
B A C H E L O R T H E S I S

Universal Teleoperation ROS Interface for Robotic
Manipulators

vorgelegt von

Fabian Hendrik Wieczorek

MIN-Fakultät

Fachbereich Informatik

Arbeitsbereich Technische Aspekte Multimodaler Systeme

Studiengang: Software-System-Entwicklung

Matrikelnummer: 6911629

Erstgutachter: Prof. Dr. Jianwei Zhang

Zweitgutachter: Yannick Jonetzko

Abstract

In modern times, autonomous robotic systems play an increasingly important role, es-
pecially in industry. But some tasks are too complex to automate and require a human
operator to control the robot which is called teleoperations. In this case, robots can be
controlled directly or they support the operator with a certain level of autonomy. Tele-
operations can also be used to teach robots more natural movements with learning by
demonstration. In this thesis, a teleoperation ROS-based interface that aims to let the
operator control robotic arms is presented. The interface is unspecific in terms of in-
put device and manipulator as long as the hardware supports ROS. The operator can
directly control the end-effector of the robot in Cartesian space. Two existing open-
source approaches, namely jog_control and jog_arm, were analysed. The jog_control
package was extended in its functionality to support absolute jogging in addition to rel-
ative jogging. The performance in terms of position error and time delay was evaluated
with different tests. The results show that the simulated UR5 manipulator could be con-
trolled without difficulties with time delays of around 0.35-0.5 seconds. The tests also
revealed issues with infinite joints and collision avoidance in certain cases.

Zusammenfassung

In der heutigen Zeit spielen autonome Robotersysteme eine immer wichtigere Rolle,
besonders in der Industrie. Allerdings gibt es Aufgaben, die zu komplex sind um sie
zu automatisieren. Stattdessen übernimmt ein Mensch die Steuerung des Roboters,
was als Teleoperation bezeichnet wird. In diesem Fall kann der Roboter sehr direkt
gesteuert werden, oder den Benutzer mit einem gewissen Maß an Autonomie unter-
stützen. Teleoperation kann auch genutzt werden, um Robotern natürlichere Bewe-
gungen durch learning by demonstration beizubringen. In dieser Bachelorarbeit wird
ein auf ROS basiertes Teleoperation Interface untersucht, welches die Steuerung von
Roboterarmen durch einen Operator ermöglicht. Das Interface ist unspezifisch im Hin-
blick auf Eingabegerät und Manipulator solange die eingesetzte Hardware ROS unter-
stützt. Der Benutzer steuert den Endeffektor mit kartesischen Koordinaten auf direkte
Art und Weise. Zwei vorhandene Ansätze, mit den Namen jog_control und jog_arm,
wurden dazu analysiert. Das jog_control Programmpacket wurde in seiner Funktional-
ität so erweitert, dass nicht nur relatives jogging, sondern auch absolutes jogging un-
terstützt wird. Die Performance der Erweiterung hinsichtlich Fehler in der Position und
Verzögerungszeit wurde mithilfe verschiedener Tests evaluiert. Die Ergebnisse zeigen,
dass der simulierte UR5 Manipulator ohne Schwierigkeiten gesteuert werden konnte
und Zeitverzögerungen von etwa 0,35-0,5 Sekunden entstanden sind. Des weiteren
zeigten die Tests, dass es Probleme mit infinite joints und in speziellen Fällen mit der
Kollisionsvermeidung gibt.

iii

Contents

1 Introduction 1

2 Related Work 7

3 Fundamentals 12
3.1 Coordinate Frames . 13
3.2 Cartesian Space versus Joint Space . 14
3.3 Forward/Inverse Kinematics . 14
3.4 Jogging . 15
3.5 Controllers . 17
3.6 ROS - The Robot Operating System . 18

3.6.1 ROS Overview . 18
3.6.2 ROS Controllers . 19

3.7 MoveIt! . 20

4 State of the art Approaches 21
4.1 Analysis of jog_control . 21

4.1.1 Integration . 22
4.1.2 JogFrame message as User Input 22
4.1.3 Process structure . 23
4.1.4 Rviz Panel . 25
4.1.5 Evaluation . 25

4.2 Analysis of MoveIt! jog_arm . 26
4.2.1 Integration . 26
4.2.2 TwistStamped Message as User Input 26
4.2.3 Process structure . 27
4.2.4 Evaluation . 27

4.3 Conclusion . 28

5 Implementation of Absolute Jogging 29
5.1 Absolute Jogging Message Type . 29
5.2 Initialization phase . 30
5.3 Updating process . 30
5.4 Rviz Panel . 32

6 Evaluation 35
6.1 Evaluation Methods . 35

iv

Contents

6.2 Results . 36
6.2.1 Straight-Line Test . 36
6.2.2 Eight-Course . 37
6.2.3 Collision Test . 38
6.2.4 Arbitrary Movements . 40

7 Discussion 43

8 Conclusion 44
8.1 Future Work . 44

v

List of Figures

1.1 Application of robots in collapsed buildings 2
1.2 Application of robots in nuclear decommissioning 3
1.3 The UR5 manipulator . 4
1.4 Human-in-the-loop model . 5
1.5 Different input devices . 6

2.1 Internet based teleoperation . 8
2.2 Teleoperation with ROS Reality . 9
2.3 Teleoperation with the Myo armband . 10
2.4 Teleoperation with shared autonomy . 10
2.5 Teleoperation in minimally invasive surgeries 11

3.1 Teleoperation process diagram . 12
3.2 Coordinate frames . 13
3.3 Cartesian space and joint space . 14
3.4 Absolute and relative jogging . 16
3.5 Controller process diagram . 17
3.6 ROS control overview . 20

4.1 jog_control process diagram . 24
4.2 Rviz panel for jog_control . 25
4.3 Moveit! jog_arm process diagram . 28

5.1 Absolute jogging process diagram . 31
5.2 Interpolation mechanism . 32
5.3 Rviz panel for absolute jogging . 33
5.4 Interactive marker for absolute jogging . 34

6.1 Eight course test . 36
6.2 Position error of straight-line test . 37
6.3 Time delay of straight-line test . 38
6.4 Position error of eight-course . 39
6.5 Time delay of eight-course . 39
6.6 Visualization of collision occurrences . 40
6.7 Position error of arbitrary movements . 41
6.8 Time delay of arbitrary movements . 42

vi

1 Introduction

In recent years more and more domains started to benefit from robotics. Even though
the world gets increasingly digitalized, a lot of tasks requiring physical manipulation or
sensing remain. And some of those have a high potential being done efficiently with
robotic support. Particularly in industry, robots offer great advantages when they are
used for repetitive tasks. In most cases, those robots are designed to work autonomous-
ly. To achieve high precision or speed, they follow predefined routines specialized for
the given job.

Yet, the major group of tasks are individual each time and thus, using robots for these
hardly automatable jobs seems unfavourable at first sight. But there are numerous
cases where robots could help humans in exceptional situations. Some of them can be
found at hazardous workplaces. These are not a rarity and so there are lots of people
being endangered by their job. Despite safety precautions, there are plenty of (fatal)
occupational accidents every year [1]. Using robotic actors could prevent humans from
having accidents in those hazardous environments. However, these robots would need
to be operated by a person because developing an autonomous robotic system for each
task is typically unfeasible in terms of time and costs. Teleoperated robots may be seen
as a physical replacement for human attendance and not as a whole substitute. The
task is being done by a person but carried out by a robot. This could save costs since
robots can be kept general-purpose and more important, the person stays in a safe
environment.

An example is a collapsing building. It is a possible consequence of an earthquake,
an explosion, or other causes. Rescuers need to find out whether people have been
buried underneath the debris. If that is the case, they only have a limited amount of
time helping the victims. To save lives, rescuers sometimes need to tunnel themselves
through the rubble to the victims, having very little space to move (Figure 1.1, left im-
age). Because of further collapsing, this is a live risking act [2]. In this particular case,
a teleoperated robot with similar crawling abilities (Figure 1.1, right image) may help to
locate the victims and find a safe path for the rescuers.

When nuclear power plants or other nuclear facilities cease production, they need to
be torn down. This process involves working with highly radioactive material since, in
the end, the facility’s original place should no longer emit serious amounts of nuclear ra-
diation. Humans should be exposed to those materials as little as possible. In this con-
text, robots can be of great advantage in different tasks such as moving contaminated
material (Figure 1.2, left image) or examining risky objects and places (Figure 1.2, right
image). Because of energy change, the number of nuclear decommissions will proba-
bly increase in near future.

1

1 Introduction

Figure 1.1: Hazardous workplaces are affecting peoples health in different ways. After
an earthquake or an explosion people might get buried under the rubble and
need to be found and saved by rescuers. Left: A member of the Interna-
tional Rescue Corps amongst debris1. Right: A teleoperated segmented
rescue robot designed to work in those scenarios [3]. This robot can be
used to find possible victims without risking the life of a rescuer.

But dangerous workplaces are not the only case of application for teleoperated ro-
bots. The exploration of the oceans becomes more important due to climate change
and the growing demand for resources. Manned underwater vehicles are often expen-
sive to ensure human security. Remotely operated vehicles can carry out complicated
tasks while the operator stays on the water surface allowing longer and much safer
operations. [6]

Sending teleoperated vehicles into space is a very powerful method to collect data
from other celestial bodies than planet earth. Since the 1970s mars rovers were sent
to the red planet for exploration missions. But since communication is very limited the
control commands mostly consists of setting waypoints and behaviours. [7]

Not only can robots be physically at places being too dangerous for humans, but
they can also be equipped with specific hardware that exceeds limited human skills.
Such robotic systems are highly useful for example in surgeries, where robots can offer
a high amount of geometric precision and less invasiveness. In this way, minimally
invasive surgeries (MIS) can be carried out which do not require to open the patient’s
body. In MIS the surgeon works with long instruments through small incisions. This
method is usually better for the patient’s health than open surgery, but this method also
has some disadvantages: (1) Working with those instruments is not intuitive since they
cannot be moved freely, (2) the surgeon cannot see the environment directly and (3) the
contact forces can hardly be sensed. Since robotic manipulators can be equipped with
a variety of sensors, they could help surgeons by precisely executing commands while

1Source: http://www.intrescue.info/hub/index.php/missions-2/, Accessed: 14.02.2020

2

http://www.intrescue.info/hub/index.php/missions-2/

Figure 1.2: Nuclear decommission involves working with highly radioactive material.
Letting humans carry out this work directly should be avoided as much as
possible. Left: A teleoperated 6 DOF robotic arm with a payload of 100kg
controlled by two joysticks [4]. It can be used to move contaminated material
while the operator stays at a safe distance. Right: A DARwIn-OP was sent
to take smears and assess object contamination [5].

providing feedback on the resulting interaction forces. These advantages safe valuable
time in the operation room and also lead to a better overall quality of the surgery [8].
But teleoperated robots also appear in everyday life such as RC toys in backyards or
as claw cranes [9] at funfairs.

In 2013 the DARPA (Defence Advanced Research Project Agency) [10] started their
DARPA Robotics Challenge to promote the development of teleoperated ground robots
that can execute complex tasks in hazardous scenarios [11]. These tasks require a lot of
different skills including driving alone, walking through rubble, turning a valve, etc. [12].
The exercises are barely feasible without the human-in-the-loop model showing what
can be possible when combining robots and human operators.

