHH b for a 12-bit output includingU, X, Z andH bits, where the trailingb tells
the parser to use binary format.

Second, the output value of anIpinVector can be changed interactively via mouse clicks
into the IpinVector symbol. Each simple mouse click increments the output value, while
eachShift-click decrements it. The combination ofCntl-click (left mouse button click with
Control-key hold down) steps throught the output valuesXXX, UUU, andZZZ respectively,
which means a bus with all bits set toX, U, or Z values.

Note that many frequently used output values can be selected with a few input events. For
example, the input sequenceCntl-click, clicksets the output value to0000...0, Cntl-click,
click, click, clickresults in the output value2, andCntl-click, Shift-clicksets all bits (output
value1111...1).

An OpinVectordefines an external output of your circuit. TheOpinVectorsymbol includes
an interactive display that shows the current input value in either binary, decimal, or hex
notation, as long asmenu. display. rtlib animation is selected. The output format can be
selected via the property dialog. Note that binary strings take a lot of screen space and may

”
overflow“ beyond the border of the components. If necessary, selectmenu. edit. redraw all

to redraw and update the editor canvas.

Register

Several frequently used registers are available from the packagehades.models.rtlib.register.
For example, theRegRcomponent shown in the margin models a rising-edge triggered D-
type register with asynchronous active-low reset input. (Use aPowerOnResetcomponent to
generate a suitable reset pulse). On theRegRsymbol, the data input is on the top and the
output on the bottom, which gives the usual top-to-bottom dataflow often used for register-
transfer level schematics in textbooks. Ifrtlib animationis on, the current state of the register
is displayed numerically on the register symbol. Again, it is possible to select binary, decimal,
or hex-format via the property dialog.

Other RTLIB registers include D-type registers with and without reset and enable, latches, a
counter, a shift-register, and a linear-feedback shift-register.

Multiplexer

Standard bus multiplexers (2:1 and 4:1) are found in classeshades.models.rtlib.muxes.Mux21
andMux41. The control inputsS1andS0are on the left side of the mux symbol, while the
data inputsA3 to A0are on the top and the output on the bottom.

Arithmetic and logical operators

The Hades RTLIB also contains a variety of arithmetical and logical operators. Adders,
incrementer and decrementer, ALUs, user-defined ALUs, and shifters are in the package
hades.models.rtlib.arith, while hades.models.rtlib.logichosts several logical operators, and
hades.models.rtlib.compareincludes the standard comparison operators.

The examples in the margin show an 8-bit adder and a 8-plus-1 bit multiplexer. An example
screenshot of the user-defined ALU is shown in figure8 on page11.



7.12 TTL 74xx series models 69

7.12 TTL 74xx series models

The packagehades.models.ttl74collects several components of the TTL 74xx series of MSI
components. A few of the components are written as behavioural models in Java code, for
example the 7449 seven-segment decoder. However, most of the models are implemented as
Hades subdesigns, built from basic gates and flipflops. To add these components to a Hades
schematic, select thepopup. create. create subdesigncommand. Because the schematics
can also be opened as designs (instead of being used as subdesigns), the 74xx series library
offers a sizeable collection of Hades design examples.

For several components, both a functional and a pinout variant of the components symbol
are available. The pinout symbols can be used whenever a direct correspondence with the
real devices is desirable; e.g. when using Hades to design and simulate circuits that will
afterwards be realized on a lab prototype.

A few of the basic gate pinout models, like theSN7400pinoutorSN7432pinoutcomponents,
also require that the ground and power pins are connected in order to get the component
working.

7.13 System-level components

This section lists a fewsystem-levelsimulation models included with Hades.

• hades.models.special.SerialTerminal, a VT52-compatible text terminal with serial in-
terface. The RS232 communication parameters are user-configurable (bits per word,
baud rate, parity and stop bits).

• hades.models.special.ParallelTerminal, a VT52-terminal text terminal with parallel in-
terface, consisting of 8 data lines and a strobe signal.

• hades.models.special.TextLCD, a standard ASCII liquid crystal display with up to four
lines of text of 8 to 40 characters each.

• hades.models.special.GraphicsLCD, a graphical 128x64 pixel monochrome liquid
crystal display modelled after the KS0108 controller chip.

• hades.models.io.Iso8859Display, a 5x7 dot-matrix LED display with integrated ASCII
(ISO8859) decoder.

• hades.models.special.Counter. This component allows to detect and count events on
std logic type signals. For example, the counter can be configured to count all oc-
curences of theX value or rising0->1 edges.

• hades.models.special.HazardTrigger, which allows to detect selected hazards on a sig-
nal. For example, couple theHazardTriggerand aCounterto count the number of
hazards of a given minimum duration on a clock signal.

• hades.models.fsm.FsmWrapper, a wrapper around a simple interactive state-machine
editor. This allows to integrate state-machines into a Hades gate-level circuit.

• hades.models.FigObject, a wrapper that allows to integrate existing FIG-drawings into
Hades schematics.

• hades.models.dcf77.Dcf77SenderandDcf77Clock. A behavioural simulation model of
the German DCF77 sender, which emits a digital signal that encodes the current local
date and time. The simulated date and time values can be specified via the property
dialog. TheDcf77Clockis the corresponding decoder.

• hades.models.meta.AudioPlayer, a simulation component that plays audio data from
a file or URL. Note that support for audio depends on the Java virtual machine and
operating system details.



70 7 MODEL LIBRARIES

7.14 PIC 16C84 microcontroller

One of the goals of Hades was to provide efficient support for hardware/software-cosimu-
lation of digital systems built around microprocessor cores. ThePIC16C84component is a
cycle-accurate simulation model of the PIC 16C84 microcontroller fromwww.microchip.com.
This microcontroller is a complete system on a chip including the PIC16 processor, program
EPROM, data RAM, data EEPROM, and programmable I/O. The packagehades.models.pic
collects all Java classes belonging to the PIC microcontrollers, including a simple batch-mode
assembler and the GUI with interactive editors for program memory, data and EEPROM
memory. It also hosts the description and software for a very low cost programmer for the
PIC16C84 devices.

Currently, the package holds four variants of the basic microncontroller simulation model.
The Pic16C84is the cycle-accurate simulation model which requires an external clock in-
put, but supports the whole interrupt architecture including power-down and wakeup. The
Pic16C84Debugmodel adds a few signals (not found on the real device) that allow to trace
important internal register values via waveforms for better program debugging.

A faster simulation is possible with theFastPic16C84component, which uses an internally
generated clock (and ignores events on the processor clock pin). As the processor requires
two clock cycles per instruction cycle, and each clock cycle takes at least three events, this
trick alone can give a speedup of up to factor 6 over the basicPic16C84component.

Finally, theSmartPic16c84simulation model uses a cycle-based simulation algorithm and
direct synchronization with the Hades simulation kernel for further speedup. This means that
the processor will behave like a cycle-based full-speed simulator while still keeping in full
synchronisation with the (event-driven) external circuits. A full system simulation should run
at several million PIC instructions when using theSmartPic16c84component.

7.15 MIPS IDT R3051 core

This includes theIDTR3051simulation component that implements the R3051 MIPS R3000
series 32-bit microcontroller from IDT,www.idt.com. The model is believed to be cycle-
accurate for most instructions (except multiplication and division) including I-cache and
memory interface timing. The GUI for the processor also shows the five-stage processor
pipeline and allows to watch the instruction execution on a typical scalar RISC-processor.
The memory models included with theIDTR3051allow to parse and loadELF-format bi-
naries into the simulation. A separate GUI is used to configure the memory ranges for the
processor.

The Java classes for theIDTR3051processor simulation model are organized in package
hades.models.mipsand its sub-packages. For example,hades.models.mips.instrdefines the
MIPS R3000 instruction set.



71

8 Scripting and Stimuli

While the interactive simulation mode with its direct control and immediate feedback via theautomation
user interface is one of the advantages of the Hades framework, the simulation and debugging
or more complex circuits can profit greatly from scripting. Also, scripting allows to execute
methods which are not accessible directly via the user interface. For example, the setup and
selection of probes to watch important signals with waveforms is a tiresome operation which
can easily be automated.

Of coure, every scripting language with a Java binding can be used to control and automatelanguages
the Hades framework, including JavaScript, EcmaScript, Tcl, or the BeanShell. However, the
following sections will concentrate on just two languages, namely Java and Jython. First, a
few code-examples explain how to control the Hades simulator and editor from user-supplied
Java classes. Second, a Jython-script is presented to show the excellent integration of Jython
code into the Java runtime environment.

8.1 Java-written scripts

The easiest way to control the Hades framework including editor and simulator is to write ad-pure-Java
ditional Java classes, one of which is then used as the main program. The obvious advantage
of this technique is that only one source language is used and there is no need for additional
runtime support, except possibly for the Java virtual machine CLASSPATH setup. Also, the
performance of Java code should be better than that of interpreted scripting languages. On the
down side, Java code is compiled and only very few runtime environments allow to change
Java code on-the-fly.

The following code example illustrates the basic concepts of using Java to script the Hades
simulator and editor. The new class,RunHadesDemo, is used to setup and create a Hades
editor and to run a simple simulation. The first code snippet presents the new class and its
main()method. As usual, a fewimport statements indicate what classes are used and help to
avoid typing the fully-qualified class names:

/* RunHadesDemo.java - run and control a Hades simulation
*
* set CLASSPATH to include "hades.jar" and "RunHadesDemo.class",
* then start with "java RunHadesDemo"
*/
import jfig.utils.SetupManager; // properties management
import hades.gui.*; // Editor and GUI stuff
import hades.models.Design;
import hades.models.Const1164; // std_logic constants
import hades.models.io.Ipin; // switches

public class RunHadesDemo {
public static void main( String argv[] ) {
...

}
}

The following few lines of code are used to initialize the simulator and editor setup from theSetupManager
global, user, and local properties resource-files. Naturally, properties can also be set from the
Java code itself:

public static void main( String argv[] ) {
SetupManager.loadGlobalProperties( "hades/.hadesrc" );
SetupManager.loadUserProperties( ".hadesrc" );
SetupManager.loadLocalProperties( ".hadesrc" );



72 8 SCRIPTING AND STIMULI

// we don’t want the editor to start the simulator right away
SetupManager.setProperty(
"Hades.Editor.AutoStartSimulation", "false" );

...

Now we can create a new editor instance. Ashades.gui.Editoris the toplevel GUI class inhades.gui.Editor
the Hades framework, this automatically creates the rest of the user-interface including the
object canvas, and also the simulation kernel and a (so far empty) design. Unfortunately, the
user-interface classes are managed by separate threads in the Java runtime environment and it
is difficult to synchronize the GUI initialization. Therefore, the example uses asleep()call to
wait while the user interface is created, and then proceeds to set the editor window size and
position:

...
// create an editor
Editor editor = new Editor();

// give the editor some time to initialize itself
try { Thread.currentThread().sleep( 2000 ); } // msec.
catch( Exception e ) {}

// specify window size and position
editor.getEditFrame().setBounds( 100, 100, 700, 500 );
...

The next step is to load aDesigninto the editor. ThedoOpenDesign()method accepts eitheropening a design
a filename or a Java resource name as its first argument, while the second argument decides
whether the editor should check for unsaved changes or load the new circuit unconditionally.
The example code then uses theaddProbeToSignal()method to initialize waveform probes for
some signals which are identified by their names, shows the waveform window and specifies
its position and size. The code also activates glow-mode for all top-level signals except for
one:

...
// load a design
editor.doOpenDesign( "/hades/examples/simple/dlatch.hds", true );
Design design = editor.getDesign();

// add some probes and show the waveform viewer
String signalNames[] = { "D", "C", "Q", "NQ" };
for( int i=0; i < signalNames.length; i++ ) {
editor.addProbeToSignal( signalNames[i] );

}
editor.doShowWaves();
editor.getWaveformViewer().setBounds(450,50,500,400); // x y w h

// set glow-mode globally, then disable glow-mode for one signal
editor.setGlowMode( true );
design.getSignal( "NQ" ).setGlowMode( false );

At this point, we are ready to actually run the simulation. For interactive simulation it isrunning the simulation
best to just callrunForever() to start the simulation engine. In this mode, the simulation
continues forever until interrupted by the user. The example code also illustrates a basic (if
cumbersome) technique to specify input stimuli. WhileIpin components are normally used
interactively or controlled implicitly from a higher-level design, a program can also create
input events by callingassign(). This method takes a string input value and the simulation
time (in seconds) and schedules the corresponding event with the simulator:



8.2 Batch-mode simulation and circuit selftests 73

// now start the simulator
editor.getSimulator().runForever();

// set some stimuli (or simply use the interactive switches)
Ipin dataPin = (Ipin) design.getComponent( "D" );
Ipin clkPin = (Ipin) design.getComponent( "C" );

dataPin.assign( "1", 1.0 ); // value, time
clkPin.assign( "0", 2.0 );
clkPin.assign( "1", 2.5 );
dataPin.assign( "0", 3.5 );
clkPin.assign( "0", 4.0 );
clkPin.assign( "1", 4.000000001 );

// finally, wait a little, then redraw the waveforms
try { Thread.currentThread().sleep( 5000 ); }
catch( Exception e2 ) { }

editor.getWaveformViewer().updateTrafo();
editor.getWaveformViewer().getWaveCanvas().zoomFit();
editor.getWaveformViewer().redraw();

// main thread stops here, editor runs until "Quit" selected
...

} // end main()

Most Java compilers should be able to compile the above source file, but the required setup
differs. Usually, you have to include thehades.jar archive as well as your working Java
directory (for example,".") in the Java CLASSPATH, so that the compiler can find the
Hades classes. Most JVMs also allow to specify the classpath on a command line. Please
check chapter3 for details about JVM setup and classpath issues. After compilation, just
call the Java virtual machine with the name of your newly created class, and the required
parameters, if any. For example, on a default JDK 1.3 installation:

# compile and run the RunHadesDemo class,
# assuming an Unix/tcsh/JDK environment:
#
setenv CLASSPATH hades.jar:.
javac RunHadesDemo.java
java RunHadesDemo

8.2 Batch-mode simulation and circuit selftests

This section presents example Java code to run a Hades simulation inbatch-modewithout the batch-mode
user interface. To this end, theDesignandSimulatorclasses are initialized explicitly without
creating anEditor.

The example also presents the use of linear-feedback shift-registers (LFSRs) to create pseu-LFSR selftest
dorandom input patterns. A modified LFSR is used as a signature analysis register to collect
the circuit responses to the pseudorandom input stimuli. This signature analysis technique
is frequently used for automatic selftest in VLSI circuits, but is also very efficient for batch
mode simulation. While the following example code does not create the user interface, fig-
ure38shows the typical setup with the LFSR-generator, the circuit under test, and the LFSR
analysis registers.

Again, the code starts with a fewimportstatements to indicate which Java classes are required
by the program. Naturally, this also means that we can later write the shorter class names
instead of the fully qualified names:



74 8 SCRIPTING AND STIMULI

Figure 38: A testbench circuit for automatic LFSR-based signature analysis of a student’s
circuit. From left to right the clock generator and reset pulse generator, the LFSR generator
used as test pattern generator, the students design, and the LFSR signature analysis register.
The property dialog window for the analysis register displays the final signature calculated
during the simulation.

...
import hades.models.Design;
import hades.models.register.LFSRGenerator;
import hades.models.register.LFSRAnalyzer;
import hades.utils.HexFormat;
...

The next few lines of code use theDesignManagerclass to initialize a newDesignobjectDesignManager
from the specified Hades design file (heretestbench.hds). Usually, the current Hades editor
object is passed as the first argument toDesignManager.getDesign(). However, for a batch-
mode simulation without GUI, it is also possible to just pass in anull argument. The third
parameter ofgetDesign()is used to distinguish between the top-level and sub-designs. Here,
true is used because the testbench is the top-level design. Next, a new simulation kernel is
created and attached to the testbenchDesign:

/**
* demonstrate batch-mode simulation and LFSR selftest.
*/
public class BatchModeSimulation {
public static void main( String argv[] ) throws Exception {

// load the testbench design, null=no editor, true=toplevel
//
String designname = "testbench.hds";
Design design = DesignManager.

getDesignManager().
getDesign( null, designname, true );

design.setVisible( false );



8.2 Batch-mode simulation and circuit selftests 75

// create and setup the simulation kernel
//
SimKernel simulator = new VhdlBatchSimKernel();
design.setSimulator( simulator );
simulator.setDesign( design );
...

The following lines of code are used to initialize the seed values for the LFSR pattern gen-seed values
erator and signature analysis registers. To obtain a reference to the simulation components,
thegetComponent()method from classDesignis called with the corresponding component
names (”generator”, etc.). The (ugly) type casts are needed because of the strict Java typing
rules:

...
LFSRGenerator generator = null;
LFSRAnalyzer analyzer = null;

// type cast required: Design.getComponent() returns a SimObject
//
generator = (LFSRGenerator) design.getComponent( "generator" );
analyzer = (LFSRAnalyzer) design.getComponent( "analysator" );

// set initial seed values:
//
generator.setSeed( 1234567 );
analyzer.setSeed( 9874323 );
...

After all the initialization steps, we are now ready to start the simulation. To start an interac-runFor()
tive simulation one would usually call the simulation kernel’srun() method, which runs for-
ever, even when no simulation events remain. Here, we call the simulation kernel’srunFor()
method instead, to specify the end time (in seconds) for the simulation. As the simulation
kernel creates and uses its own Java thread, we need to synchronize in order to detect that the
simulation has finished. To keep the example code as short as possible, the code employs a
simple busy-wait loop. The loop just waits a few milliseconds (here 500), and then checks
again whether the simulation kernel has already reached its end time. If so, we just access the
LFSR analyzer register to retrieve the final signature from the circuit.

...
// setup is complete now, set the simulation end time,
// and start the simulator Thread
//
double endSimTime= 3.14; // in seconds
simulator.runFor( endSimTime );

// busy wait until the simulator is ready. This loop is simpler
// than full Thread synchronisation with the simulation thread.
//
while( simulator.getSimTime() < endSimTime ) {
try {
Thread.currentThread().sleep( 500 ); // 500 msec.

}
catch( InterruptedException e ) { /*ignore exception*/ }

}

// get final simulation data: here signature analysis
//



76 8 SCRIPTING AND STIMULI

long signature = analyzer.getValue(); // & 0x00000000ffffffffL;
System.out.println("final signature is: " + signature);
System.exit( 0 );
} // main
}

8.3 Jython

Due to the greater flexibility and the option to develop code while running it, an interpretedscripting languages
environment often ideally complements the traditional compiled Java environment. At the
moment, Java bindings and interactive interpreters exist for almost all well-known scripting
languages. In this section, the Jython language [Jython] is chosen to demonstrate Hades
scripting. As Jython, the Java-based version of the popular Python scripting language, also
uses an object-oriented paradigm, and supports exceptions, it is particularly well matched
to the Java environment. Also, Jython uses a very simple syntax and provides powerful
libraries, including string processing and regular expression matching. The Jython runtime
environment reads Jython bytecodes and compiles them to Java bytecode, resulting in good
performance.

