
B A C H E L O R T H E S I S

Automated Generation of Source Files for a ROS-Unity
Interface

submitted by

Phil Holdorf

University of Hamburg

Department of Informatics

TAMS - Technical Aspects of Multimodal Systems

Course of studies: Informatics

Matriculation number: 6834144

Primary supervisor: Prof. Dr. Jianwei Zhang

Secondary supervisor: M. Sc. Yannick Jonetzko

Submission date: July 30, 2019

Acknowledgement

I would like to specially thank research associates Lasse Einig and Yannick Jonetzko at TAMS for their
continuous support during the writing process.

Abstract

The goal of this project is to ease and speed up the development of Unity3D applications
which interact with the Robot Operating System (ROS). For this purpose, the current
development process and the available frameworks have been analyzed. Then, a tool
was developed as an extension to the existing interfaces. The basis for this project is
Siemens' Ros#, a promising tool which enables communication between ROS and Unity.
The main contribution of this work is a feature which automates the generation of source
�les in Unity from imported ROS project �les, thereby reducing development time.

Zusammenfassung

Das Ziel dieser Arbeit ist es, die Entwicklung von Unity3D-Applikationen, welche mit
dem Robot Operating System (ROS) interagieren, zu vereinfachen und zu
beschleunigen. Mit dieser Absicht wurden die verfügbaren Frameworks sowie der
aktuelle Entwicklungsprozess analysiert. Es wurde ein neues Tool entwickelt, welches
die bestehenden Schnittstellen erweitert. Die Basis für dieses Projekt ist Siemens'
Ros#, ein aussichtsreiches Tool welches Kommunikation zwischen ROS und Unity
ermöglicht. Der primäre Beitrag dieser Arbeit besteht in der automatiserten
Generierung von Quell-Dateien in Unity aus importierten ROS-Projektdateien, um
somit die Entwicklungszeit zu reduzieren.

Contents

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1

1.2 Thesis goal . 2

1.3 Chapter guide . 3

2 Related work 4
2.1 Robot simulators . 4

2.2 Recent use of game engines . 5

2.3 Comparing Unreal Engine and Unity . 6

2.4 Frameworks . 7

3 Basics 9
3.1 ROS - Robot Operating System . 9

3.1.1 Communication concepts . 9

3.1.2 File system . 10

3.2 Unity . 11

3.2.1 Working environment . 11

3.2.2 Scripting . 12

3.3 RosBridge . 13

3.4 Ros# . 13

3.4.1 System overview . 14

3.4.2 Example project . 14

3.4.3 Customizing a project . 16

4 Design 19
4.1 Problem summary . 19

4.2 Proposed features . 19

4.3 User interface . 20

4.4 Installation . 21

4.5 Proof of concept . 21

5 Implementation 24
5.1 Listing messages . 25

5.2 Generating class �les . 27

iv

6 Discussion 30
6.1 Evaluation . 30

6.1.1 Functionality . 31
6.1.2 Performance . 31
6.1.3 Testing . 32

6.2 Outlook . 33
6.2.1 Messages . 33
6.2.2 Other �le types . 33

7 Conclusion 35

Bibliography 36

1. Introduction

1 Introduction

Developing robotics software presents a diverse set of challenges, in large part due to
the heterogeneous nature of the robot hardware being used. These challenges include
interaction with the various sensors and actuators, communication between nodes of a
robotics system, as well as simulation and visualization tasks. Attempts have thus been
made to provide a uni�ed set of tools and libraries to address these recurring problems.
Arguably the most signi�cant of these contributions is the Robot Operating System
(ROS) [1], which has become a standard in the scienti�c community.

One aspect related to ROS is the simulation of robots and their environments. This is
an important task for research and development, because it allows the testing of hardware
in varying circumstances which could not be easily replicated in the real world without
investing a signi�cant amount of time and e�ort. Although simulation tools are included
with a ROS installation in the form of Gazebo [2], there is still room for improvement in
this area.

With the recent rise in popularity of game engines such as Unity [3], attempts have
been made to integrate them with ROS. The possible research applications for such an
interface are numerous. However, a context-independent framework with this purpose
has yet to be found and is the topic of this thesis. The approach that is evaluated here
is to use Unity with the Ros# [4] extension.

1.1 Motivation

There are several bene�ts to utilizing a game engine in place of, or in addition to, a
well-established robot simulator such as Gazebo. One of the �rst considerations is a
high degree of graphical �delity. Since it is one of the main selling points of the most
used game engines, the quality in this area will likely continue to improve in an e�ort to
remain competitive.

Unity has established itself as one of the most popular game engines. It presents many
additional bene�ts. In the �eld of robotics research, some of its most exciting features are
the built-in support for Virtual Reality (VR) devices, and the extensibility via scripts.
This allows the creation of custom user interfaces for controlling and visualizing robot
interactions, either with the real world or in a simulated environment. These capabilities
make it a versatile research platform for use in robotics software. For example, Unity
has been used in combination with ROS for a diverse range of applications, such as:
simulating multiple drones in �ight [5], monitoring a welding process [6], and controlling
a robot arm through a VR interface [7].

Although Unity is often used by professionals in commercial projects, it may be

1

1. Introduction

particularly useful to students and beginner programmers as well. The main arguments
for this are the intuitive component-oriented design and the amount of tutorials and
documentation available, resulting from the popularity of the engine. As a working
environment, it is both highly accessible and o�ers an array of productivity-enhancing
features.

Despite this, there is still a considerable learning curve for Unity developers who are
unfamiliar with ROS. Even for those experienced with ROS, it currently takes longer
than necessary to integrate Unity with an existing ROS project. The goal here is to save
development time by automating recurring processes, and to create further abstractions
where possible to reduce perceived complexity. If the entry barrier were to be lowered,
it could help ROS projects gain further exposure, and allow more �exibility for possible
research applications. Speci�cally, it allows for closer cooperation between experienced
ROS users and those unfamiliar with the framework and environment. It could allow new
developers to more quickly contribute solutions for a ROS environment through Unity.

1.2 Thesis goal

The goal of this thesis is twofold: To closely examine an existing ROS-Unity framework
in terms of its productivity, and to improve it based on this aspect. The problem to be
addressed is the relatively high amount of time and e�ort it takes to begin developing a
Unity application for any given ROS project.

The framework chosen for this task is Ros#, which is developed by Siemens. It aims
to provide a general-purpose interface between Unity and ROS, rather than being
focused on any speci�c use case. It is based on RosBridge [8], which enables
cross-platform communication with ROS from other systems using a web-socket
interface. Ros# provides the Unity-side implementation of this interface.

In order to identify possible improvements to this software setup, this work tries to
answer three central questions regarding the work�ow:
1. What are some use cases of ROS-Unity applications?
2. Which steps in the development process do these use cases have in common?
3. How can the proposed framework assist to increase productivity at each of these
steps?

In addition to these questions, one basic problem was identi�ed immediately. Namely,
that the number of message types currently supported by Ros# is limited. New message
types must be added manually by the user. The requirement derived from this problem is
that it should be possible to automatically generate the necessary message �les in Unity
for any given ROS project.

2

1.3. Chapter guide

1.3 Chapter guide

Chapter 2 gives an overview of related work, focusing on robot simulators, modern use of
game engines, and frameworks which are similar to Ros#. This serves to provide context
for recent developments, and helps to reveal possible improvements to Ros#.
Chapter 3 explains the foundation which the proposed work is built on. Readers are

familiarized with ROS, Unity, RosBridge and Ros#. Problems with the current state of
this software setup are identi�ed, focusing on construction of a robot scene within Unity
and Ros#.
In chapter 4, an extension to Ros# is presented. A list of features is given. These

features are then tested in a sample application, serving as a proof of concept.
Chapter 5 addresses implementation details, giving insight into some of the problems

encountered and design decisions that were made.
Finally, chapter 6 is a discussion on how well the requirements could be met and what

improvements could be made in the future.

3

2. Related work

2 Related work

Research on the topics of robot simulation and robot interaction is fairly comprehensive,
as groups with di�erent requirements each contribute their own unique approach. The
use of game engines for this context is also commonplace. When it comes to general-
purpose frameworks combining game engines with ROS, a number of proposals have been
made only very recently.

2.1 Robot simulators

A large variety of robot simulators have been in use before and after the release of ROS.
Looking at the history of robot simulation provides context for the current state of the
art. Some simulators are based on existing game engines. These will be looked at in
more detail, to �nd out what motivated this choice and how their requirements di�er.