Teleoperation is an abstract term. It includes all kinds of remote-controlled robotics
varying in multiple aspects such as connectivity, autonomy and complexity. A teleop-
erated robot may be controlled via the internet over multiple continents but it can be
also wired to the control unit being in sight distance to the operator. The frequency of
commands can be diverse as well. A Mars-rover, receiving perhaps only one command
a day, needs a high level of autonomy whereas some real-time robotic systems require
the user to control it directly. Vehicles being able to navigate in four directions can be
teleoperated as well as stationary robotic arms with 8 degrees of freedom.

This work addresses teleoperation methods for articulated robotic arms, called ma-
nipulators, with at least 6 degrees of freedom (DOF) and exactly one end-effector
(Figure 1.3). The aim is to have the end-effector controlled directly by the user. This
means autonomous or semi-autonomous mechanisms are not considered.

3

1 Introduction

Figure 1.3: The UR5 robot arm from Universal Robots [13]. It has 6 degrees of freedom
and one end-effector. The goal of this work is to have an interface allowing
teleoperations on diverse manipulators like this one.

The general principle of such a system is shown in Figure 1.4. A teleoperated manip-
ulator continuously receives input data from the user and processes it to interact with its
environment. As a consequence, the robotic arm moves its links a little according to the
input. After that, the user needs to be informed about the new state by receiving certain
feedback from the robot. This can be for example visual feedback, haptic feedback or a
digital representation. Based on this feedback the user adjusts the input and the proce-
dure starts over again. Because the manipulators in this work will be controlled directly,
this loop needs to happen with a certain frequency otherwise the delay between input
and execution would make the control too difficult to use.

But this approach also leads to some problems since humans have different limita-
tions than computers have. The teleoperation approach would need to take simple input
and convert it to commands being performed by complex hardware. For robotic arms,
this input usually comes in form of the end-effector position and orientation (its pose).
Every joint need to be set according to the desired pose. This conversion from Carte-
sian space to joint space can be quite expensive in terms of computational resources.
However, the processing and acting need to happen without larger delays because they
would lead to impreciseness and loss of control.

Another aspect is the input device used to control the robot. Input devices vary in
form and functionality (Figure 1.5) and the right choice depends on the type of appli-
cation. They are used as human-computer interface allowing the user to control the
end-effectors pose. Mainly, this can be done in two different ways: Relative transforma-
tion would tell the end-effector how to change its current state and absolute positioning
tells the end-effector a goal it needs to reach. Both mechanisms need to be considered,
otherwise, the system may lack support for special types of input devices.

4

Figure 1.4: A visualization of the human-in-the-loop model. Teleoperated robots (right)
are controlled by taking input from the user (left) to interact with their envi-
ronment. By processing the input, the robot moves its joints according to the
user’s commands. Being the operator, the user needs to supervise the sit-
uation and the robot’s actions. Hence, the robot needs to provide feedback
allowing the user steady controlling.

Technical aspects play a significant role in teleoperation systems. Robotic actuators
(e.g. servomotors) can be controlled in many different ways. A meaningful choice of
controllers affects the quality and usability of the system. Software arrangements have
to be made to prevent unexpected behaviour on behalf of the robot. Another issue in
robotics is the broad diversity of hardware. This complicates the development of robotic
applications, due to the need of hardware-specific software implementations. With the
idea to increase the use of teleoperation systems, these integration problems need to
be taken into account.

The goal of this work is to propose a universal teleoperation interface based on ROS.
This interface should be applicable for most types of manipulators requiring only little
configuration. Furthermore, no type of input device will be primarily addressed. Instead,
the focus is on the creation of an interface usable by a large number of input devices
without much effort. To achieve this, two existing approaches will be analysed and one
will be adapted to meet certain criteria.

Having the motivation and the goal of the thesis stated, this work will continue with
presenting different teleoperation systems along with different use cases in the related
work. In chapter 3 the necessary basics for this work will be explained. Going towards
a solution, chapter 4 takes a look at two existing approaches. One approach will be
extended in chapter 5. Chapter 6 will examine the proposed interface based on the
stated methods. After that, the outcoming results will be discussed in chapter 7 and a
final conclusion will be stated in chapter 8 giving also a brief review of this work.

5

1 Introduction

(a) (b)

(c) (d)

Figure 1.5: The input device plays a fundamental role in direct robot control. Four dif-
ferent input methods are depicted. (a) A 6 DOF haptic input device deter-
mines the pose of the robot’s end-effector. It also simulates the environment
forces that the robot senses as additional feedback. [14]. (b) A joystick-like
graphical user interface displaying an image of the scene. It also supports
high-level commands such as grasping a selected object [15]. (c) A wear-
able glove sensing the fingers states. The position is determined with a set
of IMUs placed on the human’s brachial joints [16]. (d) Skeleton tracking
using the Microsoft Kinect [17].

6

2 Related Work

There are numerous different applications for teleoperated robots. Some examples
were already given in chapter 1 showing that teleoperated robotic systems vary in form
and functionality. This chapter summarizes different research publications featuring
these kinds of systems and scenarios for application.

Service robots in the domestic environment are typically used to assist humans with
everyday tasks. Muszynski et al. developed a teleoperation system based on ROS for
the Cosero and the Dynamaid service robot utilizing different levels of autonomy [15].
Driving, gazing and manipulation skills can be executed autonomously, semi-autono-
mously and user-controlled. As input device, a handheld computer running Android
OS was used. A joystick-like UI was used to control the robot directly (Figure 1.5, b).
Furthermore, the robot was taught different skills like grasping selected objects or nav-
igating through the interior. These skills could be combined to fully automate certain
tasks.

With the advancements of the internet, communication around the globe was rev-
olutionised. In September 1994 the first teleoperated robotic system, controllable via
the world wide web, went online. This project was intended to show the feasibility of
remote-controlled robot systems over the internet. Using the HTTP protocol, users
could connect to the system and control the manipulator. A greyscale video stream
and a visual depiction of the robots state gave feedback to the user (Figure 2.1, left
image). The latter also served as the control unit. With this setup, users could search
for artefacts buried in sand, by manipulating the remote environment with compressed
air. [18]

These systems can be used especially in dangerous environments where complex
manipulation is necessary but human intervention not possible because of risks to
health. A practical example has been done by Ma et al. using teleoperated robots
to work with radioactively contaminated material [19]. A system of four manipulators
(two 6-DOF stationary and two 9-DOF mobile robots) was proposed. These robots
were teleoperated by three master sides equipped with video feedback, a distributed
virtual environment, a head-mounted display and haptic device for 3D interaction. The
task was to replace a fuel rod of a nuclear plant by three human operators via the in-
ternet (Figure 2.1, right image). All operators performed the work safely and efficiently,
showing the potential of teleoperated robotics in groups.

With the Microsoft Kinect Marinho et al. developed a control for the Schunk 9-DOF
LWA which uses simple arm gestures and commands. This approach intends to per-
form pick and place operations which do not require force feedback. Since the user
needs to adjust it’s own hand position based on visual feedback, the robot needs to
be placed in sight distance. Even though the end-effector could not be manipulated

7

2 Related Work

Figure 2.1: Left: The user interface of the first internet teleoperated robotic system [18].
It shows the greyscale video stream and a representation of the robots cur-
rent state that can be used to give commands. Right: Two mobile, teleoper-
ated robots carry a fuel rod given by the larger robot in the background [19].
The robots were controlled by three individual users over the internet.

in its orientation, the experiment showed that a complex robotic arm can be controlled
naturally by simple hand gestures. [20]

With the advancements of Virtual Reality (VR), especially Head-Mounted Displays
(HMD) like the Oculus Rift or the HTC Vive, the type of robot feedback has reached
new dimensions. Now, users can observe the scene from the robot’s point of view
in 3D while controlling the robot [21, 17]. Whitney et al. have developed a framework
for ROS integration in the Unity Game Engine utilizing VR. The framework consists
of a set of scripts, connecting the Unity Scene to the ROS master via a Rosbridge
implementation. Its main purpose is to represent the robot’s point of view via point cloud
in Unity (Figure 2.2) and to utilize the position tracked controllers as input device [22].
The effectiveness of using VR with an HMD in teleoperation tasks was evaluated with
a cup stacking task being performed by 18 participants each. It showed that using
the VR interface the task was completed 66% faster on average in comparison to the
conventional keyboard and monitor interface. Furthermore, a lower workload and higher
usability were measured. [23, 22]

Other approaches have made use of electromyographic (EMG) signals. These sig-
nals come from skeletal muscles and they can be measured by sensors applied to the
skin surface. Artemiadis and Kyriakopoulos proposed a methodology which can not only
estimate the position and motion of limbs but also the forces applied by the user to the
environment [24]. The system consists of three low-frequency position tracking sensors
mounted on the user’s shoulder and elbow points. Four EMG sensors recorded the ac-
tivity of four muscles of the shoulder and elbow joint. Even though position and motion

8

Figure 2.2: Left: The user controls a Baxter using virtual reality and ROS Reality. The
task is to fold a shirt. Right: The users view through the VR headset. It
shows a combination of a point cloud from the scene and a mesh model of
the robot. [22]

were geometrically restricted to a plane, a 7-DOF manipulator (PA-10, Mitsubishi Heavy
Industries) was successfully controlled with high accuracy. Similar controls without the
need for laboratory equipment can be achieved with the Myo armband (Figure 2.3, left
image). This wearable device has not only EMG sensors but is also equipped with a gy-
roscope, an accelerometer, and a magnetometer and it communicates wirelessly over
Bluetooth. By utilizing these instruments, Çoban and Gelen successfully controlled a 6-
DOF manipulator (Mitsubishi RV-7FL-D) with a gripper (Figure 2.3, middle/right image)
to perform pick and place operations. [25]

A state-of-the-art system for teleoperations with haptic feedback was recently intro-
duced by Haptx. The Tactile Telerobot [26] consists of two haptic gloves developed
by the company itself, two Universal robots and two Shadow Dexterous Hands, each
equipped with BioTac Sensors on their fingertips. The users pose and motion of both
arms and hands are directly imitated by their robotic counterparts. Providing accurate
haptic feedback for each fingertip, the system offers very precise and intuitive control
allowing to do tasks that require high amounts of accuracy. Despite being interesting for
this work, this approach cannot be taken into consideration since it was of commercial
use and neither source code or research publications have been published.

An interesting approach using a high level of autonomy was developed by Pruks et al.
targeting nuclear plant robotics. A teleoperation system where mobile robots follow a
path sketched by the user (Figure 2.4) was proposed [27]. The robot delivers visual
feedback of the room it faces. On this image, the user finds the best fitting path and
sketches it with a special input device. The robot then interprets the sketched path and
follows it autonomously. Depending on the situation, this shared autonomy approach
performed better than fully autonomous or fully user-controlled mechanisms.