The following code assumes that the Jython interpreter is used to load and control the Hades
classes. However, it is also possible to first create the Hades editor and then to start a Jython
interpreter shell from the Hades editor via themenu. special. create Jython shellcommand.

The following script is very similar to the Java-based script from section8.1. However,
variables can be used without previous declaration, there is implicit run-time type checking,
and the values1 and0 are used as the boolean constants. Also note theimport statements
required to access Java classes:

# optional, but useful to set the global/user/local defaults
#
from jfig.utils import SetupManager
SetupManager.loadGlobalProperties( "hades/hades.cnf" )
SetupManager.loadUserProperties( "hades.cnf" )
SetupManager.loadLocalProperties( "hades.cnf" )

# create the editor, set window size
#
from hades.gui import Editor
from hades.models import StdLogic1164
from hades.models import Const1164
editor = Editor()

# wait until the GUI is initialized
#
from java.lang import Thread
Thread.currentThread().sleep( 2000 )
window = editor.getEditFrame()
window.setBounds( 50, 50, 600, 500 ) # xywh

# load a design file, 1=true 0=false
#
editor.doOpenDesign( "/hades/examples/simple/dlatch.hds", 1 )
editor.doZoomFit()
...

Similar to the Java-example presented above on page72, we create waveform probes forsyntax and indentation
selected signals. Note the indented formatting for thefor and if constructs required by the
Jython/Python syntax:



8.4 Generating simulation stimuli 77

# create the waveform viewer, add some traces
# Note the formatting required by Python
#
signalNames = [ ’D’, ’C’, ’i1.y’, ’i0.y’, ’Q’, ’NQ’ ]
for i in range( len( signalNames )):

signal = design.getSignal( signalNames[i] )
if (signal != None):
editor.addProbeToSignal( signalNames[i] )

editor.doShowWaves()
waveformViewer = editor.getWaveformViewer()
waveformViewer.setBounds( 450, 50, 500, 400 )

# or use:
# editor.addProbesToAllSignals()
# editor.removeProbesFromAllSignals()

There are two ways to acutally run the script. First, it is possible to start thejythoninterpreter running jython
without any options and use theexecfile()function to read and execute the script. Alterna-
tively, it is also possible to supply the script name on the command line. In the following shell
transcript on a Unix system,prompt indicates the Unix shell prompt and>>> is the Jython
interpreter prompt:

prompt> jython
Jython 2.0 on java1.3.0rc1 (JIT: null)
Type "copyright", "credits" or "license" for more information.
>>> execfile( ’jythondemo.py’ )
>>> # interactive Jython commands here, for example
>>> # note that editor is declared inside the script
>>> d = editor.getDesign()
>>> d.printComponents()
...
>>> CNTL-D # EOF/end-of-input marker

prompt> jython jythondemo.py
... Hades runs

8.4 Generating simulation stimuli

One use of scripting is to specify input stimuli for a circuit during a batch-mode simulation.input patterns
While older simulators typically used a special but very simple language for stimuli descrip-
tion, modern languages like VHDL allow to write stimuli in the design language itself. In
Hades, there are several ways to specify simulation inputs, some of which were already shown
in previous examples:

• use of simulation models likeClockGenand PowerOnResetto generate commonly
used signal patterns.

• using theStimuliGeneratorandStimuliParserclasses to read stimuli data (in VHDL
style) from files; see section8.5below.

• employing thehades.models.io.Stimulussimulation model to generate a vector of
std logic values.

• generation of pseudo-random input patterns using LFSR-registers.

• writing additional Java or JythonSimObjectclasses to generate stimuli algorithmically.
Two typical examples are thehades.models.dcf77.DCF77Senderand DCF77Clock
simulation models which implement the encoder and decoder (clock) for the German
DCF77 time broadcast signal.



78 8 SCRIPTING AND STIMULI

• calling theassign()or setValueAtTime()methods to specify a new input value forIpin
switches.

• direct method calls toscheduleEvent()to register arbitrary input events with the simu-
lator.

• using the Jythonjp stl module, which supports a very simple stimuli language similar
to the (by now deprecated) STL language from Cadence [Cadence 97]. The module
supports both stimuli specification and output value checks against user-defined master
values.

• it is even possible to generate user-interface events directly via thejava.awt.Robot
class. Note that this class was introduced with JDK 1.2 and is not available when
using either JDK 1.1 or the Microsoft VM.

The following example presents some of the Jythonjp stl module functions:

import jp_design_os # file access
import jp_sim_control # simulator control
from jp_stl import * # STL language stuff
from VectorGen import * # stimuli generation

# initialization
jp_design_os.openDesign( "/hades/examples/simple/dlatch.hds" )
jp_design_os.updateDesign()
jp_sim_control.updateSimulator()

# define inputs and outputs
pin_C = defPinByName( "C" ) # latch clock input
pin_D = defPinByName( "D" ) # latch data input
pin_Q = defPinByName( "Q" ) # latch data output

# define probes
addProbes( mode="ALL" )
probeQ, pNQ, pI1Y, pI0Y, pD, pC = defAllProbes()

# define stimuli timing and format
v = VectorGen()
v.defTiming( start=0.0, end=1.0E-8 ) # 10 nsec.
v.defFormat( [pin_C, pin_D] )

# stimuli data, one [pin_C, pin_D] data pair per line:
v.defStimuli( [
1, 1,
0, 1,
0, 0,
1, 0,
1, 1,
1, 0,
1, 1,

] )

# run the simulation
v.start()



8.5 Stimuli files and class StimuliParser 79

Figure 39: A demonstration of theStimuliGeneratorsimulation component, driving the data
and clock inputs of the D-latch circuit. As the stimuli file references signals and components
via their names, no explicit I/O ports are provided on theStimuliGenerator. The signals
included in the waveform viewer are automatically selected viatracestatements in the stimuli
file.

8.5 Stimuli files and class StimuliParser

Despite all the advantages of the Jython scripting environment, there are still reasons to pro-
vide a Java-only way to specify simulation stimuli. To this end, Hades also includes the utility
classesStimuliGeneratorandStimuliParserin the hades.models.stimulipackage. Together,
those classes provide an easy way to write simulation stimuli, using concepts and syntax
similar to a subset of VHDL.

The StimuliParserclass is used to read and parse a stimuli specification, generating theStimuliParser
corresponding simulation events. The parser is written using the JavaCC parser generator.
The parser specification source code (StimuliParser.jj) is included in the standardhades.zip
archive, allowing to modify or extend the stimuli file grammar when required.

The StimuliGeneratorclass in turn is a simpleSimObjectthat allows to embed and use aStimuliGenerator
StimuliParserdirectly in a Hades design file. It does not provide any explicit I/O-ports in the
schematics editor, because the underlying stimuli file accesses both simulation components
(SimObjects) and signals directly via their name. The property sheet ofStimuliGenerator
allows to specify and edit the file name (or resource name) of the stimuli file. It also includes
the option to enable or disable theStimuliGenerator, allowing to run a simulation with the
specified stimuli (when enabled) or purely interactive (when disabled). However, theStimuli-
Generatorcannot be switched off or on during a simulation run, because all events specified
in the stimuli file are already scheduled at the elaboration phase.

The stimuli file grammar tries to mimic a VHDL-like style for the stimuli specification, al-VHDL style
lowing for multiple parallel processes (process . . .end), using the ’<=’ operator for signal
assignments and thewait statement to specify simulation times. To avoid a cumbersome
syntax, strings are used as the values for the assignment statements and theStimuliParser
converts the strings into values suitable for the assignment target. For example, strings like
’X’ or ’ 0’ are used to specifystd_logic values, and all of binary, decimal, and hex-formatted
numbers like ’0xcafe’ are valid as values forstd_logic_vector assignments. Addition-
ally, signals can be traced (waveforms) and the simulator can be paused from the stimuli
file.



80 8 SCRIPTING AND STIMULI

Please check the parser specification file,hades.models.stimuli.StimuliParser.jjfor the com-
plete specification of the grammar.

Note that the target of an assignment can be either a signal or a simulation component thatAssignable
implements theAssignableinterface. This tagging interface is currently implemented by the
standard input components (Ipin, PulseSwitch, HexSwitchetc.) and some RTLIB compo-
nents. This way, you can also control input switches from the stimuli file. Also, the graphical
representation of the switches will be updated together with their output values.

The following example shows a simple stimuli file used to control the D-latch circuit shown
in figure39.

# example stimuli for a D-latch circuit,
# demonstrating the oscillation made possible with VHDL-style
# two-list simulation: the flipflop gates switch at the same time.
#
# a ’#’ hash sign starts a one-line comment
#

#
# select the signals to be traced (waveforms),
# names can be either local or fully-qualified
#
trace n_D
trace n_C
trace n_Q
trace /D_Latch_15nsec/n_Q_

process # as many processes as you like
# everything initalized with U/X at t=0 (default)

wait 15 ns # wait until simulation time 15 nanoseconds
D <= 1 # set D input switch to 1
C <= 1 # set C input switch to 1

wait 15 ns # that is, simulation time 30 nanoseconds
D <= 0 #

wait 30 ns # simulation time now 60 nanoseconds
n_D <= 1 # assign a signal (n_D) instead of the switch

... # more assignments here

n_D <= X # can use std_logic values: U X 0 1 Z W L H D
end

process # a second, parallel process
wait until 1.3 us # run simulation for 1.3 microseconds,
pause # then pause the simulation

end



81

9 Writing Components

This chapter explains how to write new simulation models and how to integrate them intowriting your own models
Hades. Unlike the other sections of this tutorial, this section assumes a solid background as
a Java-programmer. After a short explanation of the simulation concepts, three examples are
presented and discussed in detail. First, a simple gate is used to illustrate the basic methods
required for a digital simulation component. Next, the simulation model for an edge-triggered
D-flipflop shows how to detect input changes. Finally, a clock generator shows how to use
wakeupevents and a user-specified configuration dialog.

The following topics are covered in this chapter:

• Hades software architecture

• theSimObjectandDesignclass hierarchy

• the discrete-event based simulation, including theSimKernelandSimEventclasses

• using theDesignManagerto load and write files

• component configuration usingPropertySheet

• graphicalSymbolsand animation

9.1 Overview and Architecture

An overview of the software architecture of the Hades framework is shown in figure40. A architecture
simulation experiment consists of a set of simulation components, managed by the top-level
designobject. A hierarchical design style is possible, because eachdesignobject is also a
simulation component and can therefore contain other design instances as subdesigns. The
simulation algorithm is executed by asimulation kernelthat interacts viaSimEventevent
objects with the simulation components. In the graphical editor,signal objects are used as
intermediate components to manage the connections between simulation components.

events

control
simulation

waveforms

editors

browser
component

component

user−interface system model

graphics editor
and visualization

Design (schematic)

LC−display

(interactive, real−time, VHDL)
simulation kernel

. . .

. . .

SimObject

SimObject

Design

Design

RAM 

ROM

IDT R3051

Figure 40: The software architecture of the Hades framework. Adesignrepresents a hi-
erarchical collection of simulation models, which interact under control of the event-driven
simulation kernel. The user interface consists of the main graphicaleditor, the component
and librarybrowser, simulation componentproperty dialogsand editors, awaveform viewer,
and thesimulation control.



82 9 WRITING COMPONENTS

Several user-interface components are provided for interaction with the simulation experi-
ment. The graphicaleditor is used to design a simulation setup (e.g. circuit schematics), but
also for interactive control of a running simulation, and for graphical feedback via animation.
All simulation components provide their own user interface, ranging from simple property
dialogs for a few user-settable parameters to complex editors, e.g. hex memory editors. The
waveform viewer allows recording and displaying signal waveforms.

SimObject Class Hierarchy

All simulation models in Hades are realized as subclasses of the generic base classclass SimObject
hades.simulator.SimObject. This class fulfils a double role. First, it defines the basic in-
terface required for the interaction between the simulation models and the event-driven simu-
lation kernel. Second, it provides useful default implementations for many of these interface
methods. For your own simulation models, you have to override some or all methods ofSim-
Object. The following list shows the relevant methods ofSimObjectwith a short description,
grouped into methods with similar roles. Because the classes and interfaces of Hades might
have changed since this text was written, you should check the details with your copy of the
javadoc-generated class documentation:

public class SimObjectSimObjectSimObject
extends Object
implements SimulatableSimulatableSimulatable, // simulation methods

Cloneable, // allow copies
Serializable // and serialization

{{{
// object creation and initialization
SimObject()SimObject()SimObject() // the default constructor
copy() // get a copy of this object
initialize(String) // read parameters from a String
write(PrintWriter) // write parameters as a String

// simulation methods
elaborate(Object)elaborate(Object)elaborate(Object) // initialize the SimObject
evaluate(Object)evaluate(Object)evaluate(Object) // react to external events
wakeup(Object)wakeup(Object)wakeup(Object) // react to internal events

getSimulator() // the simulator for this SimObject
setSimulator(SimKernel)
getPorts() // array of all Port objects
getPort(String) // get a name Port object

... // several accessor and utility methods

... // symbol and graphics stuff

... // configuration
}}}

Fortunately, the default implementation of most methods is sufficient for standard simulation
objects. For simple models with a static graphical representation, you will only override the
constructor, and both theelaborate()andevaluate()methods. The next few paragraphs will
explain the role of each group of these methods in more detail.

The basic structure of the Hades simulation model class hierarchy is shown in figure41. Theclass hierarchy
common base classhades.simulator.SimObjectis derived directly fromjava.lang.Object. The
two interfaceshades.simulator.Simulatableandhades.simulator.Wakeabledefine the interac-
tion between the simulation kernel andSimObject, based on the discrete-event simulation
algorithm.

The most important subclass ofSimObjectis hades.models.Designwhich acts as a containerclass Design
for an arbitrary number of otherSimObjectsand represents one specific simulation system.



9.2 Simulation Overview 83

XOR2

INV

RAM 256x8

µROM

AND3

Adder

Mux 4:1AND2

GenericGate

. . .

. . .

. . .

. . .

PIC 16C84

TextLCD

ObjectSimulatable

Wakeable

IDT R3051

RtlibObject

hierarchy system−levelRT−levelgate−level

RAM, ROM

Design

SimObject

. . . . . .

. . .

. . .

Figure 41: Overview of the Hades simulation model class hierarchy. All simulation compo-
nents are derived from theSimObjectclass which implements theSimulatableandWakeable
interfaces for discrete-event simulation. TheDesignclass represents a collection of simula-
tion models and can be nested for hierarchical systems.

A Designdoes not define any behaviour itself, but is used to write and read the external
representation of all contained simulation models via Hades.hds design files, including
the graphical design schematic (if defined). A hiearchical system representation is possible,
because aDesigncan also contain nested instances of other

”
sub-“Designs(the composite

design pattern).

The individual simulation models like logic gates or flipflops are realized as direct or indirect
subclasses ofSimObject. Several utility subclasses are provided to ease the writing of new
simulation models. For example, thehades.models.gates.GenericGateclass provides a de-
fault implementation useful for simple logic gates based on theStdLogic1164logic system.
Similarly, classhades.models.rtlib.GenericRtlibObjectprovides a default implementation for
many register-transfer-level operations and data types.

9.2 Simulation Overview

During a simulation, theSimObjectsimulation components maintain their own state and ex-event-driven
simulationchange information via time-stamped event objects. The simulation kernel manages a time-

sorted list (or similar data structure) and delivers event objects to the simulation components,
which in turn may generate new event objects. This basic algorithm leads to a typical archi-
tecture and class hierarchy, which is sketched in figure42.

All simulation components and signals implement theSimulatableinterface that defines their Simulatable
interaction with the simulation kernel. Every simulation component is realized as a subclass
of hades.simulator.SimObject, which implements theSimulatableinterface and provides a
basic set of utility methods and accessors but no behaviour.

The simulation engine is implemented by the classhades.simulator.SimKerneland its sub- SimKernel
classes. For example, classVhdlSimKernelimplements (most of) the two-listδ-delay algo-
rithm specified in the VHDL reference manual [IEEE-93a]. The simulation kernel references
its EventListobject which manages the time-sorted list of simulation events. The sorting al-
gorithm is implemented using instances of the inner classEventList.EventListNode. At the
moment, a straightforward doubly-linked list structure is used to manage the nodes, which is
simple and yet efficient for digital logic simulation (where most events can be appended to



84 9 WRITING COMPONENTS

Object

Simulatable

SimEvent1164

EventListNode

SimKernel

Design

VhdlBatchSimKernel

VhdlSimKernel

EventList

SimControlPanel (GUI)

Port

arg

target

double simTime
SimEvent

Figure 42: The simulation architecture used by Hades. Different simulation algorithms (like
VHDL two-list simulation) are implemented bySimKerneland subclasses. Each kernel keeps
a reference to the currentDesign, which in turn references the individual simulation compo-
nents and signals, and uses classEventListto manage a time-sorted list ofEventListNodes
each of which references one atomic simulation event. ASimEventis specified by the sim-
ulation time, the target object (aSimulatableclass) modified by the event, and optional port
and data value objects.

the list). To avoid the overhead of frequent Java object creation, classEventListmaintains
an internal buffer of event list nodes and uses its own memory management whenever possi-
ble. Naturally, you can also implement custom subclasses ofEventListwhen more complex
algorithms are called for.

All simulation events are realized as instances of classhades.simulator.SimEventor its sub-SimEvent
classes. ASimEventcontains five important data members:

class SimEvent {
double time; // simulation time of this event
Object source; // who generated this event
Object arg; // (optional) payload object,

// e.g. a StdLogic1164 value
Simulatable target; // who is to be notified
Port targetPort; // used to distinguish when an event

// is delivered to multiple ports
// on one target object object

...
}

As Hades simulation models are written as standard Java code, no special syntax is used for
event creation and the simulation algorithm. Instead, the code relies on thescheduleEvent()
method of classSimKernelto register an event object with the simulator eventlist. The typical
code fragment for creating and registering a new event with the simulator looks like this:

...
SimObject source = this;
Simulatable target = getOutputSignal();
StdLogic1164 value = getOutputValue();
double time = simulator.getSimTime() + delay;

simulator.scheduleEvent(
new SimEvent( target, time, value, source )

);
...



9.2 Simulation Overview 85

...

Elaboration

Simulation

SimObject1 SimObjectNSimKernelGUI

start() elaborate()

scheduleEvent()

new SimEvent()

stop()

new SimEvent()

scheduleEvent()

scheduleEvent()

evaluate()

elaborate()
new SimEvent()

scheduleEvent()

evaluate()

Figure 43: The simulation algorithm and event lifecycle. During theelaborationphase, the
SimKernelcalls theelaborate()method for allSimObjects. From those methods, an initial set
of SimEventobjects is created and scheduled. After initialization, theSimKerneltakes event
objects from its event list and calls theevaluate()method of the targetSimObjects, which in
turn create and schedule newSimEvents.