Gazebo [2] is an open-source 3D simulator released in 2004 for the Player project [9],
and is now integrated with ROS as well. It is focused on providing a physics simulation
which is as accurate as possible. Several di�erent physics engines can be chosen for it.
It remains popular as a standard choice for ROS users.

OpenHRP [10], released in 2004, is a simulator designed speci�cally for humanoid
robots and does not support ROS on its own.

Webots [11] is another early but comprehensive attempt at robot simulation which
predates the release of ROS. The software is proprietary, which limits its usefulness in a
research context.

Another general-purpose simulator is V-REP [12]. The paper mentions all three of
the above simulators, but they were found insu�cient at the time due to versatility
concerns in their programming interface. ROS is supported by it, and a free
educational version is o�ered.

Following is a selection of simulators which utilize game engines. USARSim [13] is an
early attempt of incorporating the Unreal Engine [14] into robot simulation, with
development starting in 2002. Initially used for simulated urban search and rescue
missions and competitions, USARSim has been widely popular and was developed
further into an extensible general-purpose robot simulator. An extension exists which
also adds support for ROS [15].

The Search and Rescue Game Environment (SARGE) [16] was an early adopter of
Unity in 2008. Its purpose was to provide a training environment for robot operators.
The developers decided to switch over from USARSim and Unreal Engine to Unity. Some

4

2.2. Recent use of game engines

of the main reasons for this were Unity's developer-friendly environment and low cost
compared to its competitors. They had also considered purpose-built robot simulators
such as Webots and Gazebo, which already provided a high quality of physics simulation.
However, they concluded that game engines proved to be better tools when it came to
creating complex environments in a short time and with a high rendering quality. It
should be noted that some of the information in the paper is no longer accurate. For
example, both Unity and Unreal Engine now provide free versions.

MORSE [17], released in 2011, was designed with �exibility in mind. It supports
aerial, ground and maritime robots. The software is fully open-source and independent
of any robot middleware, although it has built-in support for ROS and a number of
other communication mechanisms. It is built on top of Blender [18], a popular
open-source software for 3D modeling, animating and related tasks. Although not
primarily thought of as a game engine, Blender does o�er tools for game creation and is
extensible using Python scripts, which is exploited by MORSE.

Several surveys of robot simulation tools have been published in the past. Two recent
surveys are outlined in the following. In 2014, A survey was conducted, comparing
simulators for the purpose of underwater vehicles [19]. This provides some insight into
how requirements for simulators may di�er between projects. Among the simulators
they reviewed were Gazebo, MORSE, V-REP, USARSim, as well as UWSim [20], a tool
speci�c to underwater missions. In the 2014 survey, it was mentioned that MORSE su�ers
from a high learning curve when it comes to extending the existing environments, due
to its reliance on the Blender interface. This indicates that preferences in user interfaces
may play a major role in deciding which simulator to use.

In 2017, another survey compared the 3D simulators V-REP, Gazebo, MORSE, Webots
and USARSim [21]. The tools were evaluated for a multi-robot patrolling scenario.
MORSE and Gazebo were tested in terms of their performance. The result was that
MORSE performed slightly better with multiple robots than Gazebo.

2.2 Recent use of game engines

In the previous section, three robot simulators were mentioned which were built on top
of an existing game engine: MORSE, USARSim and SARGE. The engines used were
Blender, Unreal Engine, and Unity, respectively. Three main reasons for using game
engines in robotics simulation are identi�ed: Firstly, there is the promise of an
especially high degree of graphical �delity. Secondly, they o�er a working environment
optimized for quickly assembling complex virtual environments, which may help to
increase productivity during development. Thirdly, game engines are an intuitive choice
when humans are required to actively interact with the simulation, and often provide
excellent tools for this purpose.

A few more speci�c use cases will be looked at in this section. Many of these
applications focus on human-robot interaction (HRI). The aim here is to demonstrate a
recent increase in robotics research related to game engines, and to showcase the

5

2. Related work

diverse nature of these applications.

UnrealCV [22] is a tool which uses Unreal Engine 4 speci�cally to create realistic images,
which are then used as training data for computer vision algorithms.

"The Robot Engine" [23] is a Unity plugin for use in HRI tasks. Robot models can be
imported into Unity, where the robot can be animated without requiring programming
knowledge. Sensor data captured by a real robot can be processed within Unity to cause
a reaction from the robot. These behaviors can then be transferred onto the real robot.
Currently, the plugin has only been set up for use with Arduino controllers, lacking
support for ROS and other platforms.

In contrast, a system which does combine ROS with Unity is RosUnitySim [5]. The
scope of this tool is limited to the context of simulating multiple drones in �ight, otherwise
known as unmanned aerial vehicles (UAV). Communication between ROS and Unity
happens via TCP/IP protocol. One reason that was given for chosing Unity over other
engines is the ability to assign closely matching collision models to each object, such
as trees and buildings. This is called a mesh collider in Unity, and is opposed to using
simpler geometric shapes such as boxes and cylinders for collision detection. Such simple
shapes require less processing power in the physics simulation, but are not suited for
modeling each individual branch of a tree, for example.

Another ROS-Unity interface exists for the purpose of monitoring an industrial
manufacturing process [6]. The program has been tested for a heavy welding process,
but is independent of any particular industrial task. They have chosen Unity over a
dedicated simulator such as Gazebo, because it allowed them greater �exibility in
designing the user interface. RosBridge was used as a communication protocol between
ROS and Unity.

Several HRI interfaces incorporate VR into a ROS-Unity context. Three of them are
mentioned in the following. All of these examples use ROS, Unity and RosBridge. In
2014, an interface using a head-mounted display (HMD) for teleoperation of a single
ground vehicle was developed [24]. A similar project from the University of Hamburg
combines a HMD with a hand tracking device to give users control of a robot hand in
VR, such that the real hand motions are translated into movements of a real robotic
gripper [7]. The third and most recent project uses a VR interface for monitoring and
commmanding multiple robots as well as UAVs [25]. In addition to RosBridge, the project
also uses RosBridgeLib [26] for its Unity-side communication with ROS.

2.3 Comparing Unreal Engine and Unity

From this selection of projects, it seems that robotics research related to game engines is
increasingly based on Unity, although this may be a biased observation. Either way, it is
worth noting that Unreal Engine 4 advertises a set of features that are strikingly similar
to Unity, including support for VR devices, the ability to build applications for a large
variety of operating systems, as well as a cost-free license.

One advantage it has over Unity is full access to the complete source code of the engine.

6

2.4. Frameworks

Unity does make it easy to extend its interface with new functionality. However, if there
is a bug in the Unity engine itself, users will have to rely on workarounds until the bug
is resolved.

Another di�erence between the two game engines is that Unreal Engine uses C++ as
its programming interface, while Unity uses C#. This comes down to preference, but
an argument could be made that C# is easier to use and thus increases productivity.
Overall, Unreal Engine seems to be just as suitable for robotics research, although its
use in this context may not have been proven as extensively yet.

2.4 Frameworks

It was shown that the possible applications for an interface between robotics and game
engines are vast. The recent rise in virtual reality interfaces is especially notable. There
are some recurring tasks for these types of applications. Mainly, to enable
communication between the game engine and a robotics system (ROS in particular).
Until recently, this task had to be solved individually by each developer. This has
created demand for a standard framework to build on top of and to speed up
development. Some of the attempts at such a framework are presented here. All of
these interfaces are between ROS and Unity.

RosBridgeLib [26] is a bare-bones library which implements the RosBridge protocol on
the side of Unity. This enables communication with ROS systems, although the number
of usable message types is limited. No further tools are provided to aid in the construction
of ROS-Unity projects.

RosReality [27] is an e�ort to provide a VR interface for ROS, which allows viewing and
remote controlling robots over the Internet. It includes a tool to import robot descriptions
into Unity, which are known as URDF �les. On the project's Github page[28], it is noted
that the bridge between ROS and Unity (ROS Reality Bridge) is provided as legacy code,
and that their new projects are based on Ros#. This seems to indicate that RosReality
is no longer actively developed.

A project named SIGVerse [29] has the goal of reducing development costs for HRI
tasks involving VR devices. It o�ers a number of features for constructing experiments
involving a human and a robot in a virtual space. Participants can complete the
experiment over the Internet. Data of the experiment is then recorded for use in robot
learning functions, which includes a recording of the interaction. The developers chose
not to use RosBridge for remote communication, due to a bottleneck in performance
when transmitting large binary messages such as camera images. Instead, data transfer
is accomplished with the use of the BSON format and a TCP/IP connection.