Modern medicine without the assistance of robotic systems is no longer imaginable.
Since the mid-1980s a wide field of different medical robots has been developed [28].
These systems can offer quite a lot of advantages including high precision, higher qual-

9

2 Related Work

Figure 2.3: Left: The Myo armband leveraged to operate a 6-DOF manipulator. It is
used to measure electromyographic signals from the user. Then, the data
gets transmitted wirelessly over Bluetooth. Middle/right: The operator,
wearing the Myo armband on his right arm, controls the robot wirelessly
by only moving his arm. [25]

Figure 2.4: Teleoperating a mobile robot based on shared autonomy. Left: The robot
gives visual feedback of the scene of its point of view. Right: Based on the
image, the user then sketches a path with a special input device. This path
gets interpreted by the robot and it follows it autonomously. [27]

10

Figure 2.5: Left: Three robotic arms with each 7 degrees of freedom help in minimally
invasive surgeries. They are equipped with two surgical instruments and
one stereo endoscope. Force torque sensors on the surgical instruments
help to give feedback to the surgeon. Right: The operator controls the
robotic system with two input devices. The stereo display provides visual
feedback coming from the endoscope. [31]

ity and the need for less valuable time in certain interventions [8]. The most interesting
robotic systems for this work are teleoperated, semi-autonomous robots which serve as
tools for human surgeons.

A good example of how micro-robotics can increase precision and quality in some
interventions are nonholonomic steerable needles. Needle insertions are important for
many clinical procedures. But in some cases, the target area for the needle tip might be
unreachable without avoiding obstacles such as nerves, vessels and bones. A common
praxis is to use a flexible needle with an asymmetric tip. Due to the resistance during
insertion, the needle will bend and the direction can be controlled through rotation of
the needle [29, 30]. This method requires to take action in joint space and is therefore
not intuitive for humans. Robotically steered needles can be controlled in Cartesian
space by defining the target positions of the needle directly. To place the points, a
special haptic device is used. This successfully tested teleoperations approach leads
to smaller insertion length and less targeting errors. [30]

In minimally invasive surgeries (MIS), assisted robotics have promising potential. To-
bergte et al. developed a teleoperation system for such surgeries. The setup consists of
three 7-DOF manipulator equipped with surgical instrument (Figure 2.5, left image) and
two haptic input devices (Figure 2.5, right image). The usage of the system requires a
lot of planning based on a virtual environment and the patient’s data. During the actual
intervention, the surgeon can intuitively control the surgical devices and senses direct
feedback resulting from his operations.

11

3 Fundamentals

In this chapter the basic knowledge necessary to understand this work will be covered.
It starts with section 3.1 giving an overview of coordinate frames that are fundamen-
tal to understand the representation of the joints position and orientation. Followed
by section 3.2 outlining the differences between the joint space and Cartesian space
and how they are used to control serial chains of joints. The concepts of switching
between the two spaces are referred to as forward and inverse kinematics and will be
covered in section 3.3. Making use of forward and inverse kinematics, jogging, a form
of robotic movement where the moving directions are communicated during execution,
will be explained in section 3.4. Section 3.5 takes a look at robotic controllers that are
responsible for driving the robot’s joints accordingly while section 3.6 briefly explains
the popular robotics framework ROS. At last, section 3.7 takes a look at the motion
planning framework Moveit! that is going to be used for the jogging implementation.

The simplified process of a teleoperation system is displayed in Figure 3.1. It is
split into different tasks (A-E) that are carried out by different actors (coloured boxes
and user). It starts with the user giving a command with the help of an input device
(Figure 3.1, A). This device can be for example a joystick, an IMU, a graphical user in-
terface, or a pose tracking system. The command tells the robot to move its end-effector
in a certain way. Depending on the input device this can either be a moving direction or
the desired pose.

The command will then be received by the teleoperation interface using the input to
determine the end-effectors new pose (Figure 3.1, B). After the pose was determined,
the new joint positions need to be calculated and published to a suitable controller
(Figure 3.1, C).

Figure 3.1: Overview of the teleoperation process loop. The necessary tasks (A-E) are
carried out by different actors (coloured boxes + User).

12

3.1 Coordinate Frames

The controller takes care of the actuators to move accordingly. When the earlier
published joint states are received, it checks the error between the joints actual state
and the desired state producing a signal so the actuators move properly (Figure 3.1, D).
As a result, the robots joints will move so that the end-effector follows the user’s input
(Figure 3.1, E). At last, the user receives certain feedback from the robots new state.
This can be for example visual feedback but there are also devices providing the user
with haptic feedback.

Figure 3.2: Left: The frame of a link (red/green arrow pairs) is always relative to its par-
ent frame. That means the Cartesian displacement (yellow arrows) and the
rotational displacement (magenta arrows) have their origins at the parent’s
frame. Right: The links poses are described in world coordinates so that all
the origin of the links frames is the world frame.

3.1 Coordinate Frames

The spatial state of a body such as the robot’s links is represented with coordinate
frames (or simply frames). A coordinate frame is defined by three orthogonal basis
vectors with all the same position origin. This origin and the orientation of the vectors
make up the pose of a frame. It is important to notice that a frames pose is always
relative to another frame as shown in Figure 3.2 (left image).

Frames play an important role when applying the users input to the end-effector
(Figure 3.1, A + B). Since the user stays in a fixed frame (e.g. the world frame) the
end-effectors pose needs to be determined relative to the same frame as visualized in
Figure 3.2 (right image). Converting the end-effectors pose so it is relative to for exam-
ple the world frame is known as forward kinematics and described in section 3.3. [32]

13

3 Fundamentals

Figure 3.3: Left: A visualization of the Cartesian space with a point a. Right: A visual-
ization of the joint space for 3 revolute joints with a configuration q.

3.2 Cartesian Space versus Joint Space

In robotics, there are two major types of spaces that are frequently used: The Cartesian
space, and the joint space. The Cartesian space is defined by three orthogonal axes
where each point is described by a 3-tuple of numbers, one for each axis. The intersec-
tion of the three axes is called the origin. Figure 3.3 (left) shows a point a defined by its
three coordinates (ax, ay, az). [33]

The joint space is an n-dimensional space where n equals the number of the robot’s
joints and a point in this space corresponds to a configuration of the robot. One config-
uration can be described as a set of the joints coordinates. So for an all-revolute robot,
this set consists of the joints angles. Figure 3.3 (right) illustrates a robot with three
joints where the joints angles are defined as θ1, θ2, and θ3 so that the configuration q of
a robot is defined as q = (θ1, θ2, θ3). [34]

The robot’s joints cannot be moved in Cartesian spaced directly. Instead, they are
controlled in joint space. In the context of teleoperations, this is a problem because
humans are not used to operating in joint space. This means the input of the teleop-
eration interface (Figure 3.1, A) is defined in Cartesian coordinates while the output
(Figure 3.1, C) is a configuration of joint coordinates. The necessary conversions be-
tween Cartesian space and joint space are achieved with forward and inverse kinemat-
ics which is explained in section 3.3.

3.3 Forward/Inverse Kinematics

Forward and inverse kinematics can be used as conversion between joint space and
Cartesian space.

14

3.4 Jogging

Forward kinematics (FK) refers to the conversion from joint space to Cartesian space
where the joints positions are given and the pose of the end-effector will be deter-
mined.

Inverse kinematics (IK) refers to the conversion from Cartesian space to joint space
where the end-effectors pose is given and the joints positions will be determined.

The Forward kinematics problem is very straight forward. The link states and their
respective geometry is known. The goal is to calculate the transformation between the
robots first frame and its last frame. This is done by concatenating all transformations
between the frames of adjacent links starting with the base frame. For a 6-DOF chained
manipulator, this transformation would be

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6 (3.1)

where 0T1 is the transformation from the base frame (frame with index 0) to its suc-
cessor based on the joints position. The outcome is the pose of the frame with index
1 relative to the base frame. Further concatenating the results ends in acquiring a
transformation from the base frame to the end-effectors frame (0T6). [32]

In teleoperations, forward kinematics is used to determine the end-effectors pose in
Cartesian space so the user input can be applied to it (Figure 3.1, B).

For the inverse kinematics problem, only the base frame and the desired pose of
the end-effector relative to the base frame is given. This corresponds to the part in
teleoperations where the new end-effector pose is known in Cartesian space and the
joint coordinates need to be determined (Figure 3.1, C).

But not every given pose will result in a solution. For example, if the desired pose lies
not within the robots reachable space then no solution exists. It is also possible for some
given poses that multiple solutions exist. Another aspect to mention is singularities. A
singularity occurs when two or more of the robot’s links line up parallel so the angle
between them equals 0° or 180° making the robot redundant. In this case, it loses
degrees of freedom making further movements difficult. [35, 32]

There exist multiple approaches to solve inverse kinematics which can be divided
into closed-form solutions and numerical methods. The closed-form solutions are faster
than numerical methods but robot specific. The numerical methods are computational
more expensive and sometimes fail to find all possible solutions but can be universally
used. [32]

3.4 Jogging

The concept of jogging is to manually control the robot by making small but very fre-
quent changes in its state [36]. The result is a fluent movement dirigible in real-time.
In this work, jogging will be used to continuously determine the end-effectors pose by
the user’s input. Before the robot moves, the state needs to be calculated in advance.

15

3 Fundamentals

Figure 3.4: Depending on the input device, different methods for jogging may be con-
sidered. Left: Relative jogging means the user gives the robot commands
relative to the end-effector frame. In other words, the user tells the end-
effector to move in a specific direction. This can be useful for input devices
having little action space for example joysticks. Right: Absolute jogging
means the user gives commands relative to a fixed frame (in this case the
base). In this case, the end-effector is commanded a new pose indepen-
dent of its current state. This can be used with for example position tracking
systems.

This is due to the necessary conversion from Cartesian space to joint space (see sec-
tion 3.3). Calculating the end-effectors new state depends on the input devices that are
used (Figure 3.1, B). There are two methods mainly differentiating in the type of input
that is needed:

Absolute Jogging: The poses current values will be replaced with the new values
defined by the user input (Figure 3.4, right image). This applies to the position
coordinates as well as the orientation quaternion. The new position and orienta-
tion values do not depend on the current ones. This method requires knowledge
about the robots reachable space because setting an invalid pose (e.g. too far
away) results in an IK error since no solution exists and thus the robot will not
move. An analogy would be the steering wheel in a car which directly controls the
orientation of the wheels. This jogging type can be used with input devices such
as data gloves, pose tracking systems or 3D cursors.

Relative Jogging: The new position and orientation values are determined by the cur-
rent values and an offset which is the user input. The offset values will be added to
the current values (Figure 3.4, left image). This method requires only information

16

3.5 Controllers

Figure 3.5: A controller is part of a closed-loop system operating actuators (e.g. servo-
motors). The controller updates its reference state every time a new input
value (e.g. position, velocity or force) is given (A). The reference state (B)
and the actuators actual state (C) are used to calculate the error between
the desired and actual state (D). With this error, an output signal can be
created (F) that is used to drive the actuator (F). Changes in its state are
measured by a sensor providing the previously used feedback (C).

about the magnitude of the values since the robots current pose is automatically
in its reachable space. It can be used with input devices such as IMUs (Inertial
Measurement Units) or joy-sticks.

3.5 Controllers

A controller is a mechanism that controls an actuator by collecting feedback of its current
state and comparing it to the desired state [37]. The actuator can be for example a
motor, a heater, an electromagnet, or anything that takes electrical signals as input and
changes its physical state based on these signals. In this work, the actuators that are
going to be controlled are the servomotors of the robots.