The Hades framework also includes a few utility subclasses ofSimEvent. For example, class
SimEvent1164manages events for digital simulation based on theStdLogic1164logic system,
and is both easier to use and more efficient than classSimEvent. Because most event objects
are only used once and very shortlived, classSimEventalso includes support for its own
memory management. While you can create simulation events by directly calling the Java
constructor, it is often more efficient to call the staticcreateNewSimEvent()method instead.
This will look into a private buffer of previouslyrecycled() SimEventobjects before calling
the Java constructor.

The interaction of the simulation kernel and the simulation components relies on only threeelaborate()
evaluate()very simple methods. At the start of the simulation, the simulator first calls theelaborate()

method of each component. During the simulation, the simulator will call theevaluate()
method of the component for each event on the component’s input signals. Usually, the
simulation engine will provide aSimEventobject corresponding to the simulation event as
the argument to eitherelaborate()or evaluate(). However, both methods expect anObject
only, which allows calling them directly with arbitrary arguments.

A separate methodwakeup()is provided to mark wakeup events used for periodic activi-wakeup()
ties, e.g. from a clock generator component. Together, these three methods are sufficient
for discrete event based simulation, because each component can create and schedule further
simulation events as a reaction to theelaborate()andevaluate()calls. Because most of the
object initialization is done by the constructor and possibly theinitialize() method, the typ-
ical elaborate()method is very simple. Theevaluate()method, however, contains the full
behavioral model of your simulation object.

The remaining important part of the Hades class hierarchy aresignalsas implemented by signals
classhades.signals.Signaland its subclasses. The software architecture of Hades does not
restrict the program code in theSimObject evaluate()orwakeup()methods. Most importantly,
a SimObjectcan always create newSimEventobjects with any otherSimObjectas the event
target and arbitrary simulation time and payload objects. This allows for the direct interaction
of simulation components. However, this direct connection of simulation components is not
possible when using the graphical editor to create new circuits. Instead, the graphical editor
usessignalsas intermediate objects between source and target simulation components. To



86 9 WRITING COMPONENTS

SimKernel

Simulatable

GenericGate

Editor

AND2

Port

Design

Signal

SignalStdLogic1164

"Y"

PortStdLogic1164

"A"

"B"

SimObject

ports[]

AND2 Ports[]:

Figure 44: EverySimObjectkeeps references to its parentDesign, the Simulatorand the
Editor. Signals are connected to theSimObjectvia Port object, which are accessed via the
ports[ ] array. Additional subclasses can be used where appropriate. For example, classes
PortStdLogic1164andSignalStdLogic1164provide utility functions for writing simulation
components based on thestd logic simulation model.

this end, classSignalimplements theSimulatableinterface and can therefore also be used as
the target object in aSimEvent.

The main role of aSignal is to distribute a single output event generate by aSimObject
automatically to all other components connected to theSignal. The SignalStdLogic1164
subclass additionally provides thestd logic resolution functionrequired for buses driven by
multiple gates. The second role of signals is the interface to theWaveformclasses used to
record and display waveform data. Finally, some signals subclasses supportglow-modeand
can be used for visualization.

9.3 Graphics: Static Symbols

Besides the methods required for the simulation algorithms, all simulation objects in Hadessymbols
also have a reference to aSymbolobject, which defines their graphical representation in the
editor. ASymbolitself is invisible, but it is used as a container object for an arbitrary number
of graphical subobjects. Most components will only need a static object that does not change
during simulation. For these components you would normally create asymbol filewith a
textual representation of the graphical objects. Then, thegetSymbolResourceName()should
return the Java resource name of the symbol file, like this:

public class xx.yy.zz.ImageViewerxx.yy.zz.ImageViewerxx.yy.zz.ImageViewer extends SimObject {
...
public String getSymbolResourceName() {
return "/xx/yy/zz/ImageViewer.sym";return "/xx/yy/zz/ImageViewer.sym";return "/xx/yy/zz/ImageViewer.sym";

}
}

However, the default implementation inSimObjectalready does this (if slightly slower):

public String getSymbolResourceName() {
String tmp = getClass().getName();
return "/" + tmp.replace( ’.’, ’/’ ) + ".sym";

}

At the moment, Hades provides just a few graphics primitives for use in symbols, namelybasic symbol objects
Polyline, Rectangle, Circle, Arc, and several styles ofLabels. It is also possible to include
FIG-file via FigWrapper. The BboxRectangleis special, because it is used to define the
bounding boxof the symbol in the editor.



9.3 Graphics: Static Symbols 87

hades.symbols

jfig.objects

InstanceLabel

Label

PortSymbol

ImageObject

FigWrapper

FigObject

ClassLabel

PortLabel

FigText

FigBaseobject

SimObject

BboxRectangle

FigCompound

Symbol

Figure 45: Class hierarchy overview of thehades.symbolspackage. The graphicalSymbol
for a simulation component is derived from theFigCompoundclass, which is used as a con-
tainer for any number ofFigObjects. Utility classes are provided for the polylines, circles,
several variants of text labels, and the symbol bounding box. APortSymboldefines a pin for
connection to the simulation component; the schematics editor checks for mouse-clicks on
PortSymbolpositions to decide when to startcreate wireoperations.

The following listing, taken from/hades/models/gates/Inv.sym, shows the symbol file for a
basic inverter. All coordinates are given in inch/2400 and relative to the top left corner:

# symbol file for the basic inverter
hades.symbols.BboxRectangle 0 0 2400 2400
hades.symbols.ClassLabel 2350 450 3 INV
hades.symbols.InstanceLabel 2350 2350 3 i0
hades.symbols.PortLabel 150 1130 A
hades.symbols.PortSymbol 0 1200 A
hades.symbols.PortLabel 2100 1130 Y
hades.symbols.PortSymbol 2400 1200 Y
hades.symbols.Polyline 2 0 1200 600 1200
hades.symbols.Polyline 2 1950 1200 2400 1200
hades.symbols.Circle 1800 1200 150 150
hades.symbols.Polyline 4 1650 1200 600 600 600 1800 1650 1200

The file shows the use of theBboxRectangle, ClassLabeland InstanceLabelobjects. Also,
note thePortSymbolobjects, used to define both the positions and the names of the object’s
ports. ThePortLabelobjects are just annotation without any other function. Many coordi-
nates in the above example are multiples of 600, so that the corresponding points lie exactly
on the default snap grid of 1/4th inch.

See the class documentation of thehades.symbolpackage for the list of all symbol objects FigWrapper
and their parameters. For example, theImageObjectandFigWrapperclasses are used to em-
bed GIF- and JPEG-images or FIG-format drawings [xfig 3.2] into Hades symbols. Because
the planned symbol editor is not ready yet, you have to create the symbol files with a text
editor. However, this is usually a simple task when compared to the complexity of writing
the simulation functionality.

(To create a default symbol for a new simulation component, you can also create a dummy
designschematic, addIpin andOpin components, change their names to the names of your
simulation component ports, and then execute the editorEdit. Create Symbolfunction.)



88 9 WRITING COMPONENTS

9.4 A Simple Example: Basic AND2 Gate

This section presents the full source code for a simple implementation of a two-input ANDAn AND gate
with trivial timing gate. In order to keep the example short, the AND gate uses a trivial timing model with only

one delay parametert delay that specifies the output delay (in seconds) of the output after
any input changes.

As usual, the source code for the AND2 gate model begins with a package statement andclass template
some import statements. The import statements in the following code example are typical,
because many models need to access classes from thehades.simulatorand hades.signals
packages, and digital logic gates based on the StdLogic1164 logic model often access the
classhades.models.StdLogic1164:

/* And2.java -- class hades.models.gates.And2 */

package hades.models.gates;

import hades.simulator.*;
import hades.signals.*;
import hades.models.StdLogic1164;

/**
* And2 - a 2-input AND-gate with propagation delay.
*/

public class And2 extends GenericGate {
...
public And2() { ... }
public void elaborate( Object arg ) { ... }
public void evaluate( Object arg ) { ... }
...

}

As already indicated above, simulation models in Hades are written as standard Java programGenericGate
code, without the special syntax and support provided by dedicated simulation languages.
However, it is often possible to write or re-use intermediate utility classes that contain default
implementations for most of the functionality required for a new simulation model. In this
example, the AND2 gate is derived from thehades.models.gates.GenericGateclass, which
provides several utility accessor methods and a default property sheet to specify the gate
delay.

Accessor Methods

Most simulation models need not change the basic accessor and setter methods provided by
SimObject. For example, thegetSimulator()andsetSimulator()methods are used to specify
the simulation kernel responsible for the simulation model and its events, whilegetDesign()
andsetDesign()reference the design object the simulation model belongs to. ThegetName()
andsetName()return a set therelativename of the simulation component in its design object,
while getFullName()returns the full hierarchical name including all subdesign names up to
the top-level design (for example/adder32/adder81/sum5/and2).

ThegetSymbol()andsetSymbol()methods reference the graphical symbol of the simulation
model in the editor. Only simulation models with adynamic symbol, used to visualize the
current state of the object throughout the simulation, might have to override thesetSymbol()
method. See the example in section9.6for details.

TheGenericGateclass provides additional accessor methods to read and set its gate propa-
gation delay member variable,getDelay()andsetDelay().



9.4 A Simple Example: Basic AND2 Gate 89

Constructor and instance initialization

To avoid some of the subtleties of the Java language concerning object initialization andconstructor
constructors, Hades requires that all simulation objects provide a default constructor (without
arguments). While aSimObjectsubclass may provide additional constructors, these are never
used by the Hades framework.

Besides the initialization of any class-internal instance variables, the main role of the con-ports
structor is to create and initialize the simulation model’s externalPorts, that is, the external
connections to the simulation object. For simulation performance reasons, a simple array
ports[] is used as the data structure to manage and reference the individual ports. Thisports[]
array is declared but not initialized in classSimObject. Therefore, simulation components are
responsible to allocate a suitable array and to fill in the necessary number ofPort objects.
Note that the names of the ports have to match the names specified in the symbol file, be-
cause the Hades editor searches the names of thePorts in the symbol when trying to connect
signals.

Technically, only theports array is required for simulation. However, because it is muchport aliases
more readable to writeport Y instead ofports[2] in the rest of the code, the AND class also
declares three instance variables as aliases to theportsarray members:

public class AND2 ... {
private PortStdLogic1164 port_A, port_B, port_Y;

public And2() {
super(); // -> GenericGate -> SimObject -> Object

port_A = new PortStdLogic1164(this, "A", Port.IN, null );
port_B = new PortStdLogic1164(this, "B", Port.IN, null );
port_Y = new PortStdLogic1164(this, "Y", Port.OUT, null );

ports = new Port[] { port_A, port_B, port_Y };
}

...
}

However, most simulation components require additional parameters, e.g. to specify the gateinitialize()
write()delay, file- or resource names, a clock period, or simply the default color. Therefore, directly

after object creation with the default constructor a separateinitialize() method is called, which
takes a singleStringargument. The simulation component then parses this string to setup its
parameters. When saving a Hades design from the editor, the correspondingwrite() method
is called for all simulation components, allowing each component to write out its parameters
in its own formatting. The resulting string is saved without further modification in the output
design file, and used as the argument forinitialize() when later loading the design. Therefore,
each component is responsible for its own external representation, which may consist of
simple binary-data or fully formatted readable text strings.

As an example, the following code shows the implementation of theinitialize() andwrite()
methods in classGenericGate. Both a version number and the gate delay are written and read
back:

...
protected double t_delay = 5.0E-9; // 5 nanoseconds

public void write( java.io.PrintWriter ps ) {
ps.print( " " + versionId + " " + t_delay );

}



90 9 WRITING COMPONENTS

public boolean initialize( String s ) {
StringTokenizer st = new StringTokenizer( s );
try {
versionId = Integer.parseInt( st.nextToken() );
t_delay = Double.parseDouble( st.nextToken());

}
catch( Exception e ) {
... // handle invalid String format

}
return true;

}

Elaborate and Evaluate Methods

It now remains to write the implementation for theelaborate()andevaluate()methods, thatelaborate()
is, the actual simulation behaviour for the new simulation component. As explained above,
theelaborate()method is called by the simulation kernel at the start of the simulation before
any simulation events are processed. Because an AND2 gate needs no special initialization
beyond the gate delay parameter setup already done in the constructor and theinitialize()
method, theelaborate()method is almost empty.

However, this is the right place to get and store a reference to the current simulator in the
variablesimulatorinherited fromSimObject. Afterwards, the rest of the code need not bother
to check whether thesimulatorreference is valid:

/**
* And2.elaborate(): called to initialize a component.
* We save a reference to the current simulatin engine.
*/

public void elaborate( Object arg ) {
simulator = parent.getSimulator();

}

As with all Hades simulation models, theevaluate()method defines the individual behav-evaluate()
ior of the AND gate. The following implementation relies heavily on the properties of the
std logic logic system and the methods provided by classhades.models.StdLogic1164. It first
retrieves the current gate input values by calling thegetValueOrU()method on thePortStd-
Logic1164ports. This method returns the current value of the signal connected to the port,
or the undefinedU value if no signal is connected. Next, theStdLogic1164.and()method is
called to calculate the logical AND function of both input values. Finally, an utility function
is called to create a new simulation event with the newly calculated output value:

/**
* And2.evaluate(): calculate the logical AND of the gate
* inputs after propagation delay "t_delay".
*/

public void evaluate( Object arg ) {
StdLogic1164 value_A = port_A.getValueOrU();
StdLogic1164 value_B = port_B.getValueOrU();

StdLogic1164 next_Y = StdLogic1164.and( value_A, value_B );
scheduleOutputValueAfter( port_Y, next_Y, t_delay );

}

The utility methodscheduleOuputValueAfter()creates and registers a new event with payloadreadability
valuenext_Y for the signal connected toport_Y (if any), occuring exactlyt_delay seconds
after the current simulation time. The method, implemented in classGenericGatealso takes
care of the various null-pointer checks required in an interactive simulation environment. The



9.4 A Simple Example: Basic AND2 Gate 91

method arguments are such that the code reads similar to the equivalent VHDL statement,
port_Y <= next_Y after t_delay;

To demonstrate the improvement in readability gained by thescheduleOutputValueAfter()
method, the following code example shows the actual implementation in classGenericGate.
The method first checks whether a signal is connected to the output port of the gate, and
returns if not. Next, the simulation time of the output event is calculated from the current
simulation time and the gate propagation delay. Finally, a new simulation event is created
with the corresponding parameters and scheduled:

/**
* utility method to schedule a simulator event after
* "delay" seconds from the current simulation time.
*/

public void
scheduleOutputValueAfter( Port port,

StdLogic1164 value,
double delay )

{
Signal signal = port.getSignal();
if (signal == null) return;

double time = simulator.getSimTime() + delay;
simulator.scheduleEvent(
SimEvent1164.createNewSimEvent( signal, time, value, port )

);
}

Runtime Checks

The runtime checks in the above code examples are necessary to support the interactive simu-compiled vs. interactive
environmentlation mode. In a traditional compiled simulation environment, the whole structure of a simu-

lation experiment including all component connections is known at compile time. Therefore,
the compiler can check and verify that all inputs for a simulation component are connected,
so that runtime checks are not necessary. However, the interactive environment provided by
Hades allows the user to edit and change the simulation experiment during a running sim-
ulation. For example, the user can delete signals or components and afterwards add new
components. This is turn requires that all simulation components detect and handle situations
with open inputs and possibly illegal input combinations.

As the above examples show, the use of thestd logic logic system together with utility meth-
ods likegetValueOrU()makes most such checks implicit, without additional source code.
However, when using the basic classes likehades.signals.Signalandhades.simulator.Port,
the resulting code will often require checks like the following:

...
Signal signal_A;
StdLogic1164 value_A;
...
if ((signal_A = port_A.getSignal()) != null)

value_A = (StdLogic1164) signal_A.getValue();
else value_A = new StdLogic1164( ’U’ );
...



92 9 WRITING COMPONENTS

9.5 A D-Flipflop

As a slightly more complex example, this section describes an edge-triggered D-flipflop with
asynchronous reset input. To keep the example short, only the constructor and theevaluate()
method are shown. Similar to the AND gate example, the constructor is only used to create
the ports of the flipflop. As usual,C andD are the clock and data input,NR is the active-low
asynchronous reset, andQ the data output:

public Dffr() {
super(); // -> GenericFlipflop -> SimObject -> Object

port_Q = new PortStdLogic1164( this, "Q", Port.OUT, null );
port_D = new PortStdLogic1164( this, "D", Port.IN, null );
port_C = new PortStdLogic1164( this, "C", Port.IN, null );
port_NR = new PortStdLogic1164( this, "NR", Port.IN, null );

ports = new Port[] {
port_Q,
port_D,
port_C,
port_NR,

};
}

In theevaluate()method, the input ports are queried for their current values. The check for
the rising clock edge is similar to the typical VHDL idiom,CLK’event and CLK = ’1’.
When the flipflop detects undefined input values, it generates theX output value:

public void evaluate( Object arg ) {
StdLogic1164 value_D = port_D .getValueOrU();
StdLogic1164 value_C = port_C .getValueOrU();
StdLogic1164 value_NR = port_NR.getValueOrU();

char tmp = ’u’;

if (value_NR.is_0()) tmp = ’0’; // reset active
else if (value_NR.has_UXZ()) tmp = ’X’; // reset undefined
else if (value_C.has_UXZ()) tmp = ’X’; // clock undefined
else

if (port_C.hasEvent() && value_C.is_1())
{ // rising clock edge?
if (value_D.is_0()) tmp = ’0’;
else if (value_D.is_1()) tmp = ’1’;
else tmp = ’X’;

}
else { // others: store value
return;

}

StdLogic1164 value_Q = new StdLogic1164( tmp );
scheduleOutputValueAfter( port_Q, value_Q, t_delay );

}

The code also demonstrates several functions fromStdLogic1164, including the constructor
with a char argument. The boolean predicatesis 0(), is 1(), . . . predicates test for the cor-
responding logical value, while theis UXZ() method returns true when the logical value is
undefined (’U’, ’X’, ’Z’, ’W’, ’D’). The utility method hasEvent()in classPortStdLogic1164
returns true when the signal connected to the port has an event at the current simulation time.



9.6 Wakeup-Events: The Clock Generator 93

9.6 Wakeup-Events: The Clock Generator

This section presents a more complex example, a clock generator calledClockGen. It explains wakeup()
configure()
graphics

theWakeupEventsused for periodic activities independent of input changes. The following
section will use the clock generator to also demonstrate theconfigure()method andProper-
tySheetclasses, and the interface to the Hades editor, including animation and the reaction to
mouse-events.