In the same year, an interface with a similar objective was developed at the University
of Hamburg [30]. The focus of this project is on accessibility, allowing the creation of
HRI prototypes without requiring expert knowledge on ROS. It was developed and tested
with VR teleoperation and control tasks in mind. The use of HMDs and a hand tracking
device is supported. Robot models can be imported from UDRF �les or 3D mesh �les.

7

2. Related work

Overall, it can be noted that all of the frameworks shown here are very recent
developments. They mostly share similar goals. Besides the task of connecting ROS
and Unity, they provide additional features to aid in their speci�c research interests,
which are all related to HRI. The di�erences lie in the speci�c hardware and use cases
which they are most equipped for.
Ultimately, Ros# is preferred as a general-purpose ROS-Unity framework because

it abstracts from the context it is used in. Furthermore, and unlike RosBridgeLib, it
provides additonal tools such as a URDF importer. Ros# seems to be in an early
development stage, and new features are still being actively developed. If it establishes
itself as a standard framework, it can be expected that context-speci�c features will be
added as plugins by the community. It remains to be seen how well Ros# can ful�ll
the requirements of current and future projects. Some problems with the software are
identi�ed in this work, and a solution is o�ered as an extension to the software.

8

3. Basics

3 Basics

3.1 ROS - Robot Operating System

The Robot Operating System (ROS) is an open-source framework for developing, testing
and running robotics software [1], [31]. At its core, it is a system for passing messages
between processes, often distributed over many di�erent types of devices. On top of
that, it can be extended with a large set of tools and libraries. The motivation behind its
extensible architecture is to enable robotics researchers and developers to share reusable
functionality in a convenient way. This can include device drivers, common algorithms,
debugging tools and so on. It is worth noting that despite its name, ROS is not an
operating system. It is middleware which runs on Ubuntu, Mac OS X, and several more
Linux distributions. The main programming languages used by ROS developers are C++
and Python, although a few others are available as well.

3.1.1 Communication concepts

In ROS, communication between processes can be both synchronous and asynchronous.
Using asynchronous communication means that messages are sent without waiting for a
response. In contrast, synchronous communication follows a request-response pattern,
which means that a process sending a request will wait until the response is received
before continuing work. Understanding ROS communication requires knowledge of a few
basic concepts:

Nodes ROS is designed to be highly modular, allowing it to be used e�ectively in a large-
scale distributed environment. Therefore, ROS systems are commonly comprised
of many separate processes which are called nodes. Each node performs a certain
task and exchanges information with other nodes through messages.

Client libraries The code running on a node is written by using a ROS client library.
These libraries implement the ROS interface in many di�erent programming
languages. The work in this thesis utilizes the two most common client libraries,
which are roscpp for C++ and rospy for Python. This highlights portability as
another important design goal of ROS.

Master To initiate communication, nodes must �rst contact the ROS master node. The
master can locate each node, and it tracks which nodes are communicating. After
contacting the master, nodes will then communicate peer-to-peer. This means that
nodes are loosely coupled and do not depend on each other. The master is only

9

3. Basics

involved in registering and de-registering nodes. The console command 'roscore'
can be used to launch the ROS master.

Messages Nodes exchange data via messages, which are de�ned in msg �les. The format
is very simple: the �les consist of �elds, which are pairs of a datatype and a �eld
name. Beyond primitive types and arrays, �elds can also use other message types,
or they can de�ne a constant. Messages and data types will be looked at in more
detail later.

Listing 3.1: An example for a complete message �le

int32 first_value
uint16[] second_value
uint8 a_constant=5

Topics Topics are the basis for asynchronous, many-to-many communication in ROS. A
topic is de�ned by a name and a message type. De�ning a new topic within ROS
is also called 'advertising'. Sending messages on a topic is called 'publishing'. Any
node can publish messages on a given topic, and any node can then 'subscribe' to a
topic to receive all newly-published messages. Topics are best used for continuous
streaming of data, such as when sensor data should be made available in regular
intervals to many recipients.

Services Services are nodes which can be called by another node, enabling synchronous
communication. A set of inputs is given to the service, and an output is produced.
Services are de�ned in srv �les, which have two parts: a request message and a
response message, separated by three dashes. The implementation of a service is
de�ned separately from its srv �le.

Listing 3.2: An example service �le

string request_value1
int32 request_value2

int32 response_value

Parameter Server The parameter server provides storage for values in a key-value
format. It resides on the master. This can be used for global con�guration of a
ROS system, although a service could be used in a similar way.

3.1.2 File system

In ROS, all software is shipped as packages. This concept is used by the community
as well as by ROS developers. The main bene�t of this structure is that packages can
be installed directly through ROS commands, which in turn allows dependencies of each
package to be resolved automatically. Packages are directories with a certain structure
and a 'package.xml' �le. This �le includes information such as the author, version and

10

3.2. Unity

license used, as well as a list of dependencies on other packages. Message �les are found
in the 'msg' folder, and service �les in the 'srv' folder.
To build the source code within a package into libraries, executables and related �les,

ROS uses a custom build system named catkin . The build con�guration for a package
is contained in the �le 'CMakeLists.txt'. In order to use custom message and service
de�nitions in a script, CMakeLists.txt must be modi�ed to include references to these
�les. To start the build process, the command 'catkin_make' is used.
An option exists to run multiple nodes at once in a single terminal. This is done by

adding launch �les and using the 'roslaunch' command. Since most applications are
made up of several nodes or depend on nodes in other packages, this allows bringing up
a whole system in one command. The launch �le allows con�guration of this process by
specifying parameters and more.

3.2 Unity

Unity is a game engine and game development platform for 3D and 2D games [3]. At
the time of writing it is free to use for any project not exceeding $100,000 per year in
revenue or funding. Its popularity compared to other free game engines is among the
highest, mainly competing with the Unreal Engine.

3.2.1 Working environment

Apart from a high quality rendering engine and a physics engine, Unity provides
extensibility via a C# programming interface, several tools related to setting up
environments and user interfaces, modifying game physics and lighting, animating
objects, debugging, pro�ling and more. In general, Unity satis�es the requirements that
are shared by all types of games, which helps to keep the working environment clean
and thin. Beyond that, support for any particular game genre or a speci�c work �ow is
left to the community.
The Unity editor is highly extensible with custom user interfaces. These are written in

C#, with access to the same libraries as code that would be written for a game, as well
as a dedicated library for editor scripts. Such extensions are created by the community
and made available on the Unity Asset Store, some of which are o�ered for free. One can
also �nd a variety of 3D and 2D models, complete environments or object sets, and AI
scripts such as path�nding algorithms. The integration of this content sharing platform
is in some ways similar to the ROS model of package sharing. It o�sets the lack of an
open source repository for the Unity engine.

11

3. Basics

Figure 3.1: The Unity editor view. On the left is the scene hierarchy, listing and grouping
objects in the current scene. The scene itself is visible in the center. On the
right, the inspector window lets users edit the properties of a selected object,
as well as all the scripts attached to it. At the bottom, the project view shows
the available resources and scripts. Each window or view can be rearranged
by clicking and dragging.

3.2.2 Scripting

At the core of the Unity scripting engine is the GameObject. They exist in the scene
hierarchy and have a Transform component attached to them, giving them a position,
rotation and scale in 3D space. A variety of optional components can be added which
are used for rendering, physics, animation and other purposes. Any script which inherits
from MonoBehaviour can be attached to a GameObject. This requirement discourages
the use of polymorphism, as multiple inheritance is not supported in C#. The idea
is that each GameObject can be treated as an independent entity composited of many

12

3.3. RosBridge

small, re-usable parts.
Extending MonoBehaviour in a class will make it function as part of the Unity

framework. There is no main entry point in Unity. Instead, scripts are called through
inherited methods when certain events are triggered. Initilization is done in the Awake
and Start methods, which are only called once in the lifetime of an object. The Update
method is called once per rendering frame, and FixedUpdate is called once per physics
frame, the duration of which can be con�gured in the project settings. The full
scripting documentation is available online and is quite comprehensive [32].

3.3 RosBridge

RosBridge allows any application to communicate with a ROS system over a network
through a web socket [8], [33]. This is most useful on operating systems which do not
support ROS, thus providing a basis for ROS-Unity interfaces. It consists of three ROS
packages, all of which are contained in the 'rosbridge_suite' package:

rosbridge_library This package handles conversion between JSON strings and ROS.

rosbridge_server Provides a web socket for communication.

rosapi De�nes services which expose a subset of ROS commands to the network.