Controllers are part of a closed-loop system which is illustrated in Figure 3.5. The
controller needs to be given an input to update its reference state (Figure 3.5, A). For
rotary servomotors, this can be for example an angle position, a velocity or a torque.
The reference state (Figure 3.5, B) is used together with the actual state of the actuator
to calculate the error (Figure 3.5, D). This state is measured with a sensor attached
to it providing the controller with feedback (Figure 3.5, C). This feedback can also be
more than one value in case multiple sensors are attached. After that, the error is
used to determine the output signal (Figure 3.5, E). How the output signal is calculated
depends on the implemented controller logic. The signal is then used to drive the
actuator accordingly (Figure 3.5, F). [38]

In the context of teleoperations, the input value is typically the joints position. But
different types of feedback can be used to create varying behaviour. Commonly used is
position feedback forming a Position Controller. This controller drives the corresponding

17

3 Fundamentals

joints into the desired position with predefined force. If the force is rather high, the
robot can potentially cause damages when collisions with its environment occur. This
is because the controller is unaware of the robots surroundings.

An Impedance Controller uses not only position feedback but also force feedback.
This controller controls the applied force by setting it in relation to the position error
which is called mechanical impedance. The resulting behaviour can be compared to a
virtual spring between the end-effector and the desired position: larger position errors
will result in more applied force. This means collisions with the environment are not
dangerous at small position errors since the applied force is decreased. [38]

3.6 ROS - The Robot Operating System

The Robot Operating System (ROS) is a set of software libraries and tools to help to
develop robotic applications [39]. Being an open-source project, ROS is widely used
by researchers, hobbyists, and industry. Its modular architecture is designed to make
code more reusable. ROS was created because developing an application for robots
can be quite demanding. The main reason for that is the wide field of diverse hardware.
Without standardisation in software, the reuse of code is mostly difficult. That means
changes in hardware often leads to a reimplementation of the functionality. To have
an application running on a robot, a large codebase is often needed containing, for
example, motor drivers, input processing and high-level application software. Rewriting
this code prevents fast development especially when there is little knowledge in terms
of the technical aspects [40]. ROS counters these issues and therefore it simplifies
and accelerates the whole software development process. Being no actual operating
system, ROS runs on Unix-based systems primarily on Ubuntu and Mac OS X [41, 42,
43]. In this work, the teleoperation interface will be developed based on ROS. Only the
parts necessary to understand this work will be covered.

3.6.1 ROS Overview

The most important part of the system is the ROS master. It is the junction point con-
necting all nodes and services as well as providing resources such as parameters. A
node is an independent process performing any kind of computation. They are meant to
have well-defined purposes so the system is built upon many nodes. For example, one
node could control a camera taking images of the environment, another one would do
the image processing, one node could be responsible for navigation, one would control
the robot’s wheels and so on. [44, 45]

It is essential for nodes to communicate with each other. To do so, ROS provides
communication over topics, services and action services allowing nodes to exchange
messages with each other. A message is a data structure containing typed fields such
as primitives, arrays and other messages. Alongside a set of predefined message
types, new types can be defined with a special msg file.[46]

18

3.6 ROS - The Robot Operating System

High-level message types being used for publish/subscribe matters should contain a
header field. This field contains metadata describing the chronological order as well
as information about the origin frame. A brief overview is given in Table 3.1.

Name Type Short Description

seq uint32 Arranges the messages of one node into chronological or-
der.

stamp time Stores the current uptime of the robot at the moment the
message is created.

frame_id string The id of the frame which the messages data refers to.

Table 3.1: The content of the Header message type with a short description for every
field. This data structure is often used in top-level message types.

A topic is a named bus that is used to broadcast messages from one node to many
others. To receive messages, nodes can subscribe to one or multiple topics. Other
nodes can publish their messages to the relevant topics. These messages will then
be forwarded to the nodes having a subscription to the respective topic. The message
transport is based on either TCP/IP (Transmission Control Protocol/Internet Protocol) or
UDP (User datagram protocol). Topics anonymise the publish and subscribe mechanics
to decouple message generation from consumption. [47]

While topics are only for one-way message transport, ROS services are used for
request and response communication. A node offers a service under a name and
needs to define two messages. A request message and a response message. The
service can be used by other nodes similar to a simple procedure call. [48]

3.6.2 ROS Controllers

In ROS, controllers (see section 3.5) are implemented in the ros_control framework.
Originally it was developed based on the pr2_controller_manager, a controller
framework for the PR2. But now, ros_control is robot unspecific aiming to support
reusability. In ROS, controllers serve as interfaces for the application (Figure 3.6, yellow
boxes). The communication happens with ROS messages over topics or services (Fig-
ure 3.6, turquoise boxes). Each controller has a well-defined state (loaded, unloaded
and running) and is managed by the Controller Manager (Figure 3.6, light blue box).
ROS controllers are not limited to control a single actuator with a single property. In-
stead, complex mechanisms can be implemented controlling a whole group of joints.
Over time, a lot of ready-to-use controllers have been developed and if necessary, cus-
tom controllers can be built as well. [49, 50]

ROS controllers can be reused because they do not have direct access to the hard-
ware. The communication to actuators and sensors is managed via hardware interfaces
(Figure 3.6, red box). These interfaces can perform actual read/write actions via dif-
ferent communication buses such as Serial, USB or Ethercat. In opposite to controllers,

19

3 Fundamentals

Figure 3.6: Overview of the ROS Control framework [50]. It shows all of the necessary
components and the data flow.

hardware interfaces need to be defined for each robot model. Every piece of address-
able hardware is managed as a resource. By default, one resource can only be used
by one controller at the same time. This exclusive ownership is managed directly by the
corresponding hardware interfaces.

3.7 MoveIt!

MoveIt! is a widespread, open-source collection of software and tools for motion plan-
ning, manipulation, 3D perception, kinematics, control and navigation [51]. The frame-
work is based on ROS and utilizes the plugin-based architecture using a centralized
node called move_group. This node is designed to be light-weight offering high-level
capabilities that can be leveraged via different interfaces (python, C++, Rviz Plugin).
Most of the functionality such as the IK-resolver is not natively implemented so MoveIt!
depends on different packages. In the presented approaches the forward/inverse kine-
matic service and collision checking feature will be used. [52]

20

4 State of the art Approaches

When developing an application for a robotic system, the software is usually designed
based on the hardware. That means whenever hardware parts will be switched, chang-
es in software have to be made too. As earlier explained in section 3.6, ROS counters
this problem by its architecture allowing reuse of code. In this work, these ideals will be
carried on and no teleoperation system setup will be developed. Instead, the creation
of a universal interface based on ROS is in focus. This means the software is not
restricted to specific hardware but it acts as a central node connecting any kind of input
device to any kind of robot. This allows quick integration of teleoperations on any type
of hardware as long as it can be used with ROS. To further specify this interface, the
following criteria have been created:

1. The interface should be universal. As earlier explained, no specific robot or input
device should be assumed. This also requires the use of common controllers
increasing the number of supported robots.

2. The interface ensures usability. The robot should not move unexpectedly and the
delay between the input and the performance should be adequately small. Larger
delays would lead to loss of control.

3. The interface has to support robotic arms with at least 6 degrees of freedom.

4. The interface should offer relative jogging as well as absolute jogging. This in-
creases the number of supported input devices.

During research for existing teleoperation solutions for ROS, mainly two approaches
seemed to be suitable for this work: The jog_arm package from MoveIt! [53] and the
jog_control package from the Tokyo Opensource Robotics Kyokai Association [36].
Both approaches offer a teleoperation interface usable with different robots and input
devices. In the following sections, they will be analysed regarding functionality and
performance. The better-suited package will then be adapted to meet the described
criteria.

4.1 Analysis of jog_control

The package jog_control [36] is an open-source ROS package used to jog robotic
arms. It is intended to work with all kinds of manipulators and input devices. The pack-
age offers two different kinds of teleoperation controls: Joint jogging where a selected

21

4 State of the art Approaches

link can be jogged in a positive or negative direction in joint space and Cartesian jog-
ging where the user controls the end-effector in Cartesian space. Only the latter one is
interesting for this work which is why the joint jogging will not be further covered.

4.1.1 Integration

In order to teleoperate a robot using the jog_control package, the steps published on
the GitHub repository [36] need to be followed. At the current state, the package needs
to be installed from source. The necessary instructions are on the GitHub repository
as well. Furthermore, the jog_control package relies on the MoveIt! framework
meaning the robot needs to support MoveIt! (see section 3.7).

After installation, a configuration file for the desired robot may need to be created
in the directory /jog_launch/config in case no matching file already exists. This
configuration file contains information about the joints names for joint jogging, the move
groups and end-effector frames being jogged one at a time, and in some cases the def-
inition of the FollowJointTrajectory controller that is going to be used by MoveIt!.

To use the configuration file, an additional launch file need to exist in the directory
/jog_launch/launch. With this file, the jogging node called jog_frame_node can
be started using the previously defined configuration file. Existing launch files offer to
optionally run other nodes as well such as the move_group node (see section 3.7) or
the Rviz program.

4.1.2 JogFrame message as User Input

Sending commands to the jog_control teleoperation process is done by publish-
ing ROS messages. The message has to be of type JogFrameMsg and needs to be
published to the /jogFrame topic. A brief overview of this message type is given in
Table 4.1.

The message begins with a ROS header property giving details about the chrono-
logical order and the frame_id. This frame has to be set to the robots base frame
because it specifies the root frame for later kinematic calculations. The chronological
order is determined by the time stamp. Messages older than the last message received
will be ignored. The group_name specified the MoveIt! joint group. This can be for
example the left arm or the right arm of a humanoid robot. The link_name is the end-
effector that should be jogged by the user. This link has to be part of the specified joint
group. The linear_delta describes the 3D position displacement in meters relative
to the current position. The angular_delta works similar but concerning the orien-
tation. These values are given in axis angles. The relative changes are evaluated in
radians and added to the current orientation. Both deltas are directly applied as soon
as the message arrives and the robot will try to operate immediately.

22

4.1 Analysis of jog_control

Name Type Short Description

header Header The header consist of a
time stamp and a frame id
which determines the refer-
ence transformation for kine-
matics.

group_name string The name for the MoveIt!
joint group that should be
manipulated.

link_name string Specifies the link that should
be operated by its pose. The
link must be part of the spec-
ified joint group.

linear_delta geometry_msgs/Vector3 The relative displacement for
the end-effectors position in
meters.

angular_delta geometry_msgs/Vector3 The relative displacement of
the end-effectors orientation
in axis angles in radians.

avoid_collisions bool Determines whether colli-
sion checking should be
used or not.

Table 4.1: The content of the JogFrame message with parameter description.

4.1.3 Process structure

The jog_control node starts with loading parameters from the configuration file. All
of the move groups for MoveIt! and the specified end-effector links will be obtained.
The package offers to choose whether messages or action services will be used for
joint state publishing. To simplify matters, the use of action services will not be covered
in this work. Instead, every available controller of type FollowJointTrajectory will
be loaded.

The process that does one jogging step is initiated every time a JogFrameMsg was
received (Figure 4.1, A). If the message is older than the last received message it gets
ignored because the chronological order should be maintained to avoid unexpected
moving when for example a message is delayed for a longer period.