The clock generator model allows selecting arbitrary values for the clockperiod(in seconds)
and the fraction of each cycle during which the output is high, calleddutycycle. Also, the
initial offsetdelay until the clock starts can be specified. These values are stored indouble
variables in the following code. The variablerunningstores the current state of theClockGen,
andcircleOnOffis a reference to the circle object used to display the state in theClockGens
symbol. Additionally, the variableport Y is used as an alias to the output port of theClock-
Gen, andvalue˙U, value˙0, andvalue˙1will hold the StdLogic1164values corresponding to
their name:

package hades.models.io; // our package

import hades.simulator.*; // standard imports
import hades.models.*;
import hades.signals.*;

import hades.symbols.*; // graphics imports
import javafig.objects.FigAttribs;
import java.awt.*;

/**
* ClockGen - a SimObject that models a clock generator
* with arbitrary period, duty cycle and phase.
* Default is a symmetric 1 Hz clock signal.
* Signals are expected to be StdLogic1164 objects.
<pre>

+----+ +----+ +----+ a DOC-comment
explaining the
timing parameters

+----------------+ +-----+ +-----+ +-----+ ....
|< >|< >|< >|

offset period dutycycle
</pre>
*/

public class ClockGen
extends SimObject
implements Wakeable {

private Port port_Y;
private StdLogic1164 output_U, output_0, output_1;

/* the timing parameters of this clock generator */
private double period = 1.0; // 1.0 sec period, i.e. 1Hz
private double dutycycle = 0.5; // 50% dutycycle, symmetric
private double offset = 0.0; // no initial delay

private boolean running = true; // start in active state
private Circle circleOnOff; // on/off symbol

... // constructor and methods go here
}

Note that the classClockGenimplements theWakeableinterface to signal that it understands
and handlesWakeupEvents.



94 9 WRITING COMPONENTS

The main function of the constructor, again, is to allocate and initialize theports array ofconstructor
this simulation model. TheClockGenhas only one output port, andport Y is used as a more
readable alias forports[0]. Also, the constant output values used several times later on are
initialized:

/**
* ClockGen(): construct a default clock generator
*/

public ClockGen() {
super();

ports = new Port[1];
ports[0] = new Port(this, "clk", Port.OUT, null );
port_Y = ports[0];

output_U = new StdLogic1164( StdLogic1164._U );
output_0 = new StdLogic1164( StdLogic1164._0 );
output_1 = new StdLogic1164( StdLogic1164._1 );

}

public String getSymbolResourceName() {
return "ClockGen.sym";

}

public String toString() {
return "ClockGen: " + getFullName() + "[timing: "

+ period + "," + dutycycle + "," + offset + "]";
}

For the description of thegetSymbolResourceName()andtoString()methods see section9.4.

Theelaborate()method is used again to get and store a reference to thesimulator. However,elaborate()
the ClockGenmodels needs to do more during elaboration than the simple AND gate. To
model its initialization (offset) phase with the correspondingU output value, a first event
with U output value is scheduled at the current simulation timetime. Then a second event
with 1 output value is scheduled at time(time+offset)to model the start of the duty-cycle in
the first clock period. Finally, aWakeupEventat (time+offset)is scheduled. This instructs
the simulation engine to call thewakeup()method of theClockGenat the specified time. The
schedule()method is used to make to code more readable:

/**
* And2.elaborate(): called to initialize a component.
* We store a reference to the simulation engine.
*/

public void elaborate( Object arg ) {
simulator = parent.getSimulator();
double time = simulator.getSimTime();

schedule( output_U, time ); // U now
schedule( output_1, time+offset ); // U -> 1
simulator.scheduleWakeup( this, time+offset, this );

}

private void schedule( StdLogic1164 value, double time ) {
Signal signal = port_Y.getSignal();
if (signal == null) return;

simulator.scheduleEvent(
new SimEvent( signal, time, value, this ));

}



9.6 Wakeup-Events: The Clock Generator 95

Thewakeup()method is constructed similar toelaborate(). It first schedules all output events wakeup()
for one clock cycle, namely the change from1 to 0 at the current simulation time plus(duty-
cycle*period), and the change to1 at the start of the next clock cycle, exactly oneperiodlater
than the current simulation time. Afterwards it schedules a newWakeupEventat the start of
the next clock cycle:

/**
* wakeup(): Called by the simulator as a reaction to our own
* scheduleWakeup()-calls. One period of the clock has
* elapsed, therefore, schedule the next cycle.
*/
public void wakeup() {
if (!running) return;
double time = simulator.getSimTime();
schedule( output_0, time+dutycycle*period ); // 1 -> 0
schedule( output_1, time+period ); // 0 -> 1
simulator.scheduleWakeup( this, time+period, this );

}

Because theClockGenmodel has no input, the simulator should not normally call itsevalu- evaluate()
ate()method. Ifevaluate()is called in spite of this, we just print an error message:

/**
* evaluate(): called by the simulation engine for all events
* on the input signals of this object. It has to update its
* internal state and to schedule all required output events.
*/
public void evaluate( Object arg ) {
message( "-E- Don’t call evaluate() on a ClockGen!" );

}

Note that the methods presented above are all that is required for the full simulation function-
ality of the clock-generator model, including the initialization, its periodical wakeup activi-
ties, and the output event scheduling.

The next two methods are required to save and restoreClockGenobjects with their current I/O
parameters to and from a Hades design. The design pattern for both methods is to use one
singleStringas the argument or return value. Theinitialize() method is called by the editor,
which also supplies theStringwritten on the previous saving. Both methods have a default
implementation inSimObject. Therefore, you only need to override these methods if the
model needs to store non-default parameters to a design. Note that you should also provide
and check theversionIdvariable used by all Hades simulation models:

public void initialize( String s ) {
StringTokenizer st = new StringTokenizer( s );
try {
versionId = Integer.parseInt(st.nextToken() );
period = Double.valueOf(st.nextToken()).doubleValue();
dutycycle = Double.valueOf(st.nextToken()).doubleValue();
offset = Double.valueOf(st.nextToken()).doubleValue();
}
catch( Exception e ) {
message( "-E- ClockGen.initialize(): " + e + " " + s );

}
}

Thewrite() method is called on saving a design, and it should return aStringwith a textual
representation of the component’s parameters:



96 9 WRITING COMPONENTS

public void write( java.io.PrintWriter ps ) {
ps.print( " " + versionId + " " + period + " "

+ dutycycle + " " + offset );
}

9.7 Dynamic Symbols and Animation

The next part of this section explains how to write simulation models that access the graphicsgraphics
functions of the Hades editor. Because theClockGenmodel needs to modify its static symbol,
it first overrides thesetSymbol()method inherited fromSimObject:

public void setSymbol( Symbol s ) {
symbol = s;
symbol.setInstanceLabel( name );
initDisplay();

}

Typically, most simulation objects in a hierarchical design are inside of subdesigns and don’tvisibility
need their symbols, because they are not visible on the top-level. To improve startup time and
memory usage, thesetSymbol()method is called by the editor only for those simulation mod-
els in visible designs. While thesetSymbol()inherited fromSimObjectworks fine for static
symbols, the clock generator model needs to add a dynamic object to its symbol. Like most
other I/O components in Hades, the clock generator uses a small circle calledcircleOnOff
to indicate its state. If “running” the circle is filled with red, and if “stopped” the circle is
filled with gray, compare figure27 on page40. The following methodinitDisplay() is used
to create aCircle object, to specify its size and position, and to add it to the existing (static)
objects of the symbol:

private void initDisplay() {
circleOnOff = new Circle();
circleOnOff.initialize( "600 1200 300 300" ); // x y rx ry
getSymbol().addMember( circleOnOff );

showState();
}

TheshowState()method is used to display thecircleOnOffwith the current running status ofpainter
theClockGen. To this end, it checks the value of therunningvariable and sets the fill color of
thecircleOnOffcorrespondingly. Finally, it checks whether thepainterobject for the circle
is set, and then calls thepaint()method, to request a repaint of the circle:

private void showState() {
if (getSymbol() == null) return;

FigAttribs attr = circleOnOff.get_attribs();manipulate
attributes attr.fillStyle = attr.solidFill;

if (running) attr.fillColor = output_1.getColor();
else attr.fillColor = output_0.getColor();
circleOnOff.set_attribs( attr );

if (circleOnOff.painter != null)
circleOnOff.painter.paint( circleOnOff );

}

Each graphical object in Hades contains a reference to aFigAttribs object which controls itsFigAttribs
attributes like line and fill color, line and fill style, text font, and layer (depth). See the class
documentation for classjavafig.objects.FigAttribsfor a complete description of all attributes



9.7 Dynamic Symbols and Animation 97

and their possible values. The above example shows the typical use of theFigAttribs class.
Given an graphical object likecircleOnOff, you first request its current attribute object with
theget˙attribs()method. Next, the desired attributes are specified for thisFigAttribs object.
Finally, you call theset˙attribs()method for the changes to take effect. Also, note the use of
thegetColor()method to get the default color for a givenhades.models.StdLogic1164object.

The methodssetSymbol(), initDisplay(), andshowState()are required to visualize the currentmousePressed()
state of the clock generator. It remains to implement themousePressed()method to allow
the user to start and stop the clock generator interactively. ThemousePressed()method of a
SimObjectis called by the Hades editor every time the mouse is clickedinsidethe symbol of inside vs. border
thatSimObject. Note that mouse clicks on theborderof a symbol are usually not delivered
to the simulation model but intercepted by the Hades editing commands, e.g.moveandcopy.

The algorithm to implementmousePressed()might seem trivial for this example. On eachdeleting events
mouse click therunning variable in negated. If it results in the valuetrue, theelaborate()
method is called to (re-) initialize the clock generator.

However, once the clock generator is running, it always schedules twoSimEventsand one fu-
tureWakeupEventwith the simulator when itswakeup()method is called. Therefore, in order
to really stop the clock generator, it is not sufficient just to reset therunningvariable. Instead,
it is necessary to also remove all future events already scheduled by this clock generator from
the simulator event list by callingdeleteAllEventsFromSource():

/**
* start or stop this ClockGen’erator
*/
public void mousePressed( java.awt.event.MouseEvent me ) {
SimKernel simulator = parent.getSimulator();

if (running) { // stop this ClockGen
if (debug) message( "...stopping " + toString() );
running = false;
if (simulator != null)

simulator.deleteAllEventsFromSource( this );
}
else { // start/restart

if (debug) message( "...restarting " + toString() );
running = true;
elaborate( null );

}
// update symbol with current state
showState();

}



98 9 WRITING COMPONENTS

9.8 PropertySheet and SimObject User Interfaces

The remainder of this section explains how to interface simulation models with theProperty-SimObjects as Beans
Sheetclass which provides an user interface to access and set model parameters. In principle,
all simulation models in Hades are written to be Java-Beans [Sun 96] compliant. So far,
however, most simulation models use only the two basic requirements of the Beans specifi-
cation. First, all simulation models adhere to the standard design pattern for all user-settable
properties, that is, they providegetX()andsetX()methods for each variablex. Second, the in-
teraction between components and the simulation engine is based on the Java 1.1 event model,
because all event classes in Hades are subclasses ofSimEventand thereforejava.util.Event-
Object.

Obviously, the three variablesperiod, dutycycleandoffsetin the clock generator model should
be user-settable properties. Therefore basic getter and setter methods are required for these
three variables, while the base classSimObjectalready provides the suitable methodsget-
Name()andsetName()to edit the instance name:

// Java Beans compatible getter/setter methods to access
// the parameters of the clock generator:
//

public double getPeriod() { return period; }
public double getOffset() { return offset; }
public double getDutycycle() { return dutycycle; }

public void setPeriod( double d ) { period = d; }
public void setOffset( double d ) { offset = d; }

public void setDutycycle( double d ) {
dutycycle = d;
if ((dutycycle < 0.0) || (dutycycle > 1.0)) {

// might print a warning message here
dutycycle = 0.5;

}
}

Together, these methods are sufficient to interface the simulation component to standard Java
Beans property editors. Unfortunately, such property editors are not always available. An
alternative is to use thehades.gui.PropertySheetclass, which automatically constructs a (very
basic) user interface window from a set of Beans variable names. As classPropertySheet
expects setter methods with aStringargument, we provide these additional methods:

// special setter methods required by hades.gui.PropertySheet
public void setPeriod( String s ) { period = parse(s); }
public void setOffset( String s ) { offset = parse(s); }
public void setDutycycle( String s) { setDutycycle(parse(s)); }

public double parse( String s ) {
double d = 0.0;
try { d = Double.valueOf(s).doubleValue(); }
catch( Exception e ) { d = 0.5 }
return d;

}

Finally, theconfigure()method itself has to be written. This method is called by the editorconfigure()
in reaction to an edit command for the component, e.g. by selectingedit. . . from the popup
menu. The default implementation in the base classSimObjectonly supports changing the
instance name of the component.



9.8 PropertySheet and SimObject User Interfaces 99

In order to avoid a multitude of property editors for one single object, the constructor of
PropertySheetis private, but it provides agetPropertySheet()method instead. This method
expects two parameters, a reference to the object to edit and an array ofString with labels
and the names of the properties to edit. Each label/variablename pair is used by the class
PropertySheetto construct one additional line in its window. While the appearance of Java
AWT windows is platform dependent, thePropertySheetfor theClockGencomponent should
look similar to the example shown in figure22on page33.

Once thePropertySheetis constructed, you can also specify a help text with instructions
about the class’ parameters. Finally, youshow()thePropertySheet:

public void configure() {
String[] fields = {

"instance name:", "name",
"period [sec]:", "period",
"duty cycle [e.g. 0.5]:", "dutycycle",
"offset [sec]:", "offset" }

hades.gui.PropertySheet propertySheet
= hades.gui.PropertySheet.

getPropertySheet( this, fields );

propertySheet.setHelpText(
"ClockGenerator timing parameters: \n"
+ "_________-----_____-----_____-- ... \n"
+ "^ ^ ^ ^ ^ ^ \n"
+ "|offset | period | period | period ...\n"
+ " | d.c| | d.c.| | d.c.| ... \n"
+ "all times are given in seconds " );

propertySheet.show();
}

When the user clicks on either theApply or OK buttons of thePropertySheet, the setter
methods for the simulation objects will be called with the current contents of theProperty-
Sheets text fields. Clicking eitherCancelor OK will also close thePropertySheetwindow.

While PropertySheetis a simple and convenient way to provide an user interface for simplecustom dialogs
simulation components, more complex simulation model often require their own specialized
user interface. To this end, you can rely on the classes in thehades.guipackage, or write your
own user interface from scratch. For example, the following code example was taken from
the hades.models.rtl.RAM256x8memory component. It creates an instance of theMemo-
ryEditorFrameclass to provide a fully interactive hex-editor for the memory data:

// hades.models.rtl.RAM_256x8 user interface: Hex memory editor
...
protected hades.gui.MemoryEditorFrame MEF = null;

public void configure() {
if (MEF == null) { // create on first call, 8 bytes per row
MEF = new hades.gui.MemoryEditorFrame( this, 32, 8, "Edit RAM");
this.addMemoryListener( MEF );

}
MEF.pack();
MEF.setVisible( true );

}
...



100 9 WRITING COMPONENTS

9.9 Assignable

Some simulation models, for example switches likehades.models.io.Ipinor PowerOnReset,
are meant to be controlled via their user interface during interactive simulation. Unfortu-
nately, relying on the user interface only makes it rather difficult to control such components
from scripts or to generate (synthetic non-interactive) input during batch-mode simulation.

To this end, the tagging interfacehades.simulator.Assignableprovides a way to mark simu-
lation components whose internal state can be meaningfully set asynchronously. In order to
provide a simple and consistent API, the new value for the simulation component is always
encoded as a string. TheAssignablecomponent is responsible for parsing the string and to
generate meaningful error messages for malformatted values. Therefore, the interface just
defines a single method that takes a string to specify the new value and a double argument for
the simulation time:

public interface Assignable {
public void assign( String value, double simTime );

}

The following code-snippet shows a prototype implementation in classPowerOnReset:

public void assign( String value, double time ) {
StdLogic1164 tmp = new StdLogic1164( value.charAt(0) );
scheduleOutputValue( port_Y, tmp, time );
if (visible) simulator.scheduleWakeup( this, time, tmp );

}

9.10 DesignManager

Many Hades simulation components need to access external resource data. For example,external resources
memory components will usually read their memory data from an external file (or URL) in-
stead of storing the data directly into the Hades design file. The use of external resources is
always recommended when the amount of external data is large or other programs besides
the Hades editor should access the data. For example, theFigWrapperclass uses the external
resource to read a graphical symbol from a FIG file, created by the xfig or jfig graphical edi-
tors. Similarly, a microprocessor simulation model might use external files to read processor
configuration data, program memory contents, and debug information created by an external
assembler or compiler.

TheDesignManagerclass, together with a few utility classes in thehades.managerpackage,DesignManager
provides a set of methods to manage access to such external resources. At the moment,
DesignManagersupports the following use-cases and scenarios:

• loading and saving existing design files,

• loading and saving external resource data,

• loadingSimObjects

• loadingImagefiles or thumbnails,

all of the above from local files, JAR or ZIP archive files, URLs, and using either
absolute or relative path names,

• creating thumbnails from design files orSimObjectsymbols,

• selecting a file or URL name, either for reading or writing, interactively via the graphi-
cal user interface. Depending on whether theDesignBrowser(colibri) is used, this will
open the browser or display a standard AWT dialog window.

• several utility methods to manage file names.



9.10 DesignManager 101

The heart ofDesignManageris thegetInputStream()method, which takes two arguments.getInputStream()
The first argument takes anparentobject reference, used to pass in context information. For
example, when loading external resources for simulation components, you would usually pass
in the simulation component as the parent argument. The second, string, argument specifies
the resource, file, or URL name:

DesignManager DM = DesignManager.getDesignManager();

String className = "hades.models.rtl.ROM_1Kx8";
String initName = "zip://demo.zip?/welcome.rom";
SimObject eprom = DM.getSimObject( className );
InputStream stream = DM.getInputStream( eprom, initName );
... // parse data from stream

The algorithm used bygetInputStream()is split into several phases.

First, if the pathnameargument begins with an explicit protocol specification, this proto-
col is used to locate the resource. Valid protocols includefile://, file:, resource://,
zip:// (Hades specific, see below), and all protocols supported by the Java VM, includ-
ing http:// or ftp://. Examples of such pathnames arefile://c:/temp/welcome.romor
ftp://ftp.uni-hamburg.de/pub/temp/adder32.hds.

Next, the algorithm tries to load a Java resource calledpathnamefrom the current classpath.
If necessary, a slash char is prepended to the name. If the resource can not be found, the
third phase of the algorithm checks for a file. Finally, the fourth phase of the algorithm
dispatches to the helper methodlookForInputStream()which actually uses theparentobject
for context-sensitive search.

Thezip:// protocol is used to search for resource files in JAR or ZIP-format archive files,
which have to be registered by callingregisterZipFile(). For example,

DesignManager DM = DesignManager.getDesignManager();
DM.registerZipFile( "dsp-examples.zip" );
DM.registerZipFile( "mips-examples.zip" );

InputStream tmp = DM.getInputStream(
null,
"zip://dsp-examples.zip?/chapter1/exercise2.hds" );

If your simulation component provides its own graphical user interface, it will also be neces-selectFileOrURLName
sary to add a user interface control that allows the user to select the corresponding external
file or resource. To this end,DesignManagerprovides theselectFileOrURLName()method
which display a file selection dialog and returns the string with the file or URL name (or null
if canceled by the user). You can specify the dialog title, the default file name, the default
extension, and the mode (load or save) via the method parameters:

...
DesignManager DM = DesignManager.getDesignManager();
String default = "c:/temp/hades/examples/simple/dlatch.hds";
DM.setFileDialogDirectoryAndFilename( default );

String filename = DM.selectFileOrURLName(
"Select a new design... (*.hds)",
"",
".hds",
java.awt.FileDialog.LOAD );

// modal dialog: wait for user response

Design tmp = DM.getDesign( this, filename, true /*toplevel*/ );
tmp.setVisible( true );
...