In order to communicate with ROS from a remote device using RosBridge, the
RosBridge Protocol [34] must be implemented locally. This means generating and
sending JSON objects to the rosbridge server. All rosbridge messages must include the
�eld 'op', indicating which operation to use. Another optional �eld is 'id', which
identi�es and groups one or more messages together as part of an exchange between the
client and the server. The supported ROS-related operations are: 'advertise',
'unadvertise', 'publish', 'subscribe', 'unsubscribe', 'call_service', and
'service_response', which do as their names suggest. These operations de�ne further
�elds which can be required or optional.

{ "op": "publish",
"id": some_string,
"topic": some_topic,
"msg": {"x" : 5.3, "y" : 0, "z" : -3.1}

}

Listing 3.3: An example for a rosbridge message publishing a Point message.

3.4 Ros#

Ros# is an open-source extension for the Unity editor which implements the RosBridge
protocol, thus enabling communication between ROS and Unity [4]. Additionally, it
provides tools to improve integration with ROS, such as an importer for robot

13

3. Basics

descriptions (URDF �les). Ros# can be used for robot & sensor visualization, as a
simulation environment, and for teleoperation. This chapter provides an overview of its
components and features, highlighting some of the areas in which the software can be
improved. An example project will demonstrate how to connect to ROS as well as
publish and subscribe to topics. Following after that is a look at how a project can be
extended with custom messages and behaviors.

3.4.1 System overview

The repository at ros-sharp/master contains three modules: Libraries, ROS and Unity3D.
Following is a summary of these modules and a look at some relevant features.

ROS Module On the ROS side, three packages are provided, the most integral of which
is the �le_server package. It includes the service node �le_server, which simply
outputs the �le contents of a requested �le in any ROS package. The launch �le
ros_sharp_communication.launch launches the rosbridge websocket and the �le
server node.

Libraries Module This module provides an abstraction of the RosBridge protocol, access
to the �le_server service and URDF transfer functionality, as well as some context-
speci�c ROS messages encoded as CSharp �les. When compiled, two binary �les
are created: RosBridgeClient.dll and URDF.dll. Both of these �les must be copied
into the Unity project folder.

Unity3D Module This module can be split into two functionalities: extensions to the
Unity Editor, and Unity run-time scripts which are speci�c to the example
applications. Some of the examples are re-usable for other ROS-Unity projects.

3.4.2 Example project

An example for a project setup with instructions can be found at the Ros# wiki page[35].
The example sets up a simple scene in Unity. It allows teleoperation of a Turtlebot [36]
using arrow keys. The inputs are sent to a Gazebo simulation on a remote machine, but
a connection to a real Turtlebot could be established in the same way. Following is an
overview of the steps required to set up such a project.

First, the URDF model of the Turtlebot is imported into Unity. On the ROS side, a
launch �le is used which uploads the URDF data to the parameter server. On the Unity
side, the URDF transfer dialog is used to initiate the import process. This creates a
Turtlebot game object in Unity.

The example then introduces the script component RosConnector. This is added to
a game object in the scene. After choosing a protocol type and entering the IP address
of the ROS machine, the application is ready to send and receive communications at
runtime.

The next step is subscribing and publishing to topics. This requires manual
con�guration on many components inside the Unity editor, and will di�er for each new

14

3.4. Ros#

project, as di�erent topics and behaviors will be used. Although tutorials for Ros# are
provided, it currently lacks documentation for its individual components, so this
process comes with a learning curve, especially for users unfamiliar with ROS. The
topics and ROS nodes used in the example are illustrated in �gure 3.2 .
The rest of the scripts are responsible for various physics and rendering tasks. The

Turtlebot is simulated within Unity as a physical object, and the camera image received
from Gazebo is projected onto a plane.
After starting Gazebo on the ROS machine via the launch �le provided and hitting

Play in Unity, the result should be a Turtlebot model that can be moved with arrow
keys. The inputs are published to ROS, and the captured camera image and robot state
are displayed in Unity.

15

3. Basics

Figure 3.2: Communications between Unity and ROS for the Gazebo simulation example.
The diagram shows the published and subscribed topics and the ROS nodes
involved. The arrow keys are used to control the Turtlebot in Unity. These
inputs are then published to ROS, where they are converted into Twist
messages and sent to a simulated Turtlebot running in Gazebo. Sensor data
from this simulation is sent back to Unity to be processed. Image source:
Ros# wiki [35]

3.4.3 Customizing a project

When creating new applications based on Ros#, one of the �rst things to add is new
ROS messages in the form of CSharp �les. The message types included in Ros# are
very limited compared to those of a standard ROS installation. Recently, a new dialog
was added to Ros# which allows generating the necessary CSharp �les for any message
needed in the project. However, this method still requires manual input, and there is one
other issue with it: The �eld types for a message are chosen from a drop-down menu, the
contents of which are hard-coded as an enumerable type. At the time of writing, very

16

3.4. Ros#

few custom message types are supported. Some primitive types are also missing, such as
Byte and Boolean.

Figure 3.3: The message generation window included with Ros#. Messages are
customizable by setting a name and add a number of message elements by
choosing a type from the drop-down menu.

17

3. Basics

Similar problems arise when adding new subscriber and publisher classes in Unity. The
process for this is currently undocumented, although the approach used in the example
application can be carried over to other ROS topics. No feature exists yet to automate
this recurring task.
A few other features are provided by Ros#. Robot models can be built using the Unity

editor and exported as ROS-compatible URDF �les. The �le server provided by Ros#
can be contacted as a service through the RosBridge interface, but on the Unity side, the
necessary code to establish the connection and locate �les within a package is missing.
Beyond that, a rather minimalist approach was taken with the framework. No further
support is currently available for speci�c use cases such as HRI and VR devices.

18

4. Design

4 Design

This chapter introduces an extension to Ros# which aims to improve it in terms of
productivity and extensibility. The design decisions made before and during
development are documented, including a list of features and a description of the user
interface. Finally, a method is proposed by which to test if the application ful�lls the
requirements. This includes an installation guide and a proof of concept.

4.1 Problem summary

The main problems with the current state of Ros# were identi�ed in section 3.4 : When
starting a new Unity project utilizing an existing ROS package, considerable e�ort is
spent on recurring setup tasks. Essentially, the Unity project has to be made ready
before actual development can begin. This is especially important when trying to rapidly
set up prototypes for a given hardware con�guration.
The recurring tasks include producing CSharp code for ROS messages, services,

publishers and subscribers. Additionally, the script components of the RosConnector,
publishers and subscribers must be added to game objects. There are two aspects
which make these recurring tasks act as a barrier to rapid prototyping: the �rst is the
time spent on manual labor, which can add up if a large number of messages and topics
are used. The second is the learning curve developers are faced with when con�guring
objects within Unity, due to a lack of documentation for individual Ros# components.
This learning curve is especially notable for developers unfamiliar with either ROS or
Unity.

4.2 Proposed features

The extension to Ros# adds another dialog option to the Unity editor. This dialog allows
�nding ROS messages on the remote machine, transferring them, and generating CSharp
code for them automatically.
If a message has dependencies to other messages, these �les should also be retrieved in

the process. For example, attempting to generate the message 'geometry_msgs/Twist'
will also generate the dependency 'geometry_msgs/Vector3'. Each generated message
class is uniquely identi�able by its fully quali�ed type name. This type name can be
mapped to the ROS message name.
Since there can be a very large number of messages to be displayed to the user, these

messages should be organized in some way. In the dialog, the user should be given the
option to select individual messages to transfer. Additionally, it should be possible to

19

4. Design

search for messages in speci�c packages. ROS also o�ers a command to list all messages
in active topics, so this option should be included as well.

4.3 User interface

Figure 4.1 showcases the user interface for the message generation window. The
work�ow for this dialog can be sectioned into three stages: Message search, selection,
and code generation.

Figure 4.1: The message transfer window, showing the setup and search options at the
top, the search results and message selection in the middle, and the generate
function at the bottom. The window is accessible through a menu in the
Unity editor.

Searching messages ROS message types which are present on a remote machine can be
listed in Unity through a user interface. There are three options available for listing
messages. The �rst option lists all messages saved on the remote machine. The
second option lists only messages which belong to a currently active topic. Finally,
the third option allows the user to input a package name, then lists all messages
within that package. An option exists to allow or disallow existing �les from being
overwritten. After initiating one of the search options, there is a wait time before
messages are displayed. An important note is that the tool remains functional even

20

4.4. Installation

when there are compile errors within the current Unity project. Otherwise, there
could be a case where message �les are missing but cannot be retrieved by using
the tool.