At first, the end-effectors current pose needs to be determined. This gets done by a
forward kinematic service. The resulting pose will then be modified by the messages
linear and angular deltas creating the desired pose (Figure 4.1. B). The position deltas
can simply be added to the current position. The angular deltas will be transformed into

23

4 State of the art Approaches

Figure 4.1: An overview of the jog_control teleoperation process. It starts with receiv-
ing an input command by the user (A). Based on this command, the end-
effectors desired pose will be calculated (B). Then, the joint positions for this
pose need to be determined using inverse kinematic (C). If the requested
pose is realizable (D) the resulting joint values will be published to a specific
controller (E). The process remains stopped and starts over as soon as a
new command is received.

a quaternion and then multiplied with the current orientation.

The new position and orientation will be passed as a pose to the inverse kinematic
service determining the new joint angles of the specified move group (Figure 4.1, C).
Now the solution will be checked whether it is realizable or not (Figure 4.1, D). When
no solution was found, the jogging step gets cancelled. Otherwise, the solution will
be checked whether too large changes in the joint angles occur. When at least one
joint moves more than 90° the process will be also cancelled. This happens due to
the handling with joint limits. Joint limits are often at the position -180° and 180° which
means the joints position needs to be between those values. When a joint is close to
a limit and the jogging command would exceed this limit, the IK service would find a
solution near the opposite limit. For example, if one of the joints current position is 175°
and the jogging command would require the joint to move by 6° in a positive direction,
the IK resolver sets the new position not to 181° but to -179° because this angle is equal
to 181° but also inside the joint limits. The joint would now be required to move by 354°
in a negative direction which is most likely not foreseeable by the user. Only if zero of
those occurrences could be found, the new joint states will be published to the specified
controller (Figure 4.1, E).

As earlier explained in section 3.3, singularities may occur in some scenarios and
need to be handled properly. When the user jogs the end-effector towards the edge
of the manipulator’s maximum range two of the links may align and the robotic arm
would be singular. In this case, it would not be possible to free the manipulator from
its state by using inverse kinematic to jog the end-effector somewhere else. Instead,
another program would need to be used. However, the jog_arm package would not let
the manipulator go into a singular state because the IK-resolver detects the singularity,
returning an error.

24

4.1 Analysis of jog_control

Figure 4.2: The Rviz plugin for the jog_control package.

4.1.4 Rviz Panel

The jog_control package comes with a plugin for Rviz, displayed in Figure 4.2. This
panel allows the user to jog one specific position axis and one orientation axis. It uses
sliders to determine the jogging direction and velocity. The move group, the frame, and
the end-effector link can be selected as for example multiple move groups (e.g. left/right
arm) can be specified in the configuration file. Furthermore, it displays information about
the end-effectors pose.

4.1.5 Evaluation

The integration of the jog_control package (see subsection 4.1.1) worked without
any issues. The package was successfully tested on a UR5 simulation and a real
PR2. The velocity of the actual jogging performance is proportional to the given jog-
ging commands. The package relies on the JointTrajectoryController or the
use of action services. The collision checking feature is working fine and the overall
jogging performance is smooth and responsive enough to operate. The message type
is straight forward but it only offers relative jogging. Furthermore, it offers a graphical
user interface that may be useful for testing purposes.

25

4 State of the art Approaches

Name Type Short Description

header Header The header consist of a time stamp and a frame id which de-
termines the reference transformation for kinematics.

twist Twist The twist contains the linear and angular jogging deltas.

Table 4.2: The content of the TwistStamped message with parameter description.

4.2 Analysis of MoveIt! jog_arm

The jog_arm package [53] is also an open-source ROS package designed to teleop-
erate robotic arms. It is an experimental part of the MoveIt! framework. In comparison
to the jog_control package, it also comes with relative Cartesian jogging and joint
jogging and is supposed to be hardware unspecific. As in the jog_control package,
the joint jogging will not be covered in this work. Differences are mainly in the process
structure.

4.2.1 Integration

In order to use the jog_arm package, the MoveIt! framework needs to be installed from
source. The necessary steps are published on the official website [54]. The package
can be found in the directory moveit/moveit_experimental/moveit_jog_arm.
After installation, the package needs to be configured to run on different robots.

A sample configuration file can be found in the directory /config. In comparison to
the jog_control package, only one move group can be specified in the file but overall
more parameters can be adjusted.

All the necessary steps to run the package are published on the official GitHub repos-
itory [53]. To start teleoperation, the jog_server node needs to be started having the
previously defined configuration file applied. This can be done with the existing launch
files located in the /launch directory.

4.2.2 TwistStamped Message as User Input

The jog_arm node is controlled using TwistStamped messages (Table 4.2). This
type is similar to the JogFrameMsg (see subsection 4.1.2). Both contain three-dimen-
sional vectors for linear and for angular deltas forming a twist. The difference is that
the TwistStamped message does not contain any other fields than the twist itself and
a header field. As a consequence, the parameters responsible for picking the end-
effector, the move group, and whether collision checking should be used need to be set
at the beginning and cannot be adjusted during runtime.

26

4.2 Analysis of MoveIt! jog_arm

4.2.3 Process structure

As already said, the process structure shows the most differences to the jog_control
package. Instead of process sequence being triggered every time a command is re-
ceived, the functional subcomponents are split into three different threads. An overview
is illustrated in Figure 4.3.

The node starts with reading all important parameters from the specified configuration
file and loading process-relevant resources. From that point on, the jogging thread and,
if specified in the configuration, the collision check thread will be launched. Afterwards,
relevant topics will be subscribed including the jog_server/delta_jog_cmds topic
where the TwistStamped messages will be received. Now every thread works asyn-
chronously communicating over shared variables.

The jogging thread obtains the twist coming from the TwistStamped message via
the shared variables. The current kinematic state of the end-effector is being resolved
and at last, the new joint states will be computed. Instead of using services, the inverse
kinematic solutions are calculated on a low level using a RobotState instance from
MoveIt!. After the jogging step is determined, the new joint states are passed to the
shared variables. The jogging thread also acts when problematic cases occur namely
collisions, singularities and when joints are close to their limits. The thread responses
to these scenarios by decreasing the jogging velocity or total halting if the problem is
imminent.

The collision check thread asynchronously checks for collisions and reacts if so. The
actual checking is delegated to the MoveIt! planning scene monitor. If collisions have
been detected, a velocity scale reducing the distance travelled in one step will be set
in the shared variables. This scalar is then used by the jogging thread in the following
steps.

The main thread is responsible for publishing the new joint states to the controller.
Currently the types JointGroupVelocityController and
JointGroupPositionController are supported.

4.2.4 Evaluation

The jog_arm package could be integrated without any issues as well. This time, it was
only tested in a UR5 simulation. The necessary TwistStamped message was first
created via the in ROS integrated publishing command ros_pub and later with a joy-
stick. The arm was set to a pose, not near a singularity but often the movements failed
with an error message *_joint close to a position limit. Whenever the arm
was able to move and no error was thrown, the movements were slow on the simulation
despite increasing the velocity in the TwistStamped message. Furthermore, collisions
were not always avoided in the simulation even though the parameter has been set to
true. Comparing to jog_control, this package offers more variables that can be
adjusted but at the same time, it is more difficult to integrate.

27

4 State of the art Approaches

Figure 4.3: A brief overview of the MoveIt! jog_arm process graph. It uses three differ-
ent threads that communicate via shared variables. The main thread finally
sends the joint state data to the specified controller.

4.3 Conclusion

Both existing approaches offer end-effector teleoperation working with relative Carte-
sian displacement as control mechanisms. While this may be a great solution for
joystick-like input devices, it is not suitable for teleoperation systems that have an abso-
lute pose as input such as position tracking systems. Therefore, to increase the number
of input devices this feature will be additionally created.

Reviewing the advantages and problems of both packages, at present times the
jog_control package seemed to be better suited than the jog_arm package. The
jogging performance is smoother and works as intended in terms of speed and colli-
sion checking. Furthermore, the architecture of the jog_arm package is more complex
in comparison to the one of jog_control. But it is also worth mentioning that the
development for the jog_arm package is very active at the moment so that further
comparisons in the future are still of interest.

But not all criteria have been met and so the development on absolute jogging based
on the jog_control package is in focus. In addition to that, a graphical user interface
similar to the in subsection 4.1.4 presented panel will be developed as well.

28

5 Implementation of Absolute Jogging

One objective for the teleoperation interface is to support a large number of input de-
vices. As earlier explained in section 3.4, there are two different ways to perform jog-
ging: relative and absolute jogging. Both mentioned approaches only offer relative
jogging (see chapter 4) so the absolute jogging support needs to be created addition-
ally. During the process of this work, the jog_control package seemed to perform
better than the jog_arm package (see chapter 4) so it is going to be used as the base
for this feature. The goal is to create a new node working with absolute jogging com-
mands that can be launched similar to the existing node. Also, a new message type
needs to be created because the commands should contain absolute poses instead of
relative deltas. To finish it, a similar Rviz panel will be developed allowing the user to
experimentally explore the jogging interface.

5.1 Absolute Jogging Message Type

In the original JogFrameMsg (subsection 4.1.2) linear and angular deltas in Cartesian
space were given to determine the jogging behaviour. These parameters are obso-
lete for absolute jogging which is why a new type of message was created and named
JogFrameAbs.msg. In Table 5.1 the contents are listed in detail. The major difference
between this message and the JogFrame.msg is the pose property indicating the tar-
get position and orientation of the end-effector. Additionally, the damping_factor was
introduced ranging from 0.1 to 1.0. This factor can decrease the velocity when setting
it to less than 1.0. A factor of 0.0 would cause the robot to not move at all so this option
was excluded. Since the original jog_control system relied only on incoming mes-
sages, this control system should also be usable by publishing messages to the given
topic.

Name Type Description

pose geometry_msgs/Pose The pose that the target link should
be set to.

damping_factor float64 This scalar influences the veloc-
ity. It’s range goes from 0.1 to 1.0
where the upper limit causes no de-
celeration.

Table 5.1: The content of the JogFrameAbs message with parameter description.

29

5 Implementation of Absolute Jogging

The core functionality is very similar to the original jog_control node. But since it
does not depend on incoming messages describing relative displacement, it is going to
control the robot using a loop. In this loop, the target pose will then be realized stepwise.

5.2 Initialization phase

When the node gets launched, it starts with loading the specified ROS parameters
from the configuration file defined in the launcher script. The topic /joint_states
and /jog_frame_abs will be subscribed and additionally, the thread will continue only
if a message from the /joint_state topic will be received. This ensures proper
execution of the loop. For forward and inverse kinematic calculations, respective service
clients will be initialized. At last, a publisher will be created for every available controller.

5.3 Updating process

This part of the node is responsible for calculating continuous robot movement. The
basic idea is to have a loop continuously do the jogging task while the new target pose
gets published asynchronously. A general overview of this loop is depicted in Figure 5.1.
The process begins with computing the current pose of the target link (Figure 5.1, A).
To do this, the MoveIt! forward kinematics service is leveraged using the robots joint
states. The joint state information gets received asynchronously via /joint_states
subscription.