102 9 WRITING COMPONENTS

9.11 DesignHierarchyNavigator

Sometimes, it is necessary to reference other simulation components or signals via their name.
Naturally, this is possible via thegetComponent(), getSignal(), andgetParent()methods in
classDesign. However, especially for hierarchical designs, it may be easier to use the utility
classDesignHierarchyNavigator. ItsfindSignal()andfindSimObject()methods supports both
relative and fully qualified hierarchical names, and they cache results for efficient lookup:

import hades.utils.DesignHierarchyNavigator;

...
DesignHierachyNavigator navigator

= new DesignHierarchyNavigator( design );

Signal signal = navigator.findSignal( "/uut/adder8/cla4/cout" );
SimObject obj = navigator.findSimObject( "clockgen" );
...

9.12 Logging messages

Sometimes it is useful to log the information, warning, and error messages from the Hades ed-
itor into a file. While the logging can be enabled via the GUI in theConsolewindow, it might
be better to enable message logging under program control. Using thehades.gui.Console
class, here is how:

Console console = Console.getConsole(); // singleton
console.setLogFileName( "test.log" );
console.setLogFileEnable( true );
console.openLogStream();
...
console.println( "-#- your message here" );
...
console.closeFlushLogStream();



103

10 FAQ, tips and tricks

This chapter collects the answers to frequently asked questions, a few tricks for common
design tasks, and a list of major known bugs and features in Hades.

Naturally, for those of the following answers which contain example commands, you should
substitute the program, directory, and file names corresponding to your system.

10.1 Frequently asked questions

10.1.1 The documentation is wrong?

Unfortunately, that can be true. While the documentation is believed to match the Hades
software at the time of writing, it is very hard to keep both in sync — which is true for most
software projects. However, most changes to the software are made as improvements, so you
should often be able to guess how the software should behave. Please report errors to the
documentation, and include the proposed changes or a corrected text, if possible.

10.1.2 The editor hangs?

This is unlikely, unless you ran out of memory or the Java virtual machine crashed. Typically,
you have initiated a command likemoveor create wire, and Hades waits for you to click on
the object to move, or where to connect the signal. Check the status message at the top of
the editor window, which should indicate what action the editor expects. Then supply the
missing parameters or points, or cancel the command.

10.1.3 The popup menu is dead

This usually indicates that the editor is busy or expects some (mouse) input. For example, the
popup menu is deactivated during amove componentor delete componentoperation, because
the right-mouse button is used to cancel the operation.

Check the status message panel at the top of the editor window, which should indicate what
action the editor expects. To re-active the menu, just press the ESC-key to cancel the ongoing
editor command.

10.1.4 How do I cancel a command?

To cancel an editor operation likedelete component, just press the ESC (escape) key, or select
theEditor. Edit. Cancelmenu item. The status message panel should then indicate that the
operation has been canceled, and that the editor is ready for new commands.

10.1.5 I can’t get it running

Please read section3 carefully again and check that your system meets all requirements. Then
try the following steps:

1. check that your Java virtual machine is correctly installed. A good test is to run other
Java programs. If this fails, try to re-install the JVM or another JVM.

2. check that yourhades.jar archive is ok. See tip10.1.6on how to do this.

3. try double-clicking thehades.jar if your operating system and JVM allow this. If
this works, but your startup script or double-clicking a ”.hds” file does not, check the
file type and file association settings (see3.9).

4. make sure that you are specifying the correct name for the Hades editor main class.
Use the following command:
java hades.gui.Editor
to avoid the following common mistakes:
java Editor (missing package names)
java hades.gui.Editor.class (don’t specify .class)
java hades\gui\Editor (backslashes instead of dots)



104 10 FAQ, TIPS AND TRICKS

10.1.6 How to check whether my hades.jar archive is broken?

To check whether thehades.jar (or hades.zip) archive file was downloaded correctly,
just try to list its contents with your favorite packer application, e.g. WinZip, PowerArchiver,
or thejar utility program included with the JDK. In any case, do not unpack the archive,
just list its contents. For example, try the following command, which should print several
hundred entries,jar tf c:\temp\hades.jar.

If the above command fails, or if a packer like WinZIP fails to list the archive contents, the
file might have been truncated or damaged during download. In both cases, try downloading
again, if possible from a different machine or using a different browser.

10.1.7 I get a ClassNotFoundError

If your Java virtual machine prints aClassNotFoundError message, it could not find or
load the Java class mentioned in the error message. This is most often due to installation and
setup problems, but it may also indicate a programming error or versioning problems. For
example, the JVM may pick up conflicting versions for the given class, or an incompatible
change to one the superclasses of the problematic class was detected.

First, see the above FAQ entry and check whether yourhades.jar archive is ok. Try to list
thehades.jar archive contents, to see if the problematic class is actually there. Also, re-read
the installation section for information about JVM installation and possible CLASSPATH
issues. If necessary, ask your local Java guru for help.

The following code examples show a minimal CLASSPATH setup for different environments.
First Unix or Linux and thebash shell:

bash$ export CLASSPATH=/home/joe/hades/hades.jar:.
bash$ java -Xmx256M hades.gui.Editor

Unix or Linux running thetcsh shell:

tcsh> setenv CLASSPATH /home/joe/hades/hades.jar:.
tcsh> java -Xmx256M hades.gui.Editor

Windows running thecmd.exe shell:

c:> set CLASSPATH=c:\home\joe\hades\hades.jar;.
c:> java -Xmx256M hades.gui.Editor

10.1.8 The editor starts, but I cannot load design files

If the editor starts, but fails to load the design examples or your own design files, you should
check your directory installation as described in3.5 on 19. If possible, avoid special chars
(and spaces) in the directory names. One common mistake is to use unpack the design exam-
ple archive without the directory names.

On multi-user operating systems like Linux or Solaris, you should also check that the owner
and permission flags are set up correctly for all design directories and files. Finally, when
using older versions of Hades (0.88 and before), or JDK 1.1.x, you might have to check your
CLASSPATH.

10.1.9 The Java virtual machine crashes

Overall, the stability of Java virtual machines has improved greatly during the last two years.
Therefore, if your JVM crashes directly, this is almost always due to an installation problem.
A typical problem is having the binaries for one JVM but the libraries for another version on
your search path. When started, the binary will load the wrong libraries, which often crashes
the JVM instantly, but it may also lead to subtle errors.

On Windows, you might try to deinstall and then re-install the Java virtual machine. On other
systems, you may have to ask your system administrator for help.



10.1 Frequently asked questions 105

The most basic test for the Java installation is to run the JVM without any arguments, which
usually will print out a help message and/or a version number. Try runningjava -version
for the JDK orjview /help for the Microsoft VM. If you experience frequent JVM crashes,
you might also try to disable the JIT (just in time) compiler used by your JVM. See the
documentation and release notes for your Java virtual machine for details.

10.1.10 The editor crashes

If the Hades editor crashes shortly after program start, you should first check the command
line and parameters used to start the editor.

One common mistake is to provide the wrong parameters to the editor. This is sometimes
hard to detect, because the editor will just print a message and then exit. For example, just
calling java hades.gui.Editor demo.hds will not work, because the editor expects the
-file option in this case,java hades.gui.Editor -file demo.hds. Note that the error
message printed by the editor is not even visible when running with thejavaw.exe program
of the JDK on Windows. If you suspect such problem, usejava.exe instead ofjavaw.exe.

If the command line parameters appear correct, there may be a problem with your Java virtual
machine. In such cases, it is worth trying a Java virtual machine from a different vendor, if
available. For example, JDK 1.3 compatible virtual machines for Linux are currently avail-
able from Sun, IBM, and the Blackdown team. It could also help to disable the JIT compiler
fo your JVM.

Unfortunately, you may also experience crashes during editing or simulation. Most often
these are related to AWT problems during screen repainting. Therefore, it might help to dis-
able glow-mode and to disable rtlib-animation or to reduce the animation frame-rate via the
correspondingEditor. DisplayandEditor. Window. Select repaint frequencemenu items.

Please report all combinations of operating system, virtual machine, Hades version, and pos-
sibly graphics drivers, which prove incompatible with running Hades.

10.1.11 I cannot double-click the hades.jar archive

This may happen for several reasons, some of which are platform dependent. However, while
double-clicking thehades.jar is simple, using a small script to start the editor may even be
better.

First, see tip10.1.6on how to check that that yourhades.jar archive is ok. Next, check that
your Java virtual machine is able to run Jar-files directly, and that the virtual machine is still
registered for the JAR file type. For example, the default installation of many archive tools
will change the file association to the archiver instead of the Java virtual machine. In that
case, you will either have to re-install the Java VM or to repair the file associations manually.

Finally, try to run the command corresponding to double-clicking in a command shell, be-
cause this way you will see any error messages printed by the Java virtual machine. The
exact command will depend on your operating system, JVM version, and file locations. An
example command should look similar to:

c:\jdk131\bin\java.exe -jar "c:\my files\hades\hades.jar"

10.1.12 I got an OutOfMemoryError

This can easily happen when working with large circuits or large simulation traces, because
some Java virtual machines start with very low memory limits, e.g. 32 MBytes. Note that
a simulation trace (waveform) has to store both the time and the data value for each event
on the signal, which amounts to about 10 bytes per event. At 100.000 or more events per
seconds, the simulator may allocate more than 1 MByte of memory per second. . .

To avoid this problem, start your Java virtual machine with a higher memory limit. For
example, to set a memory limit of 512 MByte for JDK 1.3, you would start Hades with the
following command:

java -Xmx512M hades.gui.Editor



106 10 FAQ, TIPS AND TRICKS

10.1.13 What are those editor messages?

For most messages that are printed to the console window or the stdout/stderr output streams,
Hades uses a simple encoding scheme to indicate the nature of the message:

-I- this is an information message
-W- a warning message, should be read and checked
-E- an error
-F- fatal error, usually requires to restart the application
-#- debugging messages

10.1.14 Missing components after loading a design

Sometimes, some components may be missing after loading a design file into the editor. This
is usally accompanied by dozens or hundreds of error messages from the editor, because it
also reports errors for each signal to a missing component.

The most common problem is that the editor cannot find a subdesign referenced by the design
file, which usually means that the subdesign.hds file is either missing or in the wrong
directory. Check the first error message to see where Hades was looking for the missing file,
and ignore all To solve the problem, you can either move the subdesign files to the position
expected by Hades, or use a texteditor to change the subdesign reference in the top-level
design file.

The second reason is that a SimObject is either missing from thehades.jar archive, or that
it could not be instantiated. Please check the editor messages in the editor console window
and the command shell for Java exception traces, which could help to locate the error. If your
design references third-party simulation models, check that those models are included in the
Java virtual machine CLASSPATH settings.

10.1.15 Editor prints hundreds of messages while loading

This will usually happen, when the editor cannot find a subdesign or a SimObject while pars-
ing a.hds design file. In the first phase of parsing, it will print useful error messages about
each missing component. However, during the second phase of parsing, it will also report
another error message for each signal which should be connected to the missing component.
As the number of signals connected to a single simulation model can be quite high, this often
results in a very large number of error messages.

10.1.16 Something strange happened right now

You may have found an internal error in Hades. Try to cancel the current editor operation,
then try to stop and restart the simulator. Often, this will restore things to a working condition.
If not, try to save your current design (to a new file to avoid overwriting the last working
version), then reload the design. If everything fails, or the simulation is very slow, quit the
editor and restart it.

10.1.17 ghost components, ghost signals

For example, the editor may periodically display some animated simulation components,
even after they have been deleted. This is due to a known bug in the simulator, but otherwise
harmless. Just stop the simulator and restart it, and the ghost components and signals should
be gone.

10.1.18 How can I disable the tooltips?

Depending on your operating system and window manager settings, the tooltips used by
Hades may be useful or, indeed, annoying. This is especially true on Windows systems,
where the toplevel window always gets the keyboard focus automatically. Unfortunately,
there is no simple fix for this, because Hades uses the AWT (abstract window toolkit) library,
whose support for popup windows is largely broken.

As a workaround, just disable the tooltip windows during editing via theEditor. Display.
enable tool-tipsmenu item. The default (startup) value of the menu item can be set via
the booleanHades.Editor.EnableToolTips SetupManager property in your.hadesrc
configuration files. SetHades.Editor.EnableToolTips false to disable the tooltips.



10.1 Frequently asked questions 107

10.1.19 Why is this object off-grid? Why won’t the cursor snap to the object?

By default Hades starts with a magnetic grid of 1/4th inch, but some objects have ports on a
1/8th inch grid. See the explanation on page34 on how to change or deactivate the magnetic
grid setting.

10.1.20 Why can’t I connect a wire to this port?

You are probably trying to connect a wiresegment to a port which is already connected to
another signal. To connect the wiresegment use<shift>+click instead of a normal mouse
click.

10.1.21 Hades won’t let me delete an object

For delete, you must click exactly on the objects corner. Make sure that the magnetic grid
is set correctly. Also, see the answer to the previous question about problems with off-grid
objects. Workaround: try clicking on another corner of the object to delete.

10.1.22 Why don’t the bindkeys work?

Sometimes, the editor won’t react to the bindkeys described in section5.2 on page46. Due
to “features” in the Java 1.1 keyboard focus policy on Windows systems, Hades does not
activate the keyboard focus automatically for the object canvas. Just click anywhere in the
object canvas to set the keyboard focus. Afterwards, the editor should accept the bindkeys.

10.1.23 I get timing violations from my flipflops

There are two possible reasons. First, your design might contain problematical circuits, e.g.
gated Clocks. Second, input changes during interactive simulation might occur at times near
clock changes, especially on slow computers or under high simulation load. See section4.19
on page42 for a detailed explanation.

10.1.24 Why won’t the editor accept to rename a component/signal?

To keep its data structures consistent, the editor will not accept duplicate names. Instead, it
will automatically construct a new and unique name by appending a small integer to your
name. Also, some special characters (like spaces) are not allowed in names, and will be
changed to underscore characters.

10.1.25 Why doesn’t the cursor represent the editor state?

Yes, it would be good if the editor could change its cursor to reflect the current editing opera-
tion. Unfortunately, there is no way to change the cursor for Java 1.1 applications, and we felt
that Java 1.1 (e.g. Microsoft VM) compatibility is still important for Hades. While the newer
Java 2 specification allows applications to change the cursor, getting a decent interaction with
the magnetic grid in the Hades editor is still impossible.

10.1.26 Operation X is slow

Given a modern PC or workstation and a current Java virtual machine, Hades should not feel
slow overall. However, in many cases straightforwared but inefficient algorithms are used
for some (infrequent) operations in Hades. For example, wire creation should be acceptably
fast, while wire deletion is significantly slower. Also, a typical circuit schematic may easily
contain several thousand graphical objects (hundreds of components and wires with a dozen
of graphical subobjects each).

10.1.27 Remote X11-Display is very slow

The X11 window system allows to run the application code for an application on a remote
computer, using the local system (the X-server) only for the redrawing, which works well for
many X applications.

Unfortunately, this is not true for Java applications with the JDK up to and including version
JDK 1.3.1. The problem is that the JDK allocates the buffers required for double-buffering
on the X client application side and not on the X server with the display. Therefore, every



108 10 FAQ, TIPS AND TRICKS

redraw operation has to transmit the whole buffered image over the network, resulting in very
high network load, and crippling performance.

As Hades might request dozens of repaints per second, running it with a remote X11 display
will saturate your network, but still without getting acceptable redraw performance. Often,
running Hades on a slow machine locally will result in much better interactive performance
than running it remote on a big compute server.

Sun has promised to fix the problem for JDK 1.4. However, due to the overhead of network
access and the limited bandwidth, using a remote display will still be much slower than
running Hades on your local machine.

10.1.28 The simulation is suddenly very slow

If the performance of the simulator suddenly drops down, there are a number of possible
problems:

• Check whether your circuit isoscillating, probably due to direct feedback loops or
feedback loops through transparent latches.

This effect is very noticable inreal-timesimulation mode, when the simulator suddenly
cannot keep up with real-time any more.

• Perhaps some problem occured during the simulation, and the simulator spends most
of its time printing error messages. For example, a timing violation might have been
detected, which in turn invalidated other signals. Another example is a microcontroller
running a program which begins to execute illegal instructions.

Check for error or warning messages viaEditor. Special. Show Messagesand the
command shell (if visible).

• If you are using an older Java virtual machine, you may simply experience a slowdown
due to inefficient garbage collection algorithms. For example, our profiling with JDK
1.1.6 indicated that the Hades simulator would spend up to 80% of total CPU time
running the garbage collector, if the heap size would be larger than about 64 MBytes.

• The Microsoft VM seems to have a performance problem with buffering for the Java
AWT TextArea component, which is used for the Hades message console. Whenever
more than a few hundred lines are added to the console, performance drops rapidly. As
a workaround, open the console withEditor. Special. Show Messageand then press
theClearbutton from time to time.

• Due to caching of simulation model symbols, the editor can run out of memory, when
a lot of design files are opened. As the maximum amount of memory for the JVM is
usually fixed, less memory is left available for the simulation for each newly opened
file. Selecting themenu. special. flush symbol cachefunction before opening a new
design file can help to reclaim some memory at the expense of slower loading. If
necessary, restart Hades from time to time.

10.1.29 GND, VCC, and Pullup components do not work

Due to the event-driven algorithm used by Hades, it is difficult to integratepassivesimulation
models into a running simulation. Therefore, you will have to stop and restart the simulation
after adding GND, VCC, or Pullup components to your circuits, in order to re-initialize the
simulation.

10.1.30 The simulator reports undefined values

If your circuit has signals that stay undefined or otherwise does not work correctly, check the
following:

• If you have edited the circuit, check that all signals are initialized. For example, after
integrating a VCC or GND component, stop and restart the simulator to (re-) initialize
your circuit.



10.2 Tips and tricks 109

• Check for unconnected inputs and feedback circuits without proper reset.

• Check for hazards and setup- or hold-time violation on flipflops and memories.

• Check for undefined or short-circuit conditions on buses.

• Make sure that registers and memories are properly initialized via loading of initial
memory contents, or via explicit initialization sequences.

• See section10.2.4for some tips on debugging.

10.1.31 How can I automatically restore editor settings?

First of all, try to set the corresponding values for the SetupManager properties in the
.hadesrc configuration file. See sectionA for details.

If you want to customize other settings, you could use either a scripting language or write a
small initialization class in Java.

10.1.32 My waveforms get overwritten?

Currently, all data for waveforms is stored in memory. As the simulator may easily execute
100.000 events per second, and the raw data for each event consists of a time value (8 bytes)
and a data value (1 to 30 bytes), using waveforms may require more than one 1 MByte of
memory per second.