Selecting messages From the list of messages, the user can make a selection. The
messages are grouped by their package names for ease of navigation. Each package
can be expanded to reveal the contained messages. There is an option to select and
unselect all messages within a package, and another option to select all messages
across all packages.

Generating code From the selected messages, C# class �les can be automatically
generated and saved into the Unity project directory by pressing a button, which
initiates another waiting time. From the user's perspective, the �le transfer and
code generation is a single step. When all source �les are generated, the Unity
project will be recompiled and the user will be noti�ed that the process has
�nished.

4.4 Installation

In Ubuntu, the Ros# package '�le_server' must be installed. Then, the package
'ros_sharp_extension' must be copied into the 'src' directory of the ROS work space,
followed by a 'catkin_make' command executed from the work space directory. To
launch the software, run the following command:

$ roslaunch ros_sharp_extension ros_sharp_extension.launch

On Windows, the dependencies to compile RosSharpExtension.dll are: Microsoft
Visual Studio 2017, .Net Framework 4.6, RosBridgeClient.dll (included in Ros#),
UnityEngine.dll, UnityEditor.dll. As of Unity version 2019.1.1f1, the latter two libraries
can be found in the directory 'Unity\Editor\Data\Managed' of the Unity installation.
After compilation, the resulting binary �le RosSharpExtension.dll must be placed in
the Unity project directory, alongside RosBridgeClient.dll.

4.5 Proof of concept

In order to test the viability of the design, it should be proven that the automated
message generation feature is functional, since that is the most fundamental requirement
of this project. There are four steps to this proof:

1. An example Unity project is used as a base. This project uses messages which were
originally included in Ros#.

2. The Ros# messages are deleted, resulting in compile errors from missing types.

3. The messages are added back via the message transfer window.

21

4. Design

4. The resulting project should now function the same as in step 1.

To execute these steps, some preparation was needed. The example project used in step
1 is included in the ros-sharp-extension software under the "Unity" directory 1 . It is
based on the set up created in section 3.4.2 , with some modi�cations which are explained
below.
Firstly, the namespaces of the Ros# messages were changed to match ROS package

names. This was done in both the RosBridgeClient library and in the Unity project. Not
doing so would mean that the generated message classes are named di�erently from the
original Ros# classes, causing compile errors. An example of this naming mismatch is
the namespace 'Navigation', which contains messages from the package 'nav_msgs'.
The second modi�cation was to change the types of some Ros# messages, because they

did not match the types de�ned in the ROS messages. Consequently, to prevent compile
errors, type casts are required in places where these types had been used. An example
for a type mismatch is found in the Vector3 class: The �elds x, y and z are de�ned as
�oat in Ros#, but ROS de�nes them as �oat64, which maps to the type double in C#.
A fork of Ros# has been created which includes only these changes 2 , and is based on

the version committed on April 12, 2019. This fork is only used for the proof of concept.
The message generation plugin will function regardless of whether the forked project is
used or the ros-sharp master branch.
After completing these steps, the project compiles successfully using the

newly-generated messages. An example of a generated message �le can be seen in
listing 4.1 .

1Example project:
https://github.com/Phil-Holdorf/ros-sharp-extension/tree/master/Unity/Proof%20of%20Concept/
Project%201

2Fork of Ros#: https://github.com/Phil-Holdorf/ros-sharp

22

https://github.com/Phil-Holdorf/ros-sharp-extension/tree/master/Unity/Proof%20of%20Concept/Project%201
https://github.com/Phil-Holdorf/ros-sharp-extension/tree/master/Unity/Proof%20of%20Concept/Project%201
https://github.com/Phil-Holdorf/ros-sharp

4.5. Proof of concept

1 /*
2 This message class is generated automatically with ’

CustomMessageGenerator’ of RosSharpExtension
3 */
4
5 using Newtonsoft.Json;
6 using RosSharp.RosBridgeClient;
7 using RosSharp.RosBridgeClient.Messages;
8 using RosSharp.RosBridgeClient.Messages.geometry_msgs;
9
10 namespace RosSharp.RosBridgeClient.Messages.geometry_msgs {
11 public class Twist : Message {
12 [JsonIgnore]
13 public const string RosMessageName = "geometry_msgs/Twist";
14
15 public Vector3 linear;
16 public Vector3 angular;
17
18 public Twist() {
19 linear = new Vector3();
20 angular = new Vector3();
21 }
22 }
23 }

Listing 4.1: An auto-generated Twist message class

23

5. Implementation

5 Implementation

The proposed software can be separated into two modules: The ROS side and the Unity
side. The ROS module runs on an Ubuntu 16.04 machine, while the Unity module runs
on a Microsoft Windows machine. Alternative platforms may be possible but have not
been tested for this software. Communication between these two modules happens via
RosBridge.
The ROS module consists of a single package 'ros_sharp_extension'. The package

contains the services 'list_messages' and 'list_messages_in_package', which are
implemented as python nodes. These services expose the functionality of the ROS
console commands 'rosmsg list' and 'rosmsg package'. The Unity module is a library
named 'RosSharpExtension'. It is a plugin for the Unity Editor which adds the message
transfer window as shown in section 4.3 .
The chapter is structured along two communication steps between ROS and Unity

that occur in the message transfer process: Listing messages and generating class �les.
A di�erent ROS service is called in each step, requiring user input between the two service
calls. These steps can be broken down further into smaller steps. The focus here lies on
explaining the control �ow of the application. Several problems that were encountered
during development are also highlighted.

24

5.1. Listing messages

5.1 Listing messages

Figure 5.1: Activity diagram illustrating the control �ow of a message search operation.
Upon pressing a button, the input is passed through a layered class hierarchy
and propagated to ROS as a service call to list_messages. The service
returns the list of messages to its caller, which is then processed further
to be displayed within Unity. For simplicity, side e�ects of method calls are
omitted here. Also not shown is the RosBridge communication layer, because
the MessageLoader is an abstraction on it.

Shown in �gure 5.1 are all the main scripts involved in the message listing step when
choosing the option "Display all messages". The control �ow is analogous for the other
two search operations: listing messages in a single package, or listing messages of active
topics. The methods will have di�erent names, but the execution order is the same. In
the following, each of the scripts will be detailed further in regards to their individual
responsibilities.

MessageImportEditorWindow: Handling UI layout

This class is responsible for the layout and rendering of the Unity editor window
'Transfer messages from ROS'. It was ensured that the class is essentially stateless. All
user input which a�ects the state of the program is delegated to the classes
MessageImportHandler and MessageImportResultsHandler. This separation was done
in the interest of maintainability. The window class has access to the state of the two
handler classes, and uses this to decide which UI components should be displayed.

25

5. Implementation

MessageImportHandler: Handling UI state

The public state of this class consists of the options selected by the user and the
current state of the operation. User input is received from the
MessageImportEditorWindow, which changes the state. When pressing one of the
'Load Messages' buttons, an instance of MessageLoader is created in a new thread. A
callback method is given to the MessageLoader as an argument, which is invoked when
the list of messages is received from the ROS side. The list is then passed to the
MessageImportResultsHandler.

MessageLoader: Communicating with ROS

The MessageLoader class is quite simple. It provides methods which initiate the ROS
service calls for listing messages. It provides an abstraction on the RosSocket class
de�ned by Ros#. By extension, it also abstract from the communication logic provided
by RosBridge. This separation is useful because service calls are rather long-winded, as
can be seen in listing 5.1 below.

1 rosSocket.CallService
2 <ListMessagesRequest, ListMessagesResponse>
3 ("ros_sharp_extension/list_messages",
4 ReceiveAllMessages,
5 new ListMessagesRequest()
6);

Listing 5.1: The code for making a service call in Ros#. The arguments are the request
and response class types, the name of the service, a reference to a callback
function which is called on completion, and an instance of the request class.

MessageImportResultsHandler: Organizing results

This class addresses the task of managing the "Results" section of the message import
window. It does not access UI components, but it organizes the results and exposes
them to the UI layer, as well as o�ering public methods to alter the state. From the
list of messages received by the ROS service, a hierarchy is created, which is represented
by a sorted dictionary. This allows grouping messages under their package names and
automatically sorting the list. Three more dictionaries are used to store message selection,
package selection, and which packages are folded or unfolded in the view.