With the current pose, the position and orientation distances towards the target pose
can be determined. The loop will start over early when both distances fall below a
certain threshold (Figure 5.1, B). That means the current pose sufficiently matches
the target pose. If that is not the case, the next jogging pose will be calculated (Fig-
ure 5.1, C). Instead of using the target pose as next jogging pose, the earlier described
damping_factor can decrease the travelling speed. This gets done with linear and
spherical interpolation, where the position and orientation will be calculated separately.
The approach will be described based on the position. Let ~d be the difference be-
tween the current position ~c and the target position ~t in three-dimensional space (Equa-
tion 5.1):

~d = ~t− ~c (5.1)

Then, a scaled version of ~d defines the relative displacement for the next jogging posi-
tion ~j. Thus, it needs to be added to the current position ~c (Equation 5.2):

~j = ~c+ (~d · s) (5.2)

where the scalar s is the damping_factor. The same principle is used to calculate
the orientation with spherical interpolation. Both results form the next pose for the target
link.

30

5.3 Updating process

Figure 5.1: An overview of the core nodes process. The loop (left) gets executed in the
main thread while important resources (right) are updated asynchronously.

This pose is now forwarded together with the joint states to the IK resolving service
from MoveIt! (Figure 5.1, D). This service offers the option to enable or disable collision
checking, hence the collision_check property from the message will be passed in
as well. The results from the IK service can be put in three different groups:

1. No IK solution was found. This occurs when the given pose is not within the
robots range, when collisions were detected or the pose cannot be executed for
any other reason.

2. An IK solution was found but at least one of the link’s position exceeds its current
position by an angle of π

2 rad (90°). This happens when a joint position limit gets
exceeded resulting in an overflow. This prevents the link from doing an entire
rotation in the opposite direction.

3. An IK solution was found and all of the links position changes are below the thresh-
old.

The outcome of the IK service determines whether the joint states will be published
or not (Figure 5.1, E). If 1. or 2. is the case then the loop will start over early. Only
case 3. allows the new joint states to be published to the controller (Figure 5.1, F). The
loop then starts over but since it gets executed only ten times per second, the thread
will sleep for the respective amount of time (Figure 5.1, G).

31

5 Implementation of Absolute Jogging

Figure 5.2: The interpolation mechanism demonstrated based on the position. Left:
The target position can be reached within one step because the damping
factor has no effect. Right: The first step only involves half of the distance
because the damping factor equals 0.5. After this step, the new distance is
again multiplied by 0.5 determining the length for step 2 and so on.

5.4 Rviz Panel

For the absolute control system, a graphical interface could be useful to visualize the
target pose. Furthermore, quickly editing the message parameters could help to explore
the behaviour of the system relating to its parameters. The goal is to create a Rviz
plugin in form of a panel. The plugin should publish the specified messages on the
corresponding topic based on its state. The state should be adjustable via UI elements
by the user. This panel (shown in Figure 5.3) is oriented on the original Panel of the
JogFramePanel from the jog_control package and uses Qt [55] version 4.8 for
more compatibility. It is named JogFramePanel (absolute) and consists of the
following UI-elements:

Enable Jogging: This checkbox enables or disables message publishing for the panel
but not for any other node publishing JogFrameAbs messages.

Move Group: This input field determines the name of the MoveIt! move group. Avail-
able group names are taken from the configuration file and will be displayed in a
drop-down menu.

Base Frame: This input field defines the parent frame of the desired pose. Available
frame identifiers will be detected with the TF-library and displayed in a drop-down
menu.

32

5.4 Rviz Panel

Figure 5.3: The graphical interface plugin for Rviz. The user can enable and disable
teleoperations via the Rviz interface.

End-Effector link: This input field specifies the name of the end-effector link. The
available links are taken from the configuration file and also displayed in a drop-
down menu.

Damping factor: The damping factor can be adjusted with this numerical input field. It
is restricted to the defined boundaries (0.1 - 1.0).

Collision Check: This checkbox enables or disabled the collision checking. It is en-
abled by default but in some cases, it is favourable to turn it off for example when
the robot should push or grasp an object.

To intuitively display the target pose, an approach with adjustable x/y/z/pitch/roll/yaw
coordinates as input fields seems inappropriate because the user could only edit one
parameter at a time. Instead, an interactive marker provided by Rviz is being lever-
aged (shown in Figure 5.4). The marker can be manipulated in its three-position axes
relative to the orientation and three axis angles resulting in a total of 6 degrees of
freedom. The orientation will be converted to a quaternion before being published.
Without configuration, the interactive marker is not shown. The user needs to add a
new display of type InteractiveMarkers and then select for Update Topic the
/jog_frame_node_abs/update topic.

33

5 Implementation of Absolute Jogging

Figure 5.4: The pose of the robot’s end-effector can be specified with an interactive
marker in Rviz.

34

6 Evaluation

In this chapter the performance of the jog_control together with the in chapter 5
presented extension will be evaluated. The tests will be taken on two different robots:
a simulation of the UR5 from Universal Robots and the PR2 from Willow Garage. In
section 6.1 the evaluation methods and the setup will be explained while section 6.2
takes a look at the results.

6.1 Evaluation Methods

The performance of teleoperation systems can be evaluated in various ways. A popu-
lar way is to let users perform different teleoperation tasks (e.g. pick-and-place prob-
lems) [21, 23, 56]. As a result, quantitative data such as success rate, accuracy or time
required to finish the task can be collected as well as qualitative data like usability and
likeability. For this work, this method cannot be considered since a user study would
have been out of the scope.

Other techniques evaluate the teleoperation system using technical aspects of the
performance. An analysis of the error between the desired position and the actual po-
sition is frequently used as part of the evaluation [20, 57, 58, 59, 25, 60]. A small error
indicates that the end-effector moves as requested. But typically this error is related
to velocity as faster movements normally result in a larger position error. A more con-
sistent property is the time delay between commanded pose and actual pose [61, 17].
Larger time delays make the robot difficult to control so they should be preferably small.

In this work, the position error and the time delay will be evaluated in different tests.
In addition to that, a small course with obstacles has been performed as well. Most
of these tests will take place on the UR5 simulation. The input pose will be provided
by using AprilTags [62]. AprilTags are fiducial markers allowing to obtain their 6 DOF
pose from a two-dimensional image. The image comes from a regular camera pointing
towards the user. As the markers are detected, the user can move them around to
control the end-effector. If not stated otherwise, collision checking is enabled and the
damping factor is set to 1.0. The tests and their meaning are defined as follows:

Straight-line test (simulation): The end effector will only be controlled on one axis
at a time to follow a straight path with constant velocity. This way a precise time
delay can be determined as well as possible differences among the axes.

Eight-course (simulation): The end-effector will be controlled to follow a line with the
shape of an eight around two fixed obstacles (see Figure 6.1).

35

6 Evaluation

Figure 6.1: The course that the end-effector should follow (magenta line) while avoiding
collisions with the obstacles (blue boxes).

Collision test (simulation): The end-effector will be controlled into one of the fixed
obstacles and into the robot itself provoking a collision. The robot’s behaviour will
be analysed.

Arbitrary movements (real robot): The end-effector will be controlled along all axes
without following a certain path. This test has the most resemblance to real-world
teleoperation tasks so it will be performed on the PR2

6.2 Results

This section shows the results for the previously defined tests.

6.2.1 Straight-Line Test

In this test, the end-effector follows a straight line on one axis at a time. The path is
0.5m long and takes about 5 sec. to complete. The robot receives 20 commands per
second generated by a computer program. Figure 6.2 displays the position error of the
test performed along the x-axis. It shows that the end-effector moves accordingly with a
certain time delay. In the beginning, the error is slightly larger because the end-effector
accelerates in that time. The other axes (y and z) remain still as commanded.

The exact time delays are shown in Figure 6.3. On the left side, the graph displays the
delay over time. Again, there is a noticeable larger delay at the beginning decreasing

36

6.2 Results

Figure 6.2: The straight-line test along the x-axis. The blue line represents the com-
mand while the orange line shows the actual behaviour. The end-effector is
commanded to move 0.5m in about 5 sec. along the x-axis. It shows that
the end-effector has some delay especially in the beginning where it needs
to accelerate. On the y and z-axis, the end-effector remains still. Overall the
movement is consistent and smooth.

from 0.5 sec. to 0.35 sec. because of the necessary acceleration. From that point on,
the delay remains very consistent at 0.35 sec. until the end where it rapidly drops to
0 sec. since the end-effector has reached the desired position. On the right side, the
delays have been summed up for every sent command. The resulting distribution shows
that the majority of commands were executed in about 0.35 sec. The results are a bit
slower in comparison to the proposed teleoperation system of Park et al. having delay
times about 0.2 sec [61]. This was achieved by optimizing the teleoperation process
to the used robot. The teleoperation interface of this work should remain unspecific in
terms of hardware which is why larger delays need to be taken into account. The test
has been repeated for the y-axis and the z-axis as well without showing any significant
differences to the previous results.

6.2.2 Eight-Course

The straight-line test is preferable to analyse the position error and the resulting delay
but it is not very comparable with real teleoperation tasks. A more representative ap-
proach is made with the eight-course (Figure 6.1). The goal is to control the end-effector
around two obstacles while collisions should be avoided as much as possible. AprilTags
are used as input device (see section 6.1) providing an absolute 3 DOF position. The

37

6 Evaluation

Figure 6.3: The time delay of the straight-line test along the x-axis. Left: The graph
shows a larger delay at the beginning, then it remains constant until the end-
effector reaches the desired position where the delay goes towards zero.
Right: The chart displays the delay for every command showing again that
the major delay time was around 0.35 sec.

orientation control has been disabled because the AprilTags orientation was too noisy
and has sometimes led to unexpected behaviour.

The test has been absolved in about 33 sec. without any larger interruptions. Even
though the input signal contained some noise, the end-effector moved predictably and
smoothly. The positional error is displayed in Figure 6.4 showing that the end-effector
followed the commanded trajectory precisely enough to finish the course in a reason-
able time. Only after almost 20 sec. one potential collision occurred visible in the top-left
diagram. In this case, the end-effector stopped moving on all axes preventing contact
to the obstacle.

According to the straight-line test, the delay should be around 0.35 sec. but Figure 6.5
indicates the delay is a bit larger than expected. The left chart shows the distribution
of the delays per command. Its maximum is around 0.55 sec. while 95% of the delays
are between 0.37 sec. and 0.65 sec. Also, one outlier appears at around 1.7 sec.
When taking a look at the right graph, the outlier becomes more apparent showing that
it occurs at the same time as the earlier mentioned collision. Overall, the robot was not
difficult to control despite the increased delay.

6.2.3 Collision Test

During the eight-test, one collision already occurred but to further analyse the be-
haviour, multiple collisions will be provoked in this test. Two types need to be con-
sidered: self-collisions and collision with the environments.

Self-collisions mean the robots end-effector clashes with a part of itself potentially
damaging the hardware. When provoking a self-collision the robot remains still in its
current, collision-free position. This position does not automatically assume the end-
effector is near part of itself. I.e. it will not jog as close to the desired position as
it can but the whole jogging process will immediately come to a halt as soon as the

38

6.2 Results

Figure 6.4: The position error of the eight-course. The input signal from the AprilTags
(blue) are a bit noisy but the end-effectors movements (orange) remain
smooth.

Figure 6.5: The time delay of the eight-course. Left: The chart shows the distribution
of delay per command. Right: The graph depicts the delay over time.

