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Abstract— With 3D-Printing becoming a mainstream tech-
nology in industry, the need for online process inspection and
quality control arises. In this paper, we propose an approach for
optical inspection of fused deposition modeling (FDM) printing
with integrated electronics. Our prototype setup combines a
traditional FDM extruder with an additional extruder for
conductive ink, a vacuum pick-and-place nozzle, and two
cameras for object alignment and process control. We describe
the camera setup, show typical printing faults encountered on
our system, and explain our computer vision algorithms to
detect (and repair) those faults. We also describe the integration
of the inspection modules into existing slicing- and 3D-print-
software.

I. INTRODUCTION

Additive manufacturing, and especially the FDM process,
continues to gain attention in both the research and the
commercial sectors in recent years. Despite a general trend
to more precise machines and more robust processes, quality
control of the manufactured parts remains a major chal-
lenge, and visual inspection methods combined with machine
learning classification have been proposed for checking and
verifying the geometric properties of the printed objects.

In this paper, we present the design of a computer vision
system and the related software for in-situ verification of
3D-printed electronics. Our software records, aligns, and
stitches images from every printed layer, then runs computer
vision algorithms to segment and classify the image into
regions related to the individual extruders. Image regions
are then compared with known geometries from the G-code,
resulting in automatic detection of defects and possible user-
interaction to continue the print (Fig. 1 and 2).

The rest of the paper is structured as follows. First, Sec. II
lists the related work for this topic. Sec. III introduces our
approach to 3D-printed electronics and describes the details
of our custom direct-writing FDM printer. Sec. IV then expli-
cates common problems with the process and the need for in-
situ monitoring of the printing progress. Sections V describes
the camera setup and the basic computer vision pipeline
including robust image stitching and exposure control. Still,
the use of different (e.g. color) FDM filaments make static
image classification impossible. Therefore, we use machine
learning techniques for robust detection and classification
of plastic extrusions and conductive traces in Sec. VI. The
actual detection of defects in the classified image is described
in Sec. VII. Our paper concludes with a summary and an
outlook on future work.

Fig. 1. Workflow of the proposed 3D-printed electronics quality control
process. The G-code for our machine combines plastic extrusion, conductive
ink extrusion, and pick-and-place commands for SMD electronics compo-
nents. Once a layer has been completed, a set of images is recorded and
stitched together, classified into categories (electronics, ink, plastics) and
compared with the expected geometries to detect possible defects.

II. RELATED WORK

The integration of electric connections and electronic
components into additively manufactured parts is considered
a key feature for applications such as smart devices, wearable
devices, or (soft)-robotics. Direct writing of conductive,
polymer-based silver inks has been successfully demon-
strated for several technologies, including SLA [1], [2] and
FDM [3], [4], [5]. A comprehensive review is given by [6].

Optical inspection techniques are a key to quality control
for electronics production, and have been researched for

Fig. 2. Three subsequent layers of a 3D-printed give-away flashlight
with integrated battery and LED photographed layer-by-layer during print
time. The center image highlights typical defects which are not detectable
anymore already on the following layer.
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Fig. 3. Hardware setup used to print objects with integrated electronics. From left to right: a: modified RepRap Industrial printer, equipped with b:
two cameras for component handling and process monitoring, one mounted at the printhead, one next to the printbed c: a screw-driven conductive paste
extruder and d: a rotating vacuum gripper for automatic component placement.

many years; see [7] and [8] for reviews. Full taxonomies of
typical faults in conventional PCB manufacturing have been
proposed, and most such faults can be detected by computer
vision methods, including drill-point defects [9], line-defects
[10], defects on PCB inner layers [11], quality of SMD solder
dots [12], and SMD components placement [13]. Defects on
other materials have been studied as well, e.g. [14] describes
a vision system to detect cracks, bubbles, and edge defects
on touch-panel glass.