While fresh memory is available, the waveforms will store all events. Once the available
memory is exhausted, the waveform classes will periodically overwrite the oldest data in
order to make room for the newer data. Due to the multithreaded nature of Java, even this
algorithm can’t always prevent premature OutOfMemoryErrors.

If you want to preserve the older waveform data, you should run the simulation only for some
time, pause the simulation, and the save the waveform data to a file, before continuing with
the simulation.

10.1.33 How can I edit a SimObject symbol?

As Hades does not have a graphical symbol editor, you will have to write the symbol file for
your own simulation models with a text editor. See section9.3on page86 for an explanation
and an example.

10.2 Tips and tricks

10.2.1 What other programs are in hades.jar? How to run them?

One of the advantages of object-oriented programming and the Java object model is that
every class can be used as an application, if only it provides its ownmain() method. Not
surprisingly, many classes in Hades have their ownmain() and can be run as the main class.
However, all classes are packed into thehades.jar archive file, which only provides a single
main-class (namely,hades.gui.Editor).

To access and run the other classes insidehades.jar, you have to use a command shell to
call the Java virtual machine with the corresponding parameters. When called without further
parameters, most of the classes will print a short usage message.

Some of the useful classes insidehades.jar:

• jfig.gui.Editor theJFIG graphics editor.

• hades.models.pic.PicAssembler a command line assembler for the PIC 16
family of microcontrollers which creates raw.rom or Intel HEX .hex files. The as-
sembler accepts many MPASM assembler files directly of with only minor changes.

• hades.utils.NameMangler The tool used by Hades to encode Unicode characters
for use in the.hds and.sym design and symbol files. Use the command line version
to encode or decode strings manually.



110 10 FAQ, TIPS AND TRICKS

• hades.utils.vhdl.VHDLWriter A command line tool to convert Hades design
files into a VHDL netlist, preserving the design hierarchy. Note that the converter
cannot generate VHDL simulation models for most of the complex Hades simulation
models. Currently, it only understands several gate-level models, including basic gates,
complex gates, flipflops, and clock generator.

10.2.2 User-settings in .hadesrc

See the description in section3.8 on how to customize the Hades editor and tools via the
.hadesrc configuration files. AppendixA lists all configuration properties together with
their default values.

10.2.3 How to enable or disable glow-mode for individual signals?

This is possible via theh bindkey in the editor. Move the cursor to a vertex of the signal in
question, then press theh key to toggle glow-mode for that signal.

Naturally, you can also enable or disable glow-mode for each signal via explicit method calls
to signal.setGlowMode(). See the examples in section8 on page71.

10.2.4 What can I do to debug my circuits?
• Activate glow-mode and interactive simulation to play with your circuit. Watch out for

undefined signals (cyan and magenta colors).

• Add probes to all relevant signals and watch the signal traces in the waveform viewer.
Check all signals which carryU or X values carefully. Also note that floating signals (Z
value) are not a good idea. Consider adding pullup components to buses.

• Check the editor message console for all warning and error messages like flipflop tim-
ing violations, missing memory initialization data files, or even simulator internal er-
rors.

• SelectEditor. Special. Check designmenu item and read the messages in the console
window. The editor will report all unconnected (open) inputs, short-circuit outputs, etc.

• Usedesign for testmethods, like including extra reset inputs, extra status-outputs, or
built-in-selftest logic.

• Add measurement equipmentto strategic signals in your circuit. For example, try a
hades.models.special.HazardTrigger or ahades.models.special.Counter
to detect hazards or to count events on a signal.

• As a last resort, try to single-step the simulator through your circuit, and periodically
use the debug menu items likeEditor. Debug. Print eventlistto print the internal sim-
ulator state. This will not usually be necessary, except when debugging your own
Java-written simulation models.

10.2.5 I need a two-phase clock

To create a two-phase clock, just create twoClockGencomponents with the same clock pe-
riod, the corresponding values for the duty cycle, and finally set the offset of one of the clocks
to achieve the desired effect. For example, to create a non-overlapping 10 MHz clock with
waveforms “_1__” and “___1”, specify periods of 100 nsec., a dutycycle of 0.25 (25%) and
offsets of 0 nsec. and 50 nsec., respectively.

Naturally, you could also create a simple state machine subdesign to create multiple clocks
from a single clock input.

10.2.6 How can I print my circuit schematics?

Just try theEditor. File . Print menu item. This will use the Java printing API to access
the default printer(s) on your system. It will also change the zoom-factor of your current
schematic to A4 landscape paper and request a full redraw. If you select landscape paper in
the printer options dialog, your circuit should fit on the paper. Due to limitations in the Java
printing API, however, the quality of the printing is not optimal. While texts and straight
lines may be ok, arcs and spline objects are very jagged.

For high quality prints, you may prefer to export your schematics to FIG format, and then use
the fig2dev converter to produce high-quality Postscript, see below.



10.2 Tips and tricks 111

10.2.7 Printing problems

Currently, Hades uses the Java 1.1 API to access a printer, which results in suboptimal
print quality and is not very reliable. Also, there is a bug in the Hades graphics code,
which prevents printing on some JDK 1.3 virtual machine, due to a conflict between Java2D
enabled screen rendering and non-Java2D printer rendering. If you get exceptions while
printing on a JDK 1.3 virtual machine, you might try to disable Java2D support via the
jfig.allowJava2D SetupManager property in your.hadesrc file.

10.2.8 How can I export my circuit schematics via fig2dev?

As the Hades graphics editor is based on theJFIG graphics code, it is possible to export
circuit schematics to the FIG file format, which can then also be edited with thexfig pro-
gram available on many Unix/Linux systems, or thejfig.gui.Editor class included in the
hades.jar archive.

Among the many programs that support the FIG format is thefig2dev format converter,
which allows to convert FIG files into several image formats, HP GL, LATEX drawing com-
mands, or high-quality Postscript. Iffig2dev is not installed on your system, you can down-
load the sources fromftp.x.org. Contact your system vendor for pre-built binaries for Unix
and Linux systems. A binary for Windows is available from theJFIG home page,tech-www
.informatik.uni-hamburg.de /applets/jfig/.

In the editor, select theEditor. Export. Settings. . . menu item, which opens the export
options dialog. First, select whether you want color or black-and-white export (which might
be better for printing on b/w printers). Next, fill in the remaining options and selectExport
Now.

10.2.9 I cannot initialize my circuit

For well designed circuits with proper reset logic, there should be no problem. However,
if you try to simulate legacy circuits you may experience difficulties in getting your cir-
cuit to work. This is due to the simulation semantics and the industry standard nine-valued
std_logic logic system used by Hades for gate-level simulations. All gates and flipflops
will start and stay in the specialU state, until all inputs are well-defined. Use switches or the
PowerOnReset component to generate valid reset impulses after starting the simulation.

10.2.10 Simulation does not appear deterministic

This depends on your simulator settings and the simulation models used in your circuits.

When using the VHDL-based simulation kernel with its two-list algorithm (classhades
.simulator.VhdlSimKernel), the simulation should be deterministic, as multiple instan-
taneous events are deferred until the next delta-cycle. Events occuring in one delta-cycle are
executed in random order, but this should not influence the final simulation state.

On the other hand, when using the simpler one-list simulation kernels, the simulation state
does depend on the (random) ordering of events. For example, a basic NOR-flipflop will
never oscillate with this algorithm, because one gate will be evaluated first.

Note that some simulation models intentionally include random behaviour. For example, the
metastable DFF flipflop will not generateU or X output values, when undefined input signals
or a timing violation are detected. Instead, the metastable flipflop will enter a random0 or 1
state after a random delay.

10.2.11 I took a schematic from a book, but the circuit does not work

Unfortunately, this can happen, and there are several reasons for it. First of all, it is very
difficult to write a 100% error-free book, and it is even more difficult to get all the graphics
and figures correct. Therefore, the schematic you copied may simply have a few small errors.

Second, figures usually serve to illustrate a certain idea. This in turn leads to a compromise
between a nice and easily understandable figure, or a very complex figure with all the gory
details. Many authors, especially in textbooks, prefer the readable variant.



112 10 FAQ, TIPS AND TRICKS

Third, the function of a circuit often depends on technological constraints. For example,
many legacy TTL circuits don’t include complex reset logic, because real TTL devices will
behave as expected by the designer. The same circuit in CMOS technology, however, may
enter undefined states or even a latch-up.

Fourth, while the simulation models are written to accurately model the behaviour of real
devices, there are certain differences. For example, theU andX states of thestd_logic
logic model are a simple means to model undefined logic states. However, circuits without
proper reset logic will not be useable withstd_logic, unless explicit manual initialization
sequences are used.

While this is not recommended, you might use the specialmetastableflipflops models from
thehades.models.flipflopspackage to model legacy circuits or other circuits with broken reset
logic. These simulation components,DffMetastableandLatchMetastablebehave differently
from the usualDff or Latchmodels. They never generate the undefinedX or U output values,
even when some inputs are undefined or a timing violation is detected. Instead, these flipflops
use a random number to generate a random0 or 1 output in such conditions, and another
random number is used to generate a random gate-delay (with may be up to 50 times longer
than the default gate-delay).

10.2.12 VHDL export

Netlist export of Hades designs to VHDL format is possible. This currently supports hi-
erarchical designs and includes a name-mangling scheme which converts Hades signal and
component names to unique but still readable VHDL names. Try running thehades.utils
.vhdl.VhdlWriter from thehades.jar archive and read the help message for the com-
mand syntax and options.

TheVhdlWriter will write all entity declarations and defaultarchitecture blocks for
all Hades schematics. It also includes support to write defaultarchitectures for gate-level
components like simple and complex gates, several flipflops, clock generator and power-on-
reset. Naturally, it can not translate arbitrary Java code to corresponding VHDL architectures.

So far, the export functions have only be tested with a few designs, and only with the Syn-
opsys VSS simulator. Support for other simulators may require some changes in the name
mangling.

10.3 Known bugs and features

10.3.1 How should I report bugs?

To report a bug send an email tohendrich@informatik.uni-hamburg.de.

However, you might first check that the bug is actually a Hades bug instead of a known
problem of your Java virtual machine. For example, several redraw problems are known for
Java applications when running with JDK 1.2.x or JDK 1.3.x. See the release documentation
for your Java virtual machine for details.

Your mail should include your operating system and version, Java virtual machine and ver-
sion, Hades version, CLASSPATH settings,.hadesrc property values, and the detailed error
message, including stack traces. Usejava -version to print out your JDK version infor-
mation. (For example, a useful message might include the following information: Windows
XP home, JDK 1.3.102, Hades 0.89b, no CLASSPATH set, default .hadesrc).

For multiple related errors, only report the first one. If possible, include all required.hds
design files and detailed instructions on how to reproduce the bug or (even better) a script file
which demonstrates it.

10.3.2 Spurious objects displayed

When deleting a component like thehades.models.dcf77.Dcf77Clock generator, which
repeatedly updates itself, the redraw thread may keep a reference to the delete component,
which will the re-appear on the editor canvas.

To avoid this problem, stop and restart the simulator after deleting such component(s).



10.3 Known bugs and features 113

10.3.3 Repaint algorithm

The redraw algorithm used by Hades relies on a separate Thread for asynchronous repaints.
However, due to the overhead of object synchronisation in Java, the editor does not fully
synchronize the simulation and the redrawing.

This means that the simulation continues to run even while a repaint is in progress. This may
lead to inconsistent display for those objects, whose state changed during a repaint operation.

To get a static and fully consistent display, pause the simulation and wait for the next repaint
operation. It is also possible to request a full repaint via theEditor. Edit. Repaint allmenu
item.

10.3.4 Repaint bugs, DirectDraw

To improve performance, Hades uses a complex buffering scheme for screen redrawing. De-
pending on the number of objects that require redrawing, either the whole offscreen buffer,
parts of the offscreen buffer, or only the corresponding objects are drawn.

Unfortunately, this algorithm can trigger a known bug in JDK 1.3.x on Windows, where the
JDK mixes Windows GDI and DirectDraw calls for redrawing. If you experience frequent
redraw problems on a Windows system with JDK 1.3.x, try to call the Java virtual machine
with thejava -Dsun.java2d.noddraw hades.gui.Editor option. This will disable Di-
rectDraw acceleration and should improve stability at the cost of performance.

On Linux and Solaris systems, the Java AWT toolkit is known for a lot of windowmanager
related problems. For example, windows may appear in the wrong size, with zero size, or
even outside the visible screen. The only known workaround in such cases is to try a different
combination of Java virtual machine and window manager.

To repaint the whole editor user interface, select theEditor. Edit. Repaint allmenu item, or
press the CNTL-A bindkey on the main editor canvas.

10.3.5 How to get rid of an unconnected signal?

When opening a design file, the editor will check the design and detect several kinds of errors,
including signals which are not connected to any simulation components. Unfortunately, such
signals also don’t usually have wire segments, and can therefore not be selected or deleted
via the graphical editor. Currently, the only way to get rid of such unconnected signal is to
edit the.hds design file with a text editor.

10.3.6 The ’run for’ simulator command may deadlock

Due to issues with the Java Thread scheduling, thehades.simulator.VhdlSimKernel
simulation kernel may have problems when using therun for mode. While the simulation
will be paused after the specified simulation end time has been reached, it may be impossible
to continue the simulation afterwards. This bug should be fixed in Hades version 0.9 or
greater.

Workaround: please upgrade to the newest version of Hades. If the problem persists, try
another Java VM for your system. Use therun simulation command instead ofrun for.



114 10 FAQ, TIPS AND TRICKS



REFERENCES 115

References

[Cadence 97]Design Framework II 4.41 User Manual, Cadence Design Systems, Inc., San
Jose, CA, USA, 1997

[DIGSIM] X.Y.Z. DIGSIM

[Gillespie & Lazzaro 96]D. Gillespie and J. Lazzaro,DigLOG and AnaLOG, Caltech VLSI
CAD Tools, California Institute of Technology, 1996
ftp://ftp.pcmp.caltech.edu/pub/chipmunk/

[IEEE-87] IEEE Standard VHDL Hardware Description Language Reference Manual,
IEEE Std 1076-1987, 1988

[IEEE-93a] IEEE Standard VHDL Hardware Description Language Reference Manual,
IEEE Std 11xx-1993, 1993

[IEEE 93b] IEEE Standard Multivalue Logic System for VHDL Model Interoperability,
Standard IEEE 1164-1993, 1993

[Jython] The Jython language homepage,www.jython.org

[Hendrich 97] N. Hendrich,HADES — A Java-based visual simulation environment, Fach-
bereich Informatik, Universität Hamburg, 1997

[Khoral 97] KHOROS 2.2, Khoral Research Inc., Albuquerque, New Mexico, US, 1997

[CACI 97] CACI, SIMGRAPHICS-II User’s Manual, CACI Products Company, La Jolla,
CA, 1997

[Sun 95] The Java Whitepaper, Sun Microsystems, Mountain View, CA., 1995

[Sun 96] Java Beans Specification, version 1.0, Sun Microsystems, Mountain View, CA.,
1996
http://java.sun.com/beans

[Sun 97] Sun 100% pure Java initiative, Sun Microsystems, Mountain View, CA., 1997
http://java.sun.com/purejava/

[Synopsys 97]Synopsys VSS 3.5a user manual, Synopsys Inc., Mountain View, CA, 1997

[xfig 3.2] Supoj Sutanthavibul, Paul King, Brian Smith,XFIG — Facility for Interactive
Generation of figures under X11, Lawrence Berkeley Laboratory, CA, 1996

[Hennessy & Patterson]J.L. Hennessay and D.A. Patterson, Computer architecture, the
hardware/software-interface, Morgan-Kaufmann, 199X



116 A SETUPMANAGER PROPERTIES

A SetupManager properties

This section lists the user-settable properties for both the Hades editor and simulator and the
JFIG graphics editor and library, together with useful default values.

A.1 Hades properties

For educational usage, you should probably activate glow-mode, RTLIB animation, and the
simulator autostart properties. The Java2D antialising option is not generally useful during
simulation, but can improve screenshots. Set the default window size and position corre-
sponding to match the screen size of your computer:

# Hades Editor default properties
#
Hades.Console.SaveLines 600
Hades.Console.LogEnable false
Hades.Console.LogfileName /tmp/hades.log
Hades.Console.WindowInit 300 300 600 400
Hades.Console.ConsoleFontName Courier
Hades.Console.ConsoleFontSize 12
Hades.Console.ButtonFontName SansSerif
Hades.Console.ButtonFontSize 12
#
# use one of "VHDL", "Real time", "Batch mode", "Interactive":
Hades.Editor.DefaultSimKernel VHDL
Hades.Editor.AutoStartSimulation true
Hades.Editor.AutoZoomFit true
Hades.Editor.DumpSystemProperties false
Hades.Editor.EnableDebugMenu false
Hades.Editor.EnableSelectionMenu true
Hades.Editor.EnableTipOfTheDay false
Hades.Editor.EnableToolTips true
Hades.Editor.EnableVHDLMenu false
#Hades.Editor.StartupFilename /hades/examples/simple/jkff.hds
Hades.Editor.ToolTipsDelay 2000
Hades.Editor.PopupMenuResource /hades/gui/PopupMenu.txt
#
# Java2D rendering hints
#
Hades.Editor.AntiAlias false
Hades.Editor.RenderQuality true
#
# the following items are disabled for foolproof operation;
# initialize signals works recursively and may usually lead to
# inconsistent data structures: use with care.
#
Hades.Editor.EnableInitializeSignalsMenu false
Hades.Editor.EnableStandardLatch false
Hades.Editor.EnableStandardDFF false
#
# false is good for Windows, you may want true for Unix/X11:
Hades.Editor.FocusOnMouseEnter false
#
Hades.Editor.GlowMode true
Hades.Editor.InverseCanvas false
Hades.Editor.RedrawMode Buffered
Hades.Editor.RedrawDelayMillis 20



A.1 Hades properties 117

Hades.Editor.WindowWidth 700
Hades.Editor.WindowHeight 500
Hades.Editor.WindowY 80
Hades.Editor.WindowX 50
#
Hades.Editor.MenuFontSize 12
Hades.Editor.MenuFontName Helvetica
Hades.Editor.HighlightColor 0x00FF5500
#
Hades.FileDialog.FontName SansSerif
Hades.FileDialog.FontSize 12
#
# default redraw frequency
#
Hades.SyncRedrawTimer.UpdateInterval 50
#
Hades.Exporter.FontName SansSerif
Hades.Exporter.FontSize 12
Hades.Exporter.Fig2devOptions "-p portrait -m 1.0"
Hades.Exporter.EPSCommand /usr/X11/bin/fig2dev -L ps -P
Hades.Exporter.PSCommand /usr/X11/bin/fig2dev -L ps -P
Hades.Exporter.PrintCommand lpr
Hades.Exporter.PrintFitToA4 true
#
# a "black on green" LCD:
Hades.GraphicsLCD.repaintMillis 100
Hades.GraphicsLCDCanvas.lcdBackground 0x00bfdf00
Hades.GraphicsLCDCanvas.lcdInactivePixel 0x00b5d200
Hades.GraphicsLCDCanvas.lcdActivePixel 0x00000000
#
Hades.TextLCDCanvas.lcdBackground 0x00bfdf00
Hades.TextLCDCanvas.lcdInactivePixel 0x00b5d200
Hades.TextLCDCanvas.lcdActivePixel 0x00000000