26

5.2. Generating class �les

5.2 Generating class �les

Figure 5.2: Activity diagram of the message generation control �ow. A button press
initiates the process. The message selection made by the user is passed
through to the �le server on the ROS side. After all �les are transferred, the
message generation process begins. Each message �le goes through a three-
step process: Parsing the �le contents, determining if the �le depends on
other messages, and generating a class �le. If there are missing dependencies,
the transfer process is repeated until all dependencies are resolved.

The call hierarchy shown in �gure 5.2 is similar to the one in the previous section. The
important part is to describe what happens after the message transfer has completed.
The process of parsing raw message �les, resolving dependencies and generating class
�les will be looked at in detail.

27

5. Implementation

MessageParser: Converting text to objects

A ROS message can be de�ned by its combined name and a list of �elds, where the
combined name is a concatenation of the package name and the message name. The
package and message name are separated by a slash symbol, as in
'geometry_msgs/Twist'. The types as well as the syntax for message �les are de�ned in
the ROS documentation[37] .

Fields in a message are represented by the CustomMessageElement class. It
consists of the name of the �eld, a message type denoted by a combined name, an array
marker, and a primitive type marker (indicating whether it is a built-in ROS type).

The �rst step in message parsing is reading each line in a given �le, removing the
comments, and extracting the individual words. Constants are currently not supported,
so if one of the words is an equal sign, the line will be skipped. The expected word count
is exactly two: a type name and a �eld name, separated by a whitespace character. If
the words contain squared brackets, it means that the �eld is an array. A look-up table
is then used to �nd out if the �eld has a primitive type, as shown below in listing 5.2. If
it is primitive, it will lack a package name. If it is not primitive but still lacks a package
name, it means that the referenced message type resides in the same package as the
message �le.

1 "bool" -> bool
2 "int8" -> sbyte
3 "uint8" -> byte
4 "int16" -> short
5 "uint16" -> ushort
6 "int32" -> int
7 "uint32" -> uint
8 "int64" -> long
9 "uint64" -> ulong
10 "float32" -> float
11 "float64" -> double
12 "string" -> string
13 "char" -> byte
14 "byte" -> sbyte

Listing 5.2: Reference for a mapping from primitive ROS message types to equivalent
C# types (Pseudo code). This is used by the message parser.

There are some ROS types which require special attention. These are handled on a
case-by-case basis. These types are 'time', 'duration' and 'Header'. Firstly, time and
duration are built-in ROS types without an equivalent C# type. Instead of using
primitives to represent these types, they are represented as separate classes, both
containing two integers 'secs' and 'nsecs'. Header is a special type because it does not
require the package pre�x in a message de�nition, so it must be added to its combined
name.

28

5.2. Generating class �les

MessageGenerationHandler: Resolving dependencies

This class is mainly responsible for determining the list of message dependencies for a
given �le. The naming stems from the fact that it also initiates the �le parsing and code
generation. Although the implementations for these two steps are o�oaded into other
classes, which are part of the generation process as a whole.
If the code were to be refactored, this class should be renamed DependencyHandler

or similar. It should only de�ne one public method named GetDependencies, receiving
as input an already parsed �le. Message generation should be initiated in the
MessageImportHandler class, after all dependencies have been received and parsed.
The dependencies on MessageParser and CustomMessageGenerator should not exist in
this class. With these changes, the class would only have a single responsibility, which
should help to improve its maintainability. Since the class does provide the list of
dependencies as its expected output, this architectural oversight was seen as a
low-priority issue.

CustomMessageGenerator: Writing class �les

Ros# already provides a class for generating messages, however it was not suitable for
this project for several reasons. The �rst is that it resides in the Unity module, not in
the RosBridgeClient library. Referencing the Unity module would be problematic, as it
would require our code to be copied into the Unity project folder instead of being pre-
compiled. In that case, the message generation could not be used if the Unity project
does not compile.
Moreover, the Ros# message generator was not made with extensibility in mind. It

serves the user interface that they provide, and can be seen as dependent on it. It also
does not provide an option to generate primitive �eld types. The only types allowed are
those deriving from the Message class.
One noteworthy and necessary feature of the message generator is the ability to identify

valid C# identi�ers. ROS messages may de�ne �elds such as 'interface', 'event', or other
reserved key words. One way to circumvent this is to add an '@' to the beginning of the
identi�er in those cases. Apart from that, the task of generating code is fairly trivial, as
it is simply a matter of appending strings.

29

6. Discussion

6 Discussion

This chapter addresses the thesis goal described in section 1.2, and the problem summary
in 4.1 . The topic of the discussion is how well the problems could be solved, what is
still missing or unclear, and how this work could be improved on in the future.

6.1 Evaluation

The goal was to examine Ros# in terms of productivity, and to extend the software,
improving it in this regard. To help identify possible improvements, some further
questions have been asked:

1. What are some use cases of ROS-Unity applications?

2. Which steps in the development process do these use cases have in common?

3. How can the proposed framework assist to increase productivity at each of these
steps?

The �rst and second question were answered in section 2.2 and section 2.4 , respectively.
It was found that the use cases for ROS-Unity interfaces are very diverse. They include
a simulator for multiple �ying drones, a monitoring task for industrial processes, and
several projects related to human-robot interactions (HRI). Among the recent examples
found during research, the most common applications were those that utilized virtual
reality devices.

The research revealed that a ROS-Unity framework should be applicable to any
scenario. On the other hand, the trend towards VR applications is noticeable and could
deserve further support by this framework. The shared requirement between these
applications was the task of connecting ROS to Unity, which had previously been
solved on a case-by-case basis.

The speci�c steps to achieve this connection were mainly described in section 3.1 ,
which explained ROS communication concepts. Building on that, sections 3.3 and 3.4
introduced a framework for the Unity-side communication, consisting of RosBridge and
Ros#.

There are some common development steps which were left somewhat unaddressed
by Ros#. These were described in the problem summary in section 4.1 : When using
only Ros#, Unity scripts had to be written manually to implement messages, services,
publishers and subscribers. Afterwards, the publishers, subscribers and RosConnector
scripts had to be added to appropriate game objects.

30

6.1. Evaluation

The third question was then answered by the proposed features in section 4.2. Time
can be saved by automating a part of the development process, thereby increasing
productivity. The features were limited to the generation of C# code for ROS message
�les in Unity. The following sections evaluate if the tool works as intended and
describes various issues that still remain.

6.1.1 Functionality

The message generation feature is explained in detail in section 4.3, focusing on the user
interface. The proof of concept in section 4.5 shows that the message generation feature
is usable. That is, a Unity project will compile and run successfully with the generated
message �les. In the case of previously existing message �les, these can be replaced with
generated �les as well, but there are some di�culties that arise, which are explained
below.

In the process of setting up the proof of concept, it became clear that care should be
taken when creating message classes manually. This is because there were
inconsistencies between the message types of Ros# and ROS itself, which meant that
the code which used these messages had to be updated when the message de�nitions
changed to the generated classes. Although the message generation produces the
expected output which is equivalent to ROS messages, these inconsistencies can lead to
some development overhead when switching from manually de�ned classes to generated
classes.

When introducing new messages to a project for the �rst time, this overhead would
not occur. In that case, no code would exist which references the new messages, therefore
no code has to be updated.

However, the described overhead does not have to be a drawback. It is still possible to
use both manually de�ned as well as generated message types within the same project,
as long as it does not create name con�icts with existing types.

For this thesis, it was requested by the advisors that the generated messages are
assigned to the same namespace as the Ros# messages. It would be a trivial task to
change the output namespaces to prevent such con�icts: The output namespace is simply
de�ned as a string in the message generator class, to which the ROS package name of
the message is then appended.

6.1.2 Performance

The process of loading, displaying and generating messages is rather slow. On a weaker
machine (1.83Ghz), these steps combined could take up to a few minutes to complete.
On a computer which is better equipped to run Unity (3.6Ghz), each step generally takes
a few seconds. The source of this bottleneck was not investigated further. The reasoning
is that the application is run in the editor and not in game mode, which means it is not
impacted by framerate requirements. Moreover, message generation is not intended to
be a frequently used operation.

31

6. Discussion

Modern computers should be capable of completing the steps in several seconds, which
was deemed acceptable. If performance becomes a concern, Unity's built-in pro�ling tool
could be used to identify and resolve potential bottlenecks. This will give information
on resource consumption, time spent in certain code areas, and more.