Visual inspection for additive manufacturing has attracted
some recent research [15], [16], [17]. Often, machine learn-
ing approaches are also included for process control and op-
timization [18], [19], [20]. Multi-material 3D printing under
vision control is described in [21]. In aerosol jet printing,
the deposition quality of conductive traces is monitored with
cameras [22], and their electrical resistance is estimated with
shape-from-shading [23].

The functionality of a printed part can be ensured with
the certify-as-you-build paradigm [24], where the quality of
a part is ensured by a physical model, in-process sensing,
and analysis of this data. In our work, we use the last two
of these steps to ensure the quality of the printed circuit.

In our application, even very thin plastic residuals can
disrupt the conductive ink direct writing. Therefore, our
visual process inspection needs very high-resolution images,
difficult to obtain within a single image. Instead, we rely
on stitching and tiling of multiple smaller images [25],
[26], [27]. Both auto-correlation and feature-based alignment
techniques [28], [29], [30] can reach the sub-pixel accuracy
required for the task.

III. 3D-PRINTED ELECTRONICS IN FDM

Figure 3 shows the hardware setup we use to print and
assemble fully integrated 3D-electronics. The printer is a
modified Kühling&Kühling FDM-printer [31] with a heated
chamber for warp-free printing and controlled thermal ink
curing. It is augmented with a screw-driven extruder for
direct writing of conductive silver ink (Fig. 3 c) and a vacuum

gripper to automatically place SMD-components during a
print job (Fig. 3 d). Two industrial cameras were added to
align the position of electronic components during the pick
and place process and for self-calibration of the printer (Fig.
3 b). One camera (“bed”) is attached to the fixed frame, next
to the printbed, facing upwards to take images of SMD-
components hold by the vacuum gripper. The second camera
(“head”) is mounted at the x-carriage next to the plastic
extruder, facing downwards. It can be positioned at any
position within the build-volume, and is used to take the
partial images which are then stitched into the full high-res
images for layer-by-layer process monitoring.

Figure 4 shows the spatial arrangement and wiring of
circuits inside or at the surface of 3D-objects using our
modified version [32] of the popular Slic3r slicing software
[33]. The result is a standard G-code file which is directly
uploaded to the printer. The extrusion traces for conductive
wires are encoded as regular G1 commands for the T1 tool
(T0 is the plastic extruder). Both cameras are controlled by
OctoPNP, an Octoprint plugin for closed loop pick-and-place
of SMD-components [34]. OctoPNP exposes an interface
which allows other Octoprint plugins to take pictures at given
coordinates in the printer.

Fig. 4. Screenshot of our custom slicing tool with integrated positioning
and wiring of electronic components.
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Fig. 5. Typical defects occurring during direct writing of conductive inks on FDM-printed surfaces. From left to right: 1: insufficient extrusion, 2: electric
short caused by overextrusion, 3: trace interrupted by plastic string (oozing effect) and 4: extrusion interrupted by constricted channel exit.

IV. PROBLEM STATEMENT

Today, most electronic circuits are composed of complex
but very small SMD components, requiring thorough mon-
itoring and verification in the production process even for
comparably reliable traditional 2D PCBs. Moving to additive
processes introduces a number of additional uncertainties,
primarily related to the inhomogeneous results of material
deposition of both structural and conductive material. Some
typical defects which occurred during our experiments in the
last years are summarized in Fig. 5.

Even if no actual defects occur, the surface roughness
of printed objects still is inherently high, increasing the
probability of defects for thin conductive traces [35].

Fig. 6. Stitching of tiles into a composed layer image. Top: individual
images as recorded are naively assembled with positioning inaccuracies
highlighted in red. Middle: positions of tiles recorded with extended borders
are corrected by pairwise correlation of overlapping regions Bottom: high-
quality stitched layer image.

For 3D-printed electronics components and wires which
are partly or entirely embedded into the structural part,
the problem is even worse because visual inspection is not
possible after production, let alone any attempt to repair a
defect.