39

6 Evaluation

Figure 6.6: Collisions are not always avoided. Left: When the command (magenta ar-
row) makes the new robots state (red) intersect with an obstacle (blue box),
the collision will be detected and avoided by stopping the robot’s motion.
Right: When the command results in a state without collisions (green) but
an obstacle blocks the motion path, the collision will not be detected and the
robot will clash with its environment.

dangerous command was received. This behaviour requires the collision-checking flag
in the JogFrameAbs message to be set to true.

To check collisions with the environment, the IK service needs to be aware of any
obstacles. This means they need to be defined before the teleoperations take place.
When provoking a collision with an obstacle (Figure 6.6, left image), the behaviour
is similar in comparison to self-collisions. The jogging process stops as soon as a
command was received that would require the robot to intersect with its environment.
But during the test, another scenario has been observed. When neither the desired
position nor the robots current position would cause any collisions but during the motion
to the target position, the robot collides with its environment (Figure 6.6, right image).
This happens due to missing collision checking for waypoints between the current and
the desired position and needs to be taken into account by the user. Similar behaviour
for self-collisions could not be produced.

6.2.4 Arbitrary Movements

The final test consists of random movement on a real PR2 by using AprilTags again. The
purpose is to observe the teleoperation performance in real-life conditions and compare
it to the previously observed behaviour. During the test, there was a noticeable amount

40

6.2 Results

Figure 6.7: Arbitrary movements on a real PR2. Each graph displays one of the position
axes. The end-effector (orange) could often not follow up to the input signal
(blue).

of movement issues consisting of the robot to stop even though it should have been
possible to jog into the respective position. In Figure 6.7 these issues are visible as
straight lines that occasionally appear in all position axes simultaneously. These out-
ages made the control difficult even though in absence of these issues the teleoperation
behaved as expected.

As a consequence, the delay times are very inconsistent. Figure 6.8 shows missing
parts in the graph being the result of the end-effector often not following up to the
commands. The remaining delays are mostly located around 0.5 sec. similar to the
previous results from the eight-course test. Furthermore, outliers of up to 6 sec. can be
found often in relation to the outages.

41

6 Evaluation

Figure 6.8: The delay of the arbitrary test on the PR2 over time. It is very inconsistent.
The missing parts are a consequence of the outages meaning the end-
effector could not follow the command at all. The remaining graph is mostly
located around 0.5 sec. but also shaped with outliers.

42

7 Discussion

In this chapter, the evaluation results from chapter 6 will be discussed. Overall, it shows
that the teleoperation interface could be integrated and used on two different robots.
However, it has some flaws in terms of collision behaviour and robot compatibility.

The straight-line test presents decent delay times on the UR5 simulation under labo-
ratory conditions. The interval of 0.35 sec. was the lowest delay measured during the
evaluation. Possible reasons why these values could not be achieved in other tests are
for example the simplicity of the trajectory and the consistency of the input signal. A
straight line along one axis may not be as difficult as moving the end-effector in a shape
of an eight along all three axes. Furthermore, the desired velocity was exceptional
steady over time in comparison to human-made input signals. This also may help the
robot to react more quickly. Nevertheless, this test shows that giving consistent input
signals will result in consistent motion created by the robot.

During the eight-course, command signals were created by humans via AprilTags.
This setup represents a more authentic way for evaluation than in the straight-line test.
The effects of a noisy and more inconsistent input signal were visible in the measured
delay. On average, it increased by 0.2 sec. making the robot slightly less responsive
to the input. Despite this, controlling the robot was not perceived as difficult and the
course could be finished in reasonable time. Fritsche et al. also stated that delays of up
to 0.8 sec. were acceptable to perform teleoperation tasks on their robot [17].

The collision checking feature did not work fully as intended. While self-collisions
were avoided in every case, input signals with a too large displacement were not han-
dled properly and collisions with the environment occurred (see section 6.2). This is due
to missing collision checks for intermediate waypoints. Only the target state is checked
and not the full movement towards it. This behaviour has the potential to be further
improved by checking the state along the motion path with a certain frequency. Yet, col-
lisions with the environment will be avoided as long as the commanded displacement
is smaller than the dimensions of the obstacles.

The goal of the final test was to observe real-life behaviour on a different robot, in this
case, a PR2. Initially, the teleoperation interface worked as intended with measured
delays of around 0.5 sec. But at certain times, the robot remained still even though no
collisions were imminent and the IK service found a solution. In these cases, the angle
of at least one joint would exceed its theoretical limit causing the teleoperation interface
to stop the execution for this command. For the PR2, this behaviour can be problematic
since it contains two infinite joints in its wrist and elbow [63]. As a consequence, these
joints exceed their theoretical limits in rather ordinary poses. As this problem occurred
too often on the PR2, safe teleoperation could be ensured since these outages keep
the user from performing the task.

43

8 Conclusion

The goal of this thesis is to have a teleoperation interface for the popular ROS frame-
work that works with different robots and various input devices. The essential compo-
nents that are used for teleoperation were analysed and explained in chapter 3. Two
existing approaches implementing teleoperations for robotic arms in ROS were discov-
ered and analysed in chapter 4. The comparison between the jog_arm package from
MoveIt! and the jog_control package from the Tokyo Opensource Robotics Kyokai
Association showed that the latter package was better suited as teleoperation interface.
Based upon this, an extension allowing absolute poses as the controlling signal was
implemented in chapter 5 and evaluated in chapter 6.

The extension takes ROS messages containing the desired pose and jogs the end-
effector directly towards the pose. The velocity can be decreased by giving the damping
factor values below one. Furthermore, the user can decide whether collision checking
should be enabled or not. In addition to the functionality, a Rviz Panel has been created
as well. With this graphical user interface, the absolute jogging can be run from Rviz
directly by providing an interactive marker representing the desired pose.

The evaluation showed that the jog_control package together with the imple-
mented extension could be integrated into two different robots. On the UR5 simula-
tion the performance is as expected. The delay times are within an acceptable range
and the robot moves as desired. On the PR2 the package works very similarly but it
has some troubles with the joint limits causing outages. Another aspect is the collision
avoidance which fails to work in certain cases.

8.1 Future Work

The teleoperation interface struggles with infinite joints as the software always assumes
joint limits and thus will stop when the limits are theoretically exceeded. In this case,
the process should include further analysis of the difference between the current joint
states and the target states so falsely assumed exceedances can be detected. After
detection, the corresponding joints target state could be shifted by full rotations towards
the actual joint position preventing the incorrect stopping behaviour of the interface.

Furthermore, the collision-checking feature needs to be improved for safety reasons.
As the desired state will be checked for collisions but not the motion path, the robot
might clash with its environment when the desired position differs too much from its
current position. To prevent this behaviour, the robot’s trajectory needs to be checked
for collisions at certain times as well.

44

Bibliography

[1] P. Hämäläinen, J. Takala, and K. L. Saarela, “Global estimates of occupational
accidents,” Safety Science, vol. 44, no. 2, pp. 137 – 156, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925753505000871

[2] “Glasgow plastics factory explosion – may 2004,” accessed:
16.02.2020. [Online]. Available: http://www.intrescue.info/hub/index.php/
glasgow-plastics-factory-explosion-may-2004/

[3] S. Shin, D. Yoon, H. Song, B. Kim, and J. Han, “Communication system of a seg-
mented rescue robot utilizing socket programming and ros,” in 2017 14th Interna-
tional Conference on Ubiquitous Robots and Ambient Intelligence (URAI), June
2017, pp. 565–569.

[4] “Nuclear decommissioning robotic arm | key-es.co.uk,” accessed:
28.02.2020. [Online]. Available: http://www.key-es.co.uk/?portfolio=
nuclear-decommissioning-robotic-arm

[5] “Teleoperated robotic arm for nuclear decommissioning,” accessed:
28.02.2020. [Online]. Available: https://grlab-robotics.com/cas-client/
teleoperated-robotic-arm-for-nuclear-decommissioning/?lang=en

[6] Side Zhao and J. Yuh, “Experimental study on advanced underwater robot control,”
IEEE Transactions on Robotics, vol. 21, no. 4, pp. 695–703, Aug 2005.

[7] B. K. Muirhead, “Mars rovers, past and future,” in 2004 IEEE Aerospace Confer-
ence Proceedings (IEEE Cat. No.04TH8720), vol. 1, March 2004, p. 134 Vol.1.

[8] R. H. Taylor, A. Menciassi, G. Fichtinger, P. Fiorini, and P. Dario, Medical Robotics
and Computer-Integrated Surgery. Cham: Springer International Publishing,
2016, pp. 1657–1684.

[9] S. P. Shoemaker Jr, “Crane game claw gauge,” May 22 2001, uS Patent 6,234,487.

[10] “Defence advanced research project agency,” accessed: 08.12.2019. [Online].
Available: https://www.darpa.mil/

[11] “Darpa robotics challenge (drc) (archived),” accessed: 07.12.2019. [Online].
Available: https://www.darpa.mil/program/darpa-robotics-challenge

[12] “Darpa robotics challenge - finals 2015 (archived),” accessed: 07.12.2019.
[Online]. Available: https://haptx.com/robotics/

45

http://www.sciencedirect.com/science/article/pii/S0925753505000871
http://www.intrescue.info/hub/index.php/glasgow-plastics-factory-explosion-may-2004/
http://www.intrescue.info/hub/index.php/glasgow-plastics-factory-explosion-may-2004/
http://www.key-es.co.uk/?portfolio=nuclear-decommissioning-robotic-arm
http://www.key-es.co.uk/?portfolio=nuclear-decommissioning-robotic-arm
https://grlab-robotics.com/cas-client/teleoperated-robotic-arm-for-nuclear-decommissioning/?lang=en
https://grlab-robotics.com/cas-client/teleoperated-robotic-arm-for-nuclear-decommissioning/?lang=en
https://www.darpa.mil/
https://www.darpa.mil/program/darpa-robotics-challenge
https://haptx.com/robotics/

Bibliography

[13] “Ur5 collaborative robot arm | flexible and lightweight robot arm,” ac-
cessed: 01.03.2020. [Online]. Available: https://www.universal-robots.com/
products/ur5-robot/

[14] V. M. Hung and U. J. Na, “Force control of a new 6-dof haptic interface for a 6-dof
serial robot,” in ICCAS 2010, Oct 2010, pp. 1653–1658.

[15] S. Muszynski, J. Stückler, and S. Behnke, “Adjustable autonomy for mobile teleop-
eration of personal service robots,” in 2012 IEEE RO-MAN: The 21st IEEE Inter-
national Symposium on Robot and Human Interactive Communication, Sep. 2012,
pp. 933–940.

[16] S. Park, Y. Jung, and J. Bae, “A tele-operation interface with a motion capture
system and a haptic glove,” in 2016 13th International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI), Aug 2016, pp. 544–549.

[17] L. Fritsche, F. Unverzag, J. Peters, and R. Calandra, “First-person tele-operation of
a humanoid robot,” in 2015 IEEE-RAS 15th International Conference on Humanoid
Robots (Humanoids), Nov 2015, pp. 997–1002.

[18] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, and J. Wiegley,
“Desktop teleoperation via the world wide web,” in Proceedings of 1995 IEEE Inter-
national Conference on Robotics and Automation, vol. 1, May 1995, pp. 654–659
vol.1.