Hades.LayerTable.DisplayInstanceBorder true
Hades.LayerTable.DisplayInstanceLabels false
Hades.LayerTable.DisplayClassLabels false
Hades.LayerTable.DisplayPortSymbols true
Hades.LayerTable.DisplayPortLabels true
Hades.LayerTable.DisplayBusPortSymbols true
Hades.LayerTable.RtlibAnimation true
#
# UseSelectDialog true=Netscape/MSIE style
# false=traditional FileDialog
#
Hades.DesignManager.Debug false
Hades.DesignManager.VerboseMessages true
Hades.DesignManager.UseSelectDialog false
Hades.DesignManager.AutoAddExtension true
#
#
Hades.PropertySheet.backgroundColor 0x00d0d0d0
#
# enable EventNode recycling to help out the garbage-collector?
#
Hades.Simulator.EventList.EnableRecycling true
Hades.Simulator.EventList.RecycleCapacity 1001
Hades.Simulator.SleepMillis 100



118 A SETUPMANAGER PROPERTIES

Hades.TipOfTheDay.ButtonFontSize 12
Hades.TipOfTheDay.ButtonFontName SansSerif
Hades.TipOfTheDay.TextAreaFontSize 12
Hades.TipOfTheDay.TextAreaFontName SansSerif
#
# default glow-mode colors for StdLogic1164 values
#
Hades.StdLogic1164.Color._U 0x0000ffff
Hades.StdLogic1164.Color._X 0x00ff00ff
Hades.StdLogic1164.Color._0 0x00dcdcdc
Hades.StdLogic1164.Color._1 0x00e00000
Hades.StdLogic1164.Color._Z 0x00ffBf00
Hades.StdLogic1164.Color._W 0x00ff7f00
Hades.StdLogic1164.Color._L 0x00404040
Hades.StdLogic1164.Color._H 0x00c00000
Hades.StdLogic1164.Color._D 0x007f7f7f
#
Hades.HexTextField.FontSize 16
Hades.HexTextField.FontStyle 1
Hades.HexTextField.BackgroundColor 0x00afafaf
Hades.HexTextField.TextColor 0x007f0000
#
Hades.MemoryHexEditorField.RepaintMillis 100
Hades.MemoryHexEditorField.FontName Courier
Hades.MemoryHexEditorField.FontSize 12
Hades.MemoryHexEditorField.FontStyle 0
Hades.MemoryHexEditorField.BackgroundColor 0x00efefef
Hades.MemoryHexEditorField.DataColor 0x000000af
Hades.MemoryHexEditorField.ActiveDataColor 0x00ef0000
Hades.MemoryHexEditorField.PassiveDataColor 0x00afafaf
Hades.MemoryHexEditorField.AddrColor 0x00af0000
Hades.MemoryHexEditorField.EditColor 0x00ff8000
Hades.MemoryHexEditorField.ReadHighlightColor 0x0000bf00
Hades.MemoryHexEditorField.WriteHighlightColor 0x00ef00cf
Hades.MemoryHexEditorField.EnableTooltips false
#
# specify VT52 font and color
# amber:
hades.VT52Canvas.color 0x00f0a000
# perhaps you prefer green:
#hades.VT52Canvas.color 0x0000e000
hades.VT52Canvas.fontName Courier
hades.VT52Canvas.fontSize 10
#
Hades.LED.Color.red 0x00ff0000
Hades.LED.Color.green 0x0000ff00
Hades.LED.Color.yellow 0x00ffff00
Hades.LED.Color.blue 0x000000ff
#
Hades.WaveformViewer.DefaultWidth 800
Hades.WaveformViewer.DefaultHeight 700
Hades.WaveformViewer.NameCanvas.BackgroundColor 0x00d0e0e0
Hades.WaveformViewer.WaveCanvas.BackgroundColor 0x00e0f0f0
Hades.WaveformViewer.WaveCanvas.XORColor 0x00ffffff
#



A.2 jfig default properties 119

A.2 jfig default properties

The JFIG graphics libraries are used by Hades for the schematics editor with the SimObject
symbols and wires. Most of the following properties are not directly useful when running
Hades. However, you might want to modify these properties in case you plan to use theJFIG

editor from thehades.jar archive. To run theJFIG editor,jfig.gui.Editor as the main
class with a command line similar to
java -classpath c:\temp\hades.jar jfig.gui.Editor

If you experience printing problems with Hades on JDK 1.3, you may want to try the
jfig.allowJava2D false setting.

#jfig default properties
jfig.FIG.Version 32
jfig.Java2D.AntiAlias false
jfig.Java2D.RenderingQuality true
jfig.allowJava2D true
jfig.cursorSnapping 1/4 grid
jfig.enableXSplines true
jfig.grid coarse grid
jfig.gui.Canvas.RedrawMessages false
jfig.gui.Canvas.RequestFocusOnMouseEnter false
jfig.gui.Console.ButtonFontName SansSerif
jfig.gui.Console.ButtonFontSize 12
jfig.gui.Console.ConsoleFontName MonoSpaced
jfig.gui.Console.ConsoleFontSize 12
jfig.gui.CreateImageDialog.LayerCorrection true
jfig.gui.EditDialog.FontName SansSerif
jfig.gui.EditDialog.FontSize 12
jfig.gui.Editor.AttribsScrollPaneEnable false
jfig.gui.Editor.DebugMenuItems false
jfig.gui.Editor.DebugRedrawMessages false
jfig.gui.Editor.Icon /jfig/images/icon.gif
jfig.gui.Editor.MenuFontName SansSerif
jfig.gui.Editor.MenuFontSize 12
jfig.gui.Editor.WindowHeight 700
jfig.gui.Editor.WindowWidth 900
jfig.gui.ExportOptionsDialog.Autosave true
jfig.gui.ExportOptionsDialog.Debug false
jfig.gui.ExportOptionsDialog.EnableGIF false
jfig.gui.ExportOptionsDialog.FontName Times
jfig.gui.ExportOptionsDialog.FontSize 6
jfig.gui.ExportOptionsDialog.Print lpr
jfig.gui.ExportOptionsDialog.WaitExec true
jfig.gui.ExportOptionsDialog.fig2devEPS -L ps
jfig.gui.ExportOptionsDialog.fig2devGIF -L gif
jfig.gui.ExportOptionsDialog.fig2devIBMGL -L ibmgl
jfig.gui.ExportOptionsDialog.fig2devJPG -L jpeg
jfig.gui.ExportOptionsDialog.fig2devLATEX -L latex
jfig.gui.ExportOptionsDialog.fig2devMagnification 1.0
jfig.gui.ExportOptionsDialog.fig2devPICTEX -L pictex
jfig.gui.ExportOptionsDialog.fig2devPNG -L png
jfig.gui.ExportOptionsDialog.fig2devPPM -L ppm
jfig.gui.ExportOptionsDialog.fig2devPS -L ps -P
jfig.gui.ExportOptionsDialog.fig2devPSCentered true
jfig.gui.ExportOptionsDialog.fig2devPSOrientation true
jfig.gui.ExportOptionsDialog.fig2devPath /usr/X11/bin/fig2dev
jfig.gui.KeyHandler.BreakCompound G
jfig.gui.KeyHandler.CopyObject C
jfig.gui.KeyHandler.CreateArc r



120 A SETUPMANAGER PROPERTIES

jfig.gui.KeyHandler.CreateCircle c
jfig.gui.KeyHandler.CreateClosedBezier I
jfig.gui.KeyHandler.CreateClosedSpline S
jfig.gui.KeyHandler.CreateCompound g
jfig.gui.KeyHandler.CreateEllipse e
jfig.gui.KeyHandler.CreateImage J
jfig.gui.KeyHandler.CreateOpenBezier i
jfig.gui.KeyHandler.CreateOpenSpline s
jfig.gui.KeyHandler.CreatePolygon p
jfig.gui.KeyHandler.CreatePolyline l
jfig.gui.KeyHandler.CreateRectangle b
jfig.gui.KeyHandler.CreateText t
jfig.gui.KeyHandler.CutPoint D
jfig.gui.KeyHandler.DeleteObject d
jfig.gui.KeyHandler.EditObject E
jfig.gui.KeyHandler.InsertPoint a
jfig.gui.KeyHandler.MirrorX F
jfig.gui.KeyHandler.MirrorY f
jfig.gui.KeyHandler.MoveObject m
jfig.gui.KeyHandler.MovePoint M
jfig.gui.KeyHandler.NextCachedAttributes n
jfig.gui.KeyHandler.OpenCompound o
jfig.gui.KeyHandler.SaveAttributesToCache N
jfig.gui.KeyHandler.ScaleObject $
jfig.gui.KeyHandler.ToggleShowGrid W
jfig.gui.KeyHandler.UpdateObject u
jfig.gui.KeyHandler.ZoomIn Z
jfig.gui.KeyHandler.ZoomOut z
jfig.gui.PresentationViewer.Icon /jfig/images/icon.gif
jfig.gui.PresentationViewer.WindowHeight 600
jfig.gui.PresentationViewer.WindowWidth 800
jfig.gui.PresentationViewer.debug false
jfig.gui.PresentationViewer.enablePageNames false
jfig.gui.PresentationViewer.enablePageNumbers true
jfig.gui.SelectFromLibraryDialog.BaseDir /tmp/jfig/libraries
# default on X11: /usr/X11R6/lib/X11/xfig/Libraries
jfig.gui.Viewer.Icon /jfig/images/icon.gif
jfig.gui.Viewer.WindowHeight 600
jfig.gui.Viewer.WindowWidth 800
jfig.gui.Viewer.debug false
jfig.objects.Exporter.DumpStatus false
jfig.objects.FigImage.verboseImageUpdate false
jfig.objects.FigParser.UseFastMessages false
jfig.objects.FigParser.debug false
jfig.objects.FigParser.enableMessages false
jfig.objects.FigParser.enableNonASCII true
jfig.pageJustification Center
jfig.pageOrientation Portrait
jfig.paperSize A4
jfig.units Metric
jfig.utils.MouseMapper.Remap false
jfig.utils.MouseMapper.ShiftClickIsMiddleClick true



121

B Index

Symbols
-E- error message . . . . . . . . . . . . . . . . . . . . .106
-F- fatal error message . . . . . . . . . . . . . . . .106
-I- information message . . . . . . . . . . . . . . .106
-W- warning message . . . . . . . . . . . . . . . . .106
-#- debug output message. . . . . . . . . . . . . .106
.hadesrc . . . . . . . . . . . . . . . . . . . . . . . . . .23, 116
.hds file type . . . . . . . . . . . . . . . . . . . . . . . . . .24
74xx simulation models . . . . . . . . . . . . . . . . .9

A
adder (CLA adder example) . . . . . . . . . . . . . .7
ALU (user-defined ALU examples) . . . . . .11
Applet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

website . . . . . . . . . . . . . . . . . . . . . . . . . . .16
assign

Ipin method. . . . . . . . . . . . . . . . . . . . . . .72
Assignable . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
asynchronous circuits . . . . . . . . . . . . . . . . . .14

B
bash shell . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
batch mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .73
BboxRectangle . . . . . . . . . . . . . . . . . . . . . . . .87
bindkeys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

editor . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
bindkeys and keyboard focus. . . . . . . . . . .107
bottom-up design style . . . . . . . . . . . . . . . . .43
browser

compatible with Hades. . . . . . . . . . . . .26
bugs

can’t open design files . . . . . . . . . . . .104
DirectDraw . . . . . . . . . . . . . . . . . . . . . .113
editor crashes . . . . . . . . . . . . . . . . . . . .105
initialization . . . . . . . . . . . . . . . . . . . . .111
Java2D and DirectDraw. . . . . . . . . . .113
loading a design. . . . . . . . . . . . . . . . . .106
redrawing slow on remote display . .107
repaint algorithm . . . . . . . . . . . . . . . . .113
reporting . . . . . . . . . . . . . . . . . . . . . . . .112
run for command . . . . . . . . . . . . . . . . .113
slow operations . . . . . . . . . . . . . . . . . .107
spurios objects . . . . . . . . . . . . . . . . . . .112
tooltips . . . . . . . . . . . . . . . . . . . . . . . . . .106
unconnected signals . . . . . . . . . . . . . .113
wrong cursor position . . . . . . . . . . . .107
X11 window manager issues . . . . . .113

C
C-gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
cancel a command . . . . . . . . . . . . . . . . . . . .103
cannot load a design . . . . . . . . . . . . . . . . . .106
circuit

does not work . . . . . . . . . . . . . . . . . . . .111
CLA carry lookahead adder . . . . . . . . . . . . . .7
class hierarchy. . . . . . . . . . . . . . . . . . . . . . . . .82
ClassLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
ClassNotFoundError . . . . . . . . . . . . . . . . . .104
CLASSPATH

bash . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
DOS shell . . . . . . . . . . . . . . . . . . . . . . .104
tcsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Cloneable . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
cmd.exe shell . . . . . . . . . . . . . . . . . . . . . . . . .104
complexgates . . . . . . . . . . . . . . . . . . . . . . . . . .64
components

see models. . . . . . . . . . . . . . . . . . . . . . . .58
connecting a wire . . . . . . . . . . . . . . . . . . . . .107
Console

logging messages . . . . . . . . . . . . . . . .102
cosimulation . . . . . . . . . . . . . . . . . . . . . . . . . .13

MIPS processor core. . . . . . . . . . . . . . .70
PIC processor core . . . . . . . . . . . . . . . .70

Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
counter circuit . . . . . . . . . . . . . . . . . . . . . . . . .10
counter components . . . . . . . . . . . . . . . . . . . .69
creating a wire . . . . . . . . . . . . . . . . . . . . . . . . .35
creating components . . . . . . . . . . . . . . . . . . .31
cursor and magnetic grid . . . . . . . . . . . . . .107
cursor problems . . . . . . . . . . . . . . . . . . . . . .107
cycle-based simulation . . . . . . . . . . . . . . . . .70

D
D*CORE . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
DCF77 clock signal . . . . . . . . . . . . . . . . . . . .69
DCF77Clock . . . . . . . . . . . . . . . . . . . . . . . . . .77
DCF77Sender . . . . . . . . . . . . . . . . . . . . . . . . .77
debugging

circuits . . . . . . . . . . . . . . . . . . . . . . . . . .110
new Java classes . . . . . . . . . . . . . . . . . .28

delete an object . . . . . . . . . . . . . . . . . . . . . . .107
demos

74xx series circuits . . . . . . . . . . . . . . . . .9
CLA adder. . . . . . . . . . . . . . . . . . . . . . . . .7
D*CORE processor . . . . . . . . . . . . . . .12
Hamming code . . . . . . . . . . . . . . . . . . . . .6
micropipeline . . . . . . . . . . . . . . . . . . . . .14
MIDI controller . . . . . . . . . . . . . . . . . . .13
RTLIB counter . . . . . . . . . . . . . . . . . . . .10
traffic-light controller . . . . . . . . . . . . . . .8
user-defined ALU . . . . . . . . . . . . . . . . .11

design
hierarchical . . . . . . . . . . . . . . . . . . . . . . .43

design hierarchy . . . . . . . . . . . . . . . . . . . . . . . .7
DesignHierarchyNavigator . . . . . . . . . . . .102
DesignManager . . . . . . . . . . . . . . . . . . . . . .100
directories. . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Windows . . . . . . . . . . . . . . . . . . . . . . . . .21

documentation
outdated . . . . . . . . . . . . . . . . . . . . . . . . .103

download . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
dual-rail encoding. . . . . . . . . . . . . . . . . . . . . .15

E
Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
editor

bindkeys . . . . . . . . . . . . . . . . . . . . . . . . .46



122 B INDEX

editor refuses to connect a wire. . . . . . . . .107
elaborate . . . . . . . . . . . . . . . . . . . . . . . . . .81, 83
error messages . . . . . . . . . . . . . . . . . . . . . . .106
evaluate . . . . . . . . . . . . . . . . . . . . . . . . . . .81, 83
external resources. . . . . . . . . . . . . . . . . . . . .100

F
FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
fig2dev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
fig2dev converter . . . . . . . . . . . . . . . . . . . . . .46
FigWrapper . . . . . . . . . . . . . . . . . . . . . . . . . . .87
flipflop

timing violations . . . . . . . . . . . . . . . . .107
flipflops

see models. . . . . . . . . . . . . . . . . . . . . . . .65
FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
FSM

editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
FSM state machine editor . . . . . . . . . . . . . . .69

G
gate level

Hamming code . . . . . . . . . . . . . . . . . . . . .6
gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
gcj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
GenericGate . . . . . . . . . . . . . . . . . . . . . . . . . . .82
getInputStream . . . . . . . . . . . . . . . . . . . . . . .101
getSymbolResourceName . . . . . . . . . . . . . .86
ghost components. . . . . . . . . . . . . . . . . . . . .106
glow-mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

buses. . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
enable and disable . . . . . . . . . . . . . . . . .35
Opin . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
single signals . . . . . . . . . . . . . . . . . . . .110

GND component . . . . . . . . . . . . . . . . . . . . .108

H
Hades

applet . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Applet collection . . . . . . . . . . . . . . . . . .16
Applet website . . . . . . . . . . . . . . . . . . . .16
can’t get it running . . . . . . . . . . . . . . .103
can’t open design files . . . . . . . . . . . .104
cancel a command. . . . . . . . . . . . . . . .103
Colibri browser . . . . . . . . . . . . . . . . . . .59
cosimulation . . . . . . . . . . . . . . . . . . . . . .13
D*CORE . . . . . . . . . . . . . . . . . . . . . . . . .12
debugging circuits . . . . . . . . . . . . . . . .110
Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
directory setup . . . . . . . . . . . . . . . . . . . .19
documentation outdated. . . . . . . . . . .103
editor bindkeys. . . . . . . . . . . . . . . . . . . .38
editor crashes . . . . . . . . . . . . . . . . . . . .105
hangs or seems to hang . . . . . . . . . . .103
homepage . . . . . . . . . . . . . . . . . . . . . . . .19
hundreds of error messages. . . . . . . .106
installation . . . . . . . . . . . . . . . . . . . . . . .17
Jython scripting . . . . . . . . . . . . . . . . . . .14
model library . . . . . . . . . . . . . . . . . . . . .58
naming signals . . . . . . . . . . . . . . . . . . . .37
PIC 16C84 microcontroller . . . . . . . . .13

properties . . . . . . . . . . . . . . . . . . . . . . .116
properties viewer . . . . . . . . . . . . . . . . . .23
RTLIB . . . . . . . . . . . . . . . . . . . . . . . . . . .10
single step . . . . . . . . . . . . . . . . . . . . . . .110
Styx waveform viewer . . . . . . . . . . . . .51
switch-level simulation . . . . . . . . . . . .15
symbol editor . . . . . . . . . . . . . . . . . . . .109
system requirements . . . . . . . . . . . . . . .18
tooltips . . . . . . . . . . . . . . . . . . . . . . . . . .106
useful programs in hades.jar . . . . . . .109
View-Mode . . . . . . . . . . . . . . . . . . . . . . .15
warning and error messages . . . . . . .106
Zuse-Adder . . . . . . . . . . . . . . . . . . . . . . .15

hades.jar
checking the archive . . . . . . . . . . . . . .104
double clicking . . . . . . . . . . . . . . . . . .105
downloading . . . . . . . . . . . . . . . . . . . . . .19

hades.zip
downloading . . . . . . . . . . . . . . . . . . . . . .19

Hamming code demonstration . . . . . . . . . . . .6
hazard detector component. . . . . . . . . . . . . .69
HazardDetector . . . . . . . . . . . . . . . . . . . . . . .110
hazards

detector . . . . . . . . . . . . . . . . . . . . . . . . . .69
hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43