V. VISUAL RECORDING DURING THE PRINTING PROCESS

To obtain images with sufficient resolution and low dis-
tortion, only a small area can be covered by a single image
recorded with the camera. Except for very small objects,
documenting an entire layer requires to take several images
which are stitched together as a first processing step. To cover
only regions where material was deposited in the current
layer, our tool analyzes the G-code and generates a grid with
optimal coverage for each individual layer.

A resulting set of tiles for one layer is given in Fig. 6.
Unfortunately, simple stitching of the tiles into one image
proved to be inadequate for our belt-driven gantry systems.
In many cases, backlash effects and insufficient positioning
precision caused significant offsets. To reduce stitching in-
accuracies, we record tiles with a certain overlap and apply
correlation based image alignment on the overlapping re-
gions [29]. New tiles are appended iteratively from bottom to
top, left to right. For each new tile, the offset and correlation
coefficient with the bottom and left tile are computed if
they exist. The new position is the average of both offsets,
weighed with the correlation coefficient to prefer corrections
with higher confidence.

Fig. 7. Overlay of the raw image and G-code of a single layer. Top: all
extrusions executed by the plastic extruder T0 and Bottom: conductive ink
lines extruded by T1.
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Fig. 8. SVM-based classification into plastic / conductive material. Left: a random subsample of plastic- and ink-pixels is extracted from the image after
masking the respective tool-paths. Right: an SVM is trained with the labeled dataset and used to classify all pixels in the image (top). The classification
accuracy is significantly improved by self-filtering the training data. Entries which do not match the prediction of the SVM are removed and the classifier
is re-trained with the reduced dataset (bottom).

VI. FEATURE SEGMENTATION

A reliable and accurate segmentation of regions covered
with conductive ink is essential to automatically detect wire
defects. Since the desired geometry of both materials is
encoded in the G-code, a mask can be created by parsing all
positioning commands for a particular extruder which con-
tain a positive amount of extrusion. The mask is converted
to the known image coordinate system and applied as shown
in Fig. 7. This step also masks regions from previous layers,
e.g. in sparse infill areas which are visible in the image.

Figure 8 left illustrates how the predetermined positions of
all plastic pixels (top) and conductive ink pixels (bottom) are
identified in the image by inverting the previously generated
masks. Since each image typically contains several thousand
pixels in each dimension, only a random subsample is
extracted for each extruder to reduce the amount of data.
Figure 9 clearly indicates that even a simple linear separation
is sufficient to classify pixels based on their color values.
The resulting dataset contains an equal number of labeled
data points from both classes.

In a subsequent step, a Support Vector Machine (SVM) is
trained with the labeled dataset and used to classify pixels
in the image into the categories plastic or ink (Fig. 8 right).
For filament colors with a low distance to the ink color, a

significant number of pixels is misclassified with this method
(Fig. 8, top right result). This is mainly caused by incorrect
labels in the training data. The ink extrusion frequently shows
slight over- or underextrusion and deviates from the intended
path due to surface tension dragging the ink to the channel
boundary. Most masked areas, therefore, contain a certain
amount of pixels from the opposite class. To mitigate this
effect, we use the SVM to self-filter the training data. The
classification is predicted for all elements of the training
dataset, entries for which label and SVM prediction do not
match are removed. The SVM is then re-trained on the
filtered dataset, yielding a clearly improved classification
result (Fig. 8, right bottom).

To verify the classification step, we printed a set of
otherwise identical test objects with different plastic filament
colors (Fig. 10). All colors with sufficient distance to gray
showed satisfying results. For very similar colors (gray),
reliable recognition becomes increasingly hard, even for
humans.

VII. DEFECT DETECTION

In a final analysis step, interruptions and strong deviations
of the extrusion traces are automatically detected before
printing the next layer. The test is implemented as a positive-

Fig. 9. Distribution of pixels in HSV (left) and BGR (right) color space. Black data points represent pixels from regions masked as plastic based on the
G-code information, red data points where masked as conductive ink. Note that some pixels are misclassified due to over / unterextrusion of conductive
material.
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Fig. 10. Successful verification of the ink segmentation algorithm with
different filament colors.