6.1.3 Testing

No formal code testing was done on this project. The proof of concept can be followed to
show functionality in a pre-de�ned test case. This proof can also be extended to generate
a very large amount of messages: None of the message �les from the used ROS installation
and related components were causing compile errors. However, it was not veri�ed that all
of them had in fact been generated successfully and whether they followed the expected
output. The components of this installation are referenced in the Ros# wiki tutorials,
which was described in section 3.4.2 .

These are only positive test cases and cannot be a replacement for formalized unit
tests. Several automated tests come to mind which could have increased con�dence in the
correctness of the application. The generated message �les each have an expected output
which could have been tested against the actual output. Test cases could be created for
messages which contain one or more �elds, and which include arrays, constants and
comments, with both legal and illegal C# identi�ers.

Unit tests would also reveal behaviors in the case of communication failures and other
exceptions such as �le system errors. Currently, an error message will be displayed in the
Unity console when the ROS machine is unreachable. However, it is possible that the
message loading and message generation fails without a message and stops responding,
in the case that ROS is reachable but encounters an error.

Ros# has used a system where every step in the �le transfer between ROS and Unity
was displayed with a status �eld. This can be seen in the URDF transfer window.
This approach can aid debugging e�orts when one of the steps fails. However, this
approach was deemed too noisy and took up too much space to be included in the
message generation window.

Finally, potential users of the software could have been involved at several points in
the design and development stages. Users of both ROS and Unity could have been
interviewed to help determine the requirements of the tool. Instead, the requirements
were determined by researching related work and consulting with two ROS users, who
also supervised this thesis. After the implementation phase, users were not asked to
use the tool �rst-hand. The user interface is of such a small scale - a single window
with a handful of options - that a user acceptance test was not expected to provide
further meaningful insight. If the tool is to be developed further, user feedback should
be incorporated to determine the direction of the software and address usability concerns.

32

6.2. Outlook

6.2 Outlook

As it stands, the software is usable and provides a simple addition to the toolset needed
by ROS-Unity developers. While it is a step towards increased productivity in this area,
there are still a number of features which would have been desirable, but had to be left
out due to time constraints.

6.2.1 Messages

When it comes to message generation, there are a few aspects which are left unaddressed.
ROS message �les can contain constants and documentation in the form of comments.
Both of these are currently not included in generated message �les, as they are not
necessary for using the messages in a script and communicating with ROS. Including
them would mean one less look-up of ROS documentation, which might help Unity
developers. In the case of constants, some users might expect to �nd them inside a
message class de�nition. If they are missing, it could inconvenience users who have used
a particular message type before in other projects.

Another known issue related to messages is the lack of support for �xed length arrays,
which can be used to represent matrices or other data. This can be seen in the ROS
message TwistWithCovariance [38] . Currently, a �xed length array will not be initialized
with the correct length in the message constructor. Instead, all array �elds are initialized
as empty arrays. This can lead to an error if developers try to assign a value at an index
without �rst re-initializing the array with the correct size.

In the event that a message de�nition changes on the side of ROS, the message �le
would have to be generated again or be modi�ed manually. To help with that, an
automatic update function could be added in the future. ROS provides an Md5 hash for
every message type, acting as a unique identi�er. This could be used to compare message
de�nitions on a ROS system with those present in a Unity, thereby determining if there
are any outdated message �les.

It is worth noting that when work begun on this thesis in January, the message
generation dialog had not yet been added. This meant that code for new message �les
had to be written manually, followed by a recompilation of the RosBridgeClient library.
As Ros# is still in development, additional work in this area can be expected. To
contribute to this e�ort, the work described in this thesis will likely be o�ered to Ros#
for review and potential integration in some form. Before this can be done, the current
developments of the project need to be taken into consideration to prevent any
con�icting features.

6.2.2 Other �le types

As mentioned in the problem summary in section 4.1 , it would have been desirable to
extend the automated code generation feature to other types of �les. Namely: Services,
publishers and subscribers. For this purpose, new dialog options could be added to the
user interface, either as separate windows or consolidated into a single window.

33

6. Discussion

Starting with service �les, these could be generated in much the same way as message
�les. Ros# de�nes services as two classes in a single �le: a request class and a response
class, each inheriting from Message. Since the ROS command rosservice can only display
currently active services [39] , another node would have to be created which lists all
service �les nested in a given package.
In the case of publishers and subscribers, this could work by displaying a list of ROS

topics, from which users make a selection. However, ROS can only display topics that
are currently active [40] . This means that users would need to type the name of each
topic, as well as the message type for it. Alternatively, users could launch all the ROS
nodes in a system beforehand, thus giving access to the list of active topics. This would
save the e�ort of typing out each topic.
After the topic selection has been made, the related scripts can be generated with

simple communication templates. These can be based on the existing Ros# publisher
and subscriber scripts as a reference. Since topics each refer to a certain message type,
the message classes could be generated in the same step. These scripts would serve as
an immediate starting point for users to orient themselves on and add their own custom
behaviors.
The task of adding scripts to game objects is likely not suited to being automated,

since publishers and subscribers can reasonably be attached to a variety of objects in a
Unity scene, such as robots or "manager" objects, or even multiple objects. At most, an
option could be o�ered to specify an existing object to add the scripts to. This could
be helpful if the number of topics is quite large, making the con�guration a repetitive
process.
After adding the features described in this chapter, the software could be considered

complete in regards to its purpose of automated �le generation. This includes adding
unit tests for increased con�dence, as well as involving users to provide feedback in the
interface design and the selection of new features.

34

7. Conclusion

7 Conclusion

The software shown in this work is an extension of the existing ROS-Unity framework
Ros#, which is still under active development by Siemens. The added feature is a dialog
option which enables users to automatically generate C# code for ROS message �les.
In the past, these �les had to be produced manually, which acted as a barrier to rapid
prototyping of various robot setups in Unity.
The functionality of the tool was shown in a proof of concept application, where existing

message �les were successfully replaced with generated �les. Not all the desired features
could be completed in time. In the future, the automated code generation should be
extended to ROS services, publishers and subscribers. Automated unit tests should be
added to increase con�dence in the correctness of the results, and user involvement should
take more of a focus in the future design process.
While this work marks an improvement and an increase in productivity due to time

savings, it is only one step towards the goal of creating a versatile framework for ROS-
Unity developers. Users without expert knowledge will still face obstacles that could be
smoothed out with a more complete set of features. As it stands, production of ROS
source �les still remains a conscious task for developers, bringing with it a time investment
and a learning curve. Only a part of this task has been succesfully automated.
Ideally, future developments will bridge the gap between experts of the �elds of robotics

and interactive software, thus allowing more frequent contributions related to human-
robot-interaction and robot simulation. In the author's opinion, it is likely that Ros#
will become the dominant choice for ROS-Unity developers, and contributions are likely
to increase.

35

Bibliography

Bibliography

[1] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In
ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009.

[2] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 3,
pages 2149�2154. IEEE, 2004.

[3] Unity Technologies. Unity3d. https://unity.com, Retrieved June 19, 2019.

[4] Siemens. Rossharp. https://github.com/siemens/ros-sharp, Retrieved June 19,
2019.

[5] Yuchao Hu and Wei Meng. Rosunitysim: Development and experimentation of a
real-time simulator for multi-unmanned aerial vehicle local planning. Simulation,
92(10):931�944, 2016.

[6] Enrico Sita, Csongor Márk Horváth, Trygve Thomessen, Péter Korondi, and
Anthony G Pipe. Ros-unity3d based system for monitoring of an industrial robotic
process. In 2017 IEEE/SICE International Symposium on System Integration (SII),
pages 1047�1052. IEEE, 2017.

[7] Dennis Krupke, Lasse Einig, Eike Langbehn, Jianwei Zhang, and Frank Steinicke.
Immersive remote grasping: realtime gripper control by a heterogenous robot control
system. In Proceedings of the 22nd ACM Conference on Virtual Reality Software
and Technology, pages 337�338. ACM, 2016.

[8] Christopher Crick, Graylin Jay, Sarah Osentoski, Benjamin Pitzer, and
Odest Chadwicke Jenkins. Rosbridge: Ros for non-ros users. In Robotics Research,
pages 493�504. Springer, 2017.

[9] Brian Gerkey, Richard T Vaughan, and Andrew Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In Proceedings of the 11th
international conference on advanced robotics, volume 1, pages 317�323, 2003.