I
IDE

integrated development enviroment .27
ImageObject . . . . . . . . . . . . . . . . . . . . . . . . . .87
information messages . . . . . . . . . . . . . . . . .106
initialization problems . . . . . . . . . . . . . . . .111
initialize

SimObject . . . . . . . . . . . . . . . . . . . . . . . .81
installation

multi-user setup . . . . . . . . . . . . . . . . . . .26
overview . . . . . . . . . . . . . . . . . . . . . . . . .17

InstanceLabel . . . . . . . . . . . . . . . . . . . . . . . . .87

J
jamvm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Java plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Java2D

antialiasing . . . . . . . . . . . . . . . . . . . . . .116
printing problem . . . . . . . . . . . . . . . . .111

javac
Java compiler . . . . . . . . . . . . . . . . . . . . .27

JDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
extension packages . . . . . . . . . . . . . . . .22
running hades.jar . . . . . . . . . . . . . . . . . .20

JDK 1.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
JIT compiler . . . . . . . . . . . . . . . . . . . . . . . . .108
JK flipflop . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
JRE 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
JSwat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
jview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
JVM

choosing a JVM. . . . . . . . . . . . . . . . . . .18
crash . . . . . . . . . . . . . . . . . . . . . . .103, 105
invisible error messages. . . . . . . . . . .105
JDK/JRE 1.4. . . . . . . . . . . . . . . . . . . . . .20



123

running the editor . . . . . . . . . . . . . . . .103
JVM (java virtual machine) . . . . . . . . . . . . .18
Jython . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14, 76

execfile . . . . . . . . . . . . . . . . . . . . . . . . . . .77
installation . . . . . . . . . . . . . . . . . . . . . . .24
shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

K
Kaffe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

L
LCD display . . . . . . . . . . . . . . . . . . . . . . . . . .69
LFSR selftest

example circuit . . . . . . . . . . . . . . . . . . . .74
libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
loading a design fails . . . . . . . . . . . . . . . . . .106
logic gates . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

M
magnetic grid . . . . . . . . . . . . . . . . . . . . . . . .107
memory editor . . . . . . . . . . . . . . . . . . . . . . . . .12
memory leaks . . . . . . . . . . . . . . . . . . . . . . . .108
messages

logging Console messages . . . . . . . .102
messages, Console window . . . . . . . . . . . .106
microcontroller . . . . . . . . . . . . . . . . . . . . . . . .13
micropipeline . . . . . . . . . . . . . . . . . . . . . . . . .14
microprocessor . . . . . . . . . . . . . . . . . . . . . . . .12
microprogrammed control . . . . . . . . . . . . . .12
Microsoft VM . . . . . . . . . . . . . . . . . . . . . . . . .23
MIDI (musical instruments digital interface)

13
MIPS processor core . . . . . . . . . . . . . . . . . . .70
model library . . . . . . . . . . . . . . . . . . . . . . . . . .58
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

basic gates . . . . . . . . . . . . . . . . . . . . . . . .64
clock generator. . . . . . . . . . . . . . . . . . . .63
complex gates. . . . . . . . . . . . . . . . . . . . .64
create by name . . . . . . . . . . . . . . . .33, 59
creation via Colibri . . . . . . . . . . . . . . . .59
creation via popup menu . . . . . . . . . . .59
DFF flipflop . . . . . . . . . . . . . . . . . . . . . .65
flipflops . . . . . . . . . . . . . . . . . . . . . . . . . .65
FSM state machine editor . . . . . . . . . .69
GND connection . . . . . . . . . . . . . . . . . .64
Hex display . . . . . . . . . . . . . . . . . . . . . . .63
Hex switch . . . . . . . . . . . . . . . . . . . . . . .63
interactive I/O . . . . . . . . . . . . . . . . . . . .63
Ipin switch and connector . . . . . . . . . .63
IpinVector switch . . . . . . . . . . . . . . . . .67
Label . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
latches . . . . . . . . . . . . . . . . . . . . . . . . . . .65
LCD display . . . . . . . . . . . . . . . . . . . . . .69
LED . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
LFSRs . . . . . . . . . . . . . . . . . . . . . . . . . . .73
memory . . . . . . . . . . . . . . . . . . . . . . . . . .65
metastable flipflops . . . . . . . . . . . . . . .111
MIPS processor core. . . . . . . . . . . . . . .70
multilevel logic . . . . . . . . . . . . . . . . . . .39
multiplexer . . . . . . . . . . . . . . . . . . . . . . .64
Opin connector. . . . . . . . . . . . . . . . . . . .63

OpinVector connector . . . . . . . . . . . . . .67
parameters . . . . . . . . . . . . . . . . . . . . . . . .33
PIC processor core . . . . . . . . . . . . . . . .70
power on reset generator . . . . . . . . . . .63
pullup resistor. . . . . . . . . . . . . . . . . . . . .64
register . . . . . . . . . . . . . . . . . . . . . . . . . . .65
ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
RTLIB (register transfer level) . . . . . .67
RTLIB ALUs . . . . . . . . . . . . . . . . . . . . .68
RTLIB multiplexer . . . . . . . . . . . . . . . .68
RTLIB register . . . . . . . . . . . . . . . . . . . .68
shift register . . . . . . . . . . . . . . . . . . . . . .65
stimulus generator . . . . . . . . . . . . . . . . .77
system level components . . . . . . . . . . .69
TTL 74xx series. . . . . . . . . . . . . . . . . . .69
VCC connection . . . . . . . . . . . . . . . . . .64
VT52 terminal . . . . . . . . . . . . . . . . . . . .69

Muller C-gate . . . . . . . . . . . . . . . . . . . . . . . . .14

N
NameMangler . . . . . . . . . . . . . . . . . . . . . . . .109
Netbeans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

O
off-grid objects . . . . . . . . . . . . . . . . . . . . . . .107
OutOfMemoryError . . . . . . . . . . . . . . . . . . .105

P
PIC

16C84 microcontroller . . . . . . . . . . . . .13
Assembler . . . . . . . . . . . . . . . . . . . . . . .109
processor core . . . . . . . . . . . . . . . . . . . .70

Polyline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
popup menu . . . . . . . . . . . . . . . . . . . . . . . . . . .29

overview . . . . . . . . . . . . . . . . . . . . . . . . .30
re-activate . . . . . . . . . . . . . . . . . . . . . . .103

PortLabel . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
PortSymbol . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Postscript . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

export via fig2dev . . . . . . . . . . . . . . . . .46
printing . . . . . . . . . . . . . . . . . . . . . . . . . .46, 110

problems . . . . . . . . . . . . . . . . . . . . . . . .111
probes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
property sheet . . . . . . . . . . . . . . . . . . . . . . . . .33
Pullup component . . . . . . . . . . . . . . . . . . . .108
Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

Q
Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

R
redraw

slow . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
register

see models. . . . . . . . . . . . . . . . . . . . . . . .65
register transfer level

see models. . . . . . . . . . . . . . . . . . . . . . . .67
renaming a component or signal . . . . . . . .107
reset problems . . . . . . . . . . . . . . . . . . . . . . . .111
resource files . . . . . . . . . . . . . . . . . . . . . . . . .100
Robot



124 B INDEX

java.awt.Robot class . . . . . . . . . . . . . . .78
ROM component . . . . . . . . . . . . . . . . . . . . . .65
RTLIB

ALU . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
animation . . . . . . . . . . . . . . . . . . . . . . .116
counter . . . . . . . . . . . . . . . . . . . . . . . . . . .10
glow-mode . . . . . . . . . . . . . . . . . . . . . . .10
rtlib animation . . . . . . . . . . . . . . . . . . . .67

RTLIB (register transfer level) . . . . . . . . . .67
RunHadesDemo . . . . . . . . . . . . . . . . . . . . . . .71

S
scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Jython . . . . . . . . . . . . . . . . . . . . . . . .14, 76
selftest . . . . . . . . . . . . . . . . . . . . . . . . . . .73
stimuli . . . . . . . . . . . . . . . . . . . . . . . . . . .77
StimuliParser . . . . . . . . . . . . . . . . . . . . .79

selectFileOrURLName . . . . . . . . . . . . . . . .101
selftest

LFSR based . . . . . . . . . . . . . . . . . . . . . .73
Serializable . . . . . . . . . . . . . . . . . . . . . . . . . . .81
SetupManager . . . . . . . . . . . . . . . . . . . .71, 116
Signal

change name. . . . . . . . . . . . . . . . . . . . . .37
signals

adding wire segments . . . . . . . . . . . . . .35
cannot create. . . . . . . . . . . . . . . . . . . . . .35
connecting wires . . . . . . . . . . . . . . . . . .36
creating wires . . . . . . . . . . . . . . . . . . . . .35
disable create signals . . . . . . . . . . . . . .35
move wire points . . . . . . . . . . . . . . . . . .36

SimObject
class hierarchy . . . . . . . . . . . . . . . . . . . .82
constructor . . . . . . . . . . . . . . . . . . . . . . .89
elaborate . . . . . . . . . . . . . . . . . . . . . . . . .83
evaluate . . . . . . . . . . . . . . . . . . . . . . . . . .83
external resources . . . . . . . . . . . . . . . .100
methods . . . . . . . . . . . . . . . . . . . . . . . . . .81
overview . . . . . . . . . . . . . . . . . . . . . . . . .81
symbol . . . . . . . . . . . . . . . . . . . . . . . . . . .86

SimObjectNotFoundException . . . . . . . . .106
Simulatable . . . . . . . . . . . . . . . . . . . . . . . .81, 82
simulation

batch-mode . . . . . . . . . . . . . . . . . . . . . . .73
in-deterministic . . . . . . . . . . . . . . . . . .111
slow . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
vs. real circuits . . . . . . . . . . . . . . . . . .111

simulation models
see models. . . . . . . . . . . . . . . . . . . . . . . .58

simulator
algorithms . . . . . . . . . . . . . . . . . . . . . . . .29
autostart property . . . . . . . . . . . . . . . .116
cycle-based . . . . . . . . . . . . . . . . . . . . . . .70
event-driven . . . . . . . . . . . . . . . . . . . . . .70
fast synchronization . . . . . . . . . . . . . . .70
runForever . . . . . . . . . . . . . . . . . . . . . . . .72
VHDL . . . . . . . . . . . . . . . . . . . . . . . . . . .29

slow operations . . . . . . . . . . . . . . . . . . . . . . .107
state machine editor . . . . . . . . . . . . . . . . . . . . .8
std logic . . . . . . . . . . . . . . . . . . . . . . . . . . .39, 64
std logic vector . . . . . . . . . . . . . . . . . . . . . . . .67
StimuliGenerator . . . . . . . . . . . . . . . . . . . . . .79
StimuliParser . . . . . . . . . . . . . . . . . . . . . . . . . .79
Stimulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
STL

stimuli language . . . . . . . . . . . . . . . . . .78
switch-level simulation . . . . . . . . . . . . . . . . .15
Symbol

SimObject graphical representation .86
symbol file . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Synopsys VSS. . . . . . . . . . . . . . . . . . . . . . . .112
system requirements . . . . . . . . . . . . . . . . . . .18

T
tcsh shell . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
Thread

synchronisation . . . . . . . . . . . . . . . . . . .73
timing violations

unexpected . . . . . . . . . . . . . . . . . . . . . . .42
Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
tooltips

disable . . . . . . . . . . . . . . . . . . . . . . . . . .106
top-down design style . . . . . . . . . . . . . . . . . .43
traffic-light example . . . . . . . . . . . . . . . . . . . . .8
Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
TTL circuits . . . . . . . . . . . . . . . . . . . . . . . . . . .69
TTL series simulation models . . . . . . . . . . . .9
two-phase clock . . . . . . . . . . . . . . . . . . . . . .110

U
undefined values . . . . . . . . . . . . . . . . . . . . . .108
user preferences . . . . . . . . . . . . . . . . . . . . . . .23

V
VCC component . . . . . . . . . . . . . . . . . . . . . .108
VHDL

export . . . . . . . . . . . . . . . . . . . . . . .48, 112
name mangling. . . . . . . . . . . . . . . . . . . .49
std logic . . . . . . . . . . . . . . . . . . . .6, 39, 64
std logic vector . . . . . . . . . . . . . . . . . . .67
stimuli specification . . . . . . . . . . . . . . .79

VHDLExportable . . . . . . . . . . . . . . . . . . . . . .50
VHDLModelFactory . . . . . . . . . . . . . . . . . . .49
VHDLWriter. . . . . . . . . . . . . . . . . . . . . .48, 112
VT52 terminal

parallel interface . . . . . . . . . . . . . . . . . .69
serial interface . . . . . . . . . . . . . . . . . . . .69

W
Wakeable . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . .81, 83
warning messages . . . . . . . . . . . . . . . . . . . .106
waveform viewer . . . . . . . . . . . . . . . . . . . . . .51

overview . . . . . . . . . . . . . . . . . . . . . . . . .52
usage . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

waveforms
bindkeys . . . . . . . . . . . . . . . . . . . . . . . . .56
probes. . . . . . . . . . . . . . . . . . . . . . . . . . . .51
saving and loading . . . . . . . . . . . . . . . .55
scripting . . . . . . . . . . . . . . . . . . . . . . . . . .57
searching . . . . . . . . . . . . . . . . . . . . . . . . .54
types . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

window
size and position . . . . . . . . . . . . . . . . .116

Windows
.hds file type . . . . . . . . . . . . . . . . . . . . . .24

write
SimObject . . . . . . . . . . . . . . . . . . . . . . . .81

X
X11

slow (remote display) . . . . . . . . . . . . .107
window manager issues . . . . . . . . . . .113

Z
zip: protocol . . . . . . . . . . . . . . . . . . . . . . . . .101


	Introduction
	How to read this Tutorial
	Concept
	What is Hades?
	Related Work

	Showcase and demos
	Hamming Code
	Carry-Lookahead Adder
	Traffic-light controller
	TTL-series 74xx components
	RTLIB 16-bit counter
	RTLIB user-defined ALU
	D*CORE processor
	MIDI-controller using a PIC16C84 microcontroller
	Micropipeline
	Switch-level Simulation
	Applet Website

	Installation
	Quick Start
	System requirements
	Choosing a Java virtual machine
	Hades Download
	Recommended file structure
	Installation with JDK/JRE 1.4
	Installation with other JVMs
	User preferences and configuration
	Registering .hds files on Windows
	Jython
	Multi-user installation
	Applet installation and issues
	Developer Installation

	Hades in a Nutshell
	Running Hades
	Using the Popup-Menu
	Creating Components
	Adding I/O-Components
	Component Properties
	Display Control
	Creating Wires
	Adding Wire Segments
	Connecting existing Wires
	Moving Wire Points
	Deleting Wires or Wire Segments
	Changing Signal Names
	Editor Bindkeys
	Loading and Saving Designs
	Digital Simulation and StdLogic1164
	Interactive Simulation and Switches
	Waveforms
	Tip: Restarting the Simulation
	Tip: Unexpected Timing Violations

	Advanced editing
	Hierarchical Designs
	Editor bindkeys
	Printing and fig2dev export
	VHDL export

	Waveforms
	Probes and the waveform viewer
	Waveform types
	Using the waveform viewer
	Searching waveform data
	Saving and loading waveform data
	Bindkeys
	Scripting

	Model libraries
	Model library organization
	Accessing simulation components
	Colibri Browser
	Label component
	Interactive I/O
	VCC, GND, Pullup
	Basic and complex logic gates
	Flipflops
	Register
	ROM
	RTLIB
	TTL 74xx series models
	System-level components
	PIC 16C84 microcontroller
	MIPS IDT R3051 core

	Scripting and Stimuli
	Java-written scripts
	Batch-mode simulation and circuit selftests
	Jython
	Generating simulation stimuli
	Stimuli files and class StimuliParser

	Writing Components
	Overview and Architecture
	Simulation Overview
	Graphics: Static Symbols
	A Simple Example: Basic AND2 Gate
	A D-Flipflop
	Wakeup-Events: The Clock Generator
	Dynamic Symbols and Animation
	PropertySheet and SimObject User Interfaces
	Assignable
	DesignManager
	DesignHierarchyNavigator
	Logging messages

	FAQ, tips and tricks
	Frequently asked questions
	The documentation is wrong?
	The editor hangs?
	The popup menu is dead
	How do I cancel a command?
	I can't get it running
	How to check whether my hades.jar archive is broken?
	I get a ClassNotFoundError
	The editor starts, but I cannot load design files
	The Java virtual machine crashes
	The editor crashes
	I cannot double-click the hades.jar archive
	I got an OutOfMemoryError
	What are those editor messages?
	Missing components after loading a design
	Editor prints hundreds of messages while loading
	Something strange happened right now
	ghost components, ghost signals
	How can I disable the tooltips?
	Why is this object off-grid? Why won't the cursor snap to the object?
	Why can't I connect a wire to this port?
	Hades won't let me delete an object
	Why don't the bindkeys work?
	I get timing violations from my flipflops
	Why won't the editor accept to rename a component/signal?
	Why doesn't the cursor represent the editor state?
	Operation X is slow
	Remote X11-Display is very slow
	The simulation is suddenly very slow
	GND, VCC, and Pullup components do not work
	The simulator reports undefined values
	How can I automatically restore editor settings?
	My waveforms get overwritten?
	How can I edit a SimObject symbol?

	Tips and tricks
	What other programs are in hades.jar? How to run them?
	User-settings in .hadesrc
	How to enable or disable glow-mode for individual signals?
	What can I do to debug my circuits?
	I need a two-phase clock
	How can I print my circuit schematics?
	Printing problems
	How can I export my circuit schematics via fig2dev?
	I cannot initialize my circuit
	Simulation does not appear deterministic
	I took a schematic from a book, but the circuit does not work
	VHDL export

	Known bugs and features
	How should I report bugs?
	Spurious objects displayed
	Repaint algorithm
	Repaint bugs, DirectDraw
	How to get rid of an unconnected signal?
	The 'run for' simulator command may deadlock


	Bibliography
	SetupManager properties
	Hades properties
	jfig default properties

	Index