Fig. 11. A circular sliding window detector (blue), traversing the first ink
extrusion line (top to bottom).

coverage, sliding window detector as illustrated in Fig. 11.
A circular template, matching the extrusion diameter de is
moved along the intended ink-extrusion lines extracted from
the G-code. The template is shifted by de/2 for each iteration
step. If the ratio of pixels classified as ink vs. plastic falls
below a threshold ε, the region covered by this template is
flagged as defect (red markers in Fig. 11 and 12).

VIII. EVALUATION

To evaluate the performance of the defect detection
pipeline, and to test the integration into the printing process
and the effect on execution time, we printed a series of test
objects. Five specimen with different filament colors and
object shapes where manufactured with a total number of
20 layers containing conductive traces. The syringe extruder
was intentionally de-calibrated to increase the probability of
defects to generate relevant test data. The recorded images
where inspected and labeled manually, and then compared
to the automatic detection results. All disruptions and trace
deviations in the evaluation dataset where successfully de-
tected, some relevant cases with highlighted defects are
provided in Fig. 12.

To be suitable as a monitoring tool, running continuously
in the background during daily business in a laboratory

Fig. 12. Objects printed with intentionally de-calibrated syringe extruder
to evaluate the detector performance. Defects automatically detected by our
algorithm are highlighted in red. For this test dataset, our algorithm detected
100 % of all defects.

or production environment, the entire verification pipeline
should be implemented efficiently so as to not excessively
extend the overall printing-time.

Table I lists the amount of time required for the individual
steps to print and verify a single layer on our test objects. The
verification process (image stitching and analysis) requires
approximately ∼1.0 % additional execution time per layer,
which is considered reasonable. However, the image captur-
ing step currently requires a significant amount of extra time
(∼10.0 % or 4.1 s per image). This is due to positioning of the
camera, followed by image capturing, cropping and import of
the image on the (slow) CPU of the 3D-printer. Interleaving
the printhead motion and off-loading image processing to a
(much faster) PC would reduce the reported time for image
capture dramatically.

TABLE I
PROCESSING TIME OF A SINGLE LAYER, BROKEN DOWN INTO THE STEPS

OF THE VERIFICATION PIPELINE

Cube Cylinder
Tiles 8 (2x4) 9 (3x3)
Printing 252.0 s 87.7 % 360.0 s 89.7 %
Image capturing 33.1 s 11.5 % 37.2 s 9.3 %
Stitching 0.8 s 0.3 % 2.7 s 0.7 %
Analyzing 1.5 s 0.5 % 1.6 s 0.4 %
Sum 287.4 s 401.5 s

IX. CONCLUSION AND OUTLOOK

In this work, we presented a novel approach to cap-
ture, monitor and verify printed electronics integrated into
FDM-based processes. The documentation aspect, including
generation of layer-by-layer high-res stitched images and
their comparison to region segmentation of the G-code,
are potentially also very useful for (multi-material) FDM-
printing in general. In our application, conductive ink traces
are identified on the images by a self-adapting segmentation
algorithm. In a final step, it is verified that all intended
ink traces are actually covered by ink; and the process is
interrupted if defects are detected. Our tool is implemented
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in a modular fashion as an Octoprint plugin and can easily
be used with a wide range of 3D-printers.

Our future work will focus on the implementation of
additional and more sophisticated defect detection methods.
This includes a detector to identify overextrusions and short
circuits, and a check for sufficient ink extrusion covering the
connector footprint outline for all SMD components before
placing them. Another promising approach is a connected
components detector which can be used to verify both, an
intact connection between two endpoints and an intact gap
between to wires (two components).

The computer vision and process monitoring software
described in this paper is available as open-source on Github:

https://github.com/platsch/OctoCameraDocumentation
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