[19] L. Ma, J. Yan, J. Zhao, Z. Chen, and H. Cai, “Teleoperation system of internet-
based multi-operator multi-mobile-manipulator.”

[20] M. Marinho, A. Geraldes, A. Bo, and G. Borges, “Manipulator control based on the
dual quaternion framework for intuitive teleoperation using kinect,” 10 2012, pp.
319–324.

[21] J. I. Lipton, A. J. Fay, and D. Rus, “Baxter’s homunculus: Virtual reality spaces
for teleoperation in manufacturing,” IEEE Robotics and Automation Letters, vol. 3,
no. 1, pp. 179–186, Jan 2018.

[22] D. Whitney, E. Rosen, D. Ullman, E. Phillips, and S. Tellex, “Ros reality: A vir-
tual reality framework using consumer-grade hardware for ros-enabled robots,” 10
2018, pp. 1–9.

[23] D. Whitney, E. Rosen, E. Phillips, G. Konidaris, and S. Tellex, “Comparing robot
grasping teleoperation across desktop and virtual reality with ros reality,” 02 2018.

[24] P. K. Artemiadis and K. J. Kyriakopoulos, “Emg-based position and force control
of a robot arm: Application to teleoperation and orthosis,” in 2007 IEEE/ASME
international conference on advanced intelligent mechatronics, Sep. 2007, pp. 1–
6.

46

https://www.universal-robots.com/products/ur5-robot/
https://www.universal-robots.com/products/ur5-robot/

Bibliography

[25] M. Çoban and G. Gelen, “Wireless teleoperation of an industrial robot by using
myo arm band,” in 2018 International Conference on Artificial Intelligence and Data
Processing (IDAP), Sep. 2018, pp. 1–6.

[26] “Haptx - haptic gloves for vr training, simulation and design,” accessed:
06.12.2019. [Online]. Available: https://haptx.com/robotics/

[27] V. Pruks, K. Lee, and J. Ryu, “Shared teleoperation for nuclear plant robotics using
interactive virtual guidance generation and shared autonomy approaches,” in 2018
15th International Conference on Ubiquitous Robots (UR), June 2018, pp. 91–95.

[28] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum robots for medical
applications: A survey,” IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1261–
1280, Dec 2015.

[29] J. M. Romano, R. J. Webster, and A. M. Okamura, “Teleoperation of steerable
needles,” in Proceedings 2007 IEEE International Conference on Robotics and
Automation, April 2007, pp. 934–939.

[30] A. Majewicz and A. M. Okamura, “Cartesian and joint space teleoperation for non-
holonomic steerable needles,” in 2013 World Haptics Conference (WHC), April
2013, pp. 395–400.

[31] A. Tobergte, R. Konietschke, and G. Hirzinger, “Planning and control of a teleoper-
ation system for research in minimally invasive robotic surgery,” 06 2009, pp. 4225
– 4232.

[32] K. J. Waldron and J. Schmiedeler, Kinematics. Cham: Springer International
Publishing, 2016, pp. 11–36.

[33] I. N. Bronshtein, K. A. Semendyayev, G. Musiol, and H. Mühlig, Geometry. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 129–268.

[34] P. Corke, Robot Arm Kinematics. Cham: Springer International Publishing, 2017,
pp. 193–228.

[35] Z. Lai and D. Yang, “A new method for the singularity analysis of simple six-link
manipulators,” The International Journal of Robotics Research, vol. 5, no. 2, pp.
66–74, 1986. [Online]. Available: https://doi.org/10.1177/027836498600500207

[36] “tork-a/jog_control,” accessed: 27.02.2020. [Online]. Available: https://github.com/
tork-a/jog_control

[37] B. A. F. Doyle, John Comstock and A. Tannenbaum, “Feedback control theory.”
New York: Macmillan Pub. Co., 1992.

[38] G. Zeng and A. Hemami, “An overview of robot force control,” Robotica, vol. 15,
pp. 473–482, 09 1997.

47

https://haptx.com/robotics/
https://doi.org/10.1177/027836498600500207
https://github.com/tork-a/jog_control
https://github.com/tork-a/jog_control

Bibliography

[39] “Ros.org - powering the world’s robots,” accessed: 17.02.2020. [Online]. Available:
https://www.ros.org/

[40] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “Ros: an open-source robot operating system,” in ICRA workshop on open
source software, vol. 3, no. 3.2. Kobe, Japan, 2009, p. 5.

[41] V. Tlach, I. Kuric, D. Kumičáková, and A. Rengevič, “Possibilities of a robotic end
of arm tooling control within the software platform ros,” Procedia Engineering, vol.
192, pp. 875–880, 12 2017.

[42] “Ros introduction,” accessed: 23.11.2019. [Online]. Available: http://wiki.ros.org/
ROS/Introduction

[43] “Ros melodic installation instructions,” accessed: 22.11.2019. [Online]. Available:
https://wiki.ros.org/melodic/Installation

[44] “Master - ros wiki,” accessed: 25.03.2020. [Online]. Available: https:
//wiki.ros.org/Master

[45] “Nodes - ros wiki,” accessed: 25.03.2020. [Online]. Available: https:
//wiki.ros.org/Nodes

[46] “Messages - ros wiki,” accessed: 28.02.2020. [Online]. Available: https:
//wiki.ros.org/Messages

[47] “Topics - ros wiki,” accessed: 28.02.2020. [Online]. Available: https:
//wiki.ros.org/Topics

[48] “Services - ros wiki,” accessed: 20.04.2020. [Online]. Available: https:
//wiki.ros.org/Services

[49] S. Chitta, E. Marder-Eppstein, W. Meeussen, V. Pradeep, A. Ro-
dríguez Tsouroukdissian, J. Bohren, D. Coleman, B. Magyar, G. Raiola,
M. Lüdtke, and E. Fernández Perdomo, “ros_control: A generic and simple
control framework for ros,” The Journal of Open Source Software, 2017. [Online].
Available: http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf

[50] “ros_control - ros wiki,” accessed: 19.02.2020. [Online]. Available: http:
//wiki.ros.org/controller_manager

[51] “Moveit motion planning framework,” accessed: 27.02.2020. [Online]. Available:
https://moveit.ros.org/

[52] S. Chitta, MoveIt!: An Introduction. Cham: Springer International Publishing,
2016, pp. 3–27.

48

https://www.ros.org/
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
https://wiki.ros.org/melodic/Installation
https://wiki.ros.org/Master
https://wiki.ros.org/Master
https://wiki.ros.org/Nodes
https://wiki.ros.org/Nodes
https://wiki.ros.org/Messages
https://wiki.ros.org/Messages
https://wiki.ros.org/Topics
https://wiki.ros.org/Topics
https://wiki.ros.org/Services
https://wiki.ros.org/Services
http://www.theoj.org/joss-papers/joss.00456/10.21105.joss.00456.pdf
http://wiki.ros.org/controller_manager
http://wiki.ros.org/controller_manager
https://moveit.ros.org/

Bibliography

[53] “moveit/moveit_experimental/moveit_jog_arm at master - ros-planning/moveit,”
accessed: 27.02.2020. [Online]. Available: https://github.com/ros-planning/
moveit/tree/master/moveit_experimental/moveit_jog_arm

[54] “Moveit 1 source build - linux | moveit,” accessed: 29.05.2020. [Online]. Available:
https://moveit.ros.org/install/source/

[55] “Qt | cross-platform software developmentfor embedded & desktop,” accessed:
27.02.2020. [Online]. Available: https://www.qt.io/

[56] D. Krupke, J. Zhang, and F. Steinicke, “Virtual Fixtures in VR - Perceptual Overlays
for Assisted Teleoperation, Teleprogramming and Learning,” in ICAT-EGVE 2018
- International Conference on Artificial Reality and Telexistence and Eurographics
Symposium on Virtual Environments, G. Bruder, S. Yoshimoto, and S. Cobb, Eds.
The Eurographics Association, 2018.

[57] C. Yang, S. Chang, P. Liang, Z. Li, and C. Su, “Teleoperated robot writing using emg
signals,” in 2015 IEEE International Conference on Information and Automation,
2015, pp. 2264–2269.

[58] G. Du, P. Zhang, J. Mai, and Z. Li, “Markerless kinect-based hand tracking for robot
teleoperation,” International Journal of Advanced Robotic Systems, vol. 9, p. 1, 07
2012.

[59] Z. Ju, C. Yang, Z. Li, L. Cheng, and H. Ma, “Teleoperation of humanoid baxter robot
using haptic feedback,” in 2014 International Conference on Multisensor Fusion
and Information Integration for Intelligent Systems (MFI), 2014, pp. 1–6.

[60] J. Kofman, Xianghai Wu, T. J. Luu, and S. Verma, “Teleoperation of a robot manipu-
lator using a vision-based human-robot interface,” IEEE Transactions on Industrial
Electronics, vol. 52, no. 5, pp. 1206–1219, 2005.

[61] S. Park, Y. Jung, and J. Bae, “A tele-operation interface with a motion capture
system and a haptic glove,” in 2016 13th International Conference on Ubiquitous
Robots and Ambient Intelligence (URAI), Aug 2016, pp. 544–549.

[62] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in 2011 IEEE
International Conference on Robotics and Automation, May 2011, pp. 3400–3407.

[63] “Pr2 manual - pr2_manual_r321.pdf,” accessed: 04.06.2020. [Online].
Available: https://www.clearpathrobotics.com/wp-content/uploads/2014/08/pr2_
manual_r321.pdf

49

https://github.com/ros-planning/moveit/tree/master/moveit_experimental/moveit_jog_arm
https://github.com/ros-planning/moveit/tree/master/moveit_experimental/moveit_jog_arm
https://moveit.ros.org/install/source/
https://www.qt.io/
https://www.clearpathrobotics.com/wp-content/uploads/2014/08/pr2_manual_r321.pdf
https://www.clearpathrobotics.com/wp-content/uploads/2014/08/pr2_manual_r321.pdf

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Bachelorstu-
diengang Software-System-Entwicklung selbstständig verfasst und keine anderen als
die angegebenen Hilfsmittel — insbesondere keine im Quellenverzeichnis nicht benan-
nten Internet-Quellen — benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus
Veröffentlichungen entnommen wurden, sind als solche kenntlich gemacht. Ich ver-
sichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen Prüfungsverfahren
eingereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen
Speichermedium entspricht.

Hamburg, den 04.06.2020 Fabian Wieczorek

Veröffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 04.06.2020 Fabian Wieczorek

	Introduction
	Related Work
	Fundamentals
	Coordinate Frames
	Cartesian Space versus Joint Space
	Forward/Inverse Kinematics
	Jogging
	Controllers
	ROS - The Robot Operating System
	ROS Overview
	ROS Controllers

	MoveIt!

	State of the art Approaches
	Analysis of jog_control
	Integration
	JogFrame message as User Input
	Process structure
	Rviz Panel
	Evaluation

	Analysis of MoveIt! jog_arm
	Integration
	TwistStamped Message as User Input
	Process structure
	Evaluation

	Conclusion

	Implementation of Absolute Jogging
	Absolute Jogging Message Type
	Initialization phase
	Updating process
	Rviz Panel

	Evaluation
	Evaluation Methods
	Results
	Straight-Line Test
	Eight-Course
	Collision Test
	Arbitrary Movements

	Discussion
	Conclusion
	Future Work