[10] Fumio Kanehiro, Hirohisa Hirukawa, and Shuuji Kajita. Openhrp: Open
architecture humanoid robotics platform. The International Journal of Robotics
Research, 23(2):155�165, 2004.

36

https://unity.com
https://github.com/siemens/ros-sharp

Bibliography

[11] Olivier Michel. Cyberbotics ltd. webotsTM: professional mobile robot simulation.
International Journal of Advanced Robotic Systems, 1(1):5, 2004.

[12] Eric Rohmer, Surya PN Singh, and Marc Freese. V-rep: A versatile and scalable
robot simulation framework. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1321�1326. IEEE, 2013.

[13] Benjamin Balaguer, Stephen Balakirsky, Stefano Carpin, Mike Lewis, and
Christopher Scrapper. Usarsim: a validated simulator for research in robotics
and automation. In Workshop on Robot Simulators: Available Software, Scienti�c
Applications, and Future Trends at IEEE/RSJ. Citeseer, 2008.

[14] Epic Games. Unreal engine. https://www.unrealengine.com, Retrieved June 25,
2019.

[15] Stephen Balakirsky and Zeid Kootbally. Usarsim/ros: A combined framework for
robotic control and simulation. In ASME/ISCIE 2012 international symposium on
�exible automation, pages 101�108. American Society of Mechanical Engineers, 2012.

[16] Je� Craighead, Jennifer Burke, and Robin Murphy. Using the unity game engine to
develop sarge: a case study. In Proceedings of the 2008 Simulation Workshop at the
International Conference on Intelligent Robots and Systems (IROS 2008), 2008.

[17] Gilberto Echeverria, Nicolas Lassabe, Arnaud Degroote, and Séverin Lemaignan.
Modular open robots simulation engine: Morse. In 2011 IEEE International
Conference on Robotics and Automation, pages 46�51. Citeseer, 2011.

[18] Blender. http://blender.org, Retrieved June 19, 2016.

[19] Daniel Cook, Andrew Vardy, and Ron Lewis. A survey of auv and robot simulators
for multi-vehicle operations. In 2014 IEEE/OES Autonomous Underwater Vehicles
(AUV), pages 1�8. IEEE, 2014.

[20] Mario Prats, Javier Perez, J Javier Fernández, and Pedro J Sanz. An open source
tool for simulation and supervision of underwater intervention missions. In 2012
IEEE/RSJ international conference on Intelligent Robots and Systems, pages 2577�
2582. IEEE, 2012.

[21] Farzan M Noori, David Portugal, Rui P Rocha, and Micael S Couceiro. On 3d
simulators for multi-robot systems in ros: Morse or gazebo? In 2017 IEEE
International Symposium on Safety, Security and Rescue Robotics (SSRR), pages
19�24. IEEE, 2017.

[22] Weichao Qiu and Alan Yuille. Unrealcv: Connecting computer vision to unreal
engine. In European Conference on Computer Vision, pages 909�916. Springer,
2016.

37

https://www.unrealengine.com
http://blender.org

Bibliography

[23] Christoph Bartneck, Marius Soucy, Kevin Fleuret, and Eduardo B Sandoval. The
robot engine�making the unity 3d game engine work for hri. In 2015 24th IEEE
International Symposium on Robot and Human Interactive Communication (RO-
MAN), pages 431�437. IEEE, 2015.

[24] R Codd-Downey, P Mojiri Forooshani, A Speers, H Wang, and M Jenkin.
From ros to unity: Leveraging robot and virtual environment middleware for
immersive teleoperation. In 2014 IEEE International Conference on Information
and Automation (ICIA), pages 932�936. IEEE, 2014.

[25] Juan Jesús Roldán, Elena Peña-Tapia, David Garzón-Ramos, Jorge de León, Mario
Garzón, Jaime del Cerro, and Antonio Barrientos. Multi-robot systems, virtual
reality and ros: Developing a new generation of operator interfaces. In Robot
Operating System (ROS), pages 29�64. Springer, 2019.

[26] Michael Jenkin and Mathias Ciarlo. Rosbridgelib. https://github.com/
MathiasCiarlo/ROSBridgeLib, Retrieved June 28, 2019.

[27] David Whitney, Eric Rosen, Daniel Ullman, Elizabeth Phillips, and Stefanie Tellex.
Ros reality: A virtual reality framework using consumer-grade hardware for ros-
enabled robots. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 1�9. IEEE, 2018.

[28] Ros reality github page. https://github.com/h2r/ros_reality, Retrieved June 29,
2019.

[29] Yoshiaki Mizuchi and Tetsunari Inamura. Cloud-based multimodal human-robot
interaction simulator utilizing ros and unity frameworks. In 2017 IEEE/SICE
International Symposium on System Integration (SII), pages 948�955. IEEE, 2017.

[30] D Krupke, S Starke, L Einig, F Steinicke, and J Zhang. Prototyping of immersive
hri scenarios. In International Conference on Climbing and Walking Robots and the
Support Technologies for Mobile Machines, pages 537�544. World Scienti�c, 2017.

[31] Ros wiki documentation. http://wiki.ros.org, Retrieved July 06, 2019.

[32] Unity scripting reference. https://docs.unity3d.com/2019.2/Documentation/
ScriptReference/index.html, Retrieved July 29, 2019.

[33] Rosbridge wiki page. http://wiki.ros.org/rosbridge_suite, Retrieved June 19, 2016.

[34] Rosbridge protocol de�nition. https://github.com/RobotWebTools/rosbridge_
suite/blob/groovy-devel/ROSBRIDGE_PROTOCOL.md, Retrieved July 29, 2019.

[35] Ros# wiki, instructions for an example application.

[36] Turtlebot. https://www.turtlebot.com, Retrieved July 29, 2019.

[37] Ros message documentation. http://wiki.ros.org/msg, Retrieved July 29, 2019.

38

https://github.com/MathiasCiarlo/ROSBridgeLib
https://github.com/MathiasCiarlo/ROSBridgeLib
https://github.com/h2r/ros_reality
http://wiki.ros.org
https://docs.unity3d.com/2019.2/Documentation/ScriptReference/index.html
https://docs.unity3d.com/2019.2/Documentation/ScriptReference/index.html
http://wiki.ros.org/rosbridge_suite
https://github.com/RobotWebTools/rosbridge_suite/blob/groovy-devel/ROSBRIDGE_PROTOCOL.md
https://github.com/RobotWebTools/rosbridge_suite/blob/groovy-devel/ROSBRIDGE_PROTOCOL.md
https://www.turtlebot.com
http://wiki.ros.org/msg

Bibliography

[38] Message de�nition for twistwithcovariance. http://docs.ros.org/jade/api/
geometry_msgs/html/msg/TwistWithCovariance.html, Retrieved July 29, 2019.

[39] Rosservice command documentation. http://wiki.ros.org/rosservice, Retrieved July
29, 2019.

[40] Rostopic command documentation. http://wiki.ros.org/rostopic, Retrieved July 29,
2019.

39

http://docs.ros.org/jade/api/geometry_msgs/html/msg/TwistWithCovariance.html
http://docs.ros.org/jade/api/geometry_msgs/html/msg/TwistWithCovariance.html
http://wiki.ros.org/rosservice
http://wiki.ros.org/rostopic

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im
Bachelorstudiengang Informatik selbstständig verfasst und keine anderen als die
angegebenen Hilfsmittel � insbesondere keine im Quellenverzeichnis nicht benannten
Internet-Quellen � benutzt habe. Alle Stellen, die wörtlich oder sinngemäÿ aus
Verö�entlichungen entnommen wurden, sind als solche kenntlich gemacht. Ich
versichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen
Prüfungsverfahren eingereicht habe und die eingereichte schriftliche Fassung der auf
dem elektronischen Speichermedium entspricht.

Hamburg, den 30.07.2019 Phil Holdorf

Verö�entlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 30.07.2019 Phil Holdorf

	Abstract
	Introduction
	Motivation
	Thesis goal
	Chapter guide

	Related work
	Robot simulators
	Recent use of game engines
	Comparing Unreal Engine and Unity
	Frameworks

	Basics
	ROS - Robot Operating System
	Communication concepts
	File system

	Unity
	Working environment
	Scripting

	RosBridge
	Ros#
	System overview
	Example project
	Customizing a project

	Design
	Problem summary
	Proposed features
	User interface
	Installation
	Proof of concept

	Implementation
	Listing messages
	Generating class files

	Discussion
	Evaluation
	Functionality
	Performance
	Testing

	Outlook
	Messages
	Other file types

	Conclusion
	Bibliography